Développement d'un dispositif pompe-sonde hétérodyne : application à l'imagerie en acoustique picoseconde
Auteur / Autrice : | Allaoua Abbas |
Direction : | Bertrand Audoin, Stefan Dilhaire |
Type : | Thèse de doctorat |
Discipline(s) : | Mécanique |
Date : | Soutenance le 07/06/2013 |
Etablissement(s) : | Bordeaux 1 |
Ecole(s) doctorale(s) : | École doctorale des sciences physiques et de l’ingénieur (Talence, Gironde ; 1995-....) |
Partenaire(s) de recherche : | Laboratoire : Institut de mécanique et d'ingénierie de Bordeaux |
Jury : | Président / Présidente : Pascal Vairac |
Examinateurs / Examinatrices : Jean-Michel Rampnoux, Pierre-Michel Adam, Philippe Delaporte, Yannick Guillet | |
Rapporteur / Rapporteuse : Pascal Vairac, Laurent Belliard |
Mots clés
Résumé
L' acoustique picoseconde permet l'étude de structures aux dimensions sub-microniques grâce à l'utilisation d'ultrasons dont le contenu spectral peut s' étendre au-delà du THz. La génération et la détection de ces ondes sont rendues possibles par l'association de lasers impulsionnels femtosecondes à dispositifs de type pompe-sonde. Ce manuscrit de thèse décrit la mise en place d'une expérience d' imagerie opto-acoustique avec une résolution spatiale submicronique. L' utilisation combinée d'un échantillonnage optique hétérodyne et de cavités lasers à bas taux de répétition (50 MHz) permet de gagner plusieurs ordres de grandeur sur les temps d'acquisition et de disposer d'une très bonne résolution spectrale. Le manuscrit s'articule autour de trois parties. Dans un premier temps les deux cavités laser aux taux de répértition légèrement différents permettant l'échantillonnage otpique hétérdodyne sont présentées. Puis l'architecture et les performances du système d'asservissement de leur taux de répétion sont décrites. Dans la seconde partie du manuscrit, l'implémentation de cette double cavité dans une expérience pompre-sonde est détaillée et la possibilité de détecter des ondes acoustiques sub-THz avec une résolution de 50 MHz est démontrée. Enfin, dans le dernier chapitre, la puissance de cette expérience pour réaliser de l'imagerie ultra-rapide est illustrée au travers de deux exemples : l'étude d'ondes acoustiques de surface GHz dont la dispersion est induite par la présence d'une couche nanométrique et la détection d'hétérogénéités élastiques submicroniques