Thèse soutenue

Analyse du fonctionnement synaptique du microcircuit de CA3 in vivo en utilisant des outils optogénétiques

FR  |  
EN
Auteur / Autrice : Stefano Zucca
Direction : Christophe Mulle
Type : Thèse de doctorat
Discipline(s) : Sciences, technologie, santé. Neurosciences
Date : Soutenance le 20/12/2013
Etablissement(s) : Bordeaux 2
Ecole(s) doctorale(s) : École doctorale Sciences de la vie et de la santé (Bordeaux)
Jury : Président / Présidente : Bruno Bontempi
Examinateurs / Examinatrices : Jérôme Baufreton, Jérôme Epsztein
Rapporteurs / Rapporteuses : Jack Mellor, Jean-Christophe Poncer

Résumé

FR  |  
EN

L'hippocampe est une région du cerveau située dans le lobe temporal médian. Avec d'autres structures limbiques, l'hippocampe est impliqué dans des processus d'apprentissage et de mémorisation et possède un rôle crucial dans le traitement spatial de l'information. Les synapses de l'hippocampe formées entre les fibres moussues (fm) originaires du gyrus denté et les neurones pyramidaux de CA3 ont reçu une attention particulière, compte tenu de la position stratégique occupée par le gyrus denté à l'entrée de l'hippocampe. En outre les synapses fm- CA3 sont distinctes de la plupart des autres synapses excitatrices du système nerveux central par leurs propriétés morphologiques et physiologiques uniques. Cela soulève la question de savoir si ces propriétés uniques reflètent aussi un rôle fonctionnel unique dans le traitement de l'information effectué par cette synapse au sein du microcircuit de l'hippocampe. Malheureusement nous ne savons que peu de choses sur la façon dont les cellules granulaires modulent l'activité des neurones de CA3 dans le réseau intact in vivo (Henze et al, 2002 ; Hagena et Manahan - Vaughan, 2010, 2011). Le manque d'information est dû au fait que la manipulation classique des circuits neuronaux par des approches électriques, pharmacologiques et génétiques manque de précisions spatiale et temporelle in vivo. L'utilisation de la stimulation extracellulaire de fibres moussues peut conduire à l'activation polysynaptique de cellules pyramidales de CA3, qui peuvent ensuite contaminer les réponses enregistrées. Par ailleurs, l'utilisation de critères trop conservateurs peut conduire à l'exclusion des réponses provenant des fibres moussues «purs» aux propriétés méconnues (Henze et al., 2000). Toutefois, le développement récent et rapide de l’optogénétique dans les neurosciences a fourni de nouveaux outils offrant une sélectivité spatiale élevée (activation optique spécifique de la cellule), et une grande précision temporelle (à l'échelle de la milliseconde), permettant la dissection et l'étude des circuits neuronaux in vivo. L'objectif de ma thèse était de mieux comprendre les mécanismes et les conséquences physiologiques de la plasticité synaptique à court terme se produisant à la synapse formée entre les fibres moussues et les neurones pyramidaux de CA3 dans le cerveau de souris intact. La présente thèse se compose de deux parties principales. Dans la première partie, j'ai exploré de nouveaux outils optogénétiques dans le but de contrôler l'activité des cellules granulaires à l’aide d’impulsions de lumière. La stimulation optogénétique repose sur l'activation du canal ionique channelrhodopsin - 2 - lumière fermée ( ChR2 ) par une lumière bleue et induit des potentiels d'action sur une large gamme de fréquences de stimulation. J'ai aussi observé que la stimulation optique peut être utilisée pour déclencher la plasticité à court terme au niveau des synapses fm-CA3.Dans la deuxième partie j'ai affiné la méthodologie de stimulation optogénétique in vivo pour la caractérisation non invasive du fonctionnement synaptique des synapses fm- CA3. La fiabilité de la stimulation optogénétique d'une population neuronale génétiquement ciblée ainsi que la résolution d'une seule cellule obtenue en utilisant des enregistrements de cellules entières sont des étapes importantes vers une meilleure compréhension du rôle fonctionnel des fibres moussues dans le réseau de l'hippocampe in vivo.