= UlC

Université de Technologie
Compiégne

Par Oana STAN

Placement of tasks under uncertainty on massively
multicore architectures

These préesentee
pour I'obtention du grade
de Docteur de 'UTC

Appli. ZC

.

1. Lexer, parser, code generator

. - . Process network
2. Parallelism instantiation & reduction

LN i %
4. Runtime generation, link edition & loadbuild | ~ Placement it & R t g

Q e o
3. Resource allocation (P&R, scheduling) &

Scheduling runtime

+ system software

MPPA chip

Soutenue le 15 novembre 2013
Spécialité : Technologies de I'Information et des Systémes

D2116

UNIVERSITE DE TECHNOLOGIE DE COMPIEGNE

PLACEMENT OF TASKS UNDER UNCERTAINTY ON
MASSIVELY MULTICORE ARCHITECTURES

THESE DE DOCTORAT

pour 'obtention du grade
de docteur de I"Université de Technologie de Compiégne
spécialité Technologies de I'Information et des Systémes

présentée et soutenue publiquement
par
Mme. Oana STAN

le 15 novembre 2013

devant le jury composé de :

Directeurs de thése : Jacques Carlier Professeur, Université de Technologie de Compiégne
Dritan Nace Professeur, Université de Technologie de Compiégne
Rapporteurs : Alix Munier Professeur, Université Paris VI

Walid Ben-Ameur Professeur, Institut TELECOM Sud-Paris
Encadrant : Renaud Sirdey Ingénieur-chercheur, CEA, LIST

To my father

Acknowledgements

First of all, I want to address my grateful acknowledgments to Mr. Jacques
CARLIER and Mr. Dritan NACE, professors at Université de Technologie de Com-
piégne, for directing my research work and guiding my steps with their eminent
expertise in the field of combinatorial optimization. Thanks to their constant and
careful supervision, I learned the good practices required in order to fulfill a high
quality research and I was able to finish my Phd dissertation in time without any
further delay.

My foremost appreciation also goes to Mr. Renaud SIRDEY, my Phd super-
visor at CEA, for his permanent support, his endless ideas helping me progress
during these last three years, for the confidence he had in me and for his contagious
enthusiasm for Science.

I wish to thank Mrs. Alix MUNIER, professor at Université Paris 6, and Mr.
Walid BEN-AMEUR, professor at Telecom SudParis, for honoring me in accepting
to report this thesis and for their valuable remarks and suggestions. Also, I want to
address my thanks to Mr. Aziz MOUKRIM, professor at Université de Technologie
de Compiégne, for accepting to be president of the examining committee.

I want to address my gratitude to all those who made possible this work.

I especially think of the members of LaSTRE laboratory, from CEA: the coffee
breaks, the discussions, the advices, the after-works together not only made this an
enjoyable professional experience, they were also important for my personal growth
and enrichment.

A grateful thought goes to my Phd old fellows Nicolas, Ilias and Thomas for the
good moments during the lunches we had together at Resto 1...

Also, many thanks to my deskmates from “the Phd cage” at Nanolnnov - Vincent,
Simon, Safae, Karl, Moez, the two Amira - for all their help, for all the sweets we
shared and for bearing with me and with my continuous complains - “J’en ai marre”,
“Ca marche pas!!!”, “Oh-la-1a!” just to name a few...

A special thought for “The Three Musketeers”- Pascal, Sergiu and Julien - thanks
to their jokes and their support, overcoming the inherent moments difficult of a Phd
was less complicated.

I want to express my acknowledgments to all those who helped improve this
thesis, by re-readings or by providing experimental data: Safae, Vincent, Karl,
Pascal, Julien, Sergiu (again) and also Cyril, Loic, Paul and Lilia.

Many thanks to my friends outside work - Linda, Corina, Mihaela & Marius,
Valentin, Anca - due to their presence, I managed to keep my head outside the box
of my Phd topic, see the outside world and realize that there is a life out there.

Finally, my heartfelt thanks my family, for their comforting words and their
support, from my earliest childhood until now. It’s also thanks to them that I
became what I am now and I succeeded to get so far. I wish to thank my mother for
always being beside me, my aunt (Monica) and my grandmothers for their pieces of
advice as well as my little cousins (Vladut and Alex) for their unconditional love. I
would like to pay tribute to my father, which was the first one to persuade me to
follow this path and which would have been happy to live this moment.

Last, but not least, my warmest thanks to Andrei, my constant supporter, for
his kindness and his love, for his help and for the lost weekends, and for simply
standing beside me, while facing the ups and downs of being a Phd student.

Résumeé

Ce travail de thése de doctorat est dédié a ’étude de problémes d’optimisation
combinatoire du domaine des architectures massivement paralléles avec la prise en
compte des données incertaines tels que les temps d’exécution. On s’intéresse aux
programmes sous contraintes probabilistes dont ’objectif est de trouver la meilleure
solution qui soit réalisable avec un niveau de probabilité minimal garanti.

Une analyse qualitative des données incertaines a traiter (variables aléatoires
dépendantes, multimodales, multidimensionnelles, difficiles a caractériser avec des
lois de distribution usuelles), nous a conduit & concevoir une méthode qui est non
paramétrique, intitulée « approche binomiale robuste ». Elle est valable quelle que
soit la loi jointe et s’appuie sur 'optimisation robuste et sur des tests d’hypothése
statistique. On propose ensuite une méthodologie pour adapter des algorithmes de
résolution de type approchée pour résoudre des problémes stochastiques en intégrant
I’approche binomiale robuste afin de vérifier la réalisabilité d’une solution. La per-
tinence pratique de notre démarche est enfin validée a travers deux problémes issus
de la compilation des applications de type flot de données pour les architectures
manycore.

Le premier probléme traite du partitionnement stochastique de réseaux de pro-
cessus sur un ensemble fixé de nceuds, en prenant en compte la charge de chaque
nceud et les incertitudes affectant les poids des processus. Afin de trouver des solu-
tions robustes, un algorithme par construction progressive a démarrages multiples a
été proposé ce qui a permis d’évaluer le cotiit des solutions et le gain en robustesse
par rapport aux solutions déterministes du méme probléme.

Le deuxiéme probléme consiste & traiter de maniére globale le placement et le
routage des applications de type flot de données sur une architecture clustérisée.
L’objectif est de placer les processus sur les clusters en s’assurant de la réalisabilité
du routage des communications entre les tiches. Une heuristique de type GRASP a
été concue pour le cas déterministe, puis adaptée au cas stochastique clusterisé.

Abstract

This PhD thesis is devoted to the study of combinatorial optimization problems
related to massively parallel embedded architectures when taking into account un-
certain data (e.g. execution time). Our focus is on chance constrained programs with
the objective of finding the best solution which is feasible with a preset probability
guarantee.

A qualitative analysis of the uncertain data we have to treat (dependent random
variables, multimodal, multidimensional, difficult to characterize through classical
distributions) has lead us to design a non parametric method, the so-called “robust
binomial approach”, valid whatever the joint distribution and which is based on ro-
bust optimization and statistical hypothesis testing. We also propose a methodology
for adapting approximate algorithms for solving stochastic problems by integrating
the robust binomial approach when verifying for solution feasibility. The practical
relevance of our approach is validated through two problems arising in the compila-
tion of dataflow application for manycore platforms.

The first problem treats the stochastic partitioning of networks of processes on a
fixed set of nodes, by taking into account the load of each node and the uncertainty
affecting the weight of the processes. For finding stochastic solutions, a semi-greedy
iterative algorithm has been proposed which allowed measuring the robustness and
cost of the solutions with regard to those for the deterministic version of the problem.

The second problem consists in studying the global placement and routing of
dataflow applications on a clusterized architecture. The purpose being to place
the processes on clusters such that it exists a feasible routing, a GRASP heuristic
has been conceived first for the deterministic case and afterwards extended for the
chance constrained variant of the problem.

Contents

Acknowledgements
Résumé 1
Abstract 3
Contents 5
Introduction 7
List of Publications 13
1 Research Context and Motivations 15
1.1 Introduction L 15
1.2 Massively parallel embedded systems 16
1.2.1 Flynn’s classification 16
1.2.2 Manycore architectures 17
1.2.3 Challenges of programming for manycores 18
1.3 Dataflow models and stream programming 19
1.3.1 Taxonomy 20
1.3.2 Dataflow models L. 20
1.3.3 Stream programming 24
1.4 Sigma-C programming model and compilation 24
1.4.1 Sigma-C programming language 24
1.4.2 Example of a XC application : Motion detection 25
1.4.3 Overview of the compilation process 26
1.5 Research Motivations 0oL 29
1.5.1 NP-difficult optimization problems related to manycores . . . 29
1.5.2 On the role of a model in optimization under uncertainty . . . 30

1.5.3 Characterization of the uncertainties in the context of manycores 32

2 Optimization under uncertainty 39
2.1 What is it meant by “optimization under uncertainty™ 40
2.1.1 From a deterministic problem to its stochastic counterpart... . 40

2.1.2 Uncertainty setting 41

2.2 Chance constrained programming 43
2.2.1 Problem statement 43

6 Contents
2.2.2 Algorithmic challenges 44
2.2.3 Convexity studies 46
2.2.4 Robust approaches 47
2.2.5 Bounds and approximations 48
2.2.6 (Meta)heuristicso 49

2.3 Robust binomial approach (RBA) 50
2.3.1 Basic ideas and motivations 20
2.3.2 Statistical hypothesis testing 52
2.3.3 Sensitivity analysis on the values of parameters for RBA . . . 55
2.3.4 Chance constraints and sampling o7
2.3.5 RBA and adapting (meta)heuristics 61
2.3.6 Generalization of the RBA 66

3 Graph partitioning under uncertainty 71

3.1 Problem statement 72

3.2 Related works 73
3.2.1 Deterministic graph partitioning 73
3.2.2 Stochastic graph partitioning 73

3.3 Preliminaries: Deterministic algorithm 74
3.3.1 Relative affinity o000 74
3.3.2 Randomized greedy algorithm: deterministic case 75

3.4 Chance constrained version. 77

3.5 Computational results 79
3.5.1 Benchmark and Uncertain Parameters Generation 79
3.5.2 Results for the deterministic version 80
3.5.3 Results for the chance constrained version 82

4 Joint placement and routing under uncertainty 89

4.1 Problem statement L 90

4.2 Related works 91
4.2.1 Deterministic mapping oL 92
4.2.2 Stochastic mappingo 94

4.3 Deterministic algorithm 0000 95
4.3.1 GRASP & Preliminaries 96
4.3.2 Construction phase 97
4.3.3 Local search phase 99

4.4 Stochastic algorithmo oo 100

4.5 Computational results 102
4.5.1 Benchmarks 102
4.5.2 Results for the deterministic version. 104
4.5.3 Results for the stochastic version 107

5 Conclusion and future work 111

Bibliography 115

Introduction

As far as the laws of mathematics refer to reality, they are not certain; and as far
as they are certain, they do not refer to reality.

— Albert Einstein

The world we are living in is subject to permanent changes, where uncertainty is
encountered each day, everywhere, under various flavors, affecting individuals as well
as collective consciousness. We can choose to ignore it, which is the most convenient
path, or we can embrace the uncertainty surrounding us, accept it and take it into
account in our quest of the “ Truth”.

Unfortunately, when making decisions, uncertainty is often neglected and the
best decision is selected by applying classical methods from the combinatorial op-
timization field, without worrying about the variations of the data. Combinatorial
optimization, one of the most popular branches of mathematics over the last half of
century, with a widespread area of application from logistics and transportation to
planning and scheduling, finance or engineering design, allows to solve combinatorial
problems by finding the best solution from a set of finite but potentially enormous
size.

Dantzig, one of the greatest pioneers in the fields of operations research and
management science, considered optimization under uncertainty amongst the most
promising and important areas of combinatorial optimization. A fervent promoter
of the subject of stochastic optimization throughout the last thirty years, he em-
phasized during an interview in 2000 !:

Planning under uncertainty. This, I feel, is the real field that we should be all
working in. Those of us who were doing the planning right from the very beginning
understood that the real problem was to be able to do planning under uncertainty.
The mathematical models that we put together act like we have a precise knowledge
about the various things that are happening and we don’t.

Embedded systems design is one of the major domains of computer industry for
which applying optimization under uncertainty seems legitimate. With the arrival
of the first manycore embedded architectures, compilation of applications targeting
these platforms has to be efficient in order to fully and reasonably exploit the
capacity constraints existing on a reduced number of interdependent resources (CPU,

1. Irvin Lustig. In his own voice - Interview with G. Dantzig “Planning under uncertainty”
https://www2.informs.org/History/dantzig/in _interview irv10.htm.

8 Introduction

bandwidth, memory, etc.). As such, the resolution of related optimization problems
via operations research techniques has spread from compilers backend throughout
the overall compilation process. To cite only a few, we can mention the instruction
scheduling and buffer problems or more recent optimization problems such as the
dimensioning of communication buffers or the partitioning and placement of process
networks. Or, even if a common characteristic of these problems is the presence of
uncertain data such as execution times or network latencies, the research focusing
on applying techniques from optimization under uncertainty is still at the beginning.

Our works are situated in this context, of optimizing under uncertainty for the
compilation of applications for embedded manycore.

Hence, this dissertation deals with the application of the most appropriate meth-
ods from the field of optimization under uncertainty to the resolution of combina-
torial problems arising in compilation for massively multi-core embedded systems.
Such platforms, composed of several parallel cores, a number of memory mechanisms
and an infrastructure connecting all the components together, require applications
that can efficiently take advantage of the available resources and of the parallelism.
One viable way of programming applications for the new generation of embedded
architectures is based on dataflow models, in which applications are expressed as set
of tasks communicating through FIFO channels.

Our applicative work focuses mainly on the partitioning, placement and routing
of dataflow applications under the assumption of uncertain data (in particular
unitary execution times). These combinatorial optimization problems related to
resource allocation are part of the several steps composing the compilation process
of a dataflow application.

Since the general topic of the present study has been introduced, let us now
mention some of the research questions which drew our attention and guided our
research path:

— For a given optimization problem from embedded domain, what is the benefit

of taking into account uncertainty instead of solving the deterministic version?

— How can be captured, analyzed and expressed the uncertainty occurring in
compilation of applications for embedded systems?

— What are the most relevant models and resolution techniques of uncertain
optimization when dealing with combinatorial problems from the embedded
domain?

— Once found, how these resolution methods for optimizing under uncertainty
can be applied in an operational manner for solving the application case
studies?

Throughout our present dissertation, we will show the importance of optimiza-
tion under uncertainty. Moreover, applying it for solving problems for soft real-time
embedded systems can be beneficial and even mandatory in some cases in order
to find robust solutions. For these types of applications and a given optimization
problem, we are looking for the best solution which is guaranteed to be feasible with a
target probability (for example, the best solution which is feasible with a probability
of 0.9). When designing soft real-time systems for a large class of applications (audio
encoding, multimedia, telecommunications, etc.), breaking requirements, even if not
desirable, is acceptable if it happens with a sufficiently low probability since the

Introduction 9

overall required Quality of Service (QoS) is not compromised. A typical example
consists of a possible loss of some frames from a group of pictures in an MPEG
encoding. As such, by accounting for data variations when dimensioning our system
we can avoid oversizing, expensive in terms of hardware, or undersizing, expensive in
terms of reliability. Also, we could estimate the robustness of an already dimensioned
system and find scenarios which are not feasible or not acceptable. We are not
considering the case of safety-critical systems (nuclear plant control and command,
automotive, avionics), for which the design has to be based on the worst-case scenario
since any break of the requirements cannot be accepted due to the highly potential
risks.

For answering the other questions, which are in some sense inter-related, we
began by analyzing the sources of uncertainty affecting data from optimization
problems in an embedded environment and in particular the execution times. As
the state of art and some basic qualitative examples have pointed out, execution
times are difficult to characterize and do not follow classical distributions laws. At
best, we can affirm that they are random variables of a bounded support, dependent
and multidimensional.

The above conclusions have limited our choice to resolution approaches which
can be applied for embedded field without making simplifying or making erroneous
assumptions about the uncertain data. Other prerequisite we are focusing on is the
ability to find solutions which are guaranteed with a minimal probability threshold.
Also, considering the complexity of the combinatorial problems and the size of the
instances in the compilation process, we have to be able to fit the uncertainty
treatment into approximation methods, heuristics or metaheuristics.

Between the existing optimization approaches we are aware of, the only one
making almost no assumptions on the uncertain data is the one based on scenarios.
Its original form is too conservative, since it searches for solutions satisfying all the
scenarios. Therefore, we preferred to extend it and conceive a new method, the
robust binomial approach, which can find solutions which are guaranteed to hold for
a minimal required probability with a high confidence level. The only assumption
we are making is the existence of a sample with a sufficient size of independent
and identically distributed observations for the uncertain data (which can exhibit
dependencies).

Moreover, the robust binomial approach can be easily integrated within an
heuristic or metaheuristic in the oracle deciding the feasibility of a potential solution.
We, thus, proposed an overall framework for solving problems with probabilistic
constraints using heuristics and the robust binomial approach. Also, assuming
an approximate resolution algorithm had already been implemented to solve a
problem in the deterministic case, we thought of the necessary steps for adapting
(meta)heuristics to the stochastic version of the same problem.

We then applied the robust binomial approach to the stochastic partitioning of
process networks for which we consider uncertain weights for the processes. For the
other application case, the joint placement and routing of dataflow applications, we
first design a GRASP (Greedy Randomized Adaptative Search Procedure) treating
the deterministic case since this problem has not been yet treated in a global manner.
Afterwards, we attacked the stochastic problem supposing the tasks have uncertain

10 Introduction

weights and integrating the robust binomial approach into the GRASP.

The present manuscript, resuming our contribution, is organized into this intro-
duction, four chapters and a conclusion. (Part of the work of this thesis has also
been subject of several publications, referenced on a separated page.) Let us now
give a brief overview of each chapter.

Chapter 1 introduces the context and gives more details about the motivations
of our research. The first two sections present the emergence of massively parallel
embedded systems, the main hardware components of a manycore architecture as
well as the difficulties in developing applications for this kind of systems. Then,
we provide an overview of the dataflow paradigm, an alternative to sequential pro-
gramming which seems more appropriate for programming manycore applications.
Sigma-C, a dataflow programming model and language conceived by the CEA and
the associated compilation process, are the subject of the following section. We
conclude the chapter with a motivation section, in which we also provide a short
qualitative analysis of execution times, one of the main uncertainty source for
embedded systems, related to optimization problems.

Chapter 2 is dedicated to optimization under uncertainty and, in particular, to
the robust binomial approach, the non-parametric resolution method we conceived
to cope with uncertain data difficult to model or to characterize. Some general
considerations about the different techniques for optimization under uncertainty,
such as stochastic programming and robust optimization, are given in the first
part. The second section presents the general structure of the type of problems
we are interested in, joint chance constrained programs for which we search the
best solution feasible for all constraints with a minimal probabilistic guarantee.
We show the difficulties in solving chance constrained programs and we discuss
existing work, classified in convexity studies, robust optimization methods, sampling
techniques and (meta)heuristics. The next section explains more in details the
robust binomial approach, the statistics beyond it, the way it can be applied for
solving a chance constrained problem and the methodology for integrating it into
an existing metaheuristic. The last part proposes some possible extensions of the
robust binomial approach to more general problems (with more than one initial
probability level requirement or uncertain objective function).

In Chapter 3 we study the stochastic problem of partitioning networks of pro-
cesses onto a fixed number of nodes. Given a dataflow application, the objective
is to assign the tasks to a fixed number of processors in order to minimize the
total communications (which correspond to minimizing communications between
processors) while respecting the capacity of each processor in terms of resources
(memory footprint, core occupancy etc.). An extension of the Node Capacitated
Graph Partitioning problem, this application case is known to be NP-hard. The
stochastic version we study here is the partitioning for which the weights of the
tasks are uncertain resources (processor occupancy, memory footprint) and thus,
we have to solve the chance constrained program for which the capacity of each
processor is respected for each resource with a minimal probability target. For
clarification purposes, a preliminary section introduces the concepts and the greedy
heuristic on which our resolution algorithm is based. The adaptations made for
integrating the robust binomial approach into the existing semi-greedy heuristic

Introduction 11

are presented in a separated section and experimental results are given at the end.
The tests performed have two main purposes: showing the importance of taking
into account data variations and measuring “the price of robustness” compared to
the deterministic version. Running under the same assumptions as the stochastic
algorithm, the method for the deterministic problem is unable to find feasible
solutions on a large number of cases. As for the “price of robustness”, the stochastic
solutions are consistent with those found in the deterministic case. More important,
they are guaranteed to hold with a high probabilistic and confidence levels.

The other application case, the joint placement and routing problem, is studied in
Chapter 4 from both the deterministic and stochastic perspectives. The purpose is to
map dataflow applications on a clusterized parallel architecture by making sure that
the capacities of the clusters are respected and that, for the found placement, there
exists a routing through the links of the underlying Network on Chip (NoC), respect-
ing the maximal available bandwidth. Each of the two subproblems, tasks placement
and respectively routing, are NP-hard and treating them together, in a single step,
could be convenient mainly in the case of applications with high bandwidth demands
(such as multimedia or computer vision), for which the bandwidth resources of
the NoC can become critical. Moreover, treating them separately, in a sequential
manner, can lead to placements for which the routing is impossible subsequently.
The introductory sections present the formal description of the problem and existing
deterministic mapping approaches, static or dynamic. As for the stochastic case,
we give some related works but to the best of our knowledge, the exact same
problem has not been yet addressed in the literature. The next section proposes
a GRASP (Greedy Randomized Adaptative Search Procedure) heuristic for solving
the deterministic version. In order to solve the chance-constrained problem when
the resources of the tasks are uncertain, we extended the GRASP via the robust
binomial approach and the necessary changes are given in another section. Extensive
computational results on synthetic benchmarks and a real application from the image
processing field are given at the end for the deterministic case as well as for the
stochastic one.

List of Publications

O. Stan, R. Sirdey, J. Carlier, D. Nace. “L’apport de 'optimisation sous in-
certitudes pour les systémes temps-réel embarqués.” (Ecole de temps réel -
ETRI11), Brest, France. 2011

O. Stan, R. Sirdey, J. Carlier, D. Nace. “A Heuristic Algorithm for Stochastic
Partitioning of Process Networks.” (Proceedings of the 16th IEEE Interna-
tional Conference on System Theory, Control and Computing - ICSTCC),
Sinaia, Romania. 2012

O. Stan, R. Sirdey, J. Carlier, D. Nace. “A GRASP for placement and rout-
ing of dataflow process networks on manycore architectures.” (Proceedings of
the 8th International Conference on P2P, Parallel, Grid, Cloud and Internet
Computing - 3PGCIC), Compiégne, France. 2013

O. Stan, R. Sirdey, J. Carlier, D. Nace. “The Robust Binomial Approach
to chance-constrained optimization problems with application to stochastic
partitioning of large process networks.” (Submitted to “Journal of Heuristics”),
2012

13

Chapter 1 __

Research Context and Motivations

Contents
1.1 Introductiono 15
1.2 Massively parallel embedded systems 16
1.3 Dataflow models and stream programming 19
1.4 Sigma-C programming model and compilation 24
1.5 Research Motivations 29

1.1 Introduction

One of the key requirements when designing embedded systems solutions nowa-
days is the performance in terms of computer power for all supported applications.
The evolution of latest applications like video and image processing based on so-
phisticated compression and decompression algorithms (MPEG 4, H.264, etc.), 3D
video games, scientific computing or data security determines a demand in computer
power ten to a hundred times superior to that of a few years ago and even make the
performance requirements for these embedded systems exceed the abilities of most
desktop computers.

Unfortunately, over the last past years, it has become obvious that the perfor-
mance offered by traditional sequential single core processors has not kept step with
the demand. Even if, according to the original Moore’s law [121], the number of
transistors which can be placed on a single chip has continued to double every two
years, the performance of practical computing does not follow the same exponential
growth rate!. Several causes exist for this phenomenon, called Moore’s gap: poor
returns from single CPU mechanisms such as caching and pipelining, the power
envelopes (both active and leakage related), wire delay, etc.

Between the viable solutions to improve performance we can cite the conversion
of additional transistors into computing power at relatively low clock frequency by
designing and using efficient parallel processing systems.

1. The Pentium 4, first implemented with the same technology as the Pentium 3 (0.18-micron)
is a popular example demonstrating the break in performance scaling. Despite that Pentium 4
had 50% more transistors than Pentium 3, its performance, based on the SPECint 2000, was
only 15% greater. (http://www.embedded.com/design/mcus-processors-and-socs/4007064/Going-
multicore-presents-challenges-and-opportunities)

15

16 CHAPTER 1. RESEARCH CONTEXT AND MOTIVATIONS

The present multi-core architectures are achieving more performance by the use
of several processing elements (roughly a dozen) and the next generation of manycore
chips is even more powerful, containing hundreds if not thousands of cores. As such,
we are entering into a manycore era in which the updated Moore’s law states that
the number of cores on a chip doubles every two years. Fig. 1.1 [108] captures the
general exponential evolution trend of the number of individual computing units
according to the release years of chips.

le+06 T | — \ I ‘
- units in heterogeneous chips +
) best fit heterogeneous
ECJ 100000 - homogenous <
o best fit homogenous
= i
o
o 10000 - E
2 —
2 £t
™ 1000 - . T % y]
wn Jr §
E I ’ T X
o> 100 - 4 _ %
£ i =
5 L : x]
e 106 . .
o r + |
(o)
| | | | | | | |

1
2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

years

Figure 1.1: Number of individual processing units in heterogeneous chips (e.g. AMD,
NVidia graphics, IBM Cell BE, etc) and homogeneous chips (e.g. Intel Xeon, IMB
Power, STM, Tilera, Kalray, etc) [108]

However, in order to efficiently exploit the parallelism ? and to fully take advan-
tage of the computing power these manycore may provide, their design requires new
programming and execution paradigms as well as innovative compilation technolo-
gies. After a brief description of the hardware architecture of a type of embedded
manycores, the next subsections are describing the challenges manycore have to face
and some appropriate programming and execution models allowing to efficiently
exploit the parallelism.

1.2 Massively parallel embedded systems

1.2.1 Flynn’s classification

Flynn’s macroscopic classification of computing systems [67], realized in function
of the possible interaction patterns between instructions and data, distinguishes
between four different groups of machines: Single Instruction Single Data (SISD),
Single Instruction Multiple Data (SIMD), Multiple Instruction Single Data (MISD)

2. Most existing applications developed in the last decades were conceived for a sequential
execution.

1.2. MASSIVELY PARALLEL EMBEDDED SYSTEMS 17

and Multiple Instruction Multiple Data (MIMD). Between these categories, the
first one corresponds to a casual sequential processor, only the last three making
parallel execution possible. As such, almost all parallel systems today are either
SIMDs, easier to program but for which the parallelism is more difficult to exploit,
or MIMDs, for which each processor is executing its own program flow. More flexible
than SIMD and allowing non-structured data and conditional or data-dependent
algorithms, the MIMD is a more usual implementation of the many-core concept.

Furthermore, according to the memory organization, existing MIMD can be
grouped into DMM (Distributed Memory Machines) and SMM (Shared Memory
Machines). In the distributed memory machines, each processing element has its
own local memory to which it has direct access. The access to other processor’s
local memory is a message-passing operation performed using the interconnection
network. In a shared memory system, the processors have a common memory space
and communications between them are realized by reading and writing data to a
shared address in the memory. One of the advantages of the SMM over a DMM
is the ease of communication via the shared memory and without data replication.
However, due to bandwidth limits, the number of processors in a SMM is limited
because using a larger number of processors results in an increase in the access times
at effective memory bus. As such, the SMMs can provide more computing power
while DMMs are more scalable.

1.2.2 Manycore architectures

A massively multi-core (manycore) processor is a parallel computing system,
composed of a number of processing cores, a mix of local and shared memory,
distributed global memory or multilevel cache hierarchy and an infrastructure for
inter-cores communication. The efficiency in such a system is determined by a high
scalability and computing power.

In a clustered massively multi-core chip, the processing elements are organized
in clusters, interconnected via a Network-On-Chip (NoC). This type of architecture
represents a DMM in which the nodes are not single processors, but SMMs. As
such, it provides a solution for the problem of scalability of the SMMs, for which it
is difficult to exceed 32 processors [143], and for the performance issues of the DMMs.
As illustrated in Fig.1.2 [33], each cluster contains more processing elements, with a
processing core and a private cache memory, as well as a shared memory space. The
entire processor is connected through a memory access controller to an additional
external memory. The external memory is used for storing application data and
instructions. The processors belonging to the same cluster exchange their data
efficiently, using the local shared memory space. For communication of processors
on different clusters, data transfers are assured by the Network-On-Chip. In order to
transfer data between clusters in an effective manner, the NoC must provide enough
bandwidth. Therefore, an important factor in designing efficient manycore systems
is the choice of an appropriate interconnection network.

An alternative to the basic communication structures in a System-On-Chip
(e.g. traditional bus-based communication and dedicated link-to-link points), a well
designed chip network can avoid performance bottleneck which appear in manycore

18 CHAPTER 1. RESEARCH CONTEXT AND MOTIVATIONS

Clustered massively parallel processor Cluster
d). < < Sl _
D £l L& [E el (=] |ledf®
N N N S
2 oL o
(e)..

[Cluster shared memory |1

Ok

(9)...._| External memory

Figure 1.2: Clustered massively multi-core architecture(a - processor, b - processor
cache, ¢ - cluster shared memory, d - cluster, e - cluster interconnection network (NoC), f
- external memory access controller, g - external memory, h - network adapter)[33]

applications. Basically, the main components of a NoC are the network adapters,
the routing nodes and the links. The network adapters implement the interface by
which the cores connect to the network, the routing nodes implement the routing
strategy (route the data according to chosen protocols) and the links (logical or
physical channels) connect the nodes and provide the raw bandwidth. The key
factors defining an on-chip network are its topology and the routing protocol. The
topology concerns the geometrical layout and describes the connectivity between
routers and links while the protocol concerns the way data are moved across the NoC.
Fig.1.3 shows a sample of 4-by-4 grid-based NoC and its fundamental components.
For more details about the current research and practices concerning the NoC, we
refer the reader to [21].

[&—— Core

Network Adapter
Routing Node
je— Link

%

e pa—
e aa—
e ma—

X

B

Figure 1.3: A structured 4x4 grid NoC and its components [21]

1.2.3 Challenges of programming for manycores

According to Gustafson’s law [75], as more computing power becomes available,
new classes of complex applications (e.g. software and cognitive radio, autonomous
vehicles, virtual and augmented reality) emerge. However, programming these
applications for manycore systems is a difficult task, since there are at least three

1.3. DATAFLOW MODELS AND STREAM PROGRAMMING 19

difficulties to overcome: handle limited and dependent resources (memory, NoC), be
able to run correctly large parallel programs and efficiently exploit the underlying
parallel architectures.

The first issue is already solved in existing embedded manycore like Kalray
MPPA platforms or ST-Micro Storm using some kind of hierarchical memory ar-
chitecture, with distributed memories close to the processing elements and a shared
on-chip memory for communication with other clusters and the outside world.

For taking advantage of manycores architectures in terms of computing power,
power consumption or development cost, one must be able to efficiently parallelize
an application and thus, it demands a “good” decomposition of the program into
tasks. Traditional imperative programming languages (C or Java) are based on
a sequential von Neumann architecture and therefore they are inappropriate for
writing effective parallel programs. As such, there is an increasing need of other
programming paradigms for writing embedded manycore applications, that should
satisfy the following properties [108]:

e Easy synchronization between program tasks. Since one of the most difficult
and error-prone jobs in parallel programming is explicit synchronization, it is
recommended to avoid synchronization structures or mask their use.

e Fxecution determinism. For constant entry dataset, computation results should
be independent of the execution hazards coming, for example, from task
scheduling and allocation.

e Possibility to easily integrate existing code. This is necessary in order to mi-
grate or integrate legacy software developed in familiar languages for embedded
programmers.

In [84], Jantsch identifies and divides un-timed models adapted to non critical
embedded systems into two categories: models based on rendez-vous and dataflow
process networks. In a rendez-vous model, tasks are modeled through concurrent
sequential processes which communicate with each other only at certain synchroniza-
tion points. Common examples of rendez-vous models are the CSP (Communicating
sequential processes), the CCS (Calculus of Communicating Systems) or the model
of communication used by the ADA language. In a dataflow process network, the
tasks are modeled by sequential processes which exchange data through communica-
tions channels. As such, a dataflow program can be represented as a directed graph
with the nodes representing the processes and the arcs representing the channels.
In such models, inter-tasks synchronization is realized implicitly, via the data.

In the following sections, we are concentrating on dataflow models and languages
and, in particular, Sigma-C.

