Adressing scaling challenges in comparative genomics
Auteur / Autrice : | Natalia Golenetskaya |
Direction : | David James Sherman |
Type : | Thèse de doctorat |
Discipline(s) : | Informatique |
Date : | Soutenance le 09/09/2013 |
Etablissement(s) : | Bordeaux 1 |
Ecole(s) doctorale(s) : | École doctorale Mathématiques et informatique (Talence, Gironde ; 1991-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire bordelais de recherche en informatique - Laboratoire Bordelais de Recherche en Informatique / LaBRI - Magnome |
Jury : | Examinateurs / Examinatrices : Pascal Durrens, Rodolphe Thiébaut, Alexandre Zvonkine |
Rapporteurs / Rapporteuses : Amedeo Napoli, Jean-Stéphane Varré |
Mots clés
Résumé
La génomique comparée est essentiellement une forme de fouille de données dans des grandes collections de relations n-aires. La croissance du nombre de génomes sequencés créé un stress sur la génomique comparée qui croit, au pire géométriquement, avec la croissance en données de séquence. Aujourd'hui même des laboratoires de taille modeste obtient, de façon routine, plusieurs génomes à la fois - et comme des grands consortia attend de pouvoir réaliser des analyses tout-contre-tout dans le cadre de ses stratégies multi-génomes. Afin d'adresser les besoins à tous niveaux il est nécessaire de repenser les cadres algorithmiques et les technologies de stockage de données utilisés pour la génomique comparée. Pour répondre à ces défis de mise à l'échelle, dans cette thèse nous développons des méthodes originales basées sur les technologies NoSQL et MapReduce. À partir d'une caractérisation des sorts de données utilisés en génomique comparée et d'une étude des utilisations typiques, nous définissons un formalisme pour le Big Data en génomique, l'implémentons dans la plateforme NoSQL Cassandra, et évaluons sa performance. Ensuite, à partir de deux analyses globales très différentes en génomique comparée, nous définissons deux stratégies pour adapter ces applications au paradigme MapReduce et dérivons de nouveaux algorithmes. Pour le premier, l'identification d'événements de fusion et de fission de gènes au sein d'une phylogénie, nous reformulons le problème sous forme d'un parcours en parallèle borné qui évite la latence d'algorithmes de graphe. Pour le second, le clustering consensus utilisé pour identifier des familles de protéines, nous définissons une procédure d'échantillonnage itérative qui converge rapidement vers le résultat global voulu. Pour chacun de ces deux algorithmes, nous l'implémentons dans la plateforme MapReduce Hadoop, et évaluons leurs performances. Cette performance est compétitive et passe à l'échelle beaucoup mieux que les algorithmes existants, mais exige un effort particulier (et futur) pour inventer les algorithmes spécifiques.