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Mobile Ad hoc NETworks (referred to as Manets) continue increasing their presence in our every

day life. They are becoming a cornerstone in many domains and are used in military, science, logisitic

and next-generation applications. However, these networks mostly operate over open environments and

are therefore vulnerable to a large body of threats. Traditional ways of securing networks relying on

preventive techniques, e.g. firewall and encryption, are not sufficient and should henceforth be coupled

with a reactive security solution, e.g. Intrusion Detection System (Ids). Designing an Ids for Manets is

quite challenging because such Ids must not only ensure a high detection accuracy but also has to take

into account the limited resources (e.g. battery life and bandwidth) and the dynamic nature of these

networks. Moreover, the Ids should be protected against attacks and/or falsifications. In this thesis,

we respond to these requirements by proposing a lightweight and robust intrusion detection system for

ad hoc routing protocols (Lidr). We first explore the attacks that threaten Manets, focusing on the

attacks targeting the Optimized Link State Routing (OLSR) protocol. We then describe Lidr that offers

a high rate of attack detection, while limiting efficiently the resources consumption. Indeed, contrary to

the existing systems that monitor the packets going through the host, our system parses and analyzes

logs in order to identify patterns of misuse. We also introduce two metrics, the levels of suspicion and of

gravity, which are used as to lower the communications and the processing on each host. To ensure the

best management of the available resources, we also use the confidence interval as a measure of detection

reliability. This statistical metric allows our Ids to: (i) identify the redundant evidences, hence the waste

of resources resulting from gathering and processing them is avoided, and (ii) correctly make critical

detection-related decisions. In order to enhance the robustness of our Ids, we couple it with an entropy-

based trust model that assigns, based on the unlawful participations in the detection, low trustworthiness

to the misbehaving nodes. Thanks to the estimated trustworthiness, our Ids reduces the bad effects of

the falsified feedback provided by the misbehaving nodes. The proposed trust model is risk-aware such

that the higher the risk of an attack the higher (resp. the lower) the trust in the nodes that helped in

detecting (resp. hiding) it.

The proposed Ids and the coupled models have been experimented on different scenarios of mobility and

density. The results show that Lidr offers a high detection rate along with a remarkable maintenance

of the available resources. Moreover, it presents a significant robustness against the falsified detection-

related evidences.

Keywords: Security, intrusion detection, ad hoc routing, resources maintaining, detection reliability
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INTRODUCTION

1.1 Problem Statement

Over the last decade, the wireless industry has enjoyed unprecedented growth and success.

Wireless communication continue invading every locations on our planet, even underwater areas.

They are now central for personal use as well as for business and computer science. Moreover,

the wireless mobile devices, laptops, smart phones and tablets, become essential in the daily life

of millions of people. Such devices are equipped with wireless transceivers. Thus, these devices,

even if they have different characteristics and goals, can share their resources in a network and

constitute a Mobile Ad hoc NETwork (Manet).

A Manet is a self-organizing, self-healing, and autonomous wireless network. It is formed

on-the-fly without the aid of fixed infrastructures (e.g., routers, radio base stations) or a central

administration. A Manet is usually composed of mobile and resource-limited devices which are

connected by bandwidth-constrained wireless links; the union of which forms a random topology.

In Manet, two devices can communicate whether they are in the same radio coverage area or

not. For the latter scenario, intermediate nodes are used to forward the packets from the source

to the destination. Thus, each device in a Manet operates as a host and as a router, and needs

a routing protocol.

Thanks to its special characteristics, i.e, infrastructure-less, self-organizing and low cost of

deployment, Manet is highly recommended for providing collaborative communications and

computing in highly dynamic and unpredictable environments (e.g., battle fields, rescue mis-

sions). Moreover, it offers a non-expensive, robust alternative or extension of infrastructure-

based networks (e.g., airports, stadiums). However, the absence of administrative facility and

fixed central points imposes more challenges and responsibilities on the devices that compose the

network. In particular, each device should detect the presence of other devices in its radio ranges

and further their types and attributes, cooperate with other devices in terms of forwarding the

packets in the network, and guarantee its security as well as the security of the whole network

through the cooperation with others.