1.3 Dataflow models and stream programming

Dataflow paradigm seems to be a good candidate for programming manycore
applications, which satisfy most of the properties stated before. With the first
models emerging in the early 1970s, dataflow languages provide an efficient and
simple solution to express programs, which can be executed on a parallel architec-
ture, without worrying about data synchronization. Since a history of the evolution

20 CHAPTER 1. RESEARCH CONTEXT AND MOTIVATIONS

of dataflow computation models is beyond the scope of this chapter, we refer the
interested reader to the following texts [16], [82].

There exist several formalisms for dataflow models different in their expressive
power and the guarantees they provide. Before describing more in detail some of
the most representative dataflow models, let us introduce some general features of
dataflow programming.

1.3.1 Taxonomy

In a dataflow model, a program is described as a directed graph, consisting of
nodes representing tasks (also named actors) and arcs that represent unidirectional
communication channels. The actors of a dataflow application can be atomic or a
hierarchically specified subgraph. Data, quantized into tokens, is carried exclusively
through the channels, considered to be First-In-First-Out (FIFO) queues. A token
consists of the smallest indivisible quantum of data traversing the channels. Since
the communications channels are unbounded, they can potentially carry an infinite
number of tokens. The flow passing through a channel is denoted as a stream.

The execution of a dataflow process is a sequence of firings or evaluations. When
an actor is executed, it consumes a certain quantity of data tokens on its input
channels and it produces a number of result tokens written on its output channels.
Any node can fire (perform its computation) when all the required data is available
on its input channels. Since there can be more actors firing in the same time, one
of the interesting properties supported by dataflow languages is the concurrency.
Synchronization between actors is realized exclusively via the data traversing the
channels. Because the program execution depends on the availability of the data,
these models belong to the family of data-driven models of computation.

The number of tokens produced or consumed may vary for each firing and is
defined in the firing rules of an actor. An actor can have one or several firing
rules and can be static or dynamic. For a dynamic actor, the choice of the firing
rule is data-dependent and consequently, its behavior for future firings cannot be
predictable. A static actor can have one or more firing rules while a dynamic actor
has at least two.

In function of how the consumption and production of tokens and the firing rules
are specified, dataflow computing models can be divided in plenty different classes.
For a deeper insight description of dataflow computation models, we refer the reader
to |73], [159], [84], [125]. The most representative dataflow models (cf. Fig. 1.4)
are: Synchronous DataFlow (SDF), Cyclo-Static DataFlow (CSDF) and Dynamic
DataFlow (DDF), with its subclass of Boolean DataFlow (BDF), all being particular
classes of Kahn Process Networks (KPN).

1.3.2 Dataflow models
1.3.2.1 Dataflow process networks

A dataflow process [99] is a particular type of Kahn process consisting of a
sequence of firings and a network of such processes is called a dataflow process

1.3. DATAFLOW MODELS AND STREAM PROGRAMMING 21

Turing completeness

Figure 1.4: Representative dataflow models.

network (DPN). In a Kahn process network [87]|, which is the least constraint
model, the network processes communicate with each other only via unbounded
FIFO channels, with reading data from these channels being blocking and writing
data asynchronous. As such, because the channel size is infinite, writing always
succeeds and does not stall the processes while reading can be realized only from
a non-empty channel and when the channel contains sufficient tokens. This model
assures execulion determinism (the data produced by a KPN are a function of entries
of the KPN) and monotonicity (a KPN needs only partial information of the input
stream to produce partial information of the output stream). The last property
allows parallelism, because a process can start the computation of output events
without needing the whole input. Testing an input channel for the existence of
tokens without consuming them is forbidden. Since there is a total order of events
inside a process but no order relation between events in different processes, KPN
are only partially ordered. Another view of KPNs, as pointed out by [132], is a set
of Turing machines connected by one-way tapes, in which each machine operates
on its own working tape. Unfortunately, as a consequence related to the “halting
problem”®, the questions for important properties such termination and memory
boundedness are undecidable.

1.3.2.2 Synchronous Dataflow model

One solution consists in using restrictions of KPN where these questions are
decidable. Synchronous dataflow (SDF) [98] model imposes that a process consumes
and produces a fixed quantity of tokens for each firing. All the agents are static and
their firing rules do not change during the execution. The model is not synchronous
in the same sense as for synchronous languages*, the term “synchronous” referring
to producing and consuming a fixed number of tokens, specified a priori, for each

3. The halting problem states that, given a finite-length program that runs on a Turing machine,
it is undecidable to decide always in finite time whether or not the program will terminate.

4. Unlike “synchronous” reactive languages for dataflow dominated systems, like Signal or
Lustre, there is no notion of clocks.

22 CHAPTER 1. RESEARCH CONTEXT AND MOTIVATIONS

actor. More, production and consumption rates on all arcs are related through
balance equations.

Suppose that an actor A produces O,4 tokens on an output connected to actor
B (cf. Fig.1.5-a) which requires I tokens on its input in order to execute. Suppose
also that the actor A fires r4 times and actor B has a frequency rate of rz. According
to the balance principle, the following equation can be written:

rax 0y =rpgx*lIp.

This type of equation can be expressed for each arc in the SDF, forming a system
of balance equations. For the simple graph in Fig.1.5-b, the equations are:

ryka = rox f
rixb = ryxc
rsxd = ryxe.
r| rf.
(:)a f (:)
b A
@@ O
Ty Te f
(a) Balancing principle (b) Example of a SDF
graph

Figure 1.5: SDF model

This system is then solved by the compiler to find the vector r = [ry, 79, 73] of
firings. As shown in |97], for a connected dataflow, if there is a non-trivial solution
for the balance equations, then the solution is unique and it is the smallest positive
integer. If there is no solution, the graph has inconsistent execution rates and there
is no bounded memory infinite execution of the dataflow. Given a solution, a partial
ordering constraints between firings can be specified and a precedence graph can be
constructed.

Thanks to the balance principle, the questions of bounded memory and deadlock
are decidable. That and other properties such as determinism and static schedul-
ing at compile time make the SDF a reliable and popular model at the basis of
(many) embedded software such as Ptolemy [26], COSSAP [96], System Canvas and
DSP Canvas from Angeles Design Systems [124| or Cocentric System Studio from
Synopsys.

Even if the SDF model is convenient for certain applications, it comes with
a relatively high price: because the number of tokens produced and consumed is
fixed, they cannot depend on the data and the application cannot use conditional
variations in the flow.

1.3. DATAFLOW MODELS AND STREAM PROGRAMMING 23

1.3.2.3 Cyclo-Static Dataflow Model

A more flexible extension of SDF is the Cyclo-Static Dataflow (CSDF) model
[19] which permits that the number of tokens produced and consumed vary from one
activation to another in a cyclic manner. As shown in Fig.1.6-a, every agent j has a
sequence of firings [r;(1),r;(2),...,7;(FP;)] of length P;, the production on the output
channel u is defined as a sequence of constant integers [O;L(l), 0}(2), ..., O;(Pj)] and
the consumption on edge u is defined as a sequence [I¥(1),1%(2),...,I*(P;)]. The
n-th execution of the task j corresponding to the code of the function r;((n —
1) mod P; + 1 produces Oj((n — 1) mod P; + 1) tokens on edge u. A cyclostatic
actor 7 has a firing rule evaluated as “true” for its nth firing if and only if all the
input channels contain at least I}*((n — 1) mod P; + 1) tokens. For an example of a
CSDF graph, refer to Fig. 1.6-b.

rj(l),rj(2) rj(Fj) r{1),0(2),....5(R)

(a) Balancing principle

i : 2 1.4 (31 3.1 @
b) Example of a SDF graph

Figure 1.6: CSDF model

It should also be noted that the CSDF model shouldn’t be confused with CDFG
(Control Data Flow Graph) model [135]. The CDFG are representing the control
dependencies between nodes connected through data or control arcs. In a CDFG,
each task is executed only once; instead, for a CSFF, there is a continuous data
exchange (we can imagine a loop surrounding all the CSDF graph).

1.3.2.4 Dynamic Dataflow Model

A wider dataflow model in which data control execution is allowed is the dynamic
dataflow model (DDF) [125]. By extending the balance equations, the number of
tokens produced or consumed may vary dynamically and thus, the consumption and
production cannot be known at compile time. Many of existing dynamic dataflow
languages are derived from static dataflow model, by including a limited set of
dynamic actors, whose behavior depends on the data.

One of the dynamic dataflow models is the boolean dataflow, obtained by the ad-
dition of two dynamic actors: “select” and “switch” (see Fig. 1.7) to the synchronous
dataflow model. One of the main advantages of this model, as shown by Buck [27],
is its Turing completeness. This means that with this programming model, one can
implement an universal Turing machine. However, even if it is more flexible and
sometimes, it is possible to make approximate scheduling analysis, this model does
not allow to answer critical questions like deadlock freeness or bounded memory.

24 CHAPTER 1. RESEARCH CONTEXT AND MOTIVATIONS

switch
1 2 + n

\
(a) SwiTcH actor. (b) SELECT actor.

condition
condition

Figure 1.7: Dynamic actors [33]

1.3.3 Stream programming

Based on dataflow models, stream programming seems a more appropriate frame-
work to express and describe massive parallelism than imperative languages. By
their theoretical background, stream languages can guarantee important application
properties such as: functional determinism, memory bounded execution or absence
of race conditions. Stream programming provides a good choice for applications
intended for manycore systems.

A first language to take into account dataflows was Lucid [4] in which even if
the program description is sequential, the program can be represented as a KPN.
Nowadays, due to the new manycore architecture, there is a regain in interest in
steam programming and numerous languages have been proposed. Between the
most successful, we can mention Streamlt 2], StreamC [91], Cg [116], Brook [25],
ArrayOL [23] or the more recent XC [74]. Even if all these programs are based
on dataflow models, they are different in the format and type of the streams, the
structure of the underlying graph, the expression of data reorganisation and the type
of production/consumption (static or dynamic). For a more detailed classification
of main stream languages, we refer the reader to [49].

In the sequel, we are introducing more in detail the >C programming model and
language for embedded manycore and give an overview of the compilation process
of such a stream program (see [5], [74] for details).

1.4 Sigma-C programming model and compila-
tion

1.4.1 Sigma-C programming language

>Cis a dataflow programming model and language designed for parallel program-
ming of high performance embedded manycores processors and computing grids. >C
model, based on process networks with process behavior specifications, has slightly
more expressive power than SDF and CSDFs while being less general than BDF.
As such, it has sufficient expressive power for most applications, while allowing
to perform a formal analysis for verifying properties like absence of deadlock or
memory bounded execution. As a programming language, XC relates to Streamlt
[2] or Brook [25], and more, it is designed as an extension of the C language, with
keywords to define and connect agents (individual tasks in the stream model). In
addition to all the aspects offered by dataflow programing, >C has the ability to
specify the productions and consumptions of each task, which information can be

1.4. SIGMA-C PROGRAMMING MODEL AND COMPILATION 25

used later in the compilation phase for checking.

An application in XC is described as a static instantiation graph of intercon-
nected agents, which does not evolve through time (remains the same during the
execution, without any agent creation or destruction or change in the topology). An
agent is the basic unit of this programming model, behaving as a cyclic machine
with variable amount of data. At each transition of the agent corresponds a either
fixed or variable number of data produced and consumed on its ports. Except
the wuser agents, specific to each application, there are several system agents for
data distribution and synchronization: Split, Join (both for distribution of data in
a round-robin fashion), Dup (for data duplication), Select, Merge, Sink. Similar
to agents, subgraphs implement only composition and consist of links and data
distribution network. For a detailed specification of XC language, we refer the
reader to [74].

The main characteristics of XC will be illustrated through an example, consisting
in a moving targets tracking application, a real case study used across this document
for an experimental validation of our optimization algorithms.

1.4.2 Example of a XC application: Motion detection

The motion detection example represents a video processing application, per-
forming a target tracking on a sequence of related input video frames. Sequential
video frames are analyzed and the movement of targets between the frames is
outputted. The main idea is to look for temporal redundancy between successive
images, using a Block Matching Algorithm (BMA). The current frame from the
video sequence is divided into horizontal strips for which we measure the abso-
lute difference between each pixel and the corresponding pixel from the previous
frame. For improving the algorithm, a median filter is then applied with the aim
of smoothening the strips. For each horizontal strip s, the standard deviations of
the absolute difference are computed by macro-blocks and the minimum is selected
according to the equation:

o Zi\;l(xl —m)?
o5 = mln\/ N

where N is the size of the macro-block (given as an input parameter), x; is the
absolute difference in intensity for pixel 7 and m is the average over ;. Afterwards,
a corresponding binary image B is constructed, by applying to the image a filter,
such as, for each pixel ¢:

B 1 if z; — m > ming (o)
‘1 0 otherwise.

Using this binary image, the connected components are computed for each strip,
where there is a difference in pixels. At the end, the connected components for
different strips which are overlapping or have common edges are merged. Finally,
in the output image, the remaining connected components identifying the moving
targets are represented with bounding boxes.

26 CHAPTER 1. RESEARCH CONTEXT AND MOTIVATIONS

Figure 1.8 [144] gives an overview of the main components of the X.C dataflow
graph for the motion target application. The network is described from left to right.
The tasks 70 belonging to a special class of XC agents provide a way to handle the
input/output. The left ones are in charge of reading two consecutive frames, of
height H and width W, and the right one is displaying the current image with the
targets identified by surrounding rectangles. The next tasks s are data distribution
agents of type Split which take as input the current, and respectively, the previous
image, and divide them into N Bg strips (in a round robin fashion). Production of
these system agents is given by the N Bg parameter and the application size directly
depends on this level of granularity, the further treatments being realized for each
strip. As such, the following tasks A are computing the absolute difference for pixels
by strips which is then used by ¢ to compute the standard deviation by macro-block
and select the minimum for each strip. The outputs of A agents serve also as inputs
for the t agents to construct a binary version of each strip which is further employed
by the c tasks to detect connected components by strip. First m vertex representing
a subgraph (including a join system agent and a user agent defining a median filter)
compute the minimum deviation between all strips and broadcast the result to all
strips. The second m vertex is another subgraph for merging together the bounding
boxes found for each strip. The empty vertex is the Dup agent, used to duplicate

data over all output channels.

¥ e o

()
®

;’

Figure 1.8: A 3C graph example [144]

1.4.3 Overview of the compilation process

Designing and implementing a parallel application using a dataflow programming
language, as the one defined in previous sections, is not enough for running it on
an embedded system. The dataflow computation only specifies the application
constraints and we need an ezecution model for a formal specification on how to
execute the dataflow on an embedded platform. It is the role of the compiler chain
to connect the dataflow application to the execution model consisting of several
steps: parallelism reduction, scheduling, etc. The different steps a compilation
process is composed of will be illustrated through X C example.

As shown in Fig.1.9 [144], the compilation process for XC language is organized
into four passes.

1.4. SIGMA-C PROGRAMMING MODEL AND COMPILATION 27

Appli. ZC

a

1. Lexer, parser, code generator

L _) Process network
2. Parallelism instantiation & reduction

¢ o o0
® o o
3. Resource allocation (P&R, scheduling)
oo el
T i @
4. Runtime generation, link edition & loadbuild Placement & Routing

Scheduling runtime

Figure 1.9: £C compilation chain [144]

1.4.3.1 Lexical analysis, parsing and code generation

This first pass, the XC front-end, begins with a lexical, syntactic and semantic
analysis of the code, common to most compilers. Afterwards, preliminary C codes
are generated from >XC sources. These codes are intended either for off-line execution
(the instantiation codes of the agents), either for further refinement, by substitution
(the treatment codes corresponding to treatment agents).

It is important to remark that the code is generated once for all and it is not
intended to be modified unless by substitution and only by a C preprocessor.

1.4.3.2 Compilation of the parallelism

The purpose of the second pass, the >C middle-end, is to instantiate and connect
the agents, by executing at compile time the corresponding codes generated by the
first pass. The C code, calling adapted APIs, is compiled and executed on the
workstation for building the data structure representing the network of processes
and generating the data for the agent instances.

This pass also involves a certain number of manipulations on the network of
processes. Once the construction of the application graph is complete, parallelism
reduction techniques are applied such as the application is rendered compliant with
an abstract specification of the system resources.

The parallelism reduction makes use of pattern detection and substitution, by

28 CHAPTER 1. RESEARCH CONTEXT AND MOTIVATIONS

replacing some parts of the instantiation graph with another subgraph. The modifi-
cations on the graph include instance and port creation, deletion or modification and
are allowed as long as they do not modify the semantic of the application or the user
code. For more details on this compiler extension for dataflow languages, please refer
to |45], [34]. The built-ins system agents (split, join, dup etc.) are further combined
and transformed into shared memory buffers or NoC transfers. During this stage,
it is possible to verify the hierarchical coherence of the agents (for each subgraph
verify that its composition implements correctly its state machine) and to perform
a safe computation of a dealock-free lowest bound for the buffers sizes of the links
(see [145]).

At the end of this pass, it is already possible to make a first execution based
on POSIX primitives which allows a functional adjustment of the application code,
independent of the architecture.

1.4.3.3 Resource allocation

The third pass is in charge of resource allocation (in the larger sense). First, it
supports a dimensioning of communication buffers taking into account the execution
times of the tasks and the application requirements in terms of bandwidths (non
functional constraints). Next, in order to realize a connection with the execution
model, it constructs a folded (and thus, finitely representative) unbounded partial
ordering of task occurrences (see [70] for details). This step consists in computing
a vector giving, for each agent, the number of occurrences needed for reaching back
the initial state. This vector is the basis of an execution cycle which can be repeated
infinitely in bounded memory. Then, the vector can be used to realize a first symbolic
execution taking into account the partial ordering of tasks occurrences and a second
execution which adds to the partial ordering the dependences between production
and consumption.

This pass is also responsible of placement followed by routing. Informally, the
objectives are: grouping together (under capacity constraints for each cluster of the
architecture) tasks which communicate the most, mapping these groups of tasks to
the clusters (with a distance criterion) and, finally, computing routing paths for the
data traversing the NoC. As such, this step implies the resolution of several discrete
optimization problems, which form the object of the present study and which will
be presented more in detail in the sequel.

In order to reach an appropriate level of performance, the resource allocation
can be performed in a feedback-directed fashion. Certain data (e.g. temporal),
characteristic to the application, can be obtained through measuring and simulation
and reintegrated to the instances of the problems to solve for obtaining results of
better quality. Other parameters can also be evaluated through static analysis.

1.4.3.4 Runtime generation and link edition

The last pass, the XC back-end, is responsible of generating the final C code and
the runtime tables. Based on the partial orderings from the third pass, the runtime
tables make the link with the execution model, by setting parameters of the system

1.5. RESEARCH MOTIVATIONS 29

such as the configuration parameters of the NoC or the data structures describing
the inter-task communication buffers. Also, during this stage and using C back-up
compiler tools, are realized the link edition and the loadbuild.

1.5 Research Motivations

1.5.1 NP-difficult optimization problems related to many-
cores

As seen in the previous sections, the compilation process of an application for
a massively parallel architecture is becoming rather complex and requires solving a
number of difficult and large-size optimization problems. Nowadays, the compiler
design implies the application of operations research techniques not only to the
so-called back-end (by solving optimization problems such as buffer sizing and
instruction scheduling e.g. [76], [20], [L01]) but also more upward and all the long of
the compilation process, in order to efficiently allocate and exploit the inter-related
resources offered by parallel architectures. Between the more recent optimization
problems, we can mention the placement /routing for multi-cores or the construction
of a partial order under throughput constraints application (e.g. [71], [70]).

Most of existing studies treating optimization problems for embedded parallel
architectures propose deterministic models. Still, one of characteristics of these
systems is the presence of intrinsic uncertain data occurring in the definition of
these problems, such as execution times or latencies. Moreover, experimental studies
from both fields of operations research and program compilation (for details, see
sections 1.5.3 and respectively 2.1.1) have shown that considering a fixed value for
the uncertain parameters, respectively execution times (usually the mean value),
can lead to wrong estimates and optimization solutions not always feasible.

As such, developing and testing optimization techniques taking into account
uncertainty for this field seem beneficial and even necessary. However, we no-
tice only a few studies which take into consideration parameter variations and
apply the techniques of optimization under uncertainty to the embedded domain
(e.g.|35],[100],[106]).

In order to conceive and develop methods of optimization under uncertainty
which are adequate to the domain of compilation for manycores, one should first be
able to identify, analyze and, if possible, model the sources of uncertainty specific
to this area. As such, one of the research questions to which we are trying to
provide elements of response in our study is related to the uncertainty sources and
we proceed in the next section with a qualitative analysis of these ones, with a
particular emphasis on the execution times.

Also, when designing or implementing an optimization algorithm, one has to
compute the computational complexity of the examined problem, in general in
function of the size of input data. Since another important characteristic of the
optimization problems related to compilation for manycores is their large size and,
as we show in the next chapter, dealing with uncertainty for the input parameters
increases the complexity, the approximate algorithms seem a more appropriate choice

30 CHAPTER 1. RESEARCH CONTEXT AND MOTIVATIONS

to tackle these problems.

Another important issue we must take into account when conceiving optimization
methods for dimensioning embedded systems is their response-time requirements.
For safety-critical applications (hard real-time systems) like nuclear power plant
control or flight management systems, all the timing constraints have to be met
which often go along with a worst-case approach. Even if it leads to an over-sizing
of the systems, worst-case approach is favored since missing any deadline is highly
risky and unacceptable. Our methodology is more oriented towards the dimensioning
of soft real-time systems, such as multimedia applications (video encoding, virtual
reality etc.) for which missing a deadline from time to time is acceptable, resulting
only in a decrease of the quality of service. Almost all of the probability based studies
related to real-time systems are intended for this kind of systems. Thus, even if the
dimensioning is no longer guaranteed in all cases, we admit acceptable deviations
and in consequence, avoid oversizing (expensive in terms of hardware) or undersizing
(expensive in terms of reliability). Moreover, for a system already dimensioned, we
could estimate the level of robustness and specify deviation scenarios for which the
system is no feasible or scenarios which could be acceptable.

Furthermore, we are projecting our proposed methodology in the framework of
iterative compilation and we consider that a first validation of the embedded appli-
cation was realized a priori, through for example a simulation or a first execution
on the target architecture. The analytical technique most often used in practice for
validation of an embedded system remains testing, with the scope of checking for
the existence of certain properties or qualities. A systematic procedure for testing
comprises, beside test execution and evaluation, test case determination, test data
selection and expected results prediction. The determination of test cases consists
in defining a certain set of input situations to be analyzed while expected results
prediction is in charge of determining the anticipated results and program behavior
for each executed test. During test evaluation, actual and expected output values
along with actual and expected program behavior are compared for establishing the
test results. Therefore, we have at our disposal representative experimental temporal
data, obtained during validation, which can be used directly in our optimization
method or can be exploited for a start to estimate a probability model. Other
available data (for example, the one established by the validation of the embedded
system during the phase of expected results prediction) could be then employed for
validation of our model (if used) and our optimization approach.

The next section gives a first insight on the relevance of using a probability model
when treating uncertainty within an optimization resolution technique.

1.5.2 On the role of a model in optimization under uncer-
tainty

One of the key aspects in the definition of a stochastic optimization problem
is the way in which uncertainty is formalized. Since one of the main difficulties of
optimizing under uncertainty lies in the computation of the probability distribution,
it seems appealing to make use of probability models and analytically compute the
distribution. However, a question one should answer before integrating a probability

1.5. RESEARCH MOTIVATIONS 31

model into a resolution technique for optimization under uncertainty is “Does the
model really help?”. As we will see, this question is quite often forgotten, current
researches taking a leap of faith when making use of a model.

Let us recall some basic notions about a probability model.

According to textbook definitions 44|, a statistical model consists of a set of
probability distributions on a sample space. A statistical model gives a theoretical
distribution which represents the ideal case for an infinite set of observations and
describes how the random variables are related to each other. Since the number of
observations is limited, it is impossible in general to specify the model precisely and a
statistical model contains several repartition functions of the observed sample. Thus,
modeling data means specifying the possible distributions of the random variables.

The three basic steps for building a model, independently of the chosen modeling
method, are: model selection, model fitting and model validation. They have to be
used iteratively until an appropriate model for the data has been found. In order
to establish the form of the model to be fit on the data, the first step makes use
of plots of the data, some knowledge about the process or phenomenon we want
to model and assumptions about data sampling (e.g. normal distributed random
errors). Once the basic form of the model has been chosen, another phase is the
estimation of the unknown parameters of the function. This is equivalent to solving
an optimization problem in which the objective is to produce estimates close to
the true value of the parameters. Major methods of parameter estimation are the
maximum likelihood and least squares. Model validation is the most important and
unfortunately most often outlooked step, in which the model is analyzed to check if
the underlying assumptions of the previous steps seem valid.

Most of the approaches for optimization under uncertainty make assumptions
about the underlying probability model or use simulations without making a true
connection and without a thorough validation with the experimental data. Instead,
one of the central ideas of the methodology we propose (see chapter 2), using an
oracle for computing the probability and for deciding of the feasibility of a solution,
is to take advantage and to rationally exploit the observations of the random data.
As such, we suppose a pre-treatment step, in which the observations are analyzed
and, in function of the complexity of the modeling process, further behavior is
decided. The purpose of this pre-treatment is to build a probability model and
estimate its parameters without forgetting to validate it, according to the steps
described previously. If the estimated distribution associated to the model is too
complicated to be analytically described or computed, and thus it is necessary to
employ simulation methods to approximate it, it is better for the overall computation
time that the oracle directly exploits the sample in deciding the solution feasibility.
Instead, if the estimated distribution of the model has a “nice” analytical form
which integration demands a computational time clearly inferior to the time the
oracle requires for directly exploiting the sample, it is more appropriate for our
approximation method to rely on the model.

Before presenting in detail the methodology, let us now return to the uncertainty
data of our context application, in particular the execution times.

32 CHAPTER 1. RESEARCH CONTEXT AND MOTIVATIONS

1.5.3 Characterization of the uncertainties in the context of
manycores

1.5.3.1 Overview of the execution times

There are two main sources of uncertainty related to the execution times of
embedded systems:

1. intrinsic dependency on the data. Since usually the computation code of an
application depends on the input data, there are several treatments which
could be executed by the application, translating into different data-dependent
paths, with potentially different execution times.

2. extrinsic uncertainty due to architecture characteristics. Variations of exe-
cution times are also related to the speculative components (such as caches,
pipelines or branch prediction) of modern hardware architectures on which the
application is executed.

These sources of uncertainty are not independent and one must take into account
both execution paths and hardware mechanisms.

As described previously, we assume that the embedded application consists of a
number of tasks or agents, which work together to achieve the required functional-
ities. In Fig. 1.10 |158] several relevant properties of the execution time for a task
are revealed. The darker upper curve represents the set of all execution time. The
shortest execution time is often called best-case execution time (BCET) and the
longest is called worst-case execution time (WCET). The other envelope represents
a subset of the measures of the execution times. The minimum and maximum
of the lower curve are the minimal, respectively the maximal observed execution
times. Since, in most cases, the space of all possible executions is too large to fully
explore, and also because of the undecidability problem associated to the running of
an arbitrary program, it is not possible to determine the exact worst and best case
execution times.

31 worst-case performance
g =
= worst-case guarantee
s 4 >
5 The actual WCET
R Minimal must be found or [Maximal
a ,'E-.m'."er BCET observed upper bounded observed WCET ;._Fpper
b t:!gm% execution T~ execution t';gmg
) ime Tl time
| e
II I “ Illl L 10 TN\ T \\.[ﬂ .
0 «—— measured execution times —— time
possible execution times
timing predictability

Figure 1.10: Some properties of the execution times of a real-time task [158]

1.5. RESEARCH MOTIVATIONS 33

1.5.3.2 Timing-analysis approaches: Deriving and estimating bounds on
execution times

Most researches dedicated to the timing analysis of execution times consist in
deriving or computing upper bounds for the WCET. The two evaluation criteria for
methods or tools for timing analysis are based on safety (evaluating if the method
or tool produces bounds or estimates) and precision (measuring how close to the
exact values are those bounds or estimates).

Current approaches for determining bounds or estimates of the execution times
are divided into static methods and measurement-based methods. Methods belonging
to first class compute bounds on the execution time, without relying on executing
the code on real hardware or on a simulator. They analyze the task code, using
some (abstract) models for the hardware architecture, in order to cover the set
of all possible control-flow paths and obtain upper bounds. The disadvantage is
that they rely on the specification of a processor model and behavior resulting in
imprecise results and often overestimated bounds. However, static analysis can be
realized without running the program and as such, it avoids implementing complex
simulations of the target system. Another important advantage of static methods
is their safety, the bounds they produced being safe and guaranteed to be always
superior to the execution time. As such, they are used for safe scheduling analysis
in hard real-time systems. Such static approaches are described in [42], [158|. The
second class of methods, based on measurements execute the application or parts
of it on the target architecture or a simulator for a given set of inputs. Thus,
they can take the measured times and derive or give a distribution of the minimal
and maximal observed times but they are not safe since some context-dependent
execution paths could be missed. Because they do not need to model the processor
behavior, they are simpler to apply to new target architectures and they are able
to produce more precise estimates for BCET and respectively WCET, especially for
complex processors and applications.

Amongst the issues the above approaches are analyzing we can enumerate: the
data-dependent control flows, the context dependence of execution times or the
timing anomalies. The control-flow analysis (CFA) applied to the task’s control-
flow graph (data structure describing the set of all execution paths) determines
information about the possible flow of control through the task (infeasible paths,
execution frequencies of the different paths, etc.) and it has been called a high-
level analysis. For modern processors exhibiting caches and pipelines, the context
independence of individual instructions is no longer true since the execution times
of each individual instruction may vary by several orders of magnitude in function
of the state of the processor. For a task containing two successive code snippets A
and B, the execution time of B depends on the execution state produced by the
execution of A. As such, there is a need for a so-called low-level analysis or process-
behavior analysis to study the behavior of components such as pipelines [77], memory
caches [109], [122] and branch prediction [33]. Timing anomalies affect modern
powerful processors [111] because of the influence of one instruction on the global
execution time of the whole task. One of the anomalies is caused by speculation of
the cache on the results of conditional branches. Another type of timing anomalies

34 CHAPTER 1. RESEARCH CONTEXT AND MOTIVATIONS

are scheduling-caused and usually occur when a set of instructions, with potential
dependencies between them, can be scheduled differently on the pipeline units or
other hardware resources. In function on the chosen scheduling, executing the
instruction or pipelining takes different times.

For a detailed overview and survey of methods and tools for estimating WCET,
we refer the reader to [158].

1.5.3.3 Estimating execution times distributions

While the methods for estimating bounds for execution times are getting more
and more complex, by also taking into account the speculative behavior of the
target architecture, they remain justified mainly for hard real-time systems. Instead,
for soft real-time systems, there are more and more studies based on probabilistic
analysis and approaches for scheduling (e.g. [28], [54],[112]) considering that the
execution times of the tasks follow probability distributions.

The problem of estimating the execution times consists in predicting the execu-
tion time of a task on a variety of machines in function of the data set and with a
high level of accuracy. The existing solutions to this problem can be divided into
three main classes: code analysis [136], analytic profiling [68], [161], [92] and statistic
prediction [83], [53].

An execution time estimate found by analysis of the source code of a task is
typically limited to a specific class of architectures and a particular code type.
Consequently, code analysis is not very adapted to treat heterogeneous computing.
The profiling technique, first presented by Freund |68, determines the composition
of a task in terms of primitive code types. Code profiling data is then combined
with benchmark data (obtained on each machine and measuring the performance for
each code type). The main disadvantage of this type of methods is that they cannot
determine the variations in the input data set. The third category, the statistical
prediction algorithms, makes predictions from previous observations. Each time a
task executes on a machine, the execution time is measured and added to the set
of past observations. The quality of estimation depends on the size of the set of
observations. The advantage is that these methods can compensate for parameters
of the input data and the machine type without any supplementary information
about the internal code or the machine.

A recent work |118] is going further with the analysis, by studying the variations
of execution times on multi-core architectures. The experimental work is conducted
on samples from two benchmarks SPEC CPU, large sequential applications and
SPEC OMP2001 benchmarks, OpenMP applications, by executing each program 30
times on an 8 cores Linux machine with the same train input data each time. The
normality check (using the standard Shapiro-Wilk test) for both benchmarks proved
that the distribution of execution times is not a Gaussian function in almost all cases.
Also, contrary to sequential SPEC CPU applications, OpenMP applications have
a more important variability of execution times. By executing 30 times several
applications from the SPEC OMP benchmark on different software configurations
(sequential and multi-threads), the study shows that if the sequential and single
threaded versions do not have important variations, when using a larger thread

1.5. RESEARCH MOTIVATIONS 35

level parallelism (more than 1 thread), the overall execution times decrease with a
deeper disparity. More, the mean confidence intervals (obtained with Student’s test)
are not always tight.

