Thèse soutenue

Élaboration de surfaces nanostructurées d'alumine, caractérisation et modélisation de la mouillabilité

FR  |  
EN
Auteur / Autrice : Vincent Raspal
Direction : Oscar Komla Awitor
Type : Thèse de doctorat
Discipline(s) : Doctorat d'université (Pharmacie)
Date : Soutenance le 09/07/2013
Etablissement(s) : Clermont-Ferrand 1
Ecole(s) doctorale(s) : École doctorale des sciences de la vie, santé, agronomie, environnement (Clermont-Ferrand)
Partenaire(s) de recherche : Laboratoire : C-Biosenss - Caractérisation et sécurité biologique des surfaces nanostructurées / C-BIOSENSS
Jury : Examinateurs / Examinatrices : Stéphane Descamps, Matthew Brian Johnson, Christophe Massard, Philippe Brunet, Stéphane Colin, Frédéric Guittard
Rapporteurs / Rapporteuses : David Quéré

Mots clés

FR  |  
EN

Mots clés contrôlés

Résumé

FR  |  
EN

Au cours de ce travail, nous avons décrit et mis en œuvre la fabrication de surfaces nanostructurées d’alumine par anodisation de feuilles d’aluminium de très grande pureté. Les paramètres morphologiques caractérisant la membrane d’oxyde que sont le diamètre des pores, leur profondeur et leur espacement sont finement contrôlés par les paramètres expérimentaux. Ces surfaces nanotexturées ont permis l’étude approfondie de l’interaction solide-liquide au sein des pores et de la physique de la ligne de contact devant composer avec les nano-aspérités de surface. Ces deux éléments ont pu être appréhendés par des mesures d’angles de contact à l’équilibre et d’hystérésis de mouillage. La modélisation des résultats a montré l’inadéquation des modèles classiques de CASSIE, WENZEL ou de capillarité à cette situation. L’adjonction du terme controversé de tension de ligne permet de bonnes prévisions. Nous montrons que cette interprétation n’est pas unique ; une diminution de l’énergie de surface due à la forte courbure des pores conduit à des résultats identiques. Une investigation théorique a été menée par l’intégration des forces de VAN DER WAALS. La baisse de l’énergie de surface est prévue mais dans des proportions insuffisantes. Le modèle peut être amélioré. Les mesures d’hystérésis ont dévoilé le pouvoir adhésif des surfaces nanoporeuses. À cause des forces de capillarité dans les pores, la ligne de contact ne peut jamais reculer. Les angles d’avancée ont montré que la ligne de contact a une épaisseur négligeable devant la dizaine de nanomètre. Elle peut en outre parfaitement contourner les pores, imprimant de fortes courbures à l’interface liquide-gaz à la base de la goutte. Sa forme tridimensionnelle a été abordée au travers d’un modèle numérique restant à perfectionner.