Security is an essential condition for ensuring Manet’s functions, e.g., packet forwarding

and routing, especially under an adversarial environment: a misbehaving (or a compromised)

1
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device could drop data packets passing through it or disrupt route calculation by, for example,

injecting incorrect topological information in the network or obstructing the propagation of the

routing control traffic. But, securing this type of networks is particularly challenging because

they rely on an open radio-based medium of communication. Hence, the adversaries within the

same radio range can launch their attacks without the need of a physical access into the net-

work. In addition, Manet is by nature cooperative and therefore there is a lack of centralized

management and security enforcement points e.g., switches and routers, from which preventive

strategies can be launched. Moreover, the dynamic topology and the limited resources (e.g.,

battery life, computing capabilities, and bandwidth) complicate the deployment of security so-

lutions in Manets. Thus, traditional ways of securing the networks relying on e.g., firewall

and cryptographic protection, should be enriched with reactive mechanisms, such as Intrusion

Detection System (Ids for short), which constitute a second line of defense [10].

Intrusion detection system becomes a critical component of the security strategy in Manets.

However, the very decentralized and dynamic nature, the lack of fixed infrastructures, and the

limited resources, make the deployment of a proper Ids for Manet extremely difficult. This

challenge makes the intrusion detection in Manet a very interesting area of research. Gener-

ally speaking, an Ids for Manet should be cooperative and distributed so as to deal with the

dynamic and the cooperative nature of such networks. In addition, an Ids performs three key

functions: (i) evidence gathering so that information about the activities in the network and

the devices’ behaviors is gathered and analyzed, (ii) diagnosis that correlates these evidences so

as to detect the attacks, and (iii) responding that takes the proper measures to stop or reduce

the consequences of a detected attack. The majority of proposed idss depends on sniffing the

traffic in order to extract the information and the evidences used during the diagnosis. The re-

sponding mechanisms could consist in avoiding the cooperation with the attackers, reinitializing

the communication channels in the network, isolating or excluding the intruders and the non-

cooperative devices, alerting the end user, and many other mechanisms. Since the diagnosis (or

the detection method) constitutes the core of the Ids, a large portion of the literatures focuses

on it. Therefore, there is a large number of proposed detection methods, which have profited

from diverse sciences such as statistical and/or probabilistic classification, data mining, neural

networks, graph theory, information theory, social engineering, etc. We note that the majority

of proposed Idss for Manet focus on providing a high detection accuracy and forget to take

into account the criticality of the nodes performance. In fact, the amount of available resources,

e.g., battery life, computing capabilities, and bandwidth, are restricted in Manet. Thus, an Ids

that requires excessive calculation and/or radio transmission is not suitable for such networks

even though it provides a high detection rate. Unfortunately, too few proposed Idss consider

the necessity of resources scarcity. Moreover, they aim at reducing the resources consumption

uniquely in the detection method. Until now, no solution, to the best of our knowledge, considers

reducing the consumption of resources during the evidences gathering phase.

The reliability of detection is another problem that faces Ids in Manet. Since this type

of network uses an open medium of communications and the devices can join or leave freely,

misbehaving devices are more likely to be found. These misbehaving (or compromised) devices

aim at falsifying the intrusion detection through different ways: they may refuse to cooperate

during the detection, or they may inject incorrect evidences that lead to either accusing well

2
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behaved device(s) or protecting a misbehaving device(s). Moreover, the dynamic topology and

the mobility of devices may lead to different security and topological points of view between well

behaved devices. Hence, they would provide inconsistent evidences for the Ids. Such inconsistent

and/or falsified evidences make the results of the employed Ids under question. Therefore, there

is a need for not only a mechanism that prevents the falsified evidences, but also a measure of

reliability that presents to what extend the results of the detection are reliable. Such measure

helps also in making the critical decisions in the Ids such as concluding that a device is an

intruder, and further launching a proper responding mechanism. To the best of our knowledge,

such factor of reliability has never been proposed for the intrusion detection in Manet.

Overall, there is a need to use an Ids in Manet so as to detect and react against the security

threats which succeed in exceeding the conventional security solutions. This Ids should take

into account the following issues:

• the adaptability to the cooperative and the dynamic nature of Manet,

• the necessity of providing a high detection rate along with a limited number of false alarms,

• the criticality of maintaining the resources along the different phases of detection,

• the necessity to being robust against the attacks and misbehaving devices,

• the necessity of measuring the reliability of the detection conclusion, thus the consequences

of incorrect detection-related decisions are avoided.

