Thèse soutenue

Variabilité de la circulation océanique en Atlantique Nord en réponse aux régimes de temps atmosphériques

FR  |  
EN
Auteur / Autrice : Nicolas Barrier
Direction : Anne-Marie Treguier
Type : Thèse de doctorat
Discipline(s) : Océanographie physique
Date : Soutenance le 25/11/2013
Etablissement(s) : Brest
Ecole(s) doctorale(s) : École doctorale Sciences de la mer (Plouzané, Finistère)
Partenaire(s) de recherche : Laboratoire : Laboratoire de physique des océans (Plouzané, Finistère)
Jury : Président / Présidente : Alain Colin de Verdière
Examinateurs / Examinatrices : Anne-Marie Treguier, Alain Colin de Verdière, Claude Frankignoul, David Marshall, Christophe Cassou, Juliette Mignot, Julie Deshayes
Rapporteurs / Rapporteuses : Claude Frankignoul, David Marshall

Résumé

FR  |  
EN

Le but de cette thèse est d’analyser les impacts de la variabilité atmosphérique grande échelle sur la circulation océanique. Ceci a déjà fait l’objet de nombreuses publications, dans lesquelles la variabilité atmosphérique est analysée en termes de modes de variabilité, déterminés par analyse en composantes principales (EOF en anglais) des anomalies de pression de surface. Ces modes sont l’Oscillation Nord-Atlantic (NAO), le Pattern Est-Atlantique (EAP) et le Pattern Scandinave (SCAN). La décomposition en EOF implique que les modes sont orthogonaux et symétriques. Cette dernière hypothèse a été montrée comme étant invalide pour la NAO. Par conséquent, un nouveau concept est proposé dans cette étude pour estimer la variabilité atmosphérique, celui des régimes de temps. Ces derniers sont des structures spatiales de grande échelle, récurrents et quasi-Stationnaires qui permettent de capturer la variabilité des forçages atmosphériques. De plus, ils permettent de séparer les patterns spatiaux des deux phases de la NAO. Ces régimes de temps sont donc une alternative prometteuse pour l’analyse de la variabilité océanique forcée par l’atmosphère. A partir d’observation et de modèles numériques (réalistes ou idéalisés), nous avons montré que les régimes Atlantic Ridge (AR), NAO− et NAO+ induisent une réponse rapide (échelles mensuelles à interannuelles) des gyres subtropical et subpolaire (via un mécanisme de Sverdrup topographique) et de la cellule de retournement (MOC, ajustement aux anomalies de transport d’Ekman). Aux échelles décennales, le gyre subpolaire s’intensifie lors de conditions NAO+ et BLK persistantes via un ajustement barocline aux flux de flottabilité et s’affaiblit pour AR via un ajustement barocline aux anomalies de rotationnel de vent. Ce dernier mécanisme explique aussi l’augmentation du gyre subtropical pour une NAO+ persistante et son affaiblissement pour un AR persistant. La réponse des gyres pour des conditions de NAO− persistantes est un déplacement vers le sud des gyres (l’intergyre gyre). L’intensité de la MOC est augmentée pour des conditions de NAO+ et BLK persistantes, dû à l’augmentation de la formation d’eau dense en mer du Labrador, et inversement pour NAO− et AR. Finalement, des bilans de contenu de chaleur dans la gyre subpolaire et les mers nordiques ont été effectués dans quatre modèles océaniques globaux. Les moyennes d’hiver de convergence océanique de chaleur dans la partie ouest de la gyre subpolaire sont positivement corrélées aux occurrences d’hiver de NAO−, ce qui est dû à la présence de l’intergyre, tandis que cette convergence est négativement corrélée aux occurrences d’AR, ce qui est dû à la réduction des deux gyres qui lui est associée. Les flux de chaleur vers l’océan dans la gyre subpolaire sont négativement corrélés aux occurrences d’hiver de la NAO+ et inversement pour la NAO−. Dans les mers Nordiques, ils sont positivement corrélés aux occurrences de BLK et, dans une moindre mesure, aux occurrences de AR. De plus, nous suggérons que la variabilité du contenu de chaleur dans la partie ouest du gyre subpolaire est la réponse décalée (lag de 6 ans) à l’intégration temporelle du forçage lié au régime NAO+, due à la combinaison de la réponse en phase (0-Lag) des flux de chaleur et à la réponse décalée (lag de 3 ans) de la convergence de chaleur.