1.5.3.4 Execution times: a qualitative analysis and basic examples

Even if it is reasonable to assume, in embedded computing, that the execution
time have probability distributions of bounded support (no infinite loops), we have
to cope with the fact that the distributions are intrinsically multimodal.

Let us give some simple examples. For example, for the computing kernel in
Table 1.1, there are two modes for the executions times, possible with different
variances, corresponding to the two sequences of instructions. Instead, for the

Table 1.1: A code snippet with a 2 modes distribution

if condition then
S1

else
S

end if

code in Table 1.2 with n taking values between 1 and N, S; and S5 being two
linear sequences of instructions, the distribution has 2N modes (the figure showing
a possible envelope of the distribution for the case when N = 4). Running a more

Table 1.2: Another code snippet with multi-modal distribution

for:=1tondo

if condition then . R
S
else
So
end if
end for oo m e e e

complicated application like X264 encoder clearly shows that the distribution of
execution times is difficult to model and that it is multimodal. Fig. 1.11 shows the
envelope of executions times for each frame when the X264 is executed on a Linux
machine, taking as input a video benchmark of size 1280x 720, with 24 frames per
second.

Hence, it is difficult to model these probabilities laws through usual distributions
such as the normal or uniform ones, which are unimodal. Furthermore, in the case

36 CHAPTER 1. RESEARCH CONTEXT AND MOTIVATIONS

X626 Encoder

350000

300000

250000

200000

150000

100000 ” | | ‘ ‘” il I

50000 ! i |

0

Figure 1.11: Envelope of execution times for frame treatment in a X264 encoder

of a process network, we cannot overlook the problem of dependency between these
random variables. An easy example consists in the target tracking pipeline for which
the execution times of each of the pipeline elementary tasks depend, to a certain
degree, on the number of effectively treated targets. In Table 1.3, another example
is presented consisting of two elementary tasks both depending on same input data
d, difficult to characterized, and each task having two modes for its execution times.
As such, the execution time of task 71 is dependent to a certain degree of execution
time of task T°2.

Table 1.3: Code snippet showing possible tasks dependency
T1 T2 Execution times T1 and T2

Dependence between bimodal distributions

T2
L - R -

if f(d) then if g(d) then

S1 S3
else else
4 2 [+] 2 4 [8
82 S4 T1

1.5. RESEARCH MOTIVATIONS 37
Conclusion

Besides explaining more in details the motivations which conducted our research,
this introductory chapter also serves in positioning the context and presenting some
fundamental concepts related to manycore systems and dataflow programming (see
also [148| for more details on the research motivations).

Also, a qualitative analysis of uncertainty sources for manycore applications is
presented and, as the previous section emphasizes, it is appropriate to assume that
the execution times are random variables characterized by complicated multimodal
joint distributions, presumably better defined as unions of orthotopes rather than,
a Gaussian or even a mixture of Gaussians.

We do not build further on this assumption for our non parametric robust
binomial approach. Since the choice of a probability model seems difficult, the robust
binomial approach we propose in chapter 2 is non parametric with almost none or
few assumptions on the distributions of the uncertain data. After an introduction
in which are presented the existing techniques of solving optimization programs
under uncertainty and the difficulties in solving such problems, the next chapter
explains in detail the robust binomial approach and possible extensions. The idea
of this generic non parametric method is simple and first occurred with the desire to
conceive algorithms which match the research context we introduced in this chapter,
that is compilation of dataflow applications for manycore systems.

As described in section 1.5, the optimization problems related to compilation for
manycore systems are NP-difficult problems, characterized by their large sizes and
manipulation of uncertain data, difficult to fully describe but for which we could
dispose of experimental samples.

In Chapter 3 and 4, the robust binomial approach was applied in order to solve
two of the optimization problems arising in the compilation process: the stochastic
partitioning of process networks and the more general problem of placement and
routing of process networks (which, for a XC, corresponds to the third pass of
compilation).

Chapter 2 __

Optimization under uncertainty

Contents

2.1 What is it meant by “optimization under uncertainty”? 40
2.2 Chance constrained programming 43

2.3 Robust binomial approach (RBA) 50

This second chapter presents a general methodology, combining statistical hy-
pothesis testing with heuristic approaches, for solving optimization problems with
uncertainty affecting the constraints, under quite mild assumptions on the uncertain
data.

A general introduction on the practical relevance of taking into account uncer-
tainty into an optimization problem and different ways of expressing uncertainty
are given in section 2.1. Next section focuses on chance constrained programs: after
exposing the algorithmic difficulties encountered when facing this kind of problems,
a classification of related studies is proposed and each category is presented more in
details.

The principles of the non-parametric method we developed, entitled robust bino-
mial approach, are presented in section 2.3. Based on statistical hypothesis tests, the
robust binomial method finds approximate solutions to chance-constrained problems
(optimization programs with uncertainty affecting the constraints, see details below),
guaranteed with a given reliability level 1 — ¢ and a confidence level of 1 — a (both
g, a € (0,1)). In order to efficiently find (NS, a)-statistically admissible solutions
(notion defined in section 2.3.4), the robust binomial approach can be combined
with existing (meta)heuristic, by modifying the oracle deciding the feasibility of a
possible solution. The general methodology of adapting an existing algorithm in
order to solve the stochastic version of a problem as well as an example for bin
packing are presented in section 2.3.5. Possible extensions for the problems with
more initial probability levels or random data in the objective functions are given
in the last section.

39

40 CHAPTER 2. OPTIMIZATION UNDER UNCERTAINTY

2.1 What is it meant by “optimization under un-
certainty’?

2.1.1 From a deterministic problem to its stochastic coun-
terpart...

A large majority of algorithms and methods conceived for solving combinatorial
optimization problems suppose that input data are known precisely. As such, a
generic way of mathematically representing an optimization problem is as follows:

min g (z)

where x € R” is the design parameter, g (x) € R is the objective function and we
have m inequality constraints G(z,§) € R with £ = (&,...,&,) a m-dimensional
parameter vector.

However, for real-world optimization problems, one might ask if the formula-
tion above is as general and practical as it seems since the design space is often
characterized by data which are uncertain or inexact.

Beginning with the seminal works of Dantzig [46|, Charnes and Cooper [38],
Miller and Wagner [120], Bellman and Zadeh [6], optimization under uncertainty
remains one of the most active domains of research, both in theory and algorithms,
and thanks to recent studies, there is an increased regain of interest. The recent case
study of Ben-Tal and Nemirovski [10] on a collection of 90 problems from NETLIB
library showed that systems optimized in the classical sense (see formulation 2.1)
can be very sensitive to small changes and that only 1% perturbation of the data
can severely affect the feasibility properties of deterministic solutions.

One such example from [10] is an antenna design problem in which only 5%
errors can entirely destroy the radiation characteristics established during nominal
optimization. Another example analyzed in [10] is a LP program PILOT4 from
Netlib library with 1000 variables and 410 constraints, constraint 7 being:

[A4;]" & = —15.79081 2555 — 8.598819z5y7 — 1.88789505 — 1.3624142599
—1.5260492530 — 0.031883x549 — 28.7255552550 — 10.792065251
—0.19004z550 — 2.7571 762555 — 12.2908322554 + 717.562256 7555
—0.0578652556 — 3.78541 7557 — 78.30661 2555 — 122.1630552550

—6.466092550 — 0.48371z561 — 0.615264256, — 1.353783m563

— 84644257z 564 — 122.4590452565 — 43.15593 2566 — 1.7125922570
—0.401597%571 + Tss0 — 0.9460492595 — 0.946049791¢

> b = 23.387405

with A; € R" the line j of the constraints matrix and z € R". This kind of
“ugly” coefficients could model certain technological processes and we could make
the hypothesis that they cannot be specified with high accuracy and thus, they are
uncertain and have inaccurate last digits. For the optimal solution x* when the

2.1. WHAT IS IT MEANT BY “OPTIMIZATION UNDER UNCERTAINTY?41

uncertain coefficients are perturbed within 0.01% margin by independent random
perturbations, distributed uniformly, the constraint is violated by at most 150%
of the right hand side with a probability of 0.18. In the worst case (all uncertain
coefficients are perturbed with 0.01%), the constraint is violated in z* by 450% of
the right hand side.

Let us give another simple example from [80] illustrating that the optimal so-
lution of problem 2.1 might actually be unfeasible if uncertainty on the parameter

vector € isignored. Let & = (&1, ..., &) with &, ..., &, m independent observations
of a standard normal distribution, z € R, g (x) = x and G;(z,§) = & — x, for all
1 =1,...,m. If the uncertainty on the parameter is ignored and ¢ is substituted by

the expected value E (§) in problem 2.1, then the optimal solution is obtained for
x* = 0. However, the probability that * = 0 is a feasible solution equals to

P{Gi(z*,&) <0, Vie{l,....m}}=P{a* > ¢ ,Vie{l,...,m}} =0.5"

As the value of m increases, this probability becomes very weak (e.g. for m =7, it
is less than 0.01).

As shown by the previous case studies, taking into account uncertainty affect-
ing the parameters required for optimization is necessary in order to find optimal
solutions which are feasible in a meaningful sense. Nevertheless, as we will point
out in the next section, optimizing under uncertainty induces several supplementary
difficulties and a crucial point is the way uncertainty is formalized and the underlying
assumptions.

2.1.2 Uncertainty setting

When formulating an optimization problem under uncertainty two aspects need
to be defined: the way uncertainty is expressed and the dynamicity of the problem
(or the time when uncertain data is revealed with respect to the time when decisions
are taken). [15] proposes a classification of optimization problems under uncertainty
in function of uncertainty and dynamicity, shown in Figure 2.1.

The classical Deterministic Combinatorial Optimization Problems (DCOP) cor-
respond to the case of perfect knowledge about the data and, since we are supposing
all information is known at decision stage, they are static models.

In Stochastic Combinatorial Optimization Problems (SCOP), it is assumed that
uncertain information can be described by random variables which can be character-
ized by probability distributions. Static SCOPs are a prior: optimization problems
where the decisions are taken and optimal solutions are found in the presence of
randomness, at one single step, before the actual realization of the random variables.
Dynamic SCOPs consider that decision cannot be made until random variables are
revealed and associated random events have happened. As such, decisions are taken
after random events occur in a single stage, in the case of simple recourse problems
or in several stages, for multi-stage recourse problems. For both static and dynamic
models, there are decisions and observations of the random variables, the order of
succession being given by different schemes: for static models, first decision, then
observation while for dynamic problems, at least one decision is preceded by at least
one observation.

42 CHAPTER 2. OPTIMIZATION UNDER UNCERTAINTY

uncertainty
Pure
total uncertainty Online
Problems
interval values T ‘ Robust COPs ‘
fuzzy values T | Fuzzy COPs |

Stochastic COPs
(SCOPs)

random variables

perfect knowledge |- | Determ. COPs
(DCOPs)

dynamicity

static dynamic

Figure 2.1: Conceptual classification of combinatorial optimization problems (COP) [15]

Another way of representing uncertainty in optimization problems, although
minor in the related literature, is by fuzzy quantities for random parameters and
by fuzzy sets for constraints to which, instead of probabilities, there are associated

possibilities. For more details about fuzzy approaches, we refer the interested reader
to [6] and [104)].

Robust optimization does not need any knowledge about the probability distri-
bution of random data and instead uncertain information is set based. Usually, the
decision making process searches for solutions that are feasible for any realization of
the uncertainty in the given set. Robust optimization methods are gaining increasing
attention lately with recent studies (e.g. [14], [9], etc.) showing the theoretical and
practical potential of such approaches as well as making connections with stochastic
programming.

The top category from Fig.2.1 corresponds to Pure Online problems, for which
the output is produced incrementally, without knowing the complete input and
without making any assumption on the new data. The performance is evaluated
against the optimal solutions found by an abstract competitor, with a perfect
knowledge about past and future data.

Since, in the present manuscrit, we are concentrating on static stochastic pro-
grams with uncertainty affecting the constraints, let us provide more background
about the general structure, the difficulties in solving this type of problems and the
existing resolution techniques.

2.2. CHANCE CONSTRAINED PROGRAMMING 43

2.2 Chance constrained programming

2.2.1 Problem statement

The general form of the chance constrained problem we consider here is the
following :

min ¢ (z) (CCP)

x

st. P(G(x,6)<0)>1—¢

where z € R" is the decision variable vector, £ € Q — R represents a random
vector and g : R" — R is the objective function. We suppose that there exists
a probability space (2,3, P), with Q, the sample space, ¥, the set of events, i.e.
subsets of €2, and P, the probability distribution on ¥. G : R® x RP? — R™ is the
function for the m constraints, 0 < e < 11is a scalar defining a prescribed probability
level and P(e) of an event e is the probability measure on the set 3.

This type of problem, where all constraints should be satisfied simultaneously
with a probability level of at least 1 — ¢, is known in the literature as a joint chance
constrained program. Another variant of optimization problems with uncertainty
affecting the constraints is the separate chance constrained program in which different
probabilities levels ; can be assigned to different constraints:

min g (z)
st. P(Gi(x,) <0)>1—¢;,Viel,....;m (2.2)

The difference between (CCP) and (2.2) formulations is that in separate chance
constraints the reliability is required for each individual feasible region while in
joint chance constraints the reliability is assured on the whole feasible space. Even if
appealing for their more simple structure, the separate chance constrained programs
have the important drawback of not properly characterizing safety requirements
[134]. As such, while separate chance constraints could be used in the case when
some constraints are more critical than others, joint chance constraints seems a more
appropriate choice for guaranteeing an overall reliability target for the system.

Remark on robust optimization As described briefly previously, robust op-
timization constitutes an attractive alternative to chance constrained programming
for which uncertain parameters are characterized through a set of possible events.

The main criticism of classical robust approaches (e.g. the so called “max-min”
or worst-case approach, the regret maxmin, etc) is their over-conservatism since
they are searching for solutions that are feasible for all possible events from the
uncertainty set. As such, the obtained solutions are often of large cost, being
guaranteed even for events with a low probability to occur. Recent approaches, more
flexible, try to rectify this drawback, by making particular assumptions about the
uncertainty set of the parameters and proposing deterministic counterparts to the
original robust problem. For example, Ben-Tal and Nemirovski [9] propose particular
relaxations of original optimization problems transforming linear and quadratic

44 CHAPTER 2. OPTIMIZATION UNDER UNCERTAINTY

robust programs into deterministic second order cone programs and respectively
semi-definite programs, under the assumption that the uncertainty set is ellipsoidal.
Bertsimas and Sim [14] model uncertain data as symmetric and bounded random
variables and give a linear deterministic counterpart for robust linear problems with
J parameters subject to uncertainty in which at most I' < J uncertain parameters
are allowed to vary. Quite often, even if these transformations provide deterministic
convex approximations, the obtained equivalent belongs to a class of complexity
more complex than the one of the original program.

Even if robust methods construct solutions which are immune to data uncer-
tainty, in general the quality of the solution is not assessed with probabilistic
considerations as in the case of chance constrained programming. However, from
our perspective, the probability of constraints to respect a given reliability target is
a more intuitive notion, often easier to set for a decision maker.

Moreover, allowing even a very small probability € for constraint violation can
lead to a significant improvement of the optimal solution. The following example,
similar to the one from [29], illustrates the fact that, in some situations, the optimal
objective obtained using a chance constrained model can be significantly different
from the optimum attained by solving the robust approach. Let compare the optimal
solution of the robust problem EX RCP with the one of its stochastic equivalent
program EX CCP from Table 2.1, when the uncertainty set ¢ is uniformly dis-
tributed in [0, 1] and

(10T -2 if 60,1077
flw,0) = { —z if§e (1077, 1]

The optimal solution of the EX RCP formulation is equal to 107. Or, when setting

Table 2.1: Example of robust formulation (EX RCP) against chance constrained
program (EX CCP)

EX CCP EX RCP

e

’ st. x € x: f(x,0) <0
st. P(f(x,0) >0)<e a:eRD,éeA{ (z,9) }

a probability level € > 1077, the probabilistic equivalent EX CCP will not take into
account the violation of constraints for which the uncertainty measure is smaller than
¢ and thus, the objective found will be equal to zero.

In the following, we will describe only the robust approaches which are accom-
panied by probabilistic considerations.

2.2.2 Algorithmic challenges

Introduced by the seminal works of Charnes and Cooper [37] and Miller and
Wagner [120], chance constrained programs have been extensively studied in the
literature of stochastic optimization. Since probabilistic constraints arise naturally

2.2. CHANCE CONSTRAINED PROGRAMMING 45

in various contexts, there are a wide range of potential applications for this kind of
programs, from engineering design to finance and management. For more details on
concrete applications of CCP, please refer to [134].

However, as one may expect, chance constrained optimization problems are
inherently difficult to address and although this class of problems have been studied
for the last fifty years, there is still a lot of work to be made towards practical reso-
lution methods. There is not a general method of resolution for chance constrained
programs, the choice of the algorithm depending on the way random and decision
variables interact. Basically, the major difficulties associated to joint CCP are:

e Convexity of chance constraints.

For joint chance constrained programs, having this structural property would allow
using resolution tools from convex optimization field and thus, finding a global
optimal solution. However, the convexity of the feasible set for the probabilistic
constraints from CCP program depends not only on the convexity of function G in
2 but also on the distribution of the random parameter €. In general, the distribution
function of random variables can never be concave or convex. Worse, even if each
Gi(z,e) is convex, the union of all constraints may not be convex. Let us give a
simple example, inspired from [139], showing that even when the functions G; are
linear, the overall program correspond to a non-linear non-convex problem.

min g (z)

25131+372 > b1
. > 0.
s.t]P)<x1+x2 > b > 0.5
1 2>20,202>0

where b; and by are two dependent random variable such P (by = 5,0y = 3) = 0.5
and P (b = 2,bo =4) = 0.5. Let Sy be the polyhedral set satisfying 2z; + 22 > 5
and z1 + z9 > 3 and 55 the polyhedral set satisfying 2xy + x5 > 2 and z1 + x5 > 4.
Even if any (x1,z5) from S is feasible for the whole problem and again, any point
from S5 is feasible, the complete set of the problem is defined as the union of S; and
Sy which turns out to be non convex (as shown in Fig.2.2).

e Evaluation of the probabilistic constraints.

In order to evaluate, for a given x, the probability that G(x, &) < 0, we need to know
the probability distribution of the random vector €. So, a first problem raises, the one
of modeling random data in practical applications when the involved distributions
are not always known exactly and have to be estimated from historical data. Another
sensible point is the choice of the reliability level € which is difficult to be established
in absence of any knowledge about the underlying probability distribution.

The second problem is numerical since typically £ is multidimensional and there
are no ways to compute exactly and efficiently the corresponding probabilities with
high accuracy. As such, the multivariate distribution of &, if given, is often approx-
imated by Monte-Carlo simulations or bounding arguments.

Another crucial aspect when designing algorithms for CCP problems is whether
the distribution is continuous or discrete and also if the components of the random
data are independent. One of the biggest challenges arises for programs in which
decision variables and random data are correlated and cannot be decoupled.

46 CHAPTER 2. OPTIMIZATION UNDER UNCERTAINTY

*-x1+x2=3
== 2x1+x2=5

x1+x2=4

X2

=l)X 14+X2=2

S1

S2

x1

Figure 2.2: Example of a non-convex chance constrained program

Therefore, even for simple cases (e.g. linear programs) the problem (CCP) may
be extremely difficult to solve. Table 2.2 shows some of the main theoretical and
algorithmic resolution methods proposed for solving joint CCP. Along with the
general hypotheses made for each category (e.g. random data in the right hand
side, normal distribution, etc.) (see column “Characteristics”) a list of references is
provided (in column “Some references”). Further explanations on each category will
be given in the corresponding subsections.

Table 2.2: Methods for solving chance constrained programs

‘ Category ‘ Characteristics ‘ Some references
o Theoretical approaches [38],]120],
Convexity studies Particular assumptions on the distribution 134], [79]
S O1.[14],(39],
Robust optimization Relatively simple to apply [30],129],[31], [160]
94], 7], [8], [69]
Compute bounds and approximate solutions 128],[126],[137],
Approximations and sampling | Usually computationally demanding [80],]11],[51].[52],
110],]129], [102]
(Meta)Heuristics Use of precedent techniques for computing distribution | [153],[107],[12],[13],[3]

2.2.3 Convexity studies

Some of the earliest studies from stochastic optimization were interested in
establishing conditions in which the probabilistic distributions and the functions
defining the constraints define a convex feasible space. As such, almost all exact
solutions existing for chance constrained programs require a continuous distribution
and a convex structure of the problem.

Charnes and Cooper [38] studied the case of single chance constraints (m =
1) when the continuous random variables are only on the right hand-side of the
constraints (i.e. completely decoupled of the decision variables) and proposed a
deterministic nonlinear equivalent problem. Also, when m = 1 and the randomness

2.2. CHANCE CONSTRAINED PROGRAMMING 47

is continuous and on the left hand-side, Kataoka [89] proved that these chance
constrained programs are convex for independently normal distribution and € > 0.5.

For joint chance constrained programs with more than one constraint, the most
difficult case to solve is the one in which the random distributions are affecting
the left hand-side. Instead, for random right hand-side parameters, Prékopa [134]
showed that if the random variables have a log-concave distribution (e.g. the multi-
variate normal distribution, uniform distribution are log-concave), then the initial
probabilistic program can be rewritten as a convex deterministic equivalent problem.
Prékopa also proved that for normal distributed left hand-side parameters, if all
covariance and cross-variance matrices for columns or rows are proportional between
them, then the problem is convex. A later study of Henrion |79] gives conditions in
which program is convex for left hand-side random parameters normally distributed
with independent components.

To the best of our knowledge, existing studies determined convexity conditions
only for linear probabilistic constraints with normal distributions in left hand-side
or log-concave distributions on the right hand-side.

2.2.4 Robust approaches

Some of the recent studies providing less conservative solutions to robust opti-
mization problems [9], [14], [58] have also taken into account probabilistic require-
ments. Under quite mild assumptions about distributions such as independence
of components, known mean symmetry and bounded support, Bertsimas and Sim
[14] and Ben-Tal and Nemirovski [9] propose deterministic counterparts and prob-
ability bounds against constraint violation for robust linear optimization problems.
However, dependence between uncertain parameters is considered in [14] only for
a specific model in which, for the constraint matrix of random parameters, only
some coefficients from a same row are correlated. The assumption of distributional
symmetry is also limiting for many applications, which leads to [39], another study
proposing a generalization of the approach of Bertsimas and Sim to asymmetric ran-
dom variables, using forward and backward deviation measures. Still, this approach
is not applicable when we don’t know the support, even if the first two moments
of the distribution are known. Also, in some situations when the ratio between
deviation measures and the standard deviation is large, the approximation found
can be too conservative.

Other models, based on the polyhedral properties of the robust problems, with
a direct application for the network field, have been proposed in [7] and [94].

Other exact methods, inspired from the scenario approach coming from the
robust optimization field, consist in supposing that the probability distribution
is discrete, as well as having a bounded support. As such, the probability for
each scenario is supposed to be known or computable. Under these assumptions,
the problem is formulated as a mixed-integer linear program (MILP) and solved
with exact approaches. An example is the model used in [69] for solving the
quadratic knapsack problem with probability constraints, solved using semidefinite
programming. Although the structure is similar to the one used in our robust
binomial approach, this model makes the assumption that the distribution of the

48 CHAPTER 2. OPTIMIZATION UNDER UNCERTAINTY

random constraint matrix m x n is known and has the form », o pada, with
Y oacaPa = 1, Q the event set and J¢ the Dirac distribution centered at point
& € R™ ™. The equivalent to a linear chance constrained program is the following
MILP:

min ¢’ (2.3)

st. Az <b+(1—xa)L, A€Q
ZPAXA >(1—¢)

AeQ

XA € {0,1}, A€ Q.

in which ¢ € R" is the cost vector, x € R" is the decision variable vector, x4 € R™
is a vector of binary variables and L is a suitable large problem-dependent constant.
The main drawback of this MILP formulation is that its linear relaxation is often
weak.

Other studies (e.g. [30], [29], [160], |31]) were interested in establishing the-
oretical links between chance constrained programs and equivalent scenario-based
formulations (in [29] they are using the notion of sample instead of scenario). Their
corresponding key results consist in providing explicit bounds on the number of
scenarios or samples required to obtain the required predefined level of probabilistic
reliability.

2.2.5 Bounds and approximations

As seen previously, convexity or even quasi-convexity for the probabilistic con-
straint from problem (CCP) are not always easy to verify and prove. Also, the
mixed-integer linear formulation remains interesting to apply when the number of
scenarios to take into account is limited. As such, other directions of research
consist either in discretization and sampling the distribution or in developing convex
approximations.

Between the convex approximations, we can cite the Conditional Value At Risk
(CVar) [137], Bernstein approximation [126] or the quadratic approximation of Ben-
Tal and Nemirovski [11]. Usually, the proposed approximations find feasible but
suboptimal solutions to the original problem without any guarantees on their quality.
Furthermore, most of them are applicable only on single chance constraints and so,
the joint chance constraints have to be approximated by a set of individual chance
constraints, making the solutions for approximations more conservative.! Another
major drawback of these convex approximations are that they require assumptions
on the structure of G(z,&) and on the stochastic nature of e. For example, between
the assumptions of Bernstein approximation we can enumerate the independence
of the random variables ¢; and the fact that the moment generating function for
the distributions are supposed to be efficiently computable. The approximation

1. In order to guarantee the satisfaction of joint constraints, a possible choice consists in using
Boole’s inequality: P (UGi(x,fi) < O) < >, P(Gi(x,&) <0) with P(Gi(z,&) <0) > 1 — ¢,

i=1,...,mand) g =¢.

2.2. CHANCE CONSTRAINED PROGRAMMING 49

programs are commonly solved using non-linear optimization techniques such as the
reduced gradient algorithm. If the function approximating the chance constraints
is analytically tractable (e.g. for Bernstein approximation), then its evaluation is
easy. Otherwise, one must make use of simulation methods such as Monte-Carlo for
evaluating these functions (see [137]).

Simulation techniques are also used quite often when a direct evaluation of the
feasibility of chance constraints is not possible and the probability has no available
closed form. The approximation methods based on sampling are replacing the
actual distribution by an empirical distribution estimated by simulation. Originally
developed for stochastic programs with objective expressed as an expected value,
the Sample Average Approzimations (SAA) techniques have been applied for chance
constrained programs in [110] and [128]. In [110], the sampling method is used to
find upper bounds to the chance constrained problem and solving an equivalent
mixed-integer formulation of small size. The paper also provides theoretical results
on the size of the sample required in order to guarantee a feasible solution with
a high probability for initial problems in which the randomness is in the right-
hand side. In [128] they are establishing conditions of convergence of a solution to
the sample approximation of the original problem in function of the sample size
and the probability level. However, the use of Monte-Carlo simulations is too
computationally demanding when ¢ is small and the assumptions made in order
to obtain tractable approximations are restricting their applicability to particular
cases (e.g. in order to generate Monte Carlo samples, the methods require the full
joint distribution).

For solving CCP with random right-hand side, another family of methods which
discretize the distribution are based on the notion of p-efficient points [133], [51],[52].
If F(.) is the cumulative distribution of the random parameters ¢ and p € [0, 1], a
point v € Z* is called a p-efficient point if F(v) > p and there is no y < v, with
y # v such that F(y) > p. While earliest study [133] focused in reformulating the
CCPs into exact deterministic formulations, the more recent ones [52] are trying to
identify useful p-efficient points.

2.2.6 (Meta)heuristics

Actually, since dealing with uncertainty in optimization problems is highly com-
plicated and difficult, the approaches that guarantee to find optimal solutions are
more appropriate when solving small size instances and even so, they require a lot of
computational effort. In contrast, approaches based on heuristics or metaheuristics
are capable of finding good and even optimal solutions to problem instances of
realistic size, in a smaller computation time.

However, to the best of our knowledge and as pointed in [15], a survey on existing
metaheuristics for dealing with stochastic combinatorial optimization problems,
there are only a few heuristics proposed for solving formulation (CCP), correspond-
ing to no-recourse static programs and with uncertainty affecting the constraints.

In [107], the approach consists in using a Monte-Carlo simulation in a genetic
algorithm fitness function. For each uncertain parameter, a statistical distribution
must be obtained or assumed and the sampling is carried out using either Monte-

50 CHAPTER 2. OPTIMIZATION UNDER UNCERTAINTY

Carlo sampling or Latin Hypercube Sampling. If the estimated reliability of meeting
one or more constraints is less than the prescribed probability level, the current
solution is penalized. As such, the use of sampling is different from our approach
and no theoretical guarantees are provided for establishing the number of necessary
realizations.

Another method for solving CCPs, suggested in [3|, combines a tabu search
heuristic with simulation. The evaluation of the feasibility of a solution is realized
using two different methods. The first one consists in randomly generating 7" values
for each random variable and computing the average over them in order to evaluate
the constraints. The second method uses the central limit theorem to obtain a
normal approximation of a sum of independent random variables. Although the
first method is sample based, no statistical tools are used in order to determine and
reduce 7', which is the dimension of the sample employed to estimate the constraint
feasibility. Furthermore, the second evaluation makes the simplifying assumption of
independence of the random variables.

Another tabu search heuristic is proposed in [153| for solving joint chance con-
strained stochastic programs with random parameters having discrete distributions.
The main focus in [153] is on exploiting the scenario structure: identifying subsets
of scenarios that are more important in finding good solutions, adding or removing
scenarios at each iteration step. Though the ideas presented are interesting, it
seems that the maintenance of the set of scenarios to work with can be quite
computationally demanding.

A beam search heuristic, based on the classical Branch and Bound scheme, is
suggested in [12] for solving chance constrained programs with integer variables and
random right-hand side. In order to evaluate which nodes to explore further, the
heuristic is using the lower bound of the optimal solution, computed using the notion
of p-efficient point. Since the definition of p-efficient point is using the conditional
marginal distribution function, this method supposes as known and computable the
distribution of the uncertain variables.

2.3 Robust binomial approach (RBA)

2.3.1 Basic ideas and motivations

Most of the studies mentioned above are making assumptions (e.g., existing
analytical form of the distribution, independence of the random vector components)
which are either restrictive, or difficult to verify or not always adequate to represent
the uncertainty of real-life applications.

We have found that, in many real world situations, the probability distribu-
tion is not explicitly known or its integration is too difficult. As illustrated in
the previous chapter in section 1.5.3, one such example consists of the execution
times of medium-grained computer programs which are random variables difficult
to fully describe analytically. However, in practice, we have at our disposal some
observations for the uncertain data, obtained, for example, when performing tests
on the target architecture. These observations can be directly employed in order to

2.3. ROBUST BINOMIAL APPROACH (RBA) o1

construct an equivalent optimization problem, more robust and compatible with the
variations of the real data, with the condition that the available sample is sufficiently
representative of the entire distribution 2.

To the best of our knowledge, the only tractable approximation of the probabilis-
tic constrained programs, which does not impose any restrictions on the structure
of the uncertain data?, is the one derived from the general scenario approach (|30,
[31]). The optimization problem (CCP) can then be approximated by the convex
program:

min g (z) (RCPns)
st. G(z,69)<0; i=1...NS

where £ .. €V5) ig a sample of size NS of independent and identically distributed
observations of ¢ and £@ is a realization of £®. Let us recall that ¢ is a random
vector and that no assumptions are required on its joint probability distribution,
in particular with respect to the independence of its components. The scenario
approach searches for solutions which satisfy the probabilistic constraints for all the
realizations of £&. The acronym RC'Pyg refers to the fact that this new formulation
is a robust program where, instead of having m constraints, we have NS x m
constraints. As such, the proposed approximation to the original program is
often too conservative by finding feasible but suboptimal solutions. Theoretical
justification of this approximation scheme can be found in [48], [29].

Our idea is to take advantage of the experimental data and revisit the scenario
approach using elementary tools from statistical hypothesis testing theory and di-
rectly exploiting the available sample.

Also, in order to face the computational complexity which is one of the major
drawbacks of the sample-based method, we propose a general way of integrating
it in almost any heuristic algorithm. In this manner, even if the application case
requires a high level of precision for the probability constraint threshold & (which
involves the analysis of a large sample), our approximation remains computationally
tractable and, as we shall see in the next section, statistically meaningful.

Our algorithm design methodology consists in leveraging existing heuristics for
the deterministic case without destructuring them significantly (i.e. at small cost in
terms of software engineering) and with an acceptable performance hit.

2. An assumption that can be in practice checked, to some extent, using static program analysis
techniques. An assumption which also relies reasonably on the expertise of test engineers in terms
of designing validation cases representative of real-world system operation.