This thesis aims at addressing the aforementioned issues by designing a resources-aware and

robust intrusion detection system for Manets. We are interested in detecting the attacks tar-

geting the ad hoc routing protocol since routing is one of the most vital functions in Manets,

and hence disrupting the correct operation of the routing protocol could cause the most devas-

tating damages. Our Ids is build on a distributed architecture so that all the devices participate

in detecting the attacks. It also considers many aspects like detection accuracy, maintaining the

resources, enhancing the robustness against the misbehaving devices, and the reliability of de-

tection. The proposed Ids is oriented to work with Olsr protocol. However, it can be adapted

for other ad hoc routing protocols.

1.2 Contribution of this Thesis

Our contribution concerns the design and the evaluation of a resources-aware and robust intru-

sion detection system for Manet. It includes the following points:

• Designing and implementing a log-based and resources-aware IDS. As a first step

towards this target, we classify and model the known attacks targeting the Olsr protocol.

The modeling is done thanks to an improved temporal model that is derived from the one

introduced in [11]. This improved model enables describing the relationship between the

attack’s actions and their related consequences. Based on the modeled attacks, we build

intrusion signatures; an intrusion signature is thought as a partially ordered sequence of

events that characterizes a misbehaving activity. After that, we illustrate the distributed

3
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and the cooperative architecture of our Ids. This Ids aims at reducing the consumption

of resources during two phases: evidences gathering and intrusion diagnosis. During the

evidences gathering, our Ids analyses the local routing logs instead of sniffing the traffic in

the network. This analysis consists in matching the suspicious routing-related operations

with the predefined intrusion signatures so as to extract evidences of attacks. During the

diagnosis, the evidences of attacks are classified according to their gravity. The goal of this

classification is to activate an in-depth diagnosis only if a sufficient level of suspicion exists.

Thus, the number and the duration of in-depth diagnoses, which are costly in terms of

resources consumption, are restricted. In fact, an in-depth diagnosis includes asking other

node(s) to gather and/or to analyze more evidences. The performance of our Ids in terms

of detection accuracy as well as resources consumption are further evaluated and compared

to other known Idss. The performance evaluation is done in a simulated Manet coupled

with virtual machines. This is the first time that such an evaluation environment is used

for experiments on intrusion detection.

• Coupling a risk-aware trust model with our IDS. The aim of this coupling is to

enhance the robustness of our Ids against the false evidences provided by misbehaving

node(s). We propose an entropy-based trust model that increases (resp. decreases) the

trustworthiness of a node each time this latter provides a correct (resp. an incorrect)

diagnosis-related evidence. During the diagnosis, any evidence is first weighted according

to the trustworthiness of its source before being used. We further associate the trust-

worthiness of a node with the risk of the attacks that this node helps in detecting (resp.

hiding) them. This association raises the preventive nature of our Ids along with the level

of danger in the network.

• Employing the confidence interval as a measure of the detection reliability.

Having a measure of the reliability helps in making critical detection-related decisions like

the activation of a responding mechanism. Moreover, it determines exactly whether gath-

ering more evidences will not change the diagnostic result (or the change is negligible).

Thus, our Ids is able to precisely determine when to stop (or at minimum reduce) gath-

ering more evidences since they are redundant. Consequently, the resources consumption

triggered by the detection is significantly dropped.

1.3 Plan of the Dissertation

The thesis is organized in five chapters which are further divided into multiple sections. Here-

after, an overview of those chapters are provided:

Chapter 2 presents a state of the art in the domains that inspire this thesis. This chapter

starts by providing a detailed overview of Manet (its origin, special characteristics, domains

of applications, and future developments). Then, details are given for the security issues in this

type of networks and a review of the existing intrusion detection systems in Manet is presented.

We focus on the detection methods, addressed attacks and the performance of the existing Idss.

These latter are further classified into several categories according to their detection method.

Moreover, a comparison between the Idss is also provided. This chapter terminates with a
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highlight of the common drawbacks of the current Idss for Manet that should be resolved.

