Thèse soutenue

Groupes d’Inertie et Variétés Jacobiennes

FR  |  
EN
Auteur / Autrice : Pierre Chrétien
Direction : Michel Matignon
Type : Thèse de doctorat
Discipline(s) : Mathématiques pures
Date : Soutenance le 13/06/2013
Etablissement(s) : Bordeaux 1
Ecole(s) doctorale(s) : École doctorale Mathématiques et informatique (Talence, Gironde ; 1991-....)
Partenaire(s) de recherche : Laboratoire : Institut de mathématiques de Bordeaux - Institut de Mathématiques de Bordeaux / IMB
Jury : Président / Présidente : Jean-Marc Couveignes
Examinateurs / Examinatrices : Matthieu Romagny
Rapporteurs / Rapporteuses : Marc Perret, Irene Bouw

Mots clés

FR  |  
EN

Mots clés contrôlés

Résumé

FR  |  
EN

Soient k un corps algébriquement clos de caractéristique p > 0 et C/k une courbe projective, lisse, intègre de genre g > 1 munie d’un p-groupe d’automorphismes G tel que |G| > 2p/(p-1)g. Le couple (C,G) est appelé grosse action. Si (C,G) est une grosse action, alors |G| <=4p/(p-1)^2g^2 (*). Dans cette thèse, nous étudions les répercussions arithmétiques des propriétés géométriques de grosses actions. Nous étudions d’abord l’arithmétique de l’extension de monodromie sauvage maximale de courbes sur un corps local K d’inégale caractéristique p à corps résiduel algébriquement clos, de genre arbitrairement grand ayant pour potentielle bonne réduction une grosse action satisfaisant le cas d’égalité de (*). On étudie en particulier les conducteurs de Swan attachés à ces courbes. Nous donnons ensuite les premiers exemples, à notre connaissance, de grosses actions (C,G) telles que le groupe dérivé D(G) soit non abélien. Ces courbes sont obtenues comme revêtements de S-corps de classes de rayons de P1(Fq) pour S non vide un sous-ensemble fini de P1(Fq). Enfin, on donne une méthode de calcul des S-corps de classes de Hilbert de revêtements abéliens de la droite projective d’exposant p et supersinguliers que l’on illustre pour des courbes de Deligne-Lusztig.