3. We impose no restriction in particular with respect to random vector component indepen-
dence

52 CHAPTER 2. OPTIMIZATION UNDER UNCERTAINTY

2.3.2 Statistical hypothesis testing

Before presenting the statistical results on which our method is based, let us
introduce the following notation:

x decision vector

3 uncertainty vector

Po P(G(x,¢) < 0)

€M €W9iid. random variables corresponding to NS observations of &
£ realization of observation £®

Xi Bernoulli variable equal to 1 if G (L 5(“) < 0 and 0 otherwise.

So the random variable y = Zf\g x; follows, by definition a Binomial distribution
with parameters N.S and py (x ~ B(NS,po)). Let us now consider a realization y of
X- If X (corresponding to the number of times the inequality G(x, &) < 0 is satisfied
on a sample of size NS) is sufficiently large (for instance, larger than k(N S, 1—¢, a))
we say that the constraint P(G(x, &) < 0) > 1 — ¢ is statistically satisfied.

The value of the threshold k(NS,1 — €,a) (to which, for simplicity sake, we
will refer, from now on, as k) will be chosen so that the probability we accept the
constraint by error is smaller than a fixed «, in which case pyq is strictly smaller than
1—e:

P(x > k) <« (2.4)

For any fixed py < 1 — ¢, P(x > k) is smaller than P(x’ > k) when x' ~
B(NS,1—c¢). So we can choose k such that P(x' > k) < a.

Given x and e, the parameter o can be interpreted as the type I error of the
statistical hypothesis test with the following composite hypothesis:

{HO : P(G(x,8) <0)<1—¢
Hy : P(G(z,§) <0)>1—¢

Short reminder on some general notions. Hypothesis testing is a method
consisting in deciding, based on a set of observations, if a default position, called null
hypothesis (Hy), should be accepted or rejected in favor of the alternative hypothesis
(Hy). The type I error or the significance level of the test is defined as the risk of
rejecting the null hypothesis, when it is in fact true. The roles of the two hypothesis
are not symmetrical: the null hypothesis is usually the statement which we do not
want to reject if true. Therefore, it is the opposite of what we want to demonstrate:
the research hypothesis H;. As such, we want to minimize the type I error. For
example, in the diagnostic check of a disease, we want especially to avoid telling
a person is in good health when in reality he is sick: in this situation, the null
hypothesis should be chosen that the person is sick*. Type IT error or the 3 risk is the
probability not to reject Hy whereas H; is true. Usually, type Il error is more difficult
to estimate. Schema 2.3 represents the four possibilities and the corresponding
probabilities of matching and mismatching between the decision believed to be the
truth and the “state of nature” which is the actual reality.

4. Example suggested at: http://phdtutor.com/stat _course/Hypothesis Testing.aspx

2.3. ROBUST BINOMIAL APPROACH (RBA) 33

Table 2.3: The two types of errors when making decisions using statistical hypotheses

State of nature

Decision Ho H,
HO 11—« 6
H1 (0% 1 - 5

In our case, Hy corresponds to the hypothesis made by caution, which is (in-
tuitively) the hypothesis we wish to reject only if we have statistically significant
reasons to do so. We consider that this is the correct setting if we wish to confidently
achieve robustness: in a conservative way, by taking small values for a (the type I
error), we make no claims of a false null hypothesis without good evidence. Hence,
we can conclude, with a high confidence level of at least 1 —«, that pp > 1—¢. For a
fixed value of o and ¢ and giving the sample size N.S, we are searching the minimal
k for the sample NS such that P(x > k) < a. The variable x is the statistic test,
following a binomial distribution under the assumption Hy, k is the “critical value”
of this statistic test and the set of y > k corresponds to W, the one-tailed rejection
region of H,.

In practice, we determined k and, respectively W, the rejection region for a
fixed a and py = 1 — . We were looking for the threshold minimal k such that, if
P(G(z,€&) <0) <1—e¢g, then:

P{observe k realizations satisfying the constraints} < «

Remark 1. If the two hypothesis were inversed, we will obtain a different
statistical hypothesis test:

Hy : P(G(z,§) <0)>1—¢
{H1 : P(G(z,8) <0)<1—¢

In this case, we will be interested in accepting the null hypothesis and minimizing the
probability 1—a’ that we are wrong (with o/ the type I error). As such, for a fixed o,
we would be looking for a threshold minimal & for which, if P (G(z,£) <0) > 1—¢,
the following inequality holds:

P{observe k’ realizations satisfying the constraints} < o’

In Fig.2.3, a binomial distribution of parameters NS = 1000 and p, = 0.9 is
simulated and for o and o’ values fixed to 0.05, the thresholds & and k" were found
at 883 and respectively 915. The rejection regions for the two statistical hypothesis
tests are pointed in a darker color while the lighter area corresponds to (3, the type
II error for both tests, more difficult to evaluate.

In the following we are using the first statistical hypothesis test.

Remark 2. For NS large enough, the binomial law B(NS,p) with p =1 —¢
could be approximated with a normal distribution N (NS *p, NS*px (1 —p)). This
approximation ® can be further improved using a continuity correction.

5. Approximation justified by De Moivre-Laplace theorem (first proved in 1718), showing the
convergence in distribution of a binomial law towards a Laplace-Gaussian distribution.

54 CHAPTER 2. OPTIMIZATION UNDER UNCERTAINTY

Binomial distribution: NS=1000 and p_0=0.9

-

Q —

o

o

Q —

(=)

o

Q —

o

)

o a'=0.05 a=0.05

o

<

e T 583 915 T 1
850 900 950 1000

chi

Figure 2.3: Example of test statistics

This basic approximation is not valid for cases when the values for p approaches 0
or 1 (which is often our case) or NS is small. There are various rules of thumb in the
literature for specifying the conditions allowing to use this approximation. The most
popular rule recommended in statistics texts (without any proof however) states that
the normal approximation is adequate as long as NS+ p > 5and NS* (1 —p) >5
(or 10 depending on the sources).

Remark 3 An alternative to hypothesis testing is to make use of confidence
intervals. Having stated the hypothesis and established « as well as the hypothesized
value, a (1 — a)100% confidence interval (CI) is built such that the null hypothesis
is rejected if the hypothesized value does not exist in CI. The above approach is
justified by the definition of an unknown parameter 6 of a two-sided confidence
interval of form 6, < # < 6, with unreliability «. This entails all the values 6, for
which the null hypothesis Hy : 8 = 6y would not have been rejected in the observed
sample when a two-sided test with « as type I error would have been applied. Any
value 6, outside the bounds is “improbable’.

In our case, when establishing the number of successes x > k such that the
null hypothesis Hy : po = 1 — € is not rejected (for a significance level o against
Hy : pp > 1 —¢), we can also determine an one-sided binomial confidence interval
for the proportion of successes k/NS with a given reliability 1 — « and py = 1 — ¢.
There are several ways of computing confidence intervals for a binomial proportion:
the “exact” Clopper-Pearson interval [41], the normal approximation interval (also
called Wald interval) [156], Agresti and Coull interval [1] etc.

2.3. ROBUST BINOMIAL APPROACH (RBA) 35

The textbook confidence interval most commonly used for a binomial proportion

remains the normal approximation interval. In our case, if p = 3% is the proportion

of constraints being respected, the interval we are looking for is p+2z1_44/ Nisﬁ(l —D)

with 23, the 1 — « percentile of a standard normal distribution. It is widely
recognized that this confidence interval performs poorly especially when the sample
proportion p is too near to 0 or 1, in which case the normal approximation is not
adequate (see Remark 2).

The “exact” Clopper-Pearson interval is the inversion of the equal-tail binomial
test. By guaranteeing that the actual probability is always equal to or above the
nominal confidence level, it is however rather conservative. Under the hypotheses
stated above, for NS = 1000, py = 0.9, « = 0.01 and k& = 921 the 99% percent confi-
dence interval using Clopper-Pearson method is [0.8989388, 1.0000000] (R command
“binom.test(921,1000,0.9,alternative="g",0.99)*). If we keep the null hypothesis and
we state differently the alternative hypothesis: H; : po < 1 — ¢, the 99% percent
Clopper-Pearson confidence interval for NS = 1000, po = 0.9, « = 0.01 and k£ = 921,
is [0.0000000, 0.9396377].

For a detailed study comparing the different alternatives for interval estimation
of a binomial proportion, we refer the reader to [24]. Along with the risk I error, the
confidence interval could be used to measure the probability feasibility of a solution
to (CCP) problem.

Let get back now to the robust binomial approach with an analysis on the
threshold k.

2.3.3 Sensitivity analysis on the values of parameters for
RBA

This subsection tries to determine the influence of parameters €, a and NS on
the threshold k.

The initial reliability level 1 — ¢ from (CCP) is problem specific and thus, can be
more or less high depending on the guarantee the decision maker wants to have on
the constraints. The level of a € (0, 1) for a statistical test is commonly set between
1% and 10% and again depends on how much risk the decision maker is willing to
take.

Table 2.4 shows some minimal values for k£ in function of the sample size NS,
€ = 0.10 and a = 0.05. For example, for establishing that an inequality holds with
a preset probability level of 1 — e = 0.90 and with a confidence level 1 — a = 0.95,
for a sample of size 50, the threshold k needed is at 48 and P(x > 48) ~ 0.034. It
should also be noted that, for a practical use, the parameters ¢ and « should be of
the same order of magnitude.

Table 2.5 gives a deeper insight about the minimal number of constraints to
respect depending on ¢, the prescribed probability level and «, the confidence level
when NS, the size of the sample, is equal to 100, 1000 and 10000. It should
be remarked that for respecting higher probability and confidence levels, a more
important sample size is needed. However, a sample size of 1000 seems sufficient
even when € = 0.01 and o = 0.01. Also, it is possible to obtain the same value of

56

k for different values of ¢ and « (for example, for a sample of size 1000, we obtain
k =948 for € = 0.07 and o = 0.01 and same value also for ¢ = 0.05 and o = 0.6).

CHAPTER 2. OPTIMIZATION UNDER UNCERTAINTY

Table 2.4: Examples values for k(NN.S,0.90,0.05) in function of N'S.

| NS | k(NS,0.90,0.05) |

1

10
20
30
40
20

100

000

29

38

48

94
915

Table 2.5: Values of k in function of o and ¢

NS=100 NS=1000 NS=10000
o 0.01 1 0.05 0.1} 0.010.05] 0.1 1 0.01|0.05] 0.1
0.01 - 99 | 96 || 996 | 965 | 921 || 9922 | 9550 | 9069
0.05 - 98 | 94 || 995 | 961 | 915 || 9916 | 9536 | 9049
0.1 - 98 | 94 || 994 | 959 | 912 || 9913 | 9528 | 9038

We can also establish in advance the minimal size of the sample required for a fixed
level of the probability 1 —e (with € €]0, 1[) and a prespecified confidence level 1 —«
(with a €]0, 1]).

In particular, if pg = 1 — ¢ and P(x = NS) > « then we can affirm that the
sampling size is insufficient (which is true for NS = 10 and N.S = 20, see Table 2.4).
This formula provides an easy way to determine the minimal number of realizations
that need to be drawn in order to statistically significantly (a) achieve the desired
probability level (1 —). We remark that its computation does not depend on the
number of decision variables as in [30], nor on complicated complexity measures

from Vapnik-Chervonenkis theory as in [154].

2.3. ROBUST BINOMIAL APPROACH (RBA) o7

Let us now analyze the effect of varying the confidence level 1—« on the threshold
k for a fixed probability level 1 — ¢ and a fixed sample size. Fig. 2.4 (a) shows the
values of k for different values of ¢ when the sample size is 1000 and « taking different
values in (0,1). It seems that the more risk we are accepting, the more the value
of k diminishes (linearly) and so the less is the number of realizations needed for
satisfying the constraints. However, for an acceptable risk error a (less than 10%),
the variation of & in function of o does not look so important (in average a difference
of 7 additional realizations for respecting the constrains and accept a smaller risk
of 0.01 instead of 0.1 for a sample size of 1000). Instead, the value of the initial
reliability level 1 — ¢ has a greater impact on the threshold k for same sample size.
Fig. 2.4 (b) shows the variations of k in function of ¢ € (0,1) for a fixed confidence
level (0.01, 0.03, etc.) when the sample size is 1000. As expected, for an important
probability guarantee, the number of realizations satisfying the constraints has to
be higher. For a sample of size 1000 and different levels of 1 — o, we remark an
augmentation of 85 in average for the value of £ when € = 0.01 than the value of k
for e = 0.1. Same phenomenon happens for a sample of size 10000, when in average
we have to have 883 more realizations satisfying the constraints for ¢ = 0.01 than
for e = 0.1.

2.3.4 Chance constraints and sampling

The statistical theory above can be applied for obtaining a statistically significant
approximation model to the initial program (CCP). Let us first define the notion
of (NS,a)-statistically admissible solution for a chance constrained program.

Definition 2.1. Let ¢, € (0,1) and let suppose we are given a sample of size NS
for & A solution x(nga) € R™ is (NS, a)-statistically admissible with a confidence
level of 1 —« for a sample size of NS if, for po = P(G(2nsa,&) <0), P(x > k) < «,
with x ~ B(N S, po).

In order to obtain a relevant equivalent program to (CCP) model, we make the
following assumptions about the random vector &, represented by a sample of size
NS of observations ¢, withi =1,... NS:

Assumption 2.1. NS, the size of the sample for the uncertain vector &, is finite
and sufficiently representative.

Assumption 2.2. The sample for & is composed of independent and identically
distributed (i.i.d.) observations: €1, ... €WN9),

We would like to attract the attention of the reader on the fact that we are
not treating time series. As such, our second assumption of independence, is on
the different observations of the random vector and not on its components which
(as already stated) can be dependent. Additionally, the assumptions above remain
quite general. As many previous studies do not mention, these assumptions are also
necessary in the case of methods using a probability model, as the model itself must
be validated e.g. on a Kolmogorov-Smirnov hypothesis test using an i.i.d. sample
of experimental data.

CHAPTER 2. OPTIMIZATION UNDER UNCERTAINTY

1000 [o - m m m
. Seattee - - - " N _ -
il . ¢
880 |-
970 e
o Mgy :
N N
%50 £ A . ——y
h £ & i 0,01
240 | - 0,03
N e »
k - » o e 0,05
4 i 0,07
220 M 3 it 01, 1
210
" M) _____4______4_—__—‘__
890 —
880
&0 T T T T T T T T
0 01 02 03 04 05 0,6 o7 08 08

e 0,01
0,03
— 0,05
i 0,07
i 0,1
e 0,3
e (0,5
il 0,7
0,9

880 T T T T T
0 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,1
£

(b)
Figure 2.4: (a)NS=1000 (b)NS=10000

2.3. ROBUST BINOMIAL APPROACH (RBA) 29

Moreover, the first assumption is not very restrictive, since even if the number
of initial observations is not sufficient, we can resort to statistical methods for re-
sampling, such as bootstrapping [57]. However, it is important that the initial
sample is representative of the distribution. We underline that we are not concerned
by the acquisition of representative experimental data. This stage has to be realized
a priori at system level, for example during the validation stage and needs to be
done regardless of the method used for solving the chance constrained program.
If we take the case of a video encoder for example, the validation tests should
provide representative samples of video sequences which can be used for building
our approximation program. Afterwards, in order to validate the robust approach,
we need other video samples, statistically identical but, of course, different from the
first ones. It should also be remarked that in contrast with other existing methods,
our sample acquisition as well as possible treatments (such as parameter estimation
or bootstrapping) are made before applying the robust binomial approach, intended
to find an approximate solution to the (CCP) problem.

Let define the binary variable x; for realization & :

. { 1 ifG(:g,é(i)) <0,

0 otherwise.

Since the sum Zf\g x; follows a Binomial distribution of parameters N.S and py
(again, by construction), we can determine k(N S,1 — ¢, «). Therefore, we can use
Xi, the realization of the variables y;, and replace the probability constraint

to obtain the (RBP) formulation, equivalent to (CCP):

min g () (RBP)
NS

s.t. Z)Zi > k(NS,1—¢,a)
=1
G(z,£W) < (1 - %)L i=1,...,NS (2.5)
Xi €1{0,1}; i=1,...,NS

The first constraint assures that the number of constraints which are satisfied
for the given sample are superior to the threshold k, fixed in advance in function of
NS, € and a. Constraints 2.5 verify the respect of the constraint for each realization
i, making the link between z, €@ and y;, with L a constant of large size, depending
on the problem structure but generally easy to find. For example, for a knapsack
constraint Z:’;l wir; < C with w; > 0 the weights of the items to be placed,
supposed uncertain, x; binary variables and C the maximal capacity allowed, L =

D iy Wi
Theorem 2.1. A feasible solution for (RBP) problem is a (NS, «a)-statistically
admissible solution.

The proof is immediate and it is justified by the way (RBP) is formulated. The
variables y; associated to €@ correspond to Bernoulli independent observations (see

60 CHAPTER 2. OPTIMIZATION UNDER UNCERTAINTY

assumption 2.2) and their sum is following a binomial distribution of parameters N.S
and pg = 1 —e. A feasible solution for (RBP) have to respect the first constraint,
which assures that, with a confidence level of 1 — «, the threshold k is respected.

Minimizing the objective function g(z) for (RBP) model is equivalent to solving
the initial program (CCP) with a confidence level of at least 1 —a. Additionally, we
emphasize once more that the validity of this approximation is independent of any
particular assumption on the joint distribution of the random vector &, in particular
with respect to inter-component dependencies. Although it is well illustrated on the
mathematical formulation (RBP), it should be stressed out that our approach is not
really appropriate in a mathematical programming setting, since, for example, the
reformulation of an original linear problem contains many binary variables and it
is more complex to deal with. However, the method can be easily and efficiently
adapted to heuristic approaches.

Furthermore, we can make use of the existing heuristic algorithms developed
for the deterministic version of a problem and extend them to the stochastic case.
Having at our disposal a sample verifying assumptions 2.1 and 2.2, any constructive
algorithm relying on an oracle for testing solution admissibility can be turned into
an algorithm for the stochastic case. This can be done by modifying the said oracle
so as to count the number of constraint violations for the given realizations and take
an admissibility decision based on the threshold k.

The main steps of an overall optimization process for solving a CCP program
integrating an heuristic based on the robust binomial approach are presented in
Table 2.6.

Table 2.6: Solving a chance constrained problem with a RBA-based heuristic...

problem formulation: g, G, z, &, ¢
sample acquisition for &
pre-treatment of the sample: preliminary analysis, bootstrapping etc.
check existence of heuristic for solving the deterministic version
if Jheuristic for deterministic case then
choice of the “appropriate” existing heuristic for deterministic case
replace the admissibility oracle with a stochastic one
integrate the stochastic oracle to the chosen heuristic
else
choice of an “appropriate” heuristic
define a stochastic “admissibility” oracle
integrate the stochastic oracle to the chosen heuristic
: end if
: validation of the method

e e e e
Ll

We are not concerned in this chapter by the first two steps: formulating the
problem as a (CCP) program and the acquisition of a sample for the uncertainty
data &, which are taken as granted. Our interest resides in the resolution techniques

2.3. ROBUST BINOMIAL APPROACH (RBA) 61

and our belief is that solving the problem should be realized by taking into account
the specificities of £, which justifies step 3.

During this preliminary step, the samples we have at our disposal are analyzed: if
a “nice” analytical distribution model can be associated (e.g. Gaussian laws), then
we proceed with an estimation method for finding the corresponding parameters.
If, on the contrary, data analysis suggests that the distribution underneath is too
complicated to be analytically described, we verify that the condition of applicability
of the robust binomial approach are verified.

Since the first assumption remains general and must also hold for estimation
methods, we only have to make sure we dispose of a sufficient sample. As such,
if the theoretical minimal size, computed in function of € and a chosen confidence
level o, is inferior to the size of the current sample, we can resort to re-sampling
techniques such as bootstrapping. If there are approximate resolution approaches
which have been developed for solving the deterministic version of the same problem
(step 6), we choose an “appropriate” (meta)heuristic ® and adapt it, by replacing the
admissibility deterministic oracle with a stochastic one (steps 6-8). The stochastic
oracle is either exploiting directly the samples with the robust binomial approach
or, if a distribution model is assumed, makes use of the estimated parameters for
verifying the probability constraint. If no heuristic conceived for the deterministic
case has been found, we have to conceive one and integrate a stochastic admissibility
oracle (steps 10-12).

Let us now give more insight about the redesign-for-the-stochastic-case method-
ology when we have at our disposal (which is often the case) an existing (meta)heuristic
solving the deterministic version of the problem.

2.3.5 RBA and adapting (meta)heuristics

The robust binomial approach can be applied without major effort within a
greedy method already developed for the deterministic version. Since greedy algo-
rithms provide an easy and quick way of finding good quality solutions, they are
often a popular choice for a first optimization of large-sized problems. Table 2.7
shows the general structure of a greedy algorithm for the deterministic case as well
as its adaptation for the stochastic case. The input is problem specific and consists,
for the deterministic case, in giving the structure of the objective g, the constraint
function G, the parameter vector £ as well as the domain of definition for the decision
variables.

For the chance constrained version, in which we consider ¢ as random, we also
specify a sample of size NS for £, the probability level € and in order to apply the
robust binomial approach the confidence level a. In both cases, R represents the
set of decisions not yet made (or residual), D the set of admissible decisions, ¢(5)
the solution value for solution S, d* the current optimal decision and S* the optimal
overall solution, built in a greedy fashion. While there are residual decisions to be
made, an oracle is evaluating them for deciding the admissible decisions. Between

6. The notion of “appropriate” heuristic is subjective and consists usually in finding a
satisfactory trade-off between implementation effort, quality of the solution and computational
time.

62 CHAPTER 2. OPTIMIZATION UNDER UNCERTAINTY

the admissible decisions, only the one with the greatest improvement on the optimal
solution value is kept and the overall solution S* is updated. If no admissible
decision is found by the oracle, the algorithms stops. As seen, the only major
difference when considering chance constraints is in establishing the set of admissible
solutions, by using a stochastic oracle O; instead of the original one O (line
3). The deterministic oracle is establishing the admissibility of a residual decision
by verifying the respect of the constraints, while the stochastic oracle is applying
the RBA and verifies if a residual decision is (IV.S, «)-stochastically admissible by
comparing the number of constraints respected by the sample with the threshold k,
established in advance in function of N.S, € and « (see the procedures for O and O,
in Table 2.8).

Table 2.7: General schema, for a constructive algorithm

Deterministic Stochastic

Input: ¢ and G functions, & Input: 9 and G functions

F(NS) -
1: R ={r: residual decisions} Input: £, £, <. &
. 1 R= {r. residual decisions}
z 5 =0 2. S* =0

3: while R # () do
D={reR:0(r)="True}
5. if D # () then

6: d* = argmln g(S*uU{d})

3: while R # () do

D ={reR:0O4r)="True}
5. if D # () then

6: d* = argrmn g(S*uU{d})

e
=

7 S* S*U{d*} - gt S*U{d*}
8: R=R\{d"} 8: R =R\ {d*}
9: else 9: else

10: break; 10: break:

11: end if 11: ond if ’

12: end while 12: ond while

Output: S* '

Output: S*

Such a context assures a practical and tractable implementation of our approach
even for cases when a very high number of constraints is demanded. These situations
can arise when ¢ is set to be really small (e.g. less than 107°) and thus, it is required
to have a large minimal size of the sample. For example, a problem with probability
level ¢ = 107° and, accordingly, a confidence level o = 1075, requires a sample of
minimal size 10® which, although large, is not prohibitive. Additionally, in order to
obtain a more rapid computation, the operation of counting the constraint violations
can be parallelized without major effort ”.

7. A one line OpenMP pragma will do the trick.

2.3. ROBUST BINOMIAL APPROACH (RBA) 63

Table 2.8: Deterministic oracle vs. stochastic oracle

Deterministic oracle O Stochastic oracle O,
Input: r € R, G, & Input: r € R, G, 5(1), . ,E(NS)
L if G(r,€) <0 then Input: NS e,
2: return True 1: Compute k(NS e, a)
3: end if 2: nbRespConstr =0
4: return False 3: fori=1to NS do
Output: True, False 4 if G(r,€9) < 0 then
5: nbRespConstr + +
6: end if
7. if nbRespConstr > k then
8: return True
9: endif
10: end for

11: return False
Output: True, False

Of course, any optimization algorithm relying on an oracle to determine whether
or not a solution is admissible (e.g. a neighboring method) can be turned into
an algorithm solving the stochastic case using the same method. For example, the
same methodology could be used to integrate RBA into an existing GRASP (Greedy
Randomized Adaptative Search Procedure) algorithm to solve the stochastic version
of the problem. GRASP, a multi-start heuristic is composed of a construction phase
and an improvement phase.

The first phase consists in building a feasible solution .S with a greedy randomized
algorithm and its adaptation for the stochastic case could be an algorithm similar
to the one shown in Table 2.7.

The second phase takes the solution S and tries to ameliorate it, through a local
search procedure, by exploring the neighborhood of S. The only difference between
a generic local search method for the deterministic case and its adaptation to the
stochastic version consists in deciding which of the neighbors n of S is a possible new
admissible solution, based on a deterministic oracle O(n) or a stochastic oracle O,(n)
respectively. The structure of the oracles O and O, could be the same as before or
they could be implemented more efficiently, using the fact that the neighbors are
obtained from a current admissible and respectively (NS, a)-statistically admissible
solution.

Let us provide an example of a possible application of the RBA method along
with a hill climbing heuristic for the classical problem of bin packing. The variant
of bin packing we consider here is the following:

64 CHAPTER 2. OPTIMIZATION UNDER UNCERTAINTY

Bin packing example. Giving a set of n items, each item ¢ having a certain
weight w; and a value p;, the objective is to place these items in a fixed number of
m bins while respecting the available weight C; of each bin j in order to maximize
the overall value. The problem can then be formulated as follows:

max P = z”: Xm:pixij (2.6)

i=1 j=1
i=1
» ay=1 Vi=1,...,n (2.8)
j=1

where z;; are binary variables such that:

S 1 if item ¢ is put in bin j
“ 1 0 otherwise.

Constraints (2.7) verify the respect of the maximal capacity for each bin while
constraints (2.8) make sure that the item ¢ has been allocated to a single bin.

Supposing that the weights of the items w; € R are random and we want a
probability of validity for the constraints on the bin weights superior to a threshold
1 — ¢, we obtain the chance constrained version of the bin packing problem. Thus,

constraints (2.7) are replaced with:

P(ZwixijSCj; ijl,...,m) >1—¢
i1

Let us define the notions of admissible solution and respectively (NS, a)-statistically
admissible solutions for the bin packing problem.

Definition 2.2. A placement of items into the m bins is a deterministic admissible
solution to the bin packing problem if it respects constraints (2.7)-(2.9).

2.3. ROBUST BINOMIAL APPROACH (RBA) 65

Definition 2.3. Let ¢, € (0,1) and let assume that we dispose of a sample of size
NS of i.i.d. realizations w;V, ... w;™N) for all weights of the items i = 1,...,n.
A placement of items into the m bins is a (NS, «)-statistically admissible solution
if constraints (2.8)-(2.9) are respected and if:
NS
Z)Zp > k(NS e,)
p=1
with k computed as described before and:
[t S e We; <Oy Vi=1,...,m
Xp _{ 0 otherwise.
Table 2.9 gives the main steps of a simple hill climbing heuristic for bin packing
for the deterministic and respectively, stochastic case, making use of the notions
defined before. The initial solution sg could be a random allocation of items to the

bins or it could be constructed into a greedy fashion, through First-Fit Decreasing
(FFD) or Best-Fit Decreasing (BFD) algorithms.

Table 2.9: General schema for hill climbing heuristic: bin packing problem

Deterministic Stochastic
Input: n, p; fori=1,...,n,
Input: n, w; and p; fori=1,...,n, m, Cjfor j=1,...,m
m, Cjforj=1,...,m Input: w;"Y, ..., o, Vi=1,....n
Input: sg, initial solution g,a € (0,1)
1: s = s Input: s, initial solution
2: stop=Flalse 1: s =359
3: repeat 2: stop=False
4 Ny={n, € N:0(n,) = True} 3: repeat
5. bestN = argmax P(n,) 4: Ny ={n, € N:O4(n,) = True}
ngENg . —
6: if P(bestN) > P(s') then 5 bestN = argmax P(n,)
7 s" = bestN 6: if P(bestN) > P(s’) then
8: stop=Flalse 7: s’ = bestN
9: else 8: stop=Flalse
10: stop=True 9: else
11: end if 10: stop=True
12: until stop=True 11: end if
Output: s 12: until stop=True

Output: s

A simple neighborhood N of a current solution s’ can consist in moving an item
into a different bin or exchanging items placed in different bins. Once neighborhood
N has been defined, the possible neighbors are analyzed and are kept (in N,)
only when are considered to be an admissible solution and respectively a (NS, «)-
statistically admissible solutions (line 5). The best neighbor bestN is chosen and if
it improves the total value of the solution, it is kept for the following iteration (lines
6-9).

66 CHAPTER 2. OPTIMIZATION UNDER UNCERTAINTY

The only major difference between these two algorithms is in deciding the list
N, of admissible neighbors with the help of a stochastic oracle O, instead of the
deterministic oracle O. While in the deterministic case, the oracle verifies the respect
of the capacity of each bin, the stochastic oracle verifies, for the given sample, that

the capacity of each bin is respected with a threshold € and a confidence level « (see
Def. 2.3).

This methodology could be extended to adapt other (meta)heuristics such as
simulated annealing, tabu search or genetic algorithms for solving the stochastic
version of a problem with the RBA approach. Both based on local search, simulated
annealing and tabu search methods are similar to the hill climbing with respect to
the exploration of neighborhoods for a current solution. As such, their adaptation
to the stochastic case could follow the same approach as in the case of hill climb-
ing heuristic. For the genetic algorithms, one way to solve the stochastic version
is to integrate the robust binomial approach into the fitness evaluation function
and penalizing those individuals which do not respect the threshold k of minimal
constraints to be satisfied.

2.3.6 Generalization of the RBA

2.3.6.1 Chance constrained programs with more than one probability
levels

The robust binomial approach can be easily generalized to treat different levels
of reliability for chance constrained programs. Actually, the probability constraint
from CCP only guarantees that the constraint will be respected with a probability
level 1 —e. However, when the constraint is not respected with probability ¢, it does
not provide any information about the degree of violation. Note that knowing the
magnitude of the constraint violation can also be important, especially for heavy-tail
distributions (although the efficiency of the RBA has not been yet assessed for these
type of distributions).

One solution is to enforce different levels of protection by defining alternative
thresholds for probabilistic guarantees when the primary target is not achieved.
Let suppose that the r probability levels are e = ¢ < g9 < -+ < g, and Vj =
1...r, g5 € (0,1). As such, if the probability constraint P (G(z,£) <0) > 1 —¢;
is not achieved, then the probability target 1 —¢;; is set instead. This results in
a program with a set of at most r independent probability constraints. It should
however be noted that the larger r is, the larger is the computational effort to solve
this type of problem.

These successive independent chance constrained programs could still be replaced
by applying for each of them our robust binomial approach under the assumptions
made earlier. Eventually, in order to reduce the complexity burden, we can verify in
advance if the constraint G(z,) < 0 is satisfied or not for realization & and store
the result for exploiting it later when verifying the probability constraint for each
threshold 1 — ¢;. However, with this approach, the final solutions will hold only for
each individual ¢; instead of being guaranteed for different levels of probability.

2.3. ROBUST BINOMIAL APPROACH (RBA) 67

A more interesting way of enforcing different levels of protection is by consid-
ering them simultaneously, from the beginning. Let suppose again that we have r
probability levels e; > ey > --- > ¢, with Vj =1...7, ¢; € (0,1) and this time, for
each of them we have different targets to meet 0 < M; < My < --- < M, for the
constraint function G(x,&). As such, we are looking for a solution which satisfies
each of the r probabilistic constraints :

min g (x) (CCP,)
s.t. P(G(%,f)SMJ>21—€], \Vljzlr

Example. Let give a short example for better illustrating this possible extension of
the RBA. Let suppose that we want to guarantee the satisfaction of the constraints
with respect to three targets 0, My and Mjs with three different probability thresh-
olds: 0.75, 0.85 and respectively 0.95. As such, we must solve the following chance
constrained program:

mxin g (x)

st. P(G(z,§) <0)>0.75
P (G(z,€) < My) > 0.85
P(G(z,§) < Ms) > 0.95

As such, we are looking for a solution which provides alternative guarantees when
the first constraint is not respected, by allowing to achieve M; with a probability of
at least 85% and M3 with at least 95% probability.