Chapter 3 introduces our Ids (its structure, detection method, implementation, and perfor-

mance evaluation). This chapter starts by providing a detailed overview of the Olsr protocol.

Then a detailed description of the known attacks targeting Olsr is presented. These attacks

are further categorized and modeled. Afterwards, we illustrate the architecture of our Ids with

a detailed description of the key components. We then illustrate how our Ids uses the logs so

as to extract evidences without consuming too much resources. The in-depth intrusion diag-

nosis of our system is further explained. The link spoofing attack is then used to provide a

real example of the various operations and phases of our Ids. This includes defining the link

spoofing signature, and illustrating the corresponding algorithm of diagnosis. The last part of

this chapter presents the first series of performance evaluation of our Ids. We introduce the

evaluation environment wherein the simulated nodes using Ns3 are coupled with an operating-

system-level virtual machines. The performance is evaluated in terms of detection accuracy and

of resources consumption. It further studies the impact of mobility and density on our Ids. This

part concludes with a table that compares the performance of our Ids with the performance of

the Idss already listed in the previous chapter.

Chapter 4 presents the enhancement of the robustness and the reliability of our Ids. This

chapter starts by a description of the trust models in Manet. The entropy-based trust model

that is coupled with our Ids is then presented. The properties that may affect the establishment

of trust relationships between the nodes are described. We propose a new property that depends

on the attack risk in order to enhance the preventive nature of our Ids. This part is ended with

a series of experiments that aim at evaluating the performance and the benefits of the proposed

trust-model in several cases. The second part of this chapter starts by a detailed description of

the inferential statistics and of the confidence interval. We demonstrate the benefits of using

the confidence interval in order to estimate the opinion of a large population. Then, a detailed

mathematical explanation for estimating such intervals and its application as a measure of

reliability are presented. This measure serves to significantly minimize resources consumption.

Moreover, it helps in making critical decisions during the intrusion detection. This part concludes

with a new series of experiments that illustrate the important benefits that are obtained by using

the confidence interval in the intrusion detection.

Chapter 5: The general conclusion illustrates that the goals of this thesis are successfully

achieved. Future work and useful propositions to enhance the security issues in Manet are then

presented.
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2.1 Introduction

In this chapter, we introduce the basic concepts related to wireless ad hoc networks and to the

intrusion detection in order to provide the reader with the background necessary for this disser-

tation.

In the last few years, wireless mobile industry has grown exponentially and has changed our

daily routines. Wireless mobile networks and devices, e.g., laptops, tablet computers, and smart

phones, are becoming very popular since they offer the access to the communication and in-

formation any time and any where. The conventional wireless network is usually supported

by fixed infrastructures; the mobile devices use a single-hop wireless radio communication to

forward their packets to a base station which is connected to a wired network [12]. In contrast,

a Mobile Ad hoc NETwork (Manet for short) provides a peer-to-peer organization of the com-

munication between the mobile devices (hereafter also called nodes) without the need for any

infrastructure or centralized administrator [13]. In fact, each device in Manet communicates

directly with other devices in its radio range (i.e., via a single hop path). The communications

between the devices, which are not in a direct radio range, are done through intermediate devices

(i.e., via multi-hop paths). Thus, each device in Manet operates, both, as a host as well as
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a router. Thanks to its independence from fixed infrastructure, Manet is very useful in the

environments where deploying the networking infrastructure is difficult and/or costly, in terms

of time and resources [14]. For instance, Manet is a proper solution to provide collaborative

communications and computing in small areas (e.g., office or building organizations), tempo-

ral events (e.g., conferences), and unpredictable environments (e.g., battlefields and disaster

recovery areas). Manet is further used as a non-expensive, robust alternative or extension of

infrastructure-based networks, especially in hotspot sites such as airports or stadiums. Recently,

Manet inspires future networks, e.g., Vehicular ad hoc network, Internet of Things1, underwa-

ter sensor networks, to find solutions that guarantee the continuity of communications even in

the absence of fixed infrastructure [13]. Overall, Manet continuously increases its presence

in our life. Because of the mobility and the absence of, both, fixed infrastructure and central

administrator, Manet poses a new design challenge: self-configuration. Indeed, the topology

of this network may change randomly and unexpectedly due to the arbitrary mobility of the

nodes composing Manet. Hence, every node should be able to handle, by itself, the problems

of: detecting the presence of other nodes in the neighborhood, discovering the services avail-

able in the network, topology maintenance, IP addressing, and route calculation. Answering

these challenges is far from trivial, especially that any proposed protocol or solution should take

into account the limited resources (e.g., bandwidth, battery power, processing capabilities) in

Manet. Therefore, Manet is considered as one of the most innovative and challenging areas

of wireless networking [15].

