Thèse soutenue

Interaction sol-structure non-linéaire en analyse sismique
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Alex Nieto ferro
Direction : Didier Clouteau
Type : Thèse de doctorat
Discipline(s) : Mécanique
Date : Soutenance le 17/01/2013
Etablissement(s) : Châtenay-Malabry, Ecole centrale de Paris
Ecole(s) doctorale(s) : École doctorale Sciences pour l'Ingénieur (Châtenay-Malabry, Hauts de Seine)
Partenaire(s) de recherche : Laboratoire : Laboratoire de mécanique des sols, structures et matériaux (Gif-sur-Yvette, Essonne ; 1998-2021)
Jury : Président / Présidente : Frédéric Ragueneau
Examinateurs / Examinatrices : Didier Clouteau, Marc Bonnet, Geert Degrande, Jean-François Semblat, Nicolas Greffet
Rapporteurs / Rapporteuses : Marc Bonnet, Geert Degrande

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Ce travail détaille une approche de calcul pour la résolution de problèmes dynamiques qui combinent des discrétisations en temps et dans le domaine de Laplace reposant sur une technique de sous-structuration. En particulier, la méthode développée cherche à remplir le besoin industriel de réaliser des calculs dynamiques tridimensionnels pour le risque sismique en prenant en compte des effets non-linéaires d'interaction sol-structure (ISS). Deux sous-domaines sont considérés dans ce problème. D'une part, le domaine de sol linéaire et non-borné qui est modélisé par une impédance de bord discrétisée dans le domaine de Laplace au moyen d'une méthode d'éléments de frontière ; et, de l'autre part, la superstructure qui fait référence pas seulement à la structure et sa fondation mais aussi, éventuellement, à une partie du sol présentant un comportement non-linéaire. Ce dernier sous-domaine est formulé dans le domaine temporel et discrétisé avec la méthode des éléments finis (FE). Dans ce cadre, les forces liées à l'ISS s'écrivent sous la forme d'une intégrale de convolution en temps dont le noyau est la transformée de Laplace inverse de la matrice d'impédance de sol. Pour pouvoir évaluer cette convolution dans le domaine temporel à partir d'une impédance de sol définie dans le domaine de Laplace, une approche basée sur des Quadratures de Convolution (QC) est présentée : la méthode hybride Laplace-Temps (L-T). La stabilité numérique de son couplage avec un schéma d'intégration de type Newmark est ensuite étudiée sur plusieurs modèles d'ISS en dynamique linéaire et non-linéaire. Finalement, la méthode L-T est testée sur un modèle numérique plus complexe, proche d'une application sismique de caractère industriel, et des résultats satisfaisants sont obtenus par rapport aux solutions de référence.