Thèse soutenue

Etude numérique et expérimentale de l’interaction entre deux écoulements compressibles dans un éjecteur supersonique

FR  |  
EN
Auteur / Autrice : Ala Bouhanguel
Direction : Philippe DesevauxEric Gavignet
Type : Thèse de doctorat
Discipline(s) : Energétique
Date : Soutenance le 10/12/2013
Etablissement(s) : Besançon
Ecole(s) doctorale(s) : École doctorale Sciences pour l'ingénieur et microtechniques (Besançon ; 1991-....)
Partenaire(s) de recherche : Laboratoire : FEMTO-ST : Franche-Comté Electronique Mécanique Thermique et Optique - Sciences et Technologies (Besançon) - Franche-Comté Électronique Mécanique- Thermique et Optique - Sciences et Technologies / FEMTO-ST
Jury : Président / Présidente : Yannick Bailly
Examinateurs / Examinatrices : Philippe Desevaux, Eric Gavignet, Yannick Bailly, Abdellah Hadjadj, Yves Burtschell, Friedrich Leopold
Rapporteurs / Rapporteuses : Abdellah Hadjadj, Yves Burtschell

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Le travail mené dans le cadre de cette thèse porte sur l’étude expérimentale et numérique de l’écoulement au sein d’un éjecteur supersonique. Le régime d’écoulement qui s’installe dans ces appareils est très complexe du fait des phénomènes physiques qui les caractérisent comme la turbulence et les ondes de choc. Les méthodes expérimentales utilisées sont la mesure de la pression le long de l’axe de l’éjecteur `a l’aide d’une sonde développée à cet effet, la visualisation de l’écoulement par tomographie laser et la mesure de vitesse par PIV. Les simulations numériques sont réalisées à l’aide du code Ansys-Fluent en 2D axisymétrique et en 3D. Dans un premier temps, une étude de sensibilité du modèle numérique portant sur les paramètres de simulations et les modèles de turbulence est menée sur l’éjecteur fonctionnant sans flux induit. La validation des simulations repose sur une comparaison des résultats numériques avec des mesures de vitesse par PIV. Un modèle 3D s’est avéré incontournable pour l’étude de l’écoulement dans l’éjecteur avec flux induit à cause de sa géométrie complexe. Les outils expérimentaux et numériques développés permettent d’analyser finement l’interaction des flux moteur et induit, en particulier les processus de recompression par chocs obliques et de mélange. Une tentative de modélisation par LES des instabilités de l’écoulement détectées expérimentalement est également abordée.