Similarly to any information system or network, securing Manet is essential in order to guar-

antee the quality of the provided services. More precisely, there is a need to: (i) guarantee the

availability of services and communication provided by Manet, (ii) protect the information ex-

changed between the mobile devices from malicious and/or unauthorized modifications or even

destruction, and (iii) prevent unauthorized disclosure of information/data, and thus ensuring

the confidentiality in the network. But, Manet is more vulnerable to threats and misbehaving

than infrastructure-based networks. This results from its special characteristics [16]:

• Unreliability of wireless links between the nodes, that results from, both, the mobility and

the limited energy supply of those nodes.

• Difficulty of physical protection of the mobile nodes since these latter are easy targets for

stealing.

• Dynamic and arbitrary topology resulting from the continuous and unpredicted movements

of the nodes.

• Lack of central points of control or certification authorities.

• Limitations on battery life, computing capabilities, and bandwidth.

In order to eliminate, or at minimum reduce, the exposure to security threats, many variant

security solutions are oriented to work in Manet. These solutions are either (i) proactive

solutions that consist of security-aware protocols and application design (e.g., secure routing

1Internet of Things aims to enable seamless communication of moving smart objects with nodes on the Internet.
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protocol, communication encryption), or (ii) reactive solutions (e.g., Intrusion Detection Sys-

tems) which are seen as a second line of defense. In fact, the reactive solutions aim at handling

the threats that have succeeded in penetrating the proactive solutions. The proactive solutions

are out the scope of this dissertation. We instead focus on the reactive solutions, and more

specifically on the Intrusion Detection System (Ids for short). Intrusion detection is the process

of identifying any (malicious) unauthorized use, abuse, and misuse of the information system

or network [17, 18]. It aims at discovering any violation of the defined security policy2 before

it leads to a security failure [20]. Such failures happen when the system or the network fails in

providing secure service(s). The Ids is seen as an implementation of the mechanisms and the

practices of the intrusion detection. According to the the Common Intrusion Detection Frame-

work (Cidf) model and the Ietf intrusion detection working group (Idwg)3, any Ids has four

key components:

• Event box (e-box for short): is responsible for gathering evidences about the security

threats or intrusions.

• Database box (d-box for short): is responsible for saving the gathered evidences. It may

also apply some preprocessing on these evidences so as to, e.g., normalize them in a common

formate.

• Analysis box (a-box for short): is the core of the Ids that analyses and correlates the

gathered evidences in order to detect the intrusions.

• Response box (r-box for short): is concerned with the possible reactions/responses that

are taken upon the detection of an intrusion (e.g., isolating the attacker, alerting).

Many Idss have been proposed for infrastructure-based networks. However, such Idss cannot be

directly used in Manets because of the Manet ’s specific features, e.g., the lack of fixed infras-

tructure, the limited resources, and the dynamic topology [21, 22]. Therefore, new approaches

need to be developed for Manet. In the literature, the works that concern the Ids for Manets

can be categorized into two large disciplines: design of the architecture of Ids, and detection

mechanisms. However, some works, but few of them, handle other issues such as evidences gath-

ering, and countermeasure strategies. In general, the existing architectures of Ids in Manet

fall under three classes: stand-alone, cooperative and distributed, and hierarchical [23]. Regard-

ing the detection mechanisms used in the Ids for Manet, we can find the three well-known

categories: (i) anomaly detection which searches for the deviations from the normal expected

behavior of the node, and further considers them as attacks, (ii) signature-based (or misuse)

detection which compares the observed and/or gathered events to scenarios of known attacks,

and thus considers any matching as an attack, and (iii) specification detection which extracts

constraints from the specifications of the, e.g., applications and protocols that are used in the

network/the hosts, and then considers any violation of these constraints as an attack. However,

looking deeply into the different detection mechanisms illustrates that a variety of techniques

derived from different sciences have been used. More precisely, the detection mechanism may use

2Security policy is a formal statement of the rules/constraints by which users/devices who are given access to

a network/system must abide [19].
3http://datatracker.ietf.org/wg/idwg/charter/
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techniques that are based on statistics, information theory, data mining, graph theory, neural

network, social engineering, or trust.