In order to solve this generalization which assures simultaneously different prob-
ability levels, the robust binomial approach has to be applied for each threshold
1 — ;. We obtain the following approximation for (CC'P,) formulation:

min g (z)
NS

s.t. Z)ZjiZk’j(NS?l—ej,a) j=1,...,r
i=1
Gz, D) < (1 —x;,)L + M;; i=1,...,NS; j=1,...,r
X;: € {0,1}; i=1,...,NS; j=1,...,r

with k; the number of minimal constraints to get respected for probability level
1 —¢; (we suppose the same confidence level 1 — o for all but it is not mandatory).
X;, corresponds to a binary varible such that, Vj =1,... r:

. { 1ifG (;c,é(i)) < M,

0 otherwise.

Again, due to the computational complexity (an increase factor of r compared to the
original (RBP) program), it is more appropiate to make use of heuristic approaches
and conceive a stochastic oracle for checking feasibility of the solutions, by counting
the number of respected constaints.

68 CHAPTER 2. OPTIMIZATION UNDER UNCERTAINTY

2.3.6.2 Programs with random objective function

Until now, we have considered chance constrained problems of the form CCP,
thus static programs with randomness affecting only the constraints. Although,
there can be cases in which the objective function of this problem is also random.

For a static program when only the objective function to minimize h(x,v) is
random (with v the random data), there are several ways to handle the uncertainty
(see [134] for more details):

1. Converting the problem into a deterministic one by considering the expectation
value of the random variable.

2. Use a policy based on the notion of efficient points (as defined previously).
Another variant of this principle is to replace the objective function by a
linear combination of expectation and standard deviation.

3. Introduce a probabilistic constraint and a new objective function [89).

4. For linear programs with v having a continuous distribution, build an equiva-
lent problem using the basis which are primal feasible for the problem.

The method we consider here belongs to the third category of approaches, with
the first model introduced by Kataoka in 1963 [89] which studied the case of a
multivariate distribution for v. Let us consider the program:

min z=h(z,v)

st. xeD (2.10)

with D the set of constraints. Solving 2.10 consists in finding an x* such that
2 = h(z*,v) < z = h(z,v), Yo € D. If we are interested in a robustness on the
result with a guaranteed probability 1 — p, the following stochastic model should be
solved:

min u
st. P(h(z,v)<u)>1-p (2.11)
z€D (2.12)

where p € (0,1) is a probability threshold and D the set of initial constraints. This
means finding z* such that u(z*) < u(x), Yo € D which is equivalent to searching
for the superior bound of an unilateral confidence interval for h such that x € D.
Of course, the above approach makes sense in situations when the central limit
theorem cannot be applied. If the number of random variables v is large enough
and the magnitude of the variation is not too large, a more appropriate choice seems
to make use of the expectation E(h(z,v)).

2.3. ROBUST BINOMIAL APPROACH (RBA) 69

For a general problem with uncertainty both in objective function and in con-
straints, we consider that the robust binomial approach could be easily combined
with the above stochastic model, if the random variables affecting the constraints are
independent from those appearing in the objective function. While the probability
in constraints is treated via the robust binomial approach which determines the
feasible set D, for guaranteeing the result with a high probability, we are looking
for an upper bound for the confidence interval of the objective function.

Conclusion

Taking into account uncertainty is a crucial aspect when solving an optimization
problem, which has a great influence on the quality of the overall solution. As
such, optimization under uncertainty and in particular stochastic programming and
robust optimization remain between the most active domains of research nowadays.
Nevertheless, due to the difficulties related to solve problems with uncertain param-
eters, most of the existing approaches make simplifying assumptions which are not
always consistent with the real data.

The robust binomial approach takes advantage of experimental data and reinter-
prets the scenario approach (between the only existing methods without particular
assumptions about the distribution of random variables) with tools from statistical
hypothesis. As such, for a sample of size NS, it provides a safe approximation,
guaranteed with a confidence level 1 — o (with a € (0,1)), to chance constrained
programs with a required 1 — ¢ threshold on the probability constraints. We also
present the necessary steps for integrating the robust binomial approach in an
existing approximate algorithm (in the admissibility oracle). The founding principles
of the robust binomial approach and a case study consisting in stochastic partitioning
of process networks are subject of the journal paper [150].

Next chapters are dedicated to the application of the robust binomial approach
to optimization problems occurring in the compilation process of a dataflow appli-
cation for manycore. Nevertheless, due to its simplicity and the reduced number of
assumptions it requires, the robust binomial approach along with the methodology
of solving an uncertain optimization problem from Chapter 2 are generic and thus,
applicable to other domain fields.

Chapter 8 __

Graph partitioning under
uncertainty

Contents
3.1 Problem statement0... 72
3.2 Related works ittt 73
3.3 Preliminaries: Deterministic algorithm 74
3.4 Chance constrained version 77
3.5 Computationalresults 79

This chapter is dedicated to the problem of stochastic partitioning of process
networks, arising in the resource allocation step of the compilation process of a
dataflow application for manycore systems (see Chapter 1 for more details on the
context).

Our interest is mainly in demonstrating the practical relevance of solving a
stochastic problem by integrating the robust binomial approach into an existing
heuristic developed for the deterministic case (as we conceptually explained in
2.3). As such, we want to show that having at our disposal an algorithm for the
deterministic case, it is relatively easy in terms of software engineering (notably)
to adapt it to the chance constrained version of the same problem. In the latter
case, the solutions found are of consistent quality (with respect to the ones provided
by the original algorithm) and more importantly, guaranteed to be robust to data
variations with a confidence level of 1 — a and a required probability level of 1 — ¢.

Since a multi-start constructive algorithm was already developed for partitioning
networks of processes, we took advantage of the existing implementation in order
to adapt the admissibility oracle and solve the stochastic case. The original greedy
algorithm for the deterministic problem is given in section 3.3.2 and the associated
computational results are presented in section 3.5. Therefore, we are not claiming
that this existing algorithm is a best-in-class graph partitioning algorithm. What
we do claim is that, using a slight adaptation of this algorithm, we can easily obtain
robust solutions. Thus our experiments focus on showing that the algorithm for
the stochastic version provides results consistent with those of the original one and
attempt to quantify the “price of robustness”.

71

72 CHAPTER 3. GRAPH PARTITIONING UNDER UNCERTAINTY

3.1 Problem statement

We begin by a formal description of the problem of process networks partitioning:

As mentioned in Chapter 1, a dataflow application can be modeled as a directed
graph in which the vertices are the tasks and the arcs are the channels. One of the
(numerous) tasks of a dataflow compilation chain consists in mapping this graph
onto the hardware resources of the target microprocessor architecture. Thus, in this
chapter, we study the problem of assigning the weighted vertices of such a graph to
a fixed set of partitions. We aim to minimize the sum of costs for edges having their
extremities in different partitions (representing the processors), without exceeding
the limited capacity (e.g. the memory footprint) of each partition. This application
is an extension of the more abstract NP-hard problem of Node Capacitated Graph
Partitioning (NCGP) |72, |64].

Let G = (V, A) be a directed graph where the set of vertices V' = {Ul, Vo, ... ,’U‘v‘}
represents the tasks and the arcs (v, w) € A correspond to the channels of a process
network. Let N be the set of disjoint nodes on a parallel architecture on which we
want to map our graph. The resources (essentially memory footprint and computing
core occupancy resources) are given by the set R and the capacities of the nodes
are given by the multi-dimensional array C' € R*1®. For the sake of simplicity, our
study was limited to the case of homogeneous nodes: i.e. all nodes have the same
capacity.

Let us also define two functions. s : V — Rl is the size function for
the vertex weights, with s(v), being the weight of vertex v for resource r. The
second function, defined for the edges, is the affinity function ¢ : A — RHI1%l where
q((v,w)) > 0 denotes the weight of edge (v,w) € A and ¢((v,w)) = 0 if no edge
(v, w) exists between the vertices v and w. In the remaining, we will use the following
simplified notation: Q,, = ¢((v,w)) for each arc (v,w) € A and S,, = s(v),, for
re RandveV.

The partitioning problem we work on consists in finding an assignment of vertices
to nodes, denoted f : V — N, that satisfies the capacity constraints for all
resources:

> S, <C.VneNNVreR, (3.1)
veV:f(v)=n

by minimizing the objective function:

> Qu

(v,w)eA:f(v)#f(w)

The stochastic case we consider for the graph partitioning with capacity con-
straints is taking into account the uncertainty affecting the node weights, being a
relatively novel problem, as we will show in the following.

3.2. RELATED WORKS 73
3.2 Related works

3.2.1 Deterministic graph partitioning

Since the graph partitioning problem and especially the bisection problem (a
particular version of the problem for |N| = 2, also NP-hard) have been of great
interest in the past, many different resolution methods were developed for treating
the deterministic case. There are several surveys (see [66], [59], [18]) resuming the
existing algorithms for deterministic graph partitioning.

Due to the NP-hardness of graph partitioning, the literature addressing the exact
resolution of this problem is relatively sparse. Among the most successful exact
deterministic approaches are the branch-and-price or column generation methods
[86], [119]. Interesting results are also obtained in [64], in which the polyhedral
structure of the problem is analyzed and classes of strong valid inequalities are
included in a branch-and-cut algorithm. We should also mention the existence of
a few approaches exploiting lower bounds for the problem. Particularly new lower
bounds of rather good quality were found using semidefinite programming [103] as
well as multi-commodity flows [140]. Nevertheless, these exact methods can handle
only relatively small graphs and are too slow to be applied to larger graphs (with,
for example, more than a thousand vertices). Mainly for this reason, these methods
are not adequate to our application where we have to partition instances with a
number of vertices varying roughly between 500 and 4000 on 16 to 64 nodes.

Therefore, we turn our attention to heuristics, the usual and more practical
methods for tackling such problems. There are a large number of such methods,
either global or local, that differ with respect to cost (time and memory space
required to run the algorithm) and partition quality, i.e. the optimal solution or the
cut size. One of the earliest and most popular algorithms, due to Kerninghan and
Lin [90], originally proposed for the bisection case, is of quite high complexity (for a
graph with |E| edges, O(|E|) for Fiduccia adaptation [65] or in the original version
O(|E?log(]E]))). Also, it demands a lot of computational effort for being adapted to
the capacitated generalized problem. Among local metaheuristics, one of the most
used to solve the graph partitioning problem is simulated annealing, mainly because
of its simplicity [85], [93]. However, it highly depends on the structure of the problem
and for large sized instances, the required execution time may become prohibitive.
For very large graphs, rather good results were found by global approaches, such
as the multilevel and hierarchical methods [78], [88] or the more recent method of
fusion-fission [17].

3.2.2 Stochastic graph partitioning

Previous work related to the stochastic form of the problem treated in the present
dissertation is quite scarce. Fan et Pardalos studied a problem relatively close to
ours: partition the vertex set of a graph into several disjoints subsets so that the sum
of weights of the edges between the disjoint subsets is minimized, with a cardinality
constraint on each subset and the uncertainty affecting the edge weights. In [61],
assuming there is no information on the probability distribution other than that the

74 CHAPTER 3. GRAPH PARTITIONING UNDER UNCERTAINTY

weights on the links are independent and bounded in known intervals, they formulate
the problem using a robust optimization model, similar to [14|. The equivalent linear
programming formulation is then solved by an algorithm based on a decomposition
method. In a more recent study [62], they introduce the two-stage stochastic
graph partitioning, assuming that the distribution of edge weights has finite explicit
scenarios. Having as objective to minimize the expected weight of edges in the set
of cuts over all scenarios, they present a nonlinear stochastic mixed integer model
and propose an equivalent integer programming formulation for solving the problem
using CPLEX. Taskin et al. [32| study the stochastic edge-partition problem,
where the edge weights are uncertain, and are realized only after the node-to-
subgraph assignments have been made. They introduce a two-stage cutting plane
algorithm with integer variables in both stages and, to overcome the computational
difficulties, they also prescribe a hybrid integer/constraint programming method as
an alternative.

The approaches above differ in several aspects from our study. First, in our case,
the problem formulation is not the same, dealing with multidimensional capacity
constraints on the nodes instead of cardinality constraints. Consequently, uncer-
tainty is addressed in a different manner, the assumption of uncertainty being made
on the weights of the vertices rather than on the weights of the edges. Finally, we
remark that the existing methods are exact and thus, mostly suited for small-size
instances of the problem, the numerical experiments being performed on graphs with
at most 100 vertices. On the contrary, for the processes placement problem, we are
interested in practice to partition much larger graphs.

3.3 Preliminaries: Deterministic algorithm

3.3.1 Relative affinity

Before describing the randomized greedy heuristic our stochastic algorithm is

based on, let us recall the notion of relative affinity, initially introduced in [47| (see
also [149]).
Let S and T be two disjoint subsets of V.

Definition 3.1. The affinity of S for T is given by :

a(S,T) = Z Qvw-

(v,0)€8(S,T)
with §(S,T) = {(v,w) : v € S;w € T}. It follows that «(S,T) = (T, 5).
Definition 3.2. The total affinity of S (similarly for T) is given by
B(S) =a(S,V\9).

Definition 3.3. The relative affinity of S for T is defined as

1 1 1
’7(8, T) = 50[(3, T) (w + m)

3.3. PRELIMINARIES: DETERMINISTIC ALGORITHM)

where O%LST)) represents the contribution to the total affinity of S of the edges adjacent

to S and T.

Let us illustrate these notions through a simple example [47] on the undirected
graph shown in Figure 3.1a. We suppose that we only have one resource and that
all the vertices have unitary weights and we want to partition the graph into two
nodes of capacity equal to 2. A greedy partitioning using the total affinity would
have begun by putting together the vertices B and C, resulting in a solution of
cost 4. Instead, a greedy partitioning based on relative affinity would match the
vertices A and B (and C and D), with y({A},{B}) = v({C},{D}) = 0.7 and
v({B},{C}) = 0.6, obtaining a solution of cost 3 (see 3.1b).

(a)
Figure 3.1: (a) A graph example (b)2-partition using the relative affinity [47]

3.3.2 Randomized greedy algorithm: deterministic case

In order to fully illustrate our methodology for leveraging an existing algorithm
solving the deterministic version of a problem to the stochastic case let us describe
our starting point. (Note that we do not claim to be the ultimate graph partitioning
heuristic, emphasis being made on the leverage-for-the-stochastic-case methodol-
ogy.)

Initially described in [146], the randomized greedy algorithm we are starting from
is based on the relative affinities of admissible assignments and admissible fusions.

Let W be a set of vertices not yet assigned to a node.

Definition 3.4. An assignment of vertex v to node n is admissible if it satisfies the
capacity constraints for node n, such that for every resource r € R:

Swt Y. Sw <G

weV\W: f(w)=n

Definition 3.5. A fusion between the nodes n and m is admissible if for every

resource r € R:
> Set Y. Sy <G

veV\W:f(v)=n veVA\W:f(v)=m

76 CHAPTER 3. GRAPH PARTITIONING UNDER UNCERTAINTY

The assignments are favored over fusions and, when tie-breaking with respect
to relative affinity, the heuristic prioritizes the assignment of vertices with heavier
weights on less loaded nodes and the fusion of the most loaded nodes. We also
formally define the relations of heavier vertex and more loaded node which are being
used in the algorithm for the multidimensional case.

Definition 3.6. The vertex v is smaller or lighter than the vertex w if:

SUT' SU)'I"
max < max
rer C, rer C,

(3.2)

Definition 3.7. The node n is more loaded than the node m if:

1
max — | C, — Z Sor | < max a C, — Z Sor
veV\W:f(v)=n veV\W:f(v)=m
The algorithm, to which we will refer as RG_PART, takes as input the set of
unassigned vertices W (initially equal to V'), the set of nodes N, the set of resources
R and the vertex weights S,,.. A basic version of the algorithm is given underneath.

Algorithm 3.1: RG_PART

Input: W, N, R, S, for each {v € V, r € R}
1: Initialization W =V
2: Assign the first min(|V|, |N|) vertices in lexicographic order to the |N| nodes
and update the set W
3: Find an admissible assignment (v*,n*) (v* € W, n* € N) cf. Def. 3.4, if any,
with maximal relative affinity:

n=7{v'}h{ve V\W: f(v) =n"})

4: Find an admissible fusion (nj,n}) (nj € N, nj € N) cf. Def. 3.5, if any, with
maximal relative affinity:

=7{v e VAW : f(v) =ni}{v e VAW f(v) = n3})

5. If 74 > 72 then assign v* to n* and update the set . Else merge nj, n}
6: If W = () or there is neither any admissible assignment nor any admissible
fusion, stop. Else, go to Step 3.
Output: assignment f

Since greedy algorithms tend to sometimes get trapped with poor quality so-
lutions, a type of diversification strategy is required. This is the reason why a
randomized version of the algorithm is executed several times (i.e. in a a multi-start
fashion). The randomization strategy consists in executing the algorithm first on
the list of vertices sorted by their decreasing weights (see step 2 of the algorithm
and for multi-resource case, Eq. 3.2) and several times afterwards using randomized
versions of the list of vertices.

3.4. CHANCE CONSTRAINED VERSION 7

The algorithm being given for the deterministic version of our problem, we can
now turn to the case we are interested in, the one in which the weights of the vertices
are uncertain.

3.4 Chance constrained version

The robust binomial approach described in chapter 2 can be easily applied for
solving the stochastic version of the capacitated graph partitioning problem. All
we have to do is to combine the statistical hypothesis testing with the heuristic
algorithm RG_PART by counting the number of times the constraints are violated
by an initial sample.

For the stochastic version of our graph partitioning problem, formally stated
in section 3.1, we make the assumptions that the task weights S,, are random
variables and that we dispose of a relevant sample of NS independent and identically
distributed realizations of the uncertain vector of task weights. For i =1 to NS, let
5'5? be the realization of the i-th observation for resource r.

Let us also note the event e, = {ZUGV;JC(U):” Syr < Cy}. The capacity con-
straint, expressed for the deterministic case in equation (3.1), becomes:

IP(/\/\ em>21—5.

neN reR

In order to ensure that the probabilistic constraint is satisfied with a given confidence
level at every step of the algorithm, it is necessary to redefine the notions of
admissible assignment and admissible fusion.

Definition 3.8. An assignment of vertex v to node n is stochastically admissible if
the sum:

NS
dDox((@ #n, 3 > SUS>Cyv{E:SY+ Y 8l >,
=1

w: f(w)=n’ w: f(w)=n'

is less than NS — kE(NS,1 — e,), where x(P,) = 1 if and only if the predicate P,
18 true.

This calculation can be simplified by using an ad hoc data structure, a boolean
bi-dimensional array of size |[N| x NS, denoted ¢, indicating for the partial current
partitioning if, for every node, the sample i has already induced a violation.

Thus, the assignment of a vertex v to a node n is stochastically admissible if:

NS
Z}((t[n’,i] v {3r: SO + SO > (C.}) < NS—k(NS,1—¢,a)
i=1 w:f(

w)=n'

With the use of the boolean array, the computation of an admissible assignment
increases in complexity linearly, with a factor of N.S, compared to the deterministic
case.

78 CHAPTER 3. GRAPH PARTITIONING UNDER UNCERTAINTY

If the vertex v is effectively assigned to node n then the boolean array is updated
with:
t[n,i] == t[n,i] v SO+ Y Sh>c)
w: f(w)=n
Definition 3.9. A fusion between nodes n and m is stochastically admissible if the
sum:

NS
dox(@nr: > SU>cyviE: > S+ Y SWsal,

w: f(w)=n’ wif (w)=n v:f (0)y=m
is less than NS — k(NS,1 — e,), where x(Py) = 1 if and only if the predicate Py
18 true,.

Analogously, we can simplify Py by using the same boolean matrix |[N| x NS.
Once the fusion is realized, the entries for nodes n and m are updated as follows:

tn, i = t[n, Z Z SW >)
flw)=n vif(v
tim,i] = false
As for the computation complexity, we remark a linear increase with a factor of NS
in comparison to the deterministic version.
Also, since we have to deal with a sample of size NS, we can redefine the way

we compare the vertices and the nodes weights, by taking into account the average
over all realizations as follows.

Definition 3.10. The vertex v is smaller or lighter in average than the verter w if:

NS NS
S
max 21—1 < max ==L —— izt

reR NS x C, reR NS*C

Definition 3.11. The node n is more loaded than the node m in average if:

(1) &(1)
1 v f(v)=n Svr 1 v Svr
max — <Cr — 2 SVAW:/(v) > < max — <Cr - 2 CVAW: fS)

rer C, NS rer C, N

The above definitions can then be easily integrated in the algorithm described
in section 3.3.2, without any major destructuring. As such, the algorithm Alg.3.2,
named RG_PART STOCH, is used for solving the chance constrained version of
the Node Capacitated Graph Partitioning problem.

It should be noted that the only remarkable differences between the algorithm
RG_PART and its stochastic counterpart RG_PART STOCH are in Step 3 and
Step 4 when deciding if the current assignment or fusion is admissible. Additionally,
the algorithm for the chance constrained case needs as input the N.S realizations of
Sur, the tasks weights for each resource, 1 — € the prescribed probability level and
1 — « the confidence level.

By using the robust binomial approach within a heuristic approach, we also over-
come the computational effort of taking into account the uncertainties of the weights
of the vertices. We could even further improve the performances of the heuristic by
parallelizing the computations of admissible assignments and of admissible fusions.

3.5. COMPUTATIONAL RESULTS 79

Algorithm 3.2: RG_PART_ STOCH

Input: W, N, R, ¢, a, NS, S% for each {veV,reR,i=1.NS}
1: Initialization W =V
2: Assign the first min(|V|, |N|) vertices in lexicographic order to the |N| nodes
and update the set W
3: Find an admissible stochastic assignment (v*,n*) (v* € W, n* € N) cf. Def.
3.8, if any, with maximal relative affinity:

n=7{v}h{v e V\W: f(v) =n"})

4: Find an admissible stochastic fusion (nj,n3) (nj € N, n5 € N) cf. Def. 3.9, if
any, with maximal relative affinity:

=1({v e VAW f(v) =ni}, {v e VAW : f(v) = ny})

5: If 74 > 79 then assign v* to n* and update the set W. Else merge nj, nj.
6: If W = () or there is neither any admissible assignment nor any admissible
fusion, stop. Else, go to Step 3.
Output: assignment f

3.5 Computational results

In this section, we report on the computation experiments of applying the above
sample-based randomized greedy heuristic to the chance constrained version of
graph partitioning with uncertainty affecting the weights of the vertices. All these
experiments have been carried out on a Linux PC workstation, with a 3.80 GHz
Pentium(R) processor, 3 GB of memory and Ubuntu 10.04 as operating system. In
the rest of the section, we report about the benchmark, the random variables used
in our computation and different evaluation measures. Then we discuss the results
of the heuristic for the chance constrained version in comparison with the heuristic
for the deterministic case.

3.5.1 Benchmark and Uncertain Parameters Generation

Since, to the best of our knowledge, there are no probabilistic instances defined
for the graph partitioning problem with uncertain weights on the nodes, we tested
our algorithm on two modified sets of test problems, originally intended for the
deterministic case.

The first set of instances consists of some examples of grids, representative in size
for our application. Besides, these instances are easy to modify and we can use them
to test different configurations of the parameters for our method. The second set
is defined by instances publicly available defined in Johnson et al. [86] and initially
used for bisection. The tests on this second set were performed in order to confirm
the effectiveness of our stochastic algorithm (both in terms of solution quality and
running time) on a set of representative instances.

80 CHAPTER 3. GRAPH PARTITIONING UNDER UNCERTAINTY

It should be noted that the instance “Grid 23x23”, from the first data set, with
529 vertices and 16 nodes, is the closest in size to the real instances we have to deal
with in our application context, at least as a first step.

The number of vertices for Johnson instances varies between 124 and 1000 and,
for both sets, we consider the case of mono-dimensional resources.

In the deterministic case, the tests were performed for unitary weights for edges
and vertices.

We have generated the random variables representing the weights of the vertices
by simulating a joint bimodal distribution. The two modes are uniform in their
intervals and selected in an equally likely manner.

The first mode is represented by the hypercube:

[0.8,0.9]1,
and the second one, by the hypercube:

[1.1,1.2)".

3.5.2 Results for the deterministic version

Table 3.1 shows the experimental results obtained by applying the RG_PART
heuristic for graph partitioning on the first data set with deterministic vertices
weights. All the results were obtained for the monodimensional case (the capacity
of each node is indicated in column “C”) with unitary weights for edges and vertices.
The column “Multi” in Table 3.1 shows the solutions found by running the multi-
start version of the heuristic (with 10 iterations) and the column “Time” shows the
running time for one iteration in average over 10 iterations.

Table 3.1: Computational results of RG_PART heuristic for deterministic case: grid

problems
| Inst. | #Vertices | #Nodes | C' | Multi | Time (sec.) |
Grid 4 x 4 16 4 4 8 ~0
Grid 10 x 10 100 D 20 28 ~(
Grid 23 x 23 529 14 40 | 150 0.12

The RG__PART heuristic was applied on the larger sizes instances of Johnson
et al. [86], with unitary weights for edges and vertices. As illustrated by Table
3.2, the solutions are reasonably close to the optimum (*) or to the best known
solutions (column “Best known”). Furthermore, for most instances we observed that
the solutions values found have an average differential approximation ratio [50] of
5.22% compared to the best known value.

Although these results are only of moderate quality, our goal in this experimental
part is to provide them for serving, in the next section, as a starting point for
measuring “the price of robustness” of the solutions obtained by the algorithm
derived for the stochastic case.

3.5. COMPUTATIONAL RESULTS 81

Table 3.2: Computational results of RG_PART heuristic for deterministic case: Johnson

instances
‘ Name ‘ \4 ‘ C ‘ Best known ‘ Multi ‘
Gsub.500 500 | 250 206 236
(G1000.0025 | 1000 | 500 95 118
G1000.005 | 1000 | 500 445 509
(1000.01 1000 | 500 1362 1461
(G1000.02 | 1000 | 500 3382 3526
G124.02 124 | 62 13* 15
G124.04 124 | 62 63%* 68
G124.08 124 | 62 178 183
G124.16 124 | 62 449 471
(250.01 250 | 125 20% 36
(250.02 250 | 125 114 127
G250.04 200 | 125 357 378
G250.08 250 | 125 828 855
G500.005 500 | 250 49% 61
G500.01 500 | 250 218 253
G500.02 500 | 250 626 669
(:500.04 500 | 250 1744 1825
U1000.05 1000 | 500 1* 6
U1000.10 | 1000 | 500 39%* 69
U1000.20 | 1000 | 500 222 299
U1000.40 | 1000 | 500 737 866
U500.05 500 | 250 2% 12
U500.10 500 | 250 26%* 68
U500.20 500 | 250 178* 196
U500.40 500 | 250 412 412

82 CHAPTER 3. GRAPH PARTITIONING UNDER UNCERTAINTY

3.5.3 Results for the chance constrained version

We have tested our adaptation of the algorithm for the stochastic case on the
same problems varying the parameters ¢ and « in the range {0.01,0.05}. To obtain
a set of stochastic instances, we have considered that the weights of the vertices are
random variables with the aforementioned bimodal distribution and we generated
corresponding samples of size 100 and respectively 1000. Choosing a smaller size
for the sample may make the solution infeasible, and larger values of NS increase
computation time of the problem.

The method has been implemented in C language and, for each instance, 10
random iterations of our algorithm were executed. Tables 3.3 - 3.5 summarize the
numerical results for the grid problems for different values of the parameters N.S, ¢
and a. The computational results for the second data set, the Johnson instances,
are reported in Tables 3.6 - 3.8.

For each instance from the data sets, we performed two tests. The first test
consists in keeping the same node capacity as for deterministic case (see columns C
from Tables 3.1 - 3.2) and progressively increasing the number of nodes used in the
deterministic case until the probabilistic constraint is satisfied.

The numerical results of this test, reported in section “1st test” of Tables 3.3 - 3.8
are: the minimal number of nodes for which the probabilistic constraint is respected
(column “#nodes”), the solution value (column “sol”) and the average execution time
for 10 iterations (column “time”).

For the second test, we maintain the same number of nodes as in the deterministic
case, but we gradually increase the capacity of all nodes (starting from one used in
the deterministic case) until finding a feasible solution, satisfying the probabilistic
constraint.

The results of this second test, reported in section “2nd test” of Tables 3.3 -
3.8 are: the minimal capacity of each node for which we obtain a feasible solution
(column “C”), the solution value (column “sol”) and the average execution time for
10 iterations (column “time”).

Table 3.3: Computational results of the stochastic method for NS = 100, € = 0.05,
a = 0.05: grid problems

1st test 2nd test
‘ Name #nodes ‘ sol ‘ time C ‘ sol ‘ time
Grid 4 x 4 6 14 ~0 4.71 | 12 ~ 0
Grid 10 x 10 6 38 1 0.02s (233 29 | 0.01s
Grid 23 x 23 16 182 | 1.12 s || 44.1 | 173 | 0.99 s

It is worthwhile noting that the solutions obtained in the second test, by increas-
ing the node capacity, are of better quality than the solutions of the first experiment
(see columns “sol”) and can be adjustable more accurately. For example, in Table
3.4 for Grid 10 x 10, for finding a feasible solution, we must add two more nodes.
However, in this case the solution found is too conservative since all the constraints
are verified. Since, however, in practice it is easier to modify the number of nodes

3.5. COMPUTATIONAL RESULTS 83

Table 3.4: Computational results of the stochastic method for NS = 1000, £ = 0.05,
o = 0.05: grid problems

1st test 2nd test
‘ Name #nodes ‘ sol ‘ time C ‘ sol ‘ time
Grid 4 x 4 6 14 ~ 0 4.712 | 12 ~ 0

Grid 10 x 10 6 37 | 016s || 23.273 | 37 | 0.13 s
Grid 23 x 23 16 182 | 11.23 s || 44.13 | 172 | 9.65 s

Table 3.5: Computational results of the stochastic method for NS = 1000, € = 0.01,
a = 0.01: grid problems

1st test 2nd test
’ Name #nodes ‘ sol ‘ time C ‘ sol ‘ time
Grid 4 x 4 6 14 ~ 0 4.74 10 | =0

Grid 10 x 10 6 37 | 015s || 23.36 | 37 | 0.13s
Grid 23 x 23 16 182 | 10.75 s || 44.183 | 193 | 9.67 s

than the capacity of each node, we also investigated the results found by the first
test.

Our main purpose with these tests is to get an idea of the cost of the robustness
of the solutions, independently of concrete application constraints.

In evaluating the performance of our heuristic method, between the main aspects
we consider are: the capacity and the number of nodes needed for finding a feasible
solution, the time factor and the robustness and quality of the solutions.

In our first test, we were interested in the number of nodes needed for the
stochastic case compared to the deterministic one. Our computational results show
that the ratio between the number of nodes for stochastic partitioning and the
number of nodes for deterministic partitioning for the same instance is 1.5, except
for Grid 23 x 23, for which the ratio is equal to ~1.14. The same ratio of 1.5 was
found for the Johnson instances.

For the second test, we analyzed the required increase in capacity for solving
the stochastic version of the problems. The stochastic solutions of the instances
reported in Tables 3.3 - 3.5 are obtained for an equally large increase in the capacity
of the nodes in the order of 1.1. For the Johnson instances, the capacity of nodes
for stochastic partitioning is superior to the nominal capacity with ~ 1.15. As
one may expect, keeping the same probability and confidence levels and changing
the sample size does not significantly affect the minimal capacity of the nodes for
which a valid solution is found. On the contrary, imposing a higher probability and
confidence levels demands a minimal capacity of nodes slightly larger (in the order
of 0.001). Following the run of each instance, we have also observed a particular
behavior consisting in a threshold effect of the solutions, sensible to the node capacity
variations. One example is the problem U1000.10 for which an augmentation of the
capacity from 576.06 to 576.20 results in a largely better solution (69 against 115).

