Fusion, relaxation de surface et stabilité thermique de solides cristallins
Auteur / Autrice : | Virgile Bocchetti |
Direction : | Hung The Diep |
Type : | Thèse de doctorat |
Discipline(s) : | Physique - Cergy |
Date : | Soutenance le 16/12/2013 |
Etablissement(s) : | Cergy-Pontoise |
Ecole(s) doctorale(s) : | École doctorale Sciences et ingénierie (Cergy-Pontoise, Val d'Oise) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire de Physique Théorique et Modélisation (Cergy-Pontoise, Val d'Oise ; 2002-....) |
Jury : | Examinateurs / Examinatrices : Kamel Boukheddaden, Hung The Diep, Hamid Oughaddou, Martin Plumer |
Rapporteur / Rapporteuse : Miron Kaufman, Jean-Claude Serge Lévy |
Mots clés
Mots clés libres
Résumé
Dans cette thèse nous étudions le comportement thermique de matériaux cristallins, par le biais de la simulation Monte Carlo. Cette méthode est l'une des plus efficaces pour traiter ce genre de problématique.Nous présentons notre algorithme basé sur l'optimisation de la procédure de Verlet. Il nous a permis d'étudier le comportement thermiqued'un cristal jusqu'à la fusion, avec des simulations très longues et contenant des nombres importants d'atomes (plusieurs milliers) pour de meilleures statistiques sans avoir des temps CPU prohibitifs.Nous avons appliqué cet algorithme aux cristaux de gaz rares en utilisant le potentiel de Lennard-Jones (LJ), avec les paramètres calculés par Bernardes (les plus utilisés) en 1958.Or nos résultats montrent que ces paramètres conduisentà une surestimation des températures de fusion de ces cristaux par rapport aux températures de fusion expérimentalement mesurées. Nous avons donc proposé unemodification des paramètres qui permet un meilleur accord avec l'expérience.Nous avons aussi étudié la fusion des semi-conducteurs et des métaux en prenant le cas du silicium de structure diamant et le cas de l'argent de structurecubique à faces centrées.L'objectif étant de comprendre le comportement thermique et la fusion de ces matériaux tridimensionnels avant d'examiner les cas des cristauxbidimensionnels et semi-infinis. Ces matériaux, dans l'état massif, ont été expérimentalement bien étudiés. Malgré ceci, il n'y a pas derésultats théoriques et de simulations satisfaisants sur la transition de fusion. L'un des problèmes majeurs dans l'étude de fusion est le choix d'un potentiel capable de reproduire, aux basses températures, des structures de réseaux autres que le réseau FCC. Nous avons choisi les potentiels de Stillinger-Weber et de Tersoff pour Si, et les potentiels de Gupta et EAM (embedded atom method) pour Ag.Les résultats obtenus pour les deux potentiels sont similaires et meilleurs que les résultats publiés dans la littérature. Ils sont en accord avec l'expérience.Nous avons aussi traité le cas d'un problème très étudié, mais restant controversé: le comportement de la surface (111) d'un cristal d'argent. Expérimentalement,certaines études ont montrée que la distance entre la surface et la deuxième couche atomique subit une contraction aux basses températures. Au fur et à mesure que latempérature augmente, cette distance rattrape celle entre deux couches intérieures et puis la dépasse: ce résultat est connu sous le nom d'anomalie de dilatationthermique. Nous avons étudié ce problème en prenant deux potentiels multi-corps EAM et Gupta. Les résultats montrent que le potentielEAM décrit mieux cette anomalie, qui a lieu après la fusion de la surface, que le potentiel de Gupta.Par conséquent, l'anomalie de dilatation évoquée n'a pas lieu avec le potentiel de Gupta.Finalement, nous avons étudié la stabilité thermique d'une feuille de Silicène libre, c'est-à-dire non supportée par un substrat. Cematériau attire l'attention de nombreux chercheurs du fait de ses propriétés électroniques et thermiques qui semblent comparables à celles du graphène,de même structure en nids d'abeille mais avec des atomes de carbone. C'est l'un des matériaux les plusétudiés actuellement en raison des propriétés remarquables pour des applications. En utilisant le potentiel de Tersoff avec deux jeux de paramètres,nous avons montré que la structure 2D du silicène est stable jusqu'à la fusion qui a lieu à une température élevée, malgré la basse dimension du matériau. Il est à noter que le matériaun'a pas le même comportement selon le jeu de paramètres utilisé. En outre, nous n'avons pasobservé le ''buckling'' avec le potentiel de Tersoff. Le potentiel de Stillinger-Weber donne, en revanche, un buckling mais la structure se déforme vers une structure tri-dimensionnelle à la fusion.La conclusion générale et les perspectives sont présentées en fin de mémoire.