84 CHAPTER 3. GRAPH PARTITIONING UNDER UNCERTAINTY

Table 3.6: Computational results of the stochastic method for NS = 100, € = 0.05,
1 — a =0.95: Johnson problems

1st test 2nd test

] Name #nodes \ sol \ time C \ sol \ time
Gsub.500 3 301 | 5,57 || 288,300 | 244 | 5,55
(G1000.0025 3 135 | 58,97 || 575,800 | 131 | 70,11
(G1000.005 3 649 | 62,23 || 575,900 | 513 | 72,10
(G1000.01 3 1865 | 65,30 || 575,900 | 1456 | 77,36
(G1000.02 3 4481 | 68,78 || 575,940 | 3579 | 74,10
(G124.02 3 18 0,16 71,650 21 0,11
G124.04 3 91 0,16 71,650 72 0,11
G124.08 3 233 | 0,16 71,670 | 199 | 0,11
G124.16 3 585 | 0,16 71,680 | 475 | 0,12
(:250.01 3 40 0,75 || 144,200 | 38 0,64
(250.02 3 162 | 0,76 || 144,260 | 128 | 0,63
(250.04 3 485 | 0,78 || 144,250 | 393 | 0,64
(250.08 3 1074 | 0,77 || 144,200 | 862 | 0,65
(G500.005 3 68 5,14 || 288,370 | 67 5,20
G500.01 3 308 | 5,36 || 288,340 | 269 | 5,04
(G500.02 3 860 | 5,42 || 288,280 | 679 | 5,44
(:500.04 3 2287 | 5,56 || 288,270 | 1835 | 5,60
U1000.05 3 17 | 67,76 || 576,100 | 16 | 73,50
U1000.10 3 101 | 65,55 || 576,100 | 110 | 77,74
U1000.20 3 417 | 67,80 || 576,200 | 303 | 75,23
U1000.40 3 1370 | 68,26 || 576,300 | 1018 | 77,00
U500.05 3 10 5,05 | 288,390 7 5,27
U500.10 3 88 5,58 || 288,270 | 66 5,38
U500.20 3 278 | 5,49 || 288,200 | 396 | 5,43
U500.40 3 663 | 5,23 || 288,380 | 574 | 5,28

3.5. COMPUTATIONAL RESULTS

Table 3.7: Computational results of the stochastic method for NS = 1000, £ = 0.05,

1 — a =0.95: Johnson problems

1st test 2nd test
] Name #nodes \ sol \ time C \ sol \ time
Gsub.500 3 298 | 26,72 || 288,240 | 252 | 18,94
(G1000.0025 3 136 | 139,30 || 576,030 | 134 | 119,48
(G1000.005 3 653 | 143,70 || 576,060 | 528 | 123,52
(G1000.01 3 1866 | 141,00 || 576,060 | 1470 | 125,70
(G1000.02 3 4482 | 140,86 || 576,040 | 3599 | 127,95
G124.02 3 17 1,39 71,662 17 0,91
G124.04 3 87 1,37 71,654 68 0,92
G124.08 3 237 1,36 71,660 | 182 0,93
G124.16 3 599 1,35 71,653 | 479 0,91
(G250.01 3 39 5,84 144,310 | 39 4,00
(G250.02 3 163 5,81 144,310 | 129 4,04
(G250.04 3 483 5,78 144,295 | 387 3,99
G250.08 3 1080 | 5,75 144,257 | 872 3,98
(G500.005 3 69 26,67 || 288,240 | 68 18,88
G500.01 3 320 | 26,74 || 288,240 | 258 | 19,00
(G500.02 3 853 | 26,87 | 288,250 | 668 | 19,15
(G500.04 3 2283 | 26,76 || 288,250 | 1829 | 19,18
U1000.05 3 18 | 140,90 || 576,050 6 125,70
U1000.10 3 74 | 139,40 || 576,060 | 115 | 126,80
U1000.20 3 417 | 141,40 || 576,030 | 339 | 126,80
U1000.40 3 1370 | 143,51 || 576,080 | 1032 | 132,60
U500.05 3 16 26,73 || 288,300 2 19,49
U500.10 3 105 | 26,90 || 288,260 | 75 19,32
U500.20 3 289 | 27,15 | 288,250 | 289 | 19,21
U500.40 3 663 | 26,73 || 288,240 | 569 | 18,89

85

86 CHAPTER 3. GRAPH PARTITIONING UNDER UNCERTAINTY

Table 3.8: Computational results of the stochastic method for NS = 1000, £ = 0.01,
1 — a =0.99: Johnson problems

1st test 2nd test
] Name #nodes \ sol \ time C \ sol \ time
Gsub.500 3 298 | 25,32 || 288,610 | 240 | 18,94
(G1000.0025 3 137 141 576,470 | 132 | 121,51
(G1000.005 3 654 | 140,77 || 576,520 | 519 | 127,54
(G1000.01 3 1870 | 141,66 || 576,520 | 1467 | 125,74
(G1000.02 3 4475 | 141,23 || 576,530 | 3544 | 128,78
G124.02 3 17 1,35 71,865 17 0,9
G124.04 3 87 1,34 71,825 73 0,92
G124.08 3 237 1,33 71,851 | 187 0,92
G124.16 3 599 1,33 71,831 | 484 0,91
(G250.01 3 39 5,73 144,548 | 40 4
(G250.02 3 163 5,73 144,530 | 132 4
(G250.04 3 483 5,65 144,515 | 383 4,06
G250.08 3 1085 | 5,65 144,523 | 856 3,95
(G500.005 3 69 25,33 || 288,490 | 68 19,38
G500.01 3 320 | 25,32 || 288,540 | 258 19
G500.02 3 853 25,2 288,530 | 687 19,6
(G500.04 3 2283 | 25,25 || 288,520 | 1852 | 19,3
U1000.05 3 20 | 141,79 || 576,550 1 125,76
U1000.10 3 74 | 140,69 || 576,520 | 90 | 128,03
U1000.20 3 421 | 143,14 || 576,570 | 339 | 131,14
U1000.40 3 1376 | 145,14 || 576,580 | 1137 | 127,47
U500.05 3 16 26,73 || 288,570 2 19,17
U500.10 3 105 | 25,75 || 288,560 | 62 19,03
U500.20 3 289 25,4 || 288,560 | 289 | 19,15
U500.40 3 663 | 25,08 | 288,570 | 569 | 19,41

3.5. COMPUTATIONAL RESULTS 87

Concerning the time factor, the overall execution time of our method mainly
depends on the number of vertices and on the size of the sample. We note that the
running time needed to solve Johnson instances is considerably higher than the time
required for the grid problems, the reason being the presence of instances of larger
size (e.g., G1000.0025-G1000.02, U1000.05-U1000.40). As expected, the larger is the
sample size, the higher is the computation time, with an average of 48.04 sec. for
a sample size of 1000 (Table 3.7) against 25.93 sec. for a sample size of 100 (Table
3.6) for the second test. It should also be noted that the computation time for the
first test is, in average, superior to the time for finding solutions in the second one.
By comparison of Table 3.7 and 3.8, it appears that when a higher probability level
¢ and confidence level « are imposed, a slightly higher execution time is needed.

Although these results could be improved (e.g. by code optimization and paral-
lelism), such execution durations are already acceptable in our application context
with respect to the usual compilation duration of a dataflow process network on a
many core architecture.

The running times found for the stochastic version of the algorithm confirm the
theoretical remarks (see Section 3.4) on a linear increase in complexity with a factor
of NS in comparison of the deterministic case.

In order to measure the quality and the robustness of the stochastic solutions,
the algorithm RG _PART was re-run with the same input parameters as the ones
found with the chance constrained method. We kept the same number of nodes
and respectively the same capacity of each node as the ones for which the chance
constrained methods found feasible solutions and we considered unitary weights for
arcs and unitary weights for tasks (which is the expected value of the distribution
of our uncertain data).

As expected, for the first test consisting in increasing the number of nodes, the
quality of the stochastic solutions is almost always worse than for the deterministic
version and than for the solutions found by the second test. One exception is the
instance U500.05, from Table 3.6 but this result is assumed to be due to the heuristic
nature of our approach, which, by construction, provides no guarantees with respect
to monotony.

Instead, the stochastic solutions of the second test are quite often close in quality
to the solutions found when running RG_PART algorithm. By analyzing Tables
3.6-3.7, for £, & = 0.05 we found out that there are 14 and respectively 15 instances
with a gap in the stochastic solution quality of less than 5% from the deterministic
solutions. When analyzing the results for a probability level of 0.99 and a level of
confidence of 0.99 (Table 3.8), we remark a number of 14 stochastic solutions close
(a relative 5% gap) to the deterministic ones.

By comparing the quality of solutions for different values of the input parameters
(NS, €, a) it comes out that for the same probability and confidence levels, the
obtained solutions when varying the sample size are quite similar, revealing that
the performance of our algorithm does not deteriorate as the number of samples
increases. It should be noted that it is however necessary to determine the minimal
size of the sample needed to solve the problem with the required probability level.
The required sample size for £, a = 0.01, is at least 459, which justifies our choice
not to conduct tests for these values on the samples of size 100.

88 CHAPTER 3. GRAPH PARTITIONING UNDER UNCERTAINTY

Concerning the robustness of the solutions found by the presented approach,
we measured the number of times the deterministic solution is not satisfied on the
used samples. The percentage of samples on which the deterministic solution is
not satisfying the capacity constraints 3.1 is, in average, for Tables 3.6-3.8 between
48.24% and 50.04%.

Analyzing the overall results, we observe that our stochastic heuristic confirms
the capacity of computing good solutions, within an admissible average running
time, even for large instances. The quality of the solutions is comparable to the
deterministic case (i.e. the “price of robustness” is reasonable). Moreover we
guarantee that our solutions are robust to the uncertainties affecting the weights
of the vertices.

Conclusion

In this chapter, we addressed the stochastic problem of partitioning communicat-
ing networks of process, with a theoretical equivalent in the Node Capacitated Graph
Partitioning problem. The objective is the assignment of processes corresponding to
the dataflow of an embedded application to a fixed number of nodes (clusters) and
minimizing the communications inter-clusters while respecting the capacity of each
node. The uncertain random variables are the weights of the processes for which
we dispose of a sample of size NS and thus, we want to make sure the capacity
constraints are getting respected with a probability of at least 1 —«¢.

In order to solve this problem, the RBA approach introduced in Chapter 2 was
integrated within a greedy algorithm, originally intended for the deterministic case.
The criteria for defining an admissible assignment of a vertex (process) to a node
and an admissible fusion of two nodes were modified to assure that the number of
constraints respected by the sample are superior to the threshold & established in
function of NS, € and « (see section 2.3 from Chapter 2 for details).

Since the chance-constrained graph partitioning is a relatively new problem and
no stochastic instances were available in the literature, we had to generate two
benchmarks adapted from the instances for the deterministic version, by generating
random variables following a bimodal uniform distribution.

Numerical results showed that the obtained solutions have often a quality con-
sistent with those computed for the deterministic version. More importantly, the
solutions found are robust and guaranteed with a preset statistical significance level,
to hold to data variations affecting the constraints. We also showed that not taking
into account the stochastic nature of our data and considering only the deterministic
case may lead to non feasible solutions with quite high probability (in average 50%
of cases). Furthermore, this approach can solve with an acceptable computation
time problems close in dimensions to the real instances a compiler would have to
treat.

Chapter 4 __

Joint placement and routing under
uncertainty

Contents
4.1 Problem statement, 90
4.2 Related works 0 .. 91
4.3 Deterministic algorithm 95
4.4 Stochastic algorithm 100
4.5 Computationalresults 102

This chapter addresses the problem of application mapping, classified as “one
of the most urgent problems to be solved for implementing embedded systems”
[117],]115]. Several workshops dedicated to mapping applications onto multi-core
systems have been created in order to move beyond state-of-art in this domain (e.g.
M-SCOPES [43]). There are different mapping methodologies varying in function
of application and architecture models, constraints and assumptions imposed by the
system, the metrics to be optimized, information available about the platform, etc.

The purpose of this work is to propose a placement method for dataflow process
networks (DPNs), which also takes into account the computation of routing paths.
As such, it provides an alternative approach to the sequential placement and routing
steps of the resource allocation compilation step of a XC program (presented in
section 1.4.3.3), which targets specific application domains (e.g. multimedia and net-
working) characterized by high bandwidth demands. Even if the two sub-problems
of tasks mapping and routing have already been addressed in the literature, the
novelty of our method consists in treating together task mapping and routing, and
thus, taking into account the routing when placing the networks of processes, without
any particular assumption on the network (here a Network-On-Chip) topology, both
for deterministic and stochastic cases.

Before presenting the GRASP algorithm we conceived for the deterministic case
(section 4.3.1), section 4.2 presents some existing mapping approaches. By adapting
the GRASP using the general methodology introduced in 2.3, we solve the stochastic
version of the same problem in section 4.4. Computational results, using both
synthetic and real benchmarks, are shown and analyzed in the last part. We begin
by a formal description of the problem.

89

90CHAPTER 4. JOINT PLACEMENT AND ROUTING UNDER UNCERTAINTY

4.1 Problem statement

The optimization problem we study consists in placing at design time the tasks
of a DPN onto the network of clusters, such that the total bandwidth is minimal
and for each pair of communicating tasks, there is a shortest routing path between
tasks situated on different clusters.

The clusterized architecture is represented by a directed graph G = (N, A, R, B,)
with NV the set of nodes (clusters) and A the set of arcs between nodes, corresponding
to the NoC links. B, : A — R describes the bandwidths between different
clusters of the target architecture, with B,((n;n;)) > 0 the maximal capacity for
arc (n;,n;) and By((n;n;)) = 0 if nodes n; and n; are not connected. R is the set
of resources (essentially memory footprint and computing core occupancy) we have
at our disposal. The capacities of the nodes are given by a multi-dimensional array
C, € RFIEl

For the sake of simplicity, we restrain our study to the case of homogeneous
nodes and arcs for G, hence we suppose all nodes have the same capacity C,,, for
each resource r € R and all arcs have the same maximal bandwidth B,.

Let DPN = (V,E, S, Q) represent the network of processes with V' the set of
vertices (tasks) and E the set of communication channels. S : V — R¥IEl is a size
function for the tasks, with s, being the weight of task ¢ for resource r. The function
() : F — R characterizes the communication between tasks where q1;e; > 0 denotes
the weight of arc (#;,¢;) € E and ¢, = 0 if no arc (t;,1;) exists between ¢; and ¢;.

Let g : V — N be a mapping of tasks to the nodes. As such, we are interested
in finding an admissible routable assignment g of tasks to nodes that minimizes the
cost of the inter-clusters communication:

> aw (4.1)

(tt")eE:g(t)#g(t")

In the context of our present work, an admissible assignment is a mapping of
tasks to nodes which satisfies the capacity constraints:

> sy <Cu,VneNVreR, (4.2)

teVig(t)=n

and furthermore, it ensures that there exists a feasible routing between every two
communicating tasks:

{V(t,t") € E and ¢(t) # g(t') and ¢ > 0} : Jroute(t,t’) (4.3)

which route respects the maximal capacity B, of the links of the network. As
such, the last condition verifies if all the bandwidths can be accommodated across
the network G without exceeding the maximal capacity of the arcs in terms of
bandwidth.

In order to simplify communication protocols, the search of possible routes will
be limited to a single unsplittable commodity flow using a shortest-path routing
strategy.

4.2. RELATED WORKS 91

In our approach, we prioritize the minimization of the bandwidths and we analyze
the difference, for an obtained placement between the routing our algorithm is using
and an ideal one (using a shortest-path strategy).

Since the tasks mapping is equivalent to the Quadratic Assignment Problem
which is NP-hard |72| and the unsplittable flow problem can be restricted to the
Directed Edge Disjoint Paths problem, also NP-hard [95], the joint problem is
straightforwardly NP-hard in the strong sense.

Regarding the size of instances specific to the application context, our method has
to be able to map networks of processes with a few hundreds tasks on architectures
having at least a dozen of nodes. For an experimental validation of our approach, one
of the benchmarks consists of data coming from a motion target dataflow expressed
in XC (as described in section 1.4.2) which has to be placed on a NoC in the form
of a bi-dimensional torus 4 x 4.

4.2 Related works

As shown in Fig. 4.1, there are different criteria for classifying mapping tech-
nologies in function of the target architecture, when the placement takes place
(at run time or design time) or the hierarchy involved. For static mappings, the

‘ Mapping methodologies ‘

|
v '

| Static (at design time) Dynamic (at run time)
| Architecture: Optimization criteria: | [Management: |
N N p AL . A N
Homogeneous [Executontme		Distributed		
Heterogeneous		_Energy consumption		Centralized
Reliability	[Distributea+Centralized			
Temperature				
Etc...				

Figure 4.1: Classifying mapping approaches...

optimization is performed at design time while for dynamic workload scenario, the
mapping takes place at run time. Moreover, for dynamic mappings, it is required a
platform management responsible of mapping the tasks, scheduling, resource control,
configuration control and task migration. Both design time and run time mappings
can target either homogeneous or heterogeneous multi-cores systems and can be
optimized for different optimization metrics.

The following section presents some of the methods belonging to these two cate-
gories for the deterministic case, with a particular emphasis on the static placement,

92CHAPTER 4. JOINT PLACEMENT AND ROUTING UNDER UNCERTAINTY

since this is the case we are most interested in. For a detailed survey on mapping
strategies, please refer to [142].

4.2.1 Deterministic mapping
4.2.1.1 Static mapping

Static mapping methodologies are adapted to static workload scenarios for pre-
defined applications with known behavior (in terms of computation and communica-
tion) and for fixed architectures. Since they are performed at design time and have
a global view of the system, they can found better quality mappings compared with
run time mapping (which explore only the neighborhoods of the mapped tasks).

Actually, even if most of the existing studies treating task mapping belong to this
category, they remain different in the architectures they are targeting (homogeneous
or heterogeneous), the optimization goal they fix and the restrictions they impose
on the system. Moreover, we have to remark that even if the task mapping was
and remains a relatively well studied problem (with the first works by Stone [152]
and Lo [105]), the routing aspect has been often neglected, the scheduling problem
drawing more the researchers attention. Also, usually, the objective of existing
techniques is a placement with load balancing thus for which the tasks are equally
distributed between all the processing elements (e.g.[157], [60], [55]) while for our
current approach, the interest is in minimizing the number of used clusters.

For the mapping of applications expressed as dataflow process networks and for
which the target architecture is a multi/manycore system, we can cite [127], [36],
[22], [40], [71]. In [127], a simulated annealing algorithm is proposed for distributing
Kahn Process Networks on Multiprocessors SoCs (MpSoCS) with at most four Pro-
cessing Elements (PE) connected with dual shared bus. [71] proposes a parallelized
simulated annealing approach for the DPNs mapping on a square torus architecture.
Since this method is quite computationally demanding (roughly twenty minutes for
a 31 x 31 square grid of tasks using 6 computing cores), it is more appropriate
to be applied at the end of the development cycle of embedded applications. [36]
presents an algorithm which, executed repeatedly, allows process and communication
mapping of applications expressed as Kahn Process Networks onto a homogeneous
MpSoC, with the objective of minimizing the application makespan. In [22], the
authors address both mapping and scheduling of SDF applications on homogeneous
multi-core platforms, using a Constraint Programming-based algorithm to maximize
the throughput. Another method for solving the mapping and scheduling of a SDF
application on a multi-core architecture, based on a genetic algorithm ([40]), takes
into account the limited size of scratchpad memory (SPM) of the cores and tries to
minimize the execution latency.

It is worth mentioning that the problem we address is different in constraints and
objectives from the similar optimization problems occurring in VLSI (Very-Large-
Scale-Integration) design flow for creating integrated circuits. In the latest case,
the placement consists in taking a list of electronic components (which compose
the circuit) and arranging them geometrically in a limited space while the routing
is in charge of the design of the wiring connecting the placed components. The

4.2. RELATED WORKS 93

result of the placement and routing (usually two steps realized sequentially) is called
layout, which is the geometric description of the circuits parts and of the paths
followed by the wires. Nowadays, the placement and routing for integrated circuits
is usually made automatically with the help of EDA (Electronic Design Automation)
tools (the most popular being those from Mentor Graphics, Cadence and Synopsys)
and there are numerous dedicated algorithms (like FastPlace [155], FastRoute [130],
ROOSTER [138] or IPR [131], just to name a few).

Several approaches [114], [147], [123], [81] for multi/manycore platforms propose
configuration of the NoC according to the application in order to meet tasks re-
quirements while fitting a specific SoC architecture. A branch-and-bound algorithm
is proposed in [81] for the mapping of intellectual property blocks - IP (like CPU
or DSP cores, video stream processors, input/output devices) on an architecture
organized as regular tiles (composed of a processing core and a router), related by
a NoC. The objective is to minimize the total energy spent on communication, by
ensuring that each IP goes to exactly one tile, no tile can host more than one IP
and having a routing constraint related to bandwidth usage. At each step, the
algorithm assures a minimal and deadlock-free routing which respects the maximal
load for each link of the NoC by incorporating a list of routing paths as part of the
solution, instead of a single routing path. [123| conceives dynamic re-configuration
mechanisms to match the NoC configuration to the communication characteristics of
each use-case. A design methodology, restricted to Athereal NoCs, is introduced for
mapping, path selection and resource reservation in the network, by taking as input
use-cases of the SoC. The objective of the mapping process is to design the smallest
size NoC, with the smallest number of switches that satisfies the constraints for all
use-cases. Instead, we consider that the manycore specification and in particular
NoC characteristics such maximal bandwidth for links are rigid. As such, the
placement and routing of tasks are realized afterwards (without worrying about
scheduling) during the compilation process of a dataflow application.

Between the only approaches similar treating the same problem under same
constraints as ours of which we are aware of is [144| which solves the problem as
a master(placement) /slave(routing) couple. As such, the overall problem is split
into two sub-problems, less complex. The assignment is solved using a semi-greedy
algorithm while the routing paths are computed optimally with a mixed linear
integer programming. However, the sequential resolution can un-structure the initial
problem and the found placement may not be routable so there can be feasibility
issues for the routing problem downstream as a result of relaxing some constraints for
the upstream problem. The typical example consists of a placement non routable
we cannot route because the flows between the nodes of the network exceed the
maximal bandwidth capacity for the links B,.

4.2.1.2 Dynamic mapping

In contrast with static approaches, dynamic mapping is performed at run time
and as a consequence, the time taken by the mapping algorithm to find a solution
adds to the overall application execution time. As such, a compromise must be made
between the quality of the solution and the running time. Greedy algorithms are

94CHAPTER 4. JOINT PLACEMENT AND ROUTING UNDER UNCERTAINTY

typically used to provide an efficient mapping, optimizing different criteria such
as reliability, energy consumption, execution time, etc. Once tasks mapping is
performed, task migration (consisting in relocation of tasks) is a popular technique
to respond to possible changes occurring at run time (e.g. performance bottleneck,
new application entering the system, etc.).

Besides being suited for dynamic workload scenarios (the number of tasks ex-
ecuting in parallel varies in time), dynamic mapping has several advantages such
as: adaptability to changes in the amount of available resources, possibility to
upgrade the system (with new applications or standards not known at design time)
or capability to avoid defective processing cores.

The platform manager, responsible for handling the mapping, can use a cen-
tralized management approach (one single core for the whole platform), distributed
management (several communicating cores for managing several regions-clusters of
the platform) or a mixture of centralized and distributed management. The central-
ized manager is more adapted to small platforms since this type of management is
not scalable and can become a hot spot while the distributed management can be
employed for larger architectures.

Also, the mapping process can be performed entirely at run time (on-the-fly
mapping) or by using design time analysis (DSE) results. On-the-fly mapping
requires efficient heuristics, independent of the architecture and that can be used
to assign tasks coming from new applications (unknown at design time). The
mapping based on previously analysis results is possible for an application known
at design time and selected by making use of light heuristics between a series of
already computed assignments at design time and stored on the system. Therefore,
the intensive computation analysis takes place at design-time, taking as input the
application and the architecture descriptions and producing a number of possible
mappings. Such type of task assignment, also called hybrid mapping, performs
better than on-the-fly mapping but it is less flexible since it must be aware at design
time of the application requirements.

For more details on existing dynamic mapping methodologies, we invite the
interested reader to refer to [142].

4.2.2 Stochastic mapping

While there are quite numerous studies analyzing the stochastic behavior of task
execution times for soft real-time applications (e.g. for scheduling purpose), there
are almost no works on optimizing the design of an application and taking into
account the fact that task execution times are stochastic.

In [113], stochastic mapping and priority assignment of graph tasks on a mul-
tiprocessor hardware architecture is performed via a tabu search heuristic with the
goal to optimize the ratio of deadlines missed. The underneath assumption is that
for each task and each processor, a set of execution time probability density functions
is available.

Lombardi et al. [106] address the stochastic problem of allocation and scheduling
of conditional tasks graphs (CTG) for multiprocessor platforms, by guaranteeing
that for each run time scenario encapsulated by the graph, the temporal and resource

4.3. DETERMINISTIC ALGORITHM 95

constraints are satisfied. As such, they are searching for an unique assignment of
starting time and resources to tasks, minimizing the expected value of the com-
munication cost. By analyzing the task graph, they propose an exact analytical
stochastic formulation of the objective and solve the allocation using Integer Linear
Programming and the scheduling with Constraint Programming.

[141] studies the static robust resource allocation to application for distributed
systems that are periodic sensor-driven when the execution times of the applica-
tions are independent random variables. While the objective function consists of
minimizing the period between sequential data sets produced by the sensors, the
probabilistic constraint is on the performance characteristic of the system. In order
to compute this probability and to make sure it is superior to a minimal QoS (Quality
of Service), bootstrap or FF'T (Fast Fourier Transform) methods are used and the
obtained approximation of the cumulative density function is further employed by
the four greedy heuristics the authors design.

We can then affirm that, to the best of our knowledge, the stochastic problem
of joint placement and routing of dataflow applications for manycore has not been
yet addressed in the literature. Let us now get back for a moment to the GRASP
algorithm we conceived for the deterministic problem, which, due to the robust
binomial approach, can be adapted to solve the stochastic case.

4.3 Deterministic algorithm

We recall that our work is concerning the static placement and routing of ap-
plications for embedded manycore in the context of an iterative compilation. The
objective is to place the tasks of an application to the nodes of the network and in
the same time, mono-route the flows on the Network-On-Chip. As such, in order to
design a resolution method for the joint mapping and routing, an important aspect
to decide is for which step of the development cycle of embedded applications this
algorithm is intended. The beginning of the development of an embedded application
requires a short programmer/target feedback loop when the programmer is able to
obtain a first working version of the application with a well coarse-grained structure.
Thus, the beginning of the cycle requires for fast heuristics and can accept solutions
of moderate quality. At the end of the development cycle, since more human and
computing times are invested (e.g. acceptable compilation times of up to one night),
more fine-grained optimizations are afforded. Hence, at this point of the cycle, one
can accept more computationally intensive algorithms and more powerful computer
systems.

Other algorithmic aspects to be considered are the problem complexity and the
size of real instances to deal with, both factors making the building of a tractable
exact resolution for both mapping and routing difficult and inefficient.

As such, we turned our attention to approximate algorithms and in particular to
the GRASP metaheuristic, which seems a more suited choice to tackle this problem
especially for the beginning of the development cycle of an application.

96CHAPTER 4. JOINT PLACEMENT AND ROUTING UNDER UNCERTAINTY

4.3.1 GRASP & Preliminaries

Introduced in the nineties by Feo and Resende [63], GRASP (Greedy Random-
ized Adaptative Search Procedure) is a multi-start metaheuristic, each iteration
involving two phases: construction and local search. The construction phase builds
a feasible solution using a greedy randomized algorithm. During the local phase, the
neighborhood of the current solution is investigated in the search of better solutions.
At the end, the best overall solution is kept as the result.

Alg. 4.1 illustrates the main blocks of our GRASP method for finding routable
mappings of tasks to clusters. The input parameters are the set of tasks V, the
set of nodes N, the set of resources R, the maximum number of iterations to be
performed and also the parameter k used for controlling the amount of randomness
(this is the probabilistic aspect of the construction phase). The mapping g. found
by the construction phase is further exploited in local search phase and optimized.
If the resulting mapping ¢ of this post-optimization is better than the previous best
mapping g, then we update gy.

Algorithm 4.1: GRASP for joint placement and routing

Input: V, N, R, k, MaxIterations
1: gp < null

2: for i = 1 to MaxlIterations do
3: g. < construction phase(V, N, R, k)
4: g < local search phase(g.)
5
6

update best assignment g, with ¢ if needed
: end for
Output: best assignment g,

Before explaining in more details each one of the two stages of our approach, let
us recall the notions of total and relative affinity, initially introduced in [47].
Let S and T be two disjoint subsets of V.

Definition 4.1. The affinity of S for T s given by :

a(S,T) = Z Gow-

(v,w)€8(S,T)
with §(5,T) = {(v,w) : v € S;w € T}. It follows that a(S,T) = (T, S).
Definition 4.2. The total affinity of S (similarly for T) is given by
B(S) = a5, V\ 5).
Definition 4.3. The relative affinity of S for T is defined as

1 1 1
’y(S, T) = 50[(5, T) (m + m)

a(ST) represents the contribution to the total affinity of S of the edges adjacent

where 50
to S and T.

4.3. DETERMINISTIC ALGORITHM 97

4.3.2 Construction phase

The greedy constructive method from the first step of our GRASP is inspired
from an existing algorithm, initially used for partitioning networks of processes and
which was based on the notion of relative affinity ([144], [149]). We modified it in
order to deal with routing and we changed the randomization strategy to intensify
the diversity of the solutions.

The main idea of our constructive algorithm is to verify at each step of the
mapping, that the flows between the assigned tasks can be routed by making use
of the previous computed flows and trying to find feasible paths for the new or
modified flows. At each step of the mapping, the computation of new routing paths
is realized through a single source shortest-path algorithm on a reduced graph G’
obtained from the original network G and whose arcs are weighted with a residual
capacity C,,.

Let G’ = (N, A’) be the reduced graph with the same number of vertices N as
G and A’ the set of arcs in G weighted with a positive residual capacity.

Let F' be the set of flows between tasks and for each flow f € F, s(f), d(f) and
w(f) are respectively the source, the sink (or the destination) and the demand (the
weight) for flow f.

Let sp(f) be the shortest path in G’ by which the flow f is accommodated. So
sp(f) is composed of a set of nodes {ni,ng,...,n,} € |N| X |[N| x ...|N| with
m € {0,|N| — 1}, ny = g(s(f)) and n,, = g(d(f)), such that Vi = {1,...,m — 1},
A(n;,nipq1) € A, Crinmisn) = w(f) and the length of this path is minimal.

Initially, A’ = A and Va € A’, C,, = B, and afterwards, it is updated as follows:

Cro = Cro = S wl(f) % xa

fer

1 if a € sp(f)
0 otherwise.

Let us now define the notions of admissible assignment and admissible fusion,
which for the current approach, verify not only the respect of capacity resources but
also the existence of a routing.

Let W be the set of vertices not yet assigned to a node.

with y, =

Definition 4.4. An assignment of task t to node n is admissible if it satisfies the
capacity constraints for node n:

Sy + Z spr < C,,Vr € R

t'eV\W:g(t')=n

and there is a feasible routable path for every flow [between t and all the other tasks
t' e V\W with g(t) # g(t') and (tt') € E:

{3sp(f) € G": s(f) =t Nd(f) =" ANw(f) = quw > 0}

{3sp(f) € G s(f) =t ANd(f) =t Aw(f) = goe > 0}

98CHAPTER 4. JOINT PLACEMENT AND ROUTING UNDER UNCERTAINTY

Definition 4.5. A fusion between the nodes n and m is admissible if:

Z Str + Z s < Cp,Vr € R

teV\W:g(t)=n teV\W:g(t)=m
and all the flows for tasks belonging to n and m are reroutable through G'.

After each assignment or fusion, G’ and F' are updated accordingly, by modifying
C.,, and by adding and/or removing flows (in the case of a fusion). The overall
framework of the greedy randomized construction algorithm is presented in Alg.4.2.
Initially, a partial solution is set as the first min(|V],|N]) tasks in lexicographic
order assigned to the N nodes with the condition that this initial mapping is also
routable.

Then, the list [rcl] of k best decisions is constructed in a greedy fashion, by
choosing between an admissible assignment or an admissible fusion, the ones with the
highest affinity. Between the parameters we can set before running our algorithm,
we can also define which type of affinity (relative or absolute) we want to choose as
criterion for deciding between several candidates in the constructive part.

Once a decision ¢; is chosen at random from [rcl], we evaluate its nature (assign-
ment or fusion) and make the corresponding changes for C,, and F.

Algorithm 4.2: GRASP for joint placement and routing: construction phase
Input: V, N, R, k
1: Initialization of the set of unassigned tasks W =V
2: Assign the first min(|V|, |N|) vertices to the |N| nodes and update sets W, F
3: Build the list of & restricted candidate decisions [rcl] made of admissible
assignments (cf. Def.4.4) and admissible fusions (cf. Def.4.9)
4: Select at random ¢; from [rcl]
5: If ¢; is an assignment (v* € W,n* € N), then update set W.
Else, ¢; is a fusion (n} € N,n} € N), and thus merge nodes n} and nj.
6: Update the reduced graph G’ and set of flows F'
7: If W = () or there is neither any admissible assignment nor any admissible
fusion, stop.
Else, go to Step 3.
Output: Assignment g.(V)

If ¢; is an assignment of task ¢; to node n, the set W is updated: W = W\ {¢;}, the
incoming / outgoing flows between the task ¢; and the other tasks already assigned
are computed and added to the set F' and the residual capacities of the arcs of the
network are reduced accordingly.

If ¢; is a merge of two nodes (n} € N,n} € N), the necessary modifications are
made such that all vertices from node n] are transferred to node nj, the flows of
the tasks already assigned are updated for taking into account the fusion and the
residual capacities of the arcs of G’ are also recomputed.

4.3. DETERMINISTIC ALGORITHM 99

4.3.3 Local search phase

Afterwards, the quality of the constructed solution S for g., the assignment
obtained previously, is improved through a local search procedure. The neighbor-
hood structures are classical: either 1-OPT by transferring single tasks already
placed to others nodes or 2-OPT, consisting in generating a new solution from S
by interchanging pairs of tasks assigned to different nodes. The use of this type of
neighborhoods is appropriate under the assumption of a relative homogeneity for
the tasks weights.

Also, when setting the parameters of the local optimization we can choose
between a first (in which the current solution is replaced by the first better local
solution) or best improving search strategy. In practice, it has been observed that for
many applications, quite often, both search strategies lead to the same final solution,
but with smaller computation times when a first improving strategy is used [63].

The subtlety of our approach consists in selecting the tasks to move and exchange
from the set:

EX;={teV:(3n#g(t) e N:alt,n) —alt,g(t) >0)}

with a(t,n), the affinity of task ¢ for node n (see [144], [149]).

Once the set FX; is constructed, only admissible transfers or admissible ex-
changes are analyzed. The routability aspect is verified using the same principles as
described previously and each time a local optimization occurs and the placement
is modified, the reduced graph and the set of flows F' are also updated.

Definition 4.6. For a given assignment g, a transfer of task t to a node n is
admissible if:
— the capacity of node n remains respected for each resource Ztl:g(
Cur, Vr € R
— the flows f € F between t and other tasks t' for which g(t') # n and w(f) >0
are reroutable.

3t1r+3tr S

t1)=’n

The solution S’ of the new placement when moving ¢ to node n can be easily
computed using St S =S+ 37 o) Gt — D g(ury=n Qv+

Definition 4.7. For a given assignment g, an exchange of two tasks t and t' from
node g(t) to node g(t') and vice versa is admissible only if:
— the capacity constraints for the associated nodes are respected

Z Styr — Str + Sy < Cg(t)r7 VreR

t1:t1#t;9(t1)=g(t)

Z Styr — St'r T+ Str < Cg(t’)r> VreR

t1:t1 A 59(t1)=g(t")

— the flows in F having as source or sink t and/or t' are still routable.

100CHAPTER 4. JOINT PLACEMENT AND ROUTING UNDER UNCERTAINTY

Since, except for the exchanged tasks, all the others remain on the same nodes,
the computation of the value for the solution S’ corresponding to a 2-OPT neigh-
borhood can be realized quickly based on S and the bandwidths of exchanged tasks.
The new value of the solution when moving t to g(t') and ¢’ to g(t) will be:

S' =S5+ Z (g, — qe,) + Z (qre; — qs;)

g(t)=g(t:) g9(t")=g(t:)

4.4 Stochastic algorithm

For the stochastic version of the joint placement and routing, we consider that
the random data are the weights of the tasks and we obtain the associated chance-
constrained problem, in which constraints 4.3 are being replaced by the probability
constraints for the capacities of the nodes:

P Z St < Cppy, VNENVre R| >1—c¢.

teVig(t)=n

with ¢ € (0, 1).

We also assume that, for the weights of each task t € V, for each resource
7’(6) R, W(% hse)we at our disposal a sample of sufficient size N.S of i.i.d. realizations
(1 (N

tr o Otr
As such, in order to solve this stochastic problem, we can use the same methodol-

ogy as the one described in Chapter 2, Section 2.3.5, and adapt the existing GRASP
by integrating the robust binomial approach.

Let us recall that the necessary changes for modifying an algorithm for the
deterministic case into one solving the chance-constrained version were at the level
of the oracle deciding the admissibility of a solution. A solution is accepted in the
stochastic case if the number of times the original constraint is respected is superior
to the threshold k established in function of NS, the size of the sample, the initial
probability level 1 — ¢ and of the confidence level 1 — a with a € (0,1).

For the GRASP conceived for the joint deterministic placement and routing, the
oracle of the greedy constructive step which decides if a decision (either assignment
or fusion) is feasible is based on the notions of admissible assignment and admissible
fuston. Therefore, we have to modify these two notions in order to take into account
the stochastic nature of the tasks weights.

Since the constructive part is inspired from the existing algorithm for graph
partitioning which we have also adapted to the stochastic case, under the same as-
sumptions, the notions of stochastic admissible assignment and stochastic admissible
fusion will be similar to those from Chapter 3 with the exception of the routability
aspect to be taken into account.

Definition 4.8. An assignment of task t to node n is stochastically admissible if:
— the sum

NS
Sx@ a3 Y S soyviEe s+ Y &0,
=1

t':g(t')=n’ t':g(t’)=n’

4.4. STOCHASTIC ALGORITHM 101

is less than NS —k(NS,1—¢,«), where x(P,) = 1 if and only if the predicate
P, is true.

— there 1s a feasible routable path for every flow f between t and all the other
tasks ' € V\ W with g(t) # g(t') and (tt') € E:

{3sp(f) € G": s(f) =t Nd(f) =t ANw(f) = quw > 0}

{3sp(f) € G s(f) =t ANd(f) =t Aw(f) = goe > 0}

Definition 4.9. A fusion between the nodes n and m is stochastically admissible if:
— the sum

NS
SxEr: Y s soyviE: Y s+ Y s sao,
i=1 t:g(t)=n’

t:g(t)=n t':g(t")=m

is less than NS — k(N S,1—¢,a), where x(Py) = 1 if and only if the predicate
Py is true.

— all the flows for tasks belonging to n and m are reroutable through G'.

Therefore, the only major modifications for the greedy algorithm 4.2 are during
the step 2 and 3 in which the admissibility criterion are used.

As for the post-optimization step, the local search is based on the notions of
admissible transfer or admissible exchange which are defined with regards to the
weights of the tasks and the capacity of each node. Thus, we have to modify these
two notions by applying the robust binomial approach.

Definition 4.10. For a given assignment g, a transfer of task t, already assigned
to node n; = g(t), to another node n is stochastically admissible if:

— the flows f € F between t and other tasks t' for which g(t') # n and w(f) >0
are reroutable.

— the sum Zf\g X(P,) < NS —Ek(NS,1—¢,a) with

P, {3 #n#n;,Ir: Z Soen!
t:g(t")=n’
vigr: Y sl +s >0
V:g(t')=n
vigr: Y sl -sl s o

't #tg(t)=n;
where x(P,) = 1 if and only if predicate P, is true.

Definition 4.11. For a given assignment g, an exchange of two tasks t and t' from
node g(t) to node g(t') and vice versa is stochastically admissible if:
— the flows in ' having as source or sink t and/or t' are still routable.

102CHAPTER 4. JOINT PLACEMENT AND ROUTING UNDER UNCERTAINTY

— the sum Y15 X(P,) < NS — k(NS,1—¢,a) with

Po {30 £g() £gt),3r: D 5L >Cl
t1:9(t1)=n’
v {3r: Yoo s — s > O}
t1:t1#t;9(t1)=9(t)
v {3r: 3 50 45050 s oy

ti:t1#t59(t1)=g(t")
where x(P,) = 1 if and only if predicate P, is true.

Besides these changes when defining the admissible neighborhoods, the local
search remains the same as for the deterministic problem.

Let us now provide some experimental results obtained by applying the GRASP
method for deterministic and respectively stochastic case.

4.5 Computational results

4.5.1 Benchmarks
4.5.1.1 Deterministic instances

In order to test our GRASP algorithm, we used several sets of test problems:
grids to be placed on square grids, a modified version of Johnson instances [86],
random data generated with TGFF ! and a real image processing application to be
compiled using the compilation chain and placed on a manycore architecture.

The first set of instances consists of undirected DPNs grids, representative in size
for our application context, with unitary weights for tasks and for communication
channels. Besides, these instances are easy to modify and we can use them to
test different configurations. Table 4.1 shows grids instances details, with column
“4#Vertices” the number of vertices to be placed and column “#Nodes” the number
of clusters for a homogeneous tore architecture on which the vertices have to be
placed. The results are giving for a maximal bandwidth for the links of the different
NoCs set to B, = 1000. The end column “Sol.” reports the solutions obtained by
the semi-greedy algorithm for tasks mapping described in [144].

The second set is composed of publicly available undirected graphs, first used
for bipartitioning [86], with different topologies and a number of vertices varying
between 124 and 1000. We consider unitary weights for the channels between each
communicating pair of vertices as well as unitary mono-dimensional weights for the
vertices. The initial instances were adapted to be placed on a torus 2D of 4x4 nodes
with maximal capacity on the arcs B, = 1000.

The real application we test here is the motion target application, video process-
ing and tracking a sequence of related input video frames as described in Chapter
1. Modifying the number of strips in which the images of the video sequence are
divided induces a modification of the number of tasks to be placed. There are three

1. Tasks Graph for Free: http://ziyang.eecs.umich.edu/ dickrp/tgff/

4.5. COMPUTATIONAL RESULTS 103

Table 4.1: Grid instances

] Inst. \ #Vertices \ #Nodes \ Cy \ Sol. ‘
Grid 4 x 4 16 4 4 8
Grid 10 x 10 100 16 7| 70
Grid 12 x 12 144 4 40 | 31
Grid 18 x 18 324 9 40 | 88
Grid 23 x 23 529 16 40 | 162

kinds of resources for the node capacity: cardinality, computing core occupancy and
memory footprint. The application has to be placed on a bi-dimensional torus 4 x 4.

The random tasks graphs instances generated with TGFF are 1920 graphs with
the number of vertices V' varying between {50, 100,200} to be placed on a clusterized
bi-dimensional architecture with N = 4 or N = 16 nodes. For each set of graphs
composed of 50, 100 and respectively 200 vertices, four seeds are used for generating
different communications and occupancy ratios. The number of incoming and
outgoing arcs a task can have is limited to two. We considered the mono-resource
case in which the capacity constraints are on the occupation ratios of each node.
The capacities of nodes n € N of the architecture are equal and are computed as:
C, =xx* Zyzl si/N with s; the weight of task ¢ and x € {1.01,1.25,1.5,1.75,2}. As
for the maximal bandwidth B, on the arcs of the target architecture, we create and
sort the list of communications weights of the channels between tasks [= {g;,., >
0 :t;,t; € V} and then choose B, as max(q.,) + > i, 1[i] with y € {5,6,7,8}.
Therefore, the most restricted instances are those with limited capacity on the nodes
when z = 1.01 and with limited maximal bandwidth for the arcs of the network when
y = 9.

4.5.1.2 Stochastic instances

The tests for the chance-constrained version of the placement and routing were
performed on the above instances, transformed to stochastic benchmarks with ran-
dom weights for the tasks.

For the grids instances, we generated the random variables representing the
weights of the vertices by simulating a joint bimodal distribution with each mode
uniform in its intervals and selected in an equally likely manner. The first mode is
represented by the hypercube: [0.8,0.9]V], and the second one, by the hypercube:
[1.1,1.2]V1,

As for the TGFF instances, we considered small variations on the weight w; of
each task ¢, following a bimodal uniform distribution : [w; — 3%wy, wy — 1%w,] %
[w; + 1%wy, wy + 3%wy].

For the target motion detector, we consider the case when this ¥C' application
is composed of 57 tasks and has to be mapped on a Kalray architecture [56], with
a frequency of the chip of 400MHz. We use a simulation with ISS (Instruction
Set Simulator) to obtain the processor cycles for each execution of an agent and
thus, deducing the execution times(knowing that a cycle corresponds to 2.5 ns).

104CHAPTER 4. JOINT PLACEMENT AND ROUTING UNDER UNCERTAINTY

Instead of computing the core occupancy for each agent based on the mean of these
executions (as it is made in the deterministic case), we take a sample of minimum
30 occupation rates of each occurrence for an agent and apply the GRASP for the
stochastic case to place the application. Each task is repeated 1 times per execution
cycle and the application is dimensioned to get 30 frames per second in output. As
such, the occupancy ratio of each occurrence of an agent, having a processor cycle

p is calculated as %ratio = cor?npalgigtreate = 2.5 % 30 * psec) * 102.

The experiments on grid instances, Johnson benchmark and the image processing
application have been carried out on a Linux workstation, with a 2.40 GHz I5
processor, 8 GB of memory and Ubuntu 12.04 as operating system. The bench-
mark composed of TGFF graphs has been tested on a Linux workstation, with 48
processors, 64 GB of memory and Ubuntu 12.04 as operating system.

4.5.2 Results for the deterministic version

Our GRASP algorithm was tested for different configurations, with k € {2,3, 4}
(see Alg. 4.2, line 3), total versus relative affinity during construction, best improve-
ment and first improvement, 1-OPT versus 2-OPT for local search phase, etc.

We have decided to stop our algorithm when a number of maximal iterations or
when a time limit of 10 minutes are reached.

Since we prioritize the minimization of the bandwidths (cf. Eq.4.1) we guarantee
just that this mapping is routable. As such, we are not guaranteeing an optimal
routing and instead, we are analyzing the difference, for an obtained placement,

between the routing our algorithm is using and an ideal one, (using a shortest-path

length(sp(f))

strategy), by measuring the average for all flows f € F of fraction: Ib = lengih”

with length” being the shortest path in the NoC between s(f) and d(f).

Table 4.2 shows some of the placement results obtained for grids instances when
the number of iterations is equal to max(100,|V|log|V]), the notion of relative
affinity is used, the maximal bandwidth B, = 1000 and the number of selections
k € {2,3,4}. The column “GR” represents the results of the construction part
while columns “PS-17 and “PS-2” are the complete results with post-optimization,
when 1-OPT and respectively 2-OPT neighborhoods are used. As shown, the local
search is useful and better results are obtained for £ = 2 and k£ = 3. Overall the
quality of solutions is comparable with the one found by the algorithm from [144].
GRASP solutions have an average deviation from the solutions found by the semi-
greedy method in [144] of ~5% for k = 2 (with 2-OPT) and less than 10% for
k =3 and k =4 (both 1-OPT and 2-OPT), with the advantage that we also ensure
the routability. In average, the results found using 2-OPT are better than those
with 1-OPT. When the capacity of arcs B, is large enough, our method is able to
accommodate the flows via the shortest paths and [b = 1 in all cases. Instead, when
limiting more the capacity of the links, the average of (b tends to increase to 1.05.

For the second set, as shown in Table 4.3 the best values for the placement of our
GRASP were obtained with the notion of relative affinity, when £k = 2 and k£ = 3
with solutions of better quality than those found by [144], (reported in columns

4.5. COMPUTATIONAL RESULTS 105

Table 4.2: Results of GRASP method for grid problems

k=2 k=3 k=4

| Name GR [PS-1|PS-2 || GR|PS-1[PS2| GR|[PS-1]|PS-2
Grid4x4.inst 11 11 10 12 10 11 13 12 10
Grid10x10.inst || 73 69 69 75 70 69 76 69 69
Grid12x12.inst || 34 31 30 34 31 30 36 31 33
Grid18x18.inst || 92 86 88 91 91 91 99 98 91
Grid23x23.inst || 174 | 164 173 || 184 | 173 177 || 190 | 184 182

“Greedy”) for 18 and respectively 17 instances (out of a total of 25). Also, the
results are definitely better for k = 2 instead of k£ = 4 (for 20 out of 25 instances).

For the target motion application, Table 4.4 shows the results obtained for a
number of processes varying between 60 and 300 (column “|V|”) in function of the
number of strips (column “ST”). These results, obtained with the GRASP approach
for k € {2,3,4}, using the notion of total affinity and a number of iterations equal
to max (100, |V'|log|V]), are compared with those obtained by the method currently
implemented in the compilation chain (column “[144]”) for the placement of the
application on a 2D torus 4 x 4 with B, = 10000000. The GRASP method provides
better results in almost all cases. It should however be noted that when relative
affinity is used instead, the results of the GRASP are of lower quality. Since the
capacity of the network is large enough with regard to the flows to be routed, the
bound [b is equal to 1 for all instances, meaning that the routes found are following
shortest paths.

The same instances were used to place the target motion application on the
same homogeneous NoC but this time with a maximal bandwidth for each arc B, =
100000. While none of the placements found by the method from [144] is routable
afterwards, the current method is finding placements which are also routable, with
an average of 1.17 for [b.

Extensive tests were also performed on the random TGFF graphs. One of the
first tests was to compare the quality of the solutions for a different number of
maximal iterations, when k = 2, relative affinity is used and local search is based on
exchanges of tasks. As expected, more the number of iterations is higher, more the
quality of solutions increases, with ~50% of cases in which the solutions are better
for max(100, |V'|log|V]|) iterations.

We then compared the quality of the placements for a number of selections equal
to 2 and post optimization based on 2-OPT, when the notions of total and relative
affinity are used. It seems that the relative affinity is a better criterion to choose for
the construction part, with 1113 instances with solutions of higher quality against
268 when using the absolute affinity.

Another test consisted in testing the GRASP (with & = 2, the number of iter-
ations max(100, |V'|log|V|) and a 2-OPT strategy) against the sequential algorithm
from [144]. The last one solves first the placement with a greedy method and
afterwards the routing with a MILP. The GRASP is able to find more solutions (for
a total of 1920 instances), with 1358 instances against 927 for the algorithm in [144].

106CHAPTER 4. JOINT PLACEMENT AND ROUTING UNDER UNCERTAINTY

Table 4.3: Results of GRASP method with max (100, |V'|log|V]) iterations for Johnson
instances compared with greedy method from [144]
GRASP
Name V| | C, P P [144]
G.sub.500 | 500 | 33 | 602 | 605 | 603 | 597
(G1000.0025 | 1000 | 63 | 331 | 331 | 339 | 336
(G1000.005 | 1000 | 63 | 1262 | 1259 | 1266 | 1248
(G1000.01 | 1000 | 63 | 3333 | 3335 | 3335 | 3376
(G1000.02 | 1000 | 63 | 7632 | 7631 | 7654 | 7676
(124.02 124 | 8 53 54 53 52
G124.04 124 | 8 | 183 | 183 | 183 | 187
(G124.08 124 | 8 | 446 | 445 | 445 | 446
G124.16 124 | 8 | 1025 | 1025 | 1025 | 1029
(G250.01 250 | 16 | 105 | 106 | 106 | 103
(:250.02 250 | 16 | 325 | 327 | 327 | 330
(250.04 250 | 16 | 870 | 874 | 877 | 884
(G250.08 250 | 16 | 1860 | 1865 | 1872 | 1881
G500.005 500 | 33 | 173 | 172 | 175 | 167
(G500.01 500 | 33 | 624 | 627 | 627 | 637
(500.02 500 | 33 | 1543 | 1543 | 1550 | 1562
(500.04 500 | 33 | 3893 | 3909 | 3927 | 3922
U1000.05 | 1000 | 63 | 99 110 | 125 | 117
U1000.10 | 1000 | 63 | 467 | 469 | 518 | 514
U1000.20 | 1000 | 63 | 1642 | 1675 | 1780 | 1700
U1000.40 | 1000 | 63 | 5267 | 5096 | 5318 | 5308
U500.05 500 | 33 | 96 94 98 87
U500.10 500 | 33 | 335 | 371 | 358 | 353
U500.20 500 | 33 | 1132 | 1118 | 1144 | 1188
U500.40 500 | 33 | 3667 | 3653 | 3625 | 3610

Table 4.4: Results for target motion application compared with greedy method from
[144]
GRASP
Name | ST | |V| 3 3 i [144]
MDl.in | 8 67 | 538206 | 538206 | 538206 | 538206
MD2.in | 10 | 81 | 492530 | 492530 | 492530 | 492536
MD3.in | 15 | 116 | 492934 | 492934 | 492934 | 492944
MD4.in | 20 | 151 | 511701 | 511701 | 541620 | 496353
MD5.in | 30 | 221 | 525268 | 525269 | 515030 | 535525
MD6.in | 40 | 291 | 542059 | 541661 | 526507 | 587142

4.5. COMPUTATIONAL RESULTS 107

For 25,5% of the total number of graphs, our algorithm finds a routable placement
while the other does not find a placement or finds a placement which is not routable.

When both algorithms find a solution, the value of the placement of the GRASP
is better or within 5% of the value found by the other method for 28.7% of cases.
For the routing, in 38.3% of solved cases, the values are within 7% from the optimal
routing found by the MILP from the sequential algorithm.

4.5.3 Results for the stochastic version

The tests for the stochastic version of the placement and routing are performed
with the following configuration for the GRASP: the number of selections k& = 2,
relative affinity as criterion of choice in the constructive part, local search based
on 2-OPT and the maximal number of iterations fixed to max(100, |V'|log|V]). We
decided to stop the algorithm as before, when the maximal number of iterations is
reached or a time limit of 10 minutes are reached.

The experiments consist in evaluating aspects such as the quality of the place-
ments, the time required and “the price of robustness”. First we keep the same
capacity for all nodes as in the deterministic case and afterwards, if needed, increase
the capacity of all nodes with a factor of {1.15,1.25,1.5,1.75} until a feasible solution
for the chance-constrained case is found.

The stochastic version of the GRASP was tested on the grids problems by varying
the parameters ¢ € {0.05,0.1} and « in {0.01,0.05} for a sample size of 100 and
respectively 1000. Tables 4.5-4.6 report the solutions obtained with column “sol.”
for the solution value, columns “time” for the execution time and “C),” the increase
factor required for the capacity of each node in order to find a feasible solution.

Table 4.5: Computation results for NS = 100: grid problems

instance a e =0.05 e=01
sol. | C, | time [[sol. | C,, | time
i 00L] 10 |1.25] ~0 || 12 | 1.25 | ~0
st 0051 10 | 1.25 | ~0 || 12 | 1.25 | ~0
. 0.01 || 74 [1,156] 0,92 |[76 | 1,15 | 0,56
grid10x10 5 6e 21715 [0.52 | 69 | 1.15 | 0.48
. 001] 30 | 1 | 77 || 28 | 1 |77.68
gridI2X 12 a1 585 28 | 1 | 67
. 001921 1 |]6001 &8 | 1 | 600
gridI8x18 oo 1 T 600 T 92 | 1 | 600

As it can be seen, the quality of the solutions is coherent with those found by the
deterministic algorithm. Also, we can remark that the effort to achieve robustness
for the solutions is not so high. For instances “grid4x4” and “grid10x10” it is
necessary an increase of 1.25 and respectively 1.15 in the capacity of the node in
order to find a solution. For the other instances, the stochastic GRASP is able
to find solutions by keeping the same C),. As expected, the execution time of the

108CHAPTER 4. JOINT PLACEMENT AND ROUTING UNDER UNCERTAINTY

Table 4.6: Computation results for NS = 1000: grid problems

instance « e =0.05 e=01
sol. ‘ C, ‘ time || sol. ‘ C, ‘ time
i 0.0] 10 [1,25] ~0 || 12 | 1,25 ~0
s 0.05| 10 | 1,25 | ~0 || 8 | 1,25 ~0
. 0.00]| 75 | 1,156] 0,69 || 78 | 1,15 | 0,79
grid10x10 6o 61715 | 0.72 || 79 | 115 | 0.95
. 000 20 | 1 | 230 || 31 | 1 |2106
grid 12X 12 e 1 2353 [T 20 | 1T | 263
. 000 95 1 | 600 || 94| 1 | 600
gridI8>18 691 1 600 || 93 | T | 600

method depends on the number of vertices and on the size of the sample, with a
superior overall execution time when using a sample size of 1000 instead of a sample
of 100 realizations.

We also tested the algorithm on the 1920 stochastic TGFF instances for a sample
size of 100, when ¢ = 0.95 and « = 0.05. Table 4.7 shows the average time needed
to find solutions for sets of instances having same number of vertices V: 50, 100
and respectively 200 and confirms our assessment on the computational complexity
increasing with the number of vertices.

Table 4.7: Computation time for NS = 100, € = 0.05, a = 0.05: TGFF problems
V

50 100 200

#instances | 640 640 640

Time (sec.) | 16,91 | 140,69 | 486,68

As reported in Table 4.8, the majority of robust solutions (68.33%) are found
without the need to increase the capacity of each node C,, (column “1”). While in
~14% of cases a multiplication factor of 1.15 for C,, is required to reach probabilistic
solutions (usually for initial instances with limited node capacity), for 12.4% of
instances, our method is unable to find solutions (column “NA”). We can remark
however that for the last category, the initial deterministic GRASP also has not
found solutions and only 11 additional instances are not solved for the chance-
constrained version. Moreover, the stochastic method finds more feasible solutions
than its deterministic counterpart, since it is more flexible by allowing the increase
of the node capacity.

We have also compared the quality of the solutions with those found in the
deterministic case when the capacity of the node remains the same. The results are
synthesized in Table 4.9 where the value of the stochastic solution sol, is compared
to the deterministic solution soly. For more than 40% of the 1312 instances, the
solutions obtained are of better quality than in the deterministic case and in more

4.5. COMPUTATIONAL RESULTS 109

Table 4.8: Repartition of solutions for NS = 100, € = 0.05, « = 0.05 in function of C,:
TGFF problems

Multiplication factor for C,,

1 1.15 | 1.25 | 1.5 | 1.75
| % instances | 68,33 | 13,91 [1,46 [1,09 | 2,81

than 38% of cases, the value of the stochastic solution is at most 5% different from
the one of the deterministic instance.

Table 4.9: Quality of stochastic vs. deterministic solutions for same Cy,: TGFF problems
%instances

<soly 41.92

{soly; soly + 5%} 38.87

sols | {solq+ 5%; soly + 7%} | 5.11

{solq + 7%; soly + 10%} | 4.88

Other 9.22

Finally, we tested the stochastic algorithm on real data obtained by running
the motion target application on ISS simulator with four different inputs, ¢ = 0.1
and o = 0.05. The size of the samples for the computation ratios of the tasks as
well as the values of the placements and routing are reported in Table 4.10. Each
time we obtain same results for placement and for routing as the GRASP for the
deterministic case and the sequential algorithm from [144]. One possible explanation
is the small sizes of the instances and the reduced quantity of resources they require:
for each input, only two out of the 16 clusters are used to map the application.

Table 4.10: Results stochastic GRASP for ¢ = 0.1 and a = 0.05: motion target

application
Inst. H #Vertices ‘ #Nodes ‘ NS ‘ Sol. placement ‘ Sol. routing
scenariol.list 57 16 33 16480 16480
scenario2.list Y 16 85 16512 16512
scenariod.list 57 16 35 16504 16504
scenario4.list o7 16 85 16552 16552

Conclusion

In this chapter we addressed the problem of joint placement and routing of
dataflow applications on a clusterized architecture, for both deterministic and stochas-

110CHAPTER 4. JOINT PLACEMENT AND ROUTING UNDER UNCERTAINTY

tic cases. In order to find routable placements, we have designed a GRASP for the
deterministic version which was further adapter for the stochastic case using the
robust binomial approach introduced in Chapter 2. For each assignment of a task
to a cluster or a change on the current mapping, the routability is verified via a
shortest-path algorithm on a residual graph, build from the initial architecture and
updated constantly.

Extensive experiments were performed either on random generated instances
or on real data obtained for the motion target application. When tested on a
benchmark composed of 1920 synthetic graphs, for 25% of cases, our GRASP method
found mappings which are also routable while a sequential algorithm (doing first the
placement and the routing afterwards) did not find any valid solutions. Also, for
the benchmark consisting of motion target data, for a reduced maximal available
bandwidth on the arcs of the network, our algorithm is able to find routable place-
ments of good quality. The heuristic method for the deterministic problem and some
preliminary results are introduced in [151].

As for the stochastic problem, the GRASP is able to find solutions of good
quality without paying too much of a price to obtain robustness. The tests run on
grids, random graphs and motion target data showed that taking into account the
variations of the data is particularly important in cases when the available resources
are limited.

With the arrival of new embedded applications, more complex to deal with and
more computationally demanding, we feel that the joint placement and routing can
be applied as a possible alternative to map these programs. Moreover, for situations
where the clusters resources become tight, solving the mapping by considering
uncertainty may prove to be useful.

Chapter 5 __

Conclusion and future work

The new generation of manycore embedded systems, containing hundreds if not
thousands of cores, requires new programming and execution models for parallel
applications in order to fully take advantage of the available computing power.

Dataflow paradigm seems a good solution to program applications for these
manycore architectures which can overcome the associated difficulties (limited and
dependent resources, parallelism, etc). However, in order to deploy dataflow ap-
plications on the target platforms and efficiently exploit the resources, one must
resort to optimization techniques from the operations research field all along the
compilation process. Additionally, one common particularity of the optimization
problems related to this domain is the presence of uncertain data (such as execution
times or network latencies).

In this thesis, we have treated optimization under uncertainty in the context of
massively parallel embedded systems. The overall purpose was to apply operation
research techniques in order to solve optimization problems from the compilation of
dataflow programs for manycores when the data are uncertain.

Taking into account the specificities (dependency, multidimensionality etc.) of
execution times, one of major sources of uncertainty for the manycore context, we
have conceived a new method for solving chance constrained programs which can
be applied without any particular assumption on the random variables. Based on
the scenario optimization method, known to be easily applied, and on basic statistic
tools, the robust binomial approach is extensible to numerous other application
domains. The only requirement is to have at our disposal a sufficiently representative
sample of observations. The approach is truly algorithmic efficient if we make use of
it within the framework of approximate algorithms or of heuristics, when deciding
the feasibility of a solution.

A general methodology has been designed for adapting existing (meta)heuristics
to solve the stochastic problems by integrating the robust binomial approach. In this
way, complex problems can be tackled in order to find robust solutions, guaranteed
with a minimal reliability threshold and with a high confidence level. Moreover,
extending an algorithm already developed to solve the stochastic case of a same
problem is relatively easy in terms of software engineering. Therefore, applying
(meta)heuristics enhanced with the robust binomial approach may be a flexible and
viable alternative to address real-world size chance constrained problems.

The robust binomial approach was validated while studying two optimization
problems from the compilation of embedded dataflow applications: the partitioning
as well as the joint placement and routing of networks of processes.

111

112 CHAPTER 5. CONCLUSION AND FUTURE WORK

For the first problem, consisting of finding a partition of processes onto a fixed
number of nodes when the processes have uncertain weights, we have proposed a
greedy resolution method.

The second problem having as objective the minimal assignment of the processes
which is also routable, was treated in both deterministic and stochastic cases. A
GRASP heuristic was first developed for the deterministic version and afterwards
adapted to solve the stochastic case with variations on the weights of the processes.

For each problem, the quality of the solutions found by the resolution methods
proposed has been established with experimental tests on synthetic benchmarks and
even on practical instances (a motion target application).

Clearly, many other research directions remain to be explored, related to ei-
ther the general optimization under uncertainty methodology or to the application
context.

With regards to the robust binomial approach, it would be interesting to find new
ways to improve it. An example would consist in finding a method for classifying
the set of observations from the initial sample in different groups, targeting different
probability levels for the constraints. Since our method focuses on finding feasible
but suboptimal solutions to chance constrained programs, one of the area needing
further investigation concerns the quality of the proposed solutions. As such, one
appealing direction of research would be to find specific contexts for which the heuris-
tics integrating the robust binomial approach provide high quality approximation
algorithms or for which theoretical upper bounds can be established. Also, another
open question for a given chance constrained problem is the choice of the “best”
metaheuristic to be applied.

Overall, we feel the need for further approaches for optimization under uncer-
tainty developed from a data-driven perspective. While many real-world domains
are characterized by huge and rich amounts of data, most existing models from
stochastic optimization literature miss a direct connection with the data! Conse-
quently, we consider treatment, analysis and exploration of experimental data as a
prerequisite in designing techniques of optimization under uncertainty appealing in a
practical sense. A first step has been taken in this direction by the study of mixtures
of Uniform and Gaussian distributions since there can be particular cases in which
random data can be associated to such distributions. Estimation of parameters for
these laws from a given sample, equivalent to a combinatorial optimization problem,
can be a preceding step for resolution of chance constrained program which could
take further advantage of it.

With regards to the application studies we covered, there are also subject to
further investigations. For instance, for the stochastic partitioning of process net-
works, it is worth considering working on series-parallel graphs, which are similar
in structure to the dataflow application we have to deal with. Regarding the joint
placement and routing problem, the GRASP method could be improved by the
development of a more powerful local search algorithm based on cyclic exchanges of
tasks. Additionally, the study of stochastic problem could be completed by taking
into account the uncertainty on the inter-tasks bandwidths.

It should be emphasized that the problems we dealt with are close to the ex-
ecution model for a real-world manycore architecture. Therefore, the resolution

113

algorithms we conceived could be considered for a future integration into XC com-
pilation chain, the result of a collaboration between CEA List laboratory! and
Kalray, a semiconductor industry partner 2. Furthermore, they target a broad spec-
trum of multimedia applications from video encoding standards to motion targeting
application or cognitive radio.

Of course, parallel implementations could facilitate the integration of heuristics
based on the robust binomial approach and, in general, of optimization techniques
to cope with uncertainty, into the compilation process for embedded manycore.
As a consequence, another interesting direction of research is to find the most
appropriate methods for parallelizing such algorithms, making efficient use of the
resources offered by modern workstations (multi-cores, GPU of graphic cards etc.).

Furthermore, due to the intrinsic presence of uncertain data all along the com-
pilation chain, other combinatorial problems than those we studied can be tackled
from the stochastic point of view. Finally, we hope that our contribution is a good
starting point for applying stochastic optimization to embedded manycores and that,
in the future of this emerging field, operations research techniques for dealing with
uncertainty will become current practice.

1. http://www-list.cea.fr/
2. http://www kalray.eu/

Bibliography

[1]

2]

3]

4]

[5]

6]

|7l

18]

19]

A. Agresti and B. A. Coull. Approximate Is Better than "Exact" for Interval
Estimation of Binomial Proportions. The American Statistician, 52(2) :119-
126, 1998.

S. Amarasinghe, M.I. Gordon, M. Karczmarek, J. Lin, D. Maze, R. M. Rabbah,
and W. Thies. Language and compiler design for streaming applications. Int.
J. Parallel Program., 33(2) :261-278, 2005.

R. Aringhieri. Solving chance-constrained programs combining tabu search
and simulation. volume 3059 of Lecture notes in computer science, pages 30—
41, Berlin, Germany, 2004. Springer.

E. A. Ashcroft and W. W. Wadge. Lucid, a nonprocedural language with
iteration. Commun. ACM, 20(7) :519-526, July 1977.

P. Aubry, P. E. Beaucamps, F. Blanc, B. Bodin, S. Carpov, L. Cudennec,
V. David, P. Dore, P. Dubrulle, B. de D. Dupont, F. Galea, T. Goubier,
M. Harrand, S. Jones, J.D. Lesage, S. Louise, N.M. Chaisemartin, T.H.
Nguyen, H. Raynaud, and R. Sirdey. Extended cyclostatic dataflow program
compilation and execution for an integrated manycore processor. In Proceed-
ings of the First International Workshop on Architecture, Languages, Compi-
lation and Hardware support for Emerging Manycore systems (ALCHEMY
2013), Barcelona, Spain, pages 1624-1633, 2013.

R. E. Bellman and L. A. Zadeh. Decision-making in a fuzzy environment.
Management Science, 17(4) :B-141-B-164, 1970.

W. Ben-Ameur and H. Kerivin. Routing of uncertain traffic demands.
Optimization and Engineering, 6(3) :283-313, 2005.

W. Ben-Ameur and M. Zotkiewicz. Robust routing and optimal partitioning
of a traffic demand polytope. International Transactions in Operational
Research, 18(3) :307-333, 2011.

A. Ben-Tal and A. Nemirovski. Robust solutions of linear programming

problems contaminated with uncertain data. Mathematical Programming,
88 :411-424, 2000.

115

116

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

20]

21

22]

Bibliography

A. Ben-Tal and A. Nemirovski. Robust optimization : Methodology and
applications, 2002.

A. Ben-Tal and A. Nemirovski. On safe tractable approximations of chance-
constrained linear matrix inequalities. Mathematics of Operations Research,
34 :1-25, February 2009.

P. Beraldi and A. Ruszczynski. Beam search heuristic to solve stochastic inte-
ger problems under probabilistic constraints. European Journal of Operational
Research, 167(1) :35-47, 2005.

D. Bertsimas and O. Nohadani. Robust optimization with simulated annealing.
J. of Global Optimization, 48 :323-334, October 2010.

D. Bertsimas and M. Sim. The price of robustness. Operations Research,
52(1) :35-53, 2004.

L. Bianchi, M. Dorigo, L. Gambardella, and W. Gutjahr. A survey on
metaheuristics for stochastic combinatorial optimization. Natural Computing,
2006.

L. Bic, G. R. Gao, and J.L. Gaudiot. Advanced Topics in Dataflow Computing
and Multithreading. TEEE Computer Society Press, Los Alamitos, CA, USA,
1995.

C.-H. Bichot. A new method, the fusion fission, for the relaxed graph parti-
tioning problem and comparisons with some multilevel algorithms. Journal of
Mathematical Modelling and Algorithms, 6(3) :319-344, 2007.

C.-H. Bichot and N. Durand. Partitionnement de graphe. Lavoisier, 2010.

G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete. Cycle-static
dataflow. IEEE Transactions on Signal Processing, 44(2) :397-408, February
1996.

G. Bilsen, M. Engels, R. Lauwereins, and J.A. Peperstraete. Cyclo-static
data flow. In 1995 International Conference on Acoustics, Speech, and Signal
Processing, 1995. (ICASSP-95), volume 5, pages 3255-3258, 1995.

T. Bjerregaard and S. Mahadevan. A survey of research and practices of
Network-on-chip. ACM Computing Surveys, 38(1) :1, 2006.

A. Bonfietti, L. Benini, M. Lombardi, and M. Milano. An efficient and
complete approach for throughput-maximal sdf allocation and scheduling
on multi-core platforms. In Proceedings of the Conference on Design,
Automation and Test in FEurope, DATE ’10, pages 897-902. European Design
and Automation Association, 2010.

Bibliography 117

23]

[24]

[25]

26]

27]

28]

[29]

[30]

[31]

32|

[33]

[34]

[35]

P. Boulet. Array-OL Revisited, Multidimensional Intensive Signal Processing
Specification. Technical Report RR-6113, INRIA, 2007.

L. D. Brown, T. T. Cai, and A. Dasgupta. Interval Estimation for a Binomial
Proportion. Statistical Science, 16 :101-133, 2001.

I. Buck. Brook Specification v0.2. Technical Report RR-6113, 2003.

J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt. Readings in hard-
ware/software co-design. chapter Ptolemy : a framework for simulating

and prototyping heterogeneous systems, pages 527-543. Kluwer Academic
Publishers, Norwell, MA, USA, 2002.

J.T. Buck and E.A. Lee. Scheduling dynamic dataflow graphs with bounded
memory using the token flow model. In IEEE International Conference on
Acoustics, Speech, and Signal Processing, 1993. ICASSP-93., 1993, volume 1,
pages 429 —432, april 1993.

A Burns, G. Bernat, and 1. Broster. A probabilistic framework for schedulabil-
ity analysis. In Proceedings of the Third International Conference on Embedded
Software (EMSOFT 2003), pages 1-15, 2003.

G. Calafiore and M.C. Campi. Uncertain convex programs : Randomized
solutions and confidence levels. Mathematical Programming, 102 :25-46, 2005.

G.C. Calafiore and M.C. Campi. The scenario approach to robust control
design. IEEE Transactions on Automatic Control, 51(5) :742 — 753, may 2006.

M.C. Campi and S. Garatti. A sampling-and-discarding approach to chance-
constrained optimization : Feasibility and optimality. J. Optimization Theory
and Applications, 148(2) :257-280, 2011.

Z. Caner Taskin, J. Cole Smith, S. Ahmed, and A.J. Schaefer. Cutting
plane algorithms for solving a stochastic edge-partition problem. Discrete
Optimization, 6(4) :420 — 435, 2009.

S. Carpov. Scheduling for memory management and prefetch in embedded
multi-core architectures. Phd thesis, CEA List, Laboratoire Heudiasyc, UMR
CNRS 6599, Université de Technologie de Compiégne, 2011.

S. Carpov, L. Cudennec, and R. Sirdey. Throughput constrained parallelism
reduction in cyclo-static dataflow applications. Procedia Computer Science,
18(0) :30-39, 2013.

S. Carpov, R. Sirdey, J. Carlier, and D. Nace. Memory bandwidth-constrained
parallelism dimensioning for embedded many-core microprocessors. In
CPAIOR10 workshop on Combinatorial Optimization for Embedded System
Design, Bologna, Italy,, 2010.

118

[36]

37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

|46]

47]

48]

Bibliography

J. Castrillon, A. Tretter, R. Leupers, and G. Ascheid. Communication-aware
mapping of KPN applications onto heterogeneous mpsocs. In Proceedings of
the 49th Annual Design Automation Conference, DAC 12, pages 12661271,
New York, NY, USA, 2012. ACM.

A. Charnes, W. W. Cooper, and G. H. Symonds. Cost horizons and
certainty equivalents : An approach to stochastic programming of heating oil.
Management Science, 4(3) :pp. 235-263, 1958.

A. Charnes and W.W. Cooper. Chance-constrained programming. Manage-
ment Science, 6 :73-89, 1959.

X. Chen, M. Sim, and P. Sun. A robust optimization perspective on stochastic
programming. Operations Research, 55(6) :1058-1071, 2007.

J. Choi, H. Oh, S. Kim, and S. Ha. Executing synchronous dataflow graphs on
a SPM-based multicore architecture. In Proceedings of the 49th Annual Design
Automation Conference, DAC ’12, pages 664671, New York, NY, USA, 2012.
ACM.

C. J. Clopper and E. S. Pearson. The Use of Confidence or Fiducial Limits
Hlustrated in the Case of the Binomial. Biometrika, 26(4) :404-413, 1934.

A. Colin and I. Puaut. Worst case execution time analysis for a processor with
branch prediction. Real-Time Systems, 18(2) :249-274, May 2000.

H. Corporaal. 16th International Workshop on Software and Compilers for
Embedded Systems, 2013. http ://www.scopesconf.org/scopes-13/.

D.R. Cox and D.V. Hinkley. Theoretical Statistics. Chapman & Hall, 1979.

L. Cudennec and R. Sirdey. Parallelism reduction based on pattern substitu-
tion in dataflow oriented programming languages. Procedia CS, 9 :146-155,
2012.

G.B. Dantzig. Linear programming under uncertainty. Management Science,
1(3-4) :197-206, 1955.

V. David, C. Fraboul, J.-Y. Rousselot, and P. Siron. FEtude et realisation
d’une architecture modulaire et reconfigurable : Projet MODULOR. Technical
report, 1/3364/DERI.ONERA, 1991.

D.P. de Farias and B. Van Roy. On constraint sampling in the linear
programming approach to approximate linear programming. In Proceedings of
the 42nd IEEE Conference on Decision and Control, volume 3, pages 2441 —
2446, dec. 2003.

Bibliography 119

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

58]

[59]

[60]

P. de Oliveira Castro. FEzpression et optimisation des réorganisations de
données dans du parallélisme de flots. PhD thesis, Université de Versailles
Saint Quentin en Yvelines, 2010.

M. Demange and V. Paschos. On an approximation measure founded on the
links between optimization and polynomial approximation theory. Theoretical
Computer Science, 158 :117-141, 1996.

D. Dentcheva, A. Prékopa, and A. Ruszczynski. Concavity and efficient
points of discrete distributions in probabilistic programming. Mathematical
Programming, 89 :55-77, 2000.

D. Dentcheva, A. Prékopa, and A. Ruszczynski. Bounds for probabilistic
integer programming problems. Discrete Applied Mathematics, 124(1-3) :55
- 65, 2002.

M.V. Devarakonda and R.K. Iyer. Predictability of process resource usage : a

measurement-based study on unix. Software Engineering, IEEE Transactions
on, 15(12) :1579 1586, 1989.

J.L. Diaz, D.F. Garcia, K. Kanghee, .. Chang-Gun, L. Lo Bello, J.M. Lopez,
M. Sang Lyul, and O. Mirabella. Stochastic analysis of periodic real-time
systems. In Real-Time Systems Symposium (RTSS 2002), pages 289 — 300,
2002.

R. Diekmann, B. Monien, and R. Preis. Load balancing strategies for dis-
tributed memory machines. In Multi-Scale Phenomena and Their Simulation,
pages 255—-266. World Scientific, 1997.

B. Dupont de Dinechin, G. Guironnet de Massas, G. Lager, C. Léger, B. Or-
gogozo, J. Reybert, and T. Strudel. A Distributed Run-Time Environment
for the Kalray MPPA-256 Integrated Manycore Processor. Procedia Computer
Science, 18(0) :1654 — 1663, 2013.

B. Efron and R.J. Tibshirani. An introduction to the Bootstrap. 1994.

L. El Ghaoui, F. Oustry, and H. Lebret. Robust solutions to uncertain
semidefinite programs. Siam J. Optimization, 9(1) :33-52, 1998.

U. Elsner. Graph partitioning - a survey. Technical report, TU Chemnitz
SFB393/97-27, 1997.

F. Ercal, J. Ramanujam, and P. Sadayappan. Task allocation onto a hypercube
by recursive mincut bipartitioning. In Proceedings of the third conference
on Hypercube concurrent computers and applications : Architecture, software,
computer systems, and general issues - Volume 1, C3P, pages 210-221, 1988.

120

[61]

62]

63]

|64]

[65]

[66]

67]

68

[69]

[70]

[71]

[72]

73]

Bibliography

N. Fan and P.M. Pardalos. Robust optimization of graph partitioning and
critical node detection in analyzing networks. In Proceedings of the Jth Annual
International Conference on Combinatorial Optimization and Applications

(COCOA 2010), pages 170-183, 2010.

N. Fan, Q.P. Zheng, and P.M. Pardalos. On the two-stage stochastic
graph partitioning problem. In Proceedings of the 5th Annual International
Conference on Combinatorial Optimization and Applications (COCOA 2011),
pages 500-509, 2011.

T.A. Feo and M.G.C. Resende. Greedy randomized adaptive search procedures
(GRASP). Journal of Global Optimization, 6 :109-133, 1995.

C. E. Ferreira, A. Martin, C.C. de Souza, R. Weismantel, and L.A. Wolsey.
The node capacitated graph partitioning problem : A computational study.
Mathematical Programming, 81 :229-256, 1998.

C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for improving
network partitions. In Proceedings of the 19th Design Automation Conference,
DAC ’82, pages 175181, Piscataway, NJ, USA, 1982. IEEE Press.

P-O. Fjallstrom. Algorithms for graph partitioning : A survey. Linkdping
Electronic Articles in Computer and Information Science, 3, 1998.

Michael J. Flynn. Some computer organizations and their effectiveness. IEFFE
Transactions on Computers, C-21(9) :948-960, September 1972.

R. F. Freund. Optimal selection theory for superconcurrency. In Proceedings
of the 1989 ACM/IEEE conference on Supercomputing, Supercomputing ’89,
pages 699-703, New York, NY, USA, 1989. ACM.

A. Gaivoronski, A. Lisser, R. Lopez, and H. Xu. Knapsack problem with
probability constraints. Journal of Global Optimization, 49 :397-413, 2011.

F. Galea and R. Sirdey. Meéthode de cadencement d’applications flot de
données cyclostatiques. Technical report, CEA LIST/DACLE/10-070, 2010.

F. Galea and R. Sirdey. A parallel simulated annealing approach for the
mapping of large process networks. In IPDPS Workshop, pages 1787-1792,
2012.

M.R. Garey, D.S. Johnson, and L Stockmeyer. Some simplified NP-complete
graph problems. Theoretical Computer Science, 1(3) :237-267, 1976.

A. Girault, B. Lee, and E.A. Lee. Hierarchical finite state machines with
multiple concurrency models. IEEE Transactions on Computer-aided Design
of Integrated Circuits and Systems, 18 :742-760, 1999.

Bibliography 121

[74]

[75]

[76]

[77]

78]

[79]

[80]

[81]

82]

83

[84]

[85]

T. Goubier, R. Sirdey, S. Louise, and V. David. XC : a programming model
and langage for embedded manycores. In Lecture Notes in Computer Science,
volume 7016, pages 385-394, 2011.

J.L. Gustafson. Reevaluating Amdahl’s law. Commun. ACM, 31(5) :532-533,
May 1988.

C. Hanen and A Munier. Cyclic scheduling on parallel processors : An
overview. In Philippe Chrétienne, Edward G. Coffman, Jan Karel Lenstra,
and Zhen Liu, editors, Scheduling theory and its applications. J. Wiley and
sons, 1994.

C.A. Healy, D.B. Whalley, and M.G. Harmon. Integrating the timing analysis
of pipelining and instruction caching. In Proceedings of the 16th IEEE of
Real-Time Systems Symposium, pages 288 —297, dec 1995.

B. Hendrickson and R. Leland. A multilevel algorithm for partitioning
graphs. In Proceedings of the 1995 ACM/IEEE conference on Supercomputing
(CDROM), Supercomputing ’95, New York, NY, USA, 1995. ACM.

R. Henrion and C. Strugarek. Convexity of chance constraints with inde-
pendent random variables. Comput. Optim. Appl., 41(2) :263-276, November
2008.

L.J. Hong, Y. Yang, and L. Zhang. Sequential convex approximations to joint

chance constrained programs : A Monte Carlo Approach. Operations Research,
59(3) :617-630, 2011.

J. Hu and R. Marculescu. Energy- and performance-aware mapping for regular
NoC architectures. IEEE Trans. on CAD of Integrated Circuits and Systems,
24(4) :551-562, 2005.

R. Tannucci et al. Multithreaded computer architecture : a summary of the
state of the art, volume SECS 0281 of The Kluwer international series in
engineering and computer science. 1994.

M.A. Iverson, F. Ozguner, and G.J. Follen. Run-time statistical estimation of
task execution times for heterogeneous distributed computing. In Proceedings
of 5th IEEE International Symposium on High Performance Distributed
Computing, 1996.,, pages 263 —270, aug. 1996.

A. Jantsch and I. Sander. Models of computation and languages for embedded
system design, 2005.

D.S. Johnson, C.R. Aragon, L.A. McGeoch, and C. Schevon. Optimization by
simulated annealing : An experimental evaluation ; part i, graph partitioning.
Operations Research, 37(6) :865-892, 1989.

122

[86]

87]

88

[89]

[90]

[91]

[92]

193]

[94]

195]

196]

197]

98]

[99]

Bibliography

E.J.L. Johnson, A. Mehrotra, and G. L. Nemhauser. Min-cut clustering.
Mathematical Programming, 62 :133-151, October 1993.

G. Kahn. The semantics of simple language for parallel programming. In /FIP
Congress, pages 471-475, 1974.

G. Karypis and V. Kumar. A fast and high quality multilevel scheme for
partitioning irregular graphs. SIAM Journal on Scientific Computing, 20 :359—
392, 1998.

S. Kataoka. A stochastic programming model. Econometrica, 31(1/2) :181-
196, 1963.

B.W. Kernighan and S. Lin. An Efficient Heuristic Procedure for Partitioning
Graphs. The Bell system technical journal, 49(1) :291-307, 1970.

B. Khailany, W.J. Dally, U.J. Kapasi, P. Mattson, J. Namkoong, J.D. Owens,
B. Towles, A. Chang, and S. Rixner. Imagine : media processing with streams.
Micro, IEEE, 21(2) :35 —46, mar/apr 2001.

A. A. Khokhar, V. K. Prasanna, M. E. Shaaban, and C.-I.. Wang. Hetero-
geneous computing : Challenges and opportunities. Computer, 26(6) :18-27,
June 1993.

S. Kirkpatrick. Optimization by simulated annealing : Quantitative studies.
Journal of Statistical Physics, 34 :975-986, 1984.

O. Klopfenstein. Optimisation robuste de réseaux de télécommunications. PhD
thesis, Orange Labs , Laboratoire Heudiasyc, UMR CNRS 6599, Université de
Technologie de Compiégne, 2008.

B. Korte and J. Vygen. Combinatorial Optimization : Theory and Algorithms.
Springer, 3rd edition, 2006.

J. Kunkel. COSSAP : A stream driven simulator. In IEEFE International
Workshop on Microelectronics in Communications, Interlaken, Switzerland.
IEEE, mar 1991.

E.A. Lee and D.G. Messerschmitt. Static scheduling of synchronous data flow
programs for digital signal processing. IEEE Trans. Computers, 36(1) :24-35,
1987.

E.A. Lee and D.G. Messerschmitt. Synchronous data flow. Proceedings of the
IEEE, 75(9) :1235 — 1245, 1987.

E.A. Lee and T.M. Parks. Dataflow process networks. Proceedings of the
IEEE, 83(5) :773 801, 1995.

Bibliography 123

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

109

[110]

[111]

J. Lee, 1. Shin, and A. Easwaran. Online robust optimization framework
for QoS guarantees in distributed soft real-time systems. In Proceedings of
the tenth ACM international conference on Embedded software, EMSOFT 10,
pages 89-98, New York, USA, 2010.

M. Lemerre, V. David, C. Aussagues, and G. Vidal-Naquet. Equivalence
between schedule representations : Theory and applications. In Real-Time and
Embedded Technology and Applications Symposium, 2008. RTAS ’08. IEEFE,
pages 237 —247, 2008.

P. Li, M. Wendt, and G. Wozny. Robust model predictive control under chance
constraints. Computers and Chemical Engineering, 24(2-7) :829 — 834, 2000.

A. Lisser and F. Rendl. Graph partitioning using linear and semidefinite
programming. Mathematical Programmaing, 95 :91-101, 2003.

B. Liu. Fuzzy random chance-constrained programming. Trans. Fuz Sys.,
9(5) :713-720, October 2001.

V. M. Lo. Heuristic algorithms for task assignment in distributed systems.
IEEE Trans. Comput., 37(11) :1384-1397, 1988.

M. Lombardi, M. Milano, M. Ruggiero, and L. Benini. Stochastic allocation
and scheduling for conditional task graphs in multiprocessor systems-on-chip.
Journal of Scheduling, 13 :315-345, 2010.

D. H. Loughlin and S. Ranjithan. Chance-constrained genetic algorithms.
In GECCO-99 : Proceedings of the Genetic and Evolutionary Computation
Conference, pages 369-376, 1999.

S. Louise. Programmability in the age of the manycore, beyond Stream
Programming. ACM Transactions on Embedded Computing Systems. In print,
2013.

S. Louise, V. Davidy, and J. Delcoignez. A new paradigm for cache related
wcet computation. In Networks, Parallel and Distributed Processing, and
Applications. ACTA Press, 2002.

J. Luedtke and S. Ahmed. A sample approximation approach for optimization
with probabilistic constraints. STAM Journal on Optimization, 19(2) :674-699,
2008.

T. Lundqvist and P. Stenstrom. Timing anomalies in dynamically scheduled
microprocessors. In The 20th Proceedings of IEEE Real-Time Systems
Symposium, pages 12 21, 1999.

124

[112]

[113]

114)

[115]

[116]

[117]

[118]

[119]

[120]

121

122]

[123]

124]

Bibliography

S. Manolache, P. Eles, and Z. Peng. Memory and time-efficient schedulability
analysis of task sets with stochastic execution time. The 24/th Euromicro
Conference on Real-Time Systems, 0 :0019, 2001.

S. Manolache, P. Eles, and Z. Peng. Task mapping and priority assignment for
soft real-time applications under deadline miss ratio constraints. ACM Trans.
Embed. Comput. Syst., 7(2) :19 :1-19 :35, January 2008.

C. Marcon, A. Borin, A. Susin, L. Carro, and F. Wagner. Time and energy
efficient mapping of embedded applications onto NoCs. In ASP-DAC 2005.,
pages 33 — 38 Vol. 1, 2005.

R. Marculescu, U.Y. Ogras, L.-S. Peh, N.E. Jerger, and Y. Hoskote. Outstand-
ing research problems in NoC design : System, microarchitecture, and circuit
perspectives. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems,, 28(1) :3-21, 2009.

W. R. Mark, R. S. Glanville, K. Akeley, and M. J. Kilgard. Cg : a system for
programming graphics hardware in a C-like language. ACM Trans. Graph.,
22(3) :896-907, July 2003.

P. Marwedel, J. Teich, G. Kouveli, I. Bacivarov, L. Thiele, S. Ha, C. Lee,
Q. Xu, and L. Huang. Mapping of applications to MPSoCs. In Proceedings of
the seventh IEEE/ACM/IFIP international conference on Hardware/software
codesign and system synthesis, CODES+ISSS 11, pages 109-118, New York,
NY, USA, 2011. ACM.

A. Mazouz, S. A. A. Touati, and D. Barthou. Study of variations of native
program execution times on multi-core architectures. In CISIS, pages 919-924,
2010.

A Mehrotra and M.A. Trick. Cliques and clustering : A combinatorial
approach. Operations Research Letters, 22 :1-12, 1997.

B.L. Miller and H.M. Wagner. Chance constrained programming with joint
constraints. Operations Research, 13(6) :930-945, 1965.

G.E. Moore. Progress in digital integrated electronics. In 1975 International
Electro Devices Meeting,, volume 21, pages 11 — 13, 1975.

F. Mueller. Timing analysis for instruction caches. Real-Time Syst.,
18(2/3) :217-247, May 2000.

S. Murali, L. Benini, and G. De Micheli. A Methodology for mapping multiple
use-cases onto Networks on Chips. In DATE, pages 118-123. TEEE, 2006.

P. K. Murthy, E.G. Cohen, and S. Rowland. System Canvas : a new
design environment for embedded DSP and telecommunication systems.

Bibliography 125

In Proceedings of the 9th international symposium on Hardware/software
codesign, CODES 01, pages 54-59, New York, NY, USA, 2001. ACM.

[125] W.A. Najjar, E.A. Lee, and G.R. Gao. Advances in the dataflow computational
model. Parallel Computing, 25(13) :1907-1929, 1999.

[126] A. Nemirovski and A. Shapiro. Convex approximations of chance constrained
programs. SIAM J. on Optimization, 17(4) :969-996, December 2006.

[127] H. Orsila, E. Salminen, and T. D. Hadmaildinen. Parameterizing simulated
annealing for distributing Kahn process networks on multiprocessor SoCs. In
Proceedings of the 11th international conference on System-on-chip, SOC’09,
pages 19-26, 2009.

[128] B. K. Pagnoncelli, S. Ahmed, A. Shapiro, and P. M. Pardalos. Sample average
approximation method for chance constrained programming : Theory and
applications. Journal of Optimization theory and Applications, 142 :399-416,
2009.

[129] B.B. Pal, S. Gupta, and D. Chakraborti. A genetic algorithm based stochastic
simulation approach to chance constrained interval valued multiobjective

decision making problems. In 2010 International Conference on Computing
Communication and Networking Technologies (ICCCNT), pages 1-7, 2010.

[130] M. Pan and C. Chu. FastRoute : A step to integrate global routing into
placement. In IEEE/ACM International Conference on Computer-Aided
Design, 2006. ICCAD °06., pages 464-471, 2006.

[131] M. Pan and C. Chu. IPR : an integrated placement and routing algorithm.
In Proceedings of the 44th annual Design Automation Conference, DAC 07,
pages 59-62, New York, NY, USA, 2007. ACM.

[132] T. M. Parks. Bounded Schedule of Process Networks. PhD thesis, University
of California at Berkeley, 1995.

[133] A. Prékopa. The discrete moment problem and linear programming. Discrete
Applied Mathematics, 27(3) :235-254, 1990.

[134] A. Prékopa. Stochastic Programming. Kluwer Acad. Publ., 1995.

[135] J. M. Rabaey, C. Chu, P. Hoang, and M. Potkonjak. Fast prototyping of
datapath-intensive architectures. IEEE Des. Test, 8(2) :40-51, April 1991.

[136] B. Reistad and D. K. Gifford. Static dependent costs for estimating execution
time. SIGPLAN Lisp Pointers, VII(3) :65-78, July 1994.

[137] R. T. Rockafellar and S. Uryasev. Optimization of Conditional Value-at-Risk.
Journal of Risk, 2 :21-41, 2000.

126

133

[139]

[140]

[141]

[142]

[143]

[144)

[145]

[146]

[147]

[148]

[149]

Bibliography

J.A. Roy and I.L.. Markov. Seeing the forest and the trees : Steiner wirelength
optimization in placement. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems,, 26(4) :632-644, 2007.

N.V. Sahinidis. = Optimization under uncertainty : State-of-the-art and
opportunities. Computers and Chemical Engineering, 28 :971-983, 2004.

N. Sensen. Lower bounds and exact algorithms for the graph partitioning
problem using multicommodity flows. Lecture Notes in Computer Science,
2161 :391-403, 2001.

V. Shestak, J. Smith, R. Uml, J. Hale, P. Moranville, A. A. Maciejewski, and
H. J. Siegel. Greedy approaches to static stochastic robust resource allocation
for periodic sensor driven distributed systems. In Proceedings of the 2006

International Conference on Parallel and Distributed Processing Techniques
and Applications (PDPTAO06), pages 3-9, 2006.

A. K. Singh, M. Shafique, A. Kumar, and J. Henkel. Mapping on multi/many-
core systems : survey of current and emerging trends. In Proceedings of the
50th Annual Design Automation Conference, DAC ’13, pages 1 :1-1 :10, New
York, NY, USA, 2013. ACM.

O. Sinnen. Task scheduling for parallel systems. Wiley-Interscience, 2007.

R. Sirdey. Contributions a ["optimisation combinatoire pour 'embarqué : des

autocommutateurs cellulaires auzx microprocesseurs massivement paralléles.
HDR, UTC, France, 2011.

R. Sirdey and P. Aubry. A linear programming approach to general dataflow
process network verification and dimensioning. In Proceedings Third Inter-
action and Concurrency Experience : Guaranteed Interaction (ICE), pages
115-119, 2010.

R. Sirdey and V. David. Approches heuristiques des problémes de parti-
tionnement, placement et routage de réseaux de processus sur architectures
paralléles clusterisées. Technical report, CEA LIST DTSI/SARC/09-470/RS,
2009.

K. Srinivasan and K.S. Chatha. A technique for low energy mapping and
routing in Network-on-Chip architectures. In ISLPED ’05, pages 387 — 392,
aug. 2005.

O. Stan, R. Sirdey, J. Carlier, and D. Nace. L’apport de 'optimisation sous
incertitudes pour les systémes temps réel embarqués. In Ecole de temps réel
(ETR), 2011.

O. Stan, R. Sirdey, J. Carlier, and D. Nace. A heuristic algorithm for stochastic
partitioning of process networks. In Proceedings of the 16th IEEE International

Bibliography 127

[150]

[151]

|152]

153

[154]

[155]

[156]

[157]

[158]

[159]

Conference on System Theory, Control and Computing (ICSTCC), pages 1-6,
2012.

O. Stan, R. Sirdey, J. Carlier, and D. Nace. The robust binomial approach
to chance-constrained optimization problems with application to stochastic
partitioning of large process networks. Submitted to Journal of Heuristics,
2012.

O. Stan, R. Sirdey, J. Carlier, and D. Nace. A GRASP for placement
and routing of dataflow process networks on manycore architectures. In
Eight International Conference on P2P, Parallel, Grid, Cloud and Internet
Computing (3PGCIC), 2013.

H.S. Stone. Multiprocessor scheduling with the aid of network flow algorithms.
IEEE Transactions on Software Engineering, 3(1) :85-93, 1977.

M. W. Tanner and E. B. Beier. A general heuristic method for joint chance-
constrained stochastic programs with discretely distributed parameters, 2007.
http ://www.optimization-online.org/DB_FILE/2007/08/1755.pdf.

M. Vidyasagar. Randomized algorithms for robust controller synthesis using
statistical learning theory. In Learning, control and hybrid systems, volume 241

of Lecture Notes in Control and Information Sciences, pages 3-24. Springer
Berlin / Heidelberg, 1999.

N. Viswanathan and C.C.N. Chu. FastPlace : efficient analytical placement
using cell shifting, iterative local refinement and a hybrid net model. IEEFE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,,
24(5) :722-733, 2005.

A. Wald and J. Wolfowitz. Confidence limits for continuous distribution
functions. The Annals of Mathematical Statistics, 10(2) :105-118, 1939.

C. Walshaw, M. Cross, M. G. Everett, S. P. Johnson, and K. McManus.
Partitioning & mapping of unstructured meshes to parallel machine topologies.

In Procedeedings on Parallel Algorithms for Irreqularly Structured Problems
(IRREGULAR), pages 121-126, 1995.

R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley,
G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut,
P. Puschner, J. Staschulat, and P. Stenstrom. The worst-case execution-time
problem : overview of methods and survey of tools. ACM Trans. Embed.
Comput. Syst., 7(3) :36 :1-36 :53, May 2008.

M. Wipliez and M. Raulet. Classification of dataflow actors with satisfiability
and abstract interpretation. IJERTCS, 3(1) :49-69, 2012.

128 Bibliography

[160] H. Xu, C. Caramanis, and S. Mannor. Optimization under probabilistic
envelope constraints. Operations Research, 60(3) :682-699, 2012.

[161] J. Yang, I. Ahmad, and A. Ghafoor. Estimation of execution times on
heterogeneous supercomputer architectures. In International Conference on
Parallel Processing, (ICPP 1993.), volume 1, pages 219-226, aug. 1993.

	STAN PDT.pdf
	these_sans_couverture.pdf