The remaining part of the chapter is covering the following topics. Section 2.2 provides an

overview about Manet; its history, domains of use, and characteristics. Section 2.3 represents

some of the reference Idss in Manet. These latter are further classified according to their

detection mechanisms. At the end of this section, the performance of the mentioned Idss is

compared in terms of detection accuracy and resources consumption.

2.2 Mobile Ad hoc Network

The Mobile Ad hoc NETwork (Manet) is originally designed for military purposes in the 70’s

and 80’s (called at that time Mobile Packet Radio Networking) [24]. The goal was to employ

a self-configuring, self-healing, and autonomous network in the battlefield - a highly dynamic

and unpredictable environment. Manet is a dynamic and infrastructure-less network that is

generally composed of limited resources and free to move arbitrarily nodes [25]. Furthermore,

they are, usually, a priori unknown to each other and can join and leave freely the network [26].

These nodes are connected by respectively bandwidth-constrained wireless links - the union of

which form a random topology. Nodes can communicate with others that are either inside or

outside their radio ranges. For the latter scenario, intermediate nodes are used to forward the

packets towards the destination.

Nowadays, applications for Manet technology are widely diverse: Manet provides commu-

nication for pollution-, emergency- and safety- applications [27, 28], vehicular communications

[29], Unmanned Aerial Vehicles (Uavs) swarms communications [30], or any other scenario that

requires self-organizing and fast-deployable communications with survivable, efficient dynamic

networking. Manet may operate in a standalone fashion, or may be used to extend the com-

munication for a larger (wireless or wired) infrastructure-based network. This independence of

the equipments encourages the use of Manet in rescue missions and after-disaster situations

where it is hard and/or costly to deploy an infrastructure-based network. Manet may further

be a non-expensive, robust alternative or extension of wired/cell-based mobile networks in pop-

ular event sites, e.g., airports or sport stadiums, wherein network traffic demand is huge [31].

Moreover, it can be used to realize a low-cost, large-scale wireless coverage in urban areas (so-

called Mesh networks) [32]. In fact, some nodes in Manet may work as gateways; they have,

in addition to Manet interface(s), interface(s) connected typically to non-Manet network(s).

Thus, the traffic generated inside Manet can reach the outside nodes that are belonging to

non-Manet networks and vice versa through these gateways. A Manet is characterized by the

following properties:

Dynamic Topology - The topology of Manet may change rapidly and randomly in an un-

predictable manner for two reasons [25]. First, nodes in Manet are free to move arbitrarily.

Second, wireless connectivity significantly varies over the time because of the nodes’ transmis-

sion power variation, or interference. This dynamic topology poses a challenge of performance

and scalability. Thus, the communication routes should be updated rapidly and accurately in

Manet.
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Infrastructure-less - Manet is an infrastructure-less network that does not rely on fixed

network equipments, e.g., radio base stations and wired/wireless routers. Indeed, the routing

functionality is incorporated into the nodes: each node (i) detects its adjacent nodes, (ii) dis-

covers the route - a route is seen as a sequence of intermediate nodes - to any destination, and

(ii) forwards the packets for other nodes.

Self-configuration - Fixed structures typically do not exist in Manet, thus nodes are au-

tonomous and have to configure themselves on-the-fly [33]. Self-configuration consists in optimiz-

ing the auto-configurable parameters inside the node [34]. Note that automatic re-configuration

is also required when predicted or unpredicted changes happen. Both, i.e., automatic configu-

ration and re-configuration should be done with minimal or no human intervention. In general,

self-configuration in Manet:

• Automatically discovers the node’s neighbors to whom communication links are set up.

This discovery is specific to the radio access technique used. Note that if a node has

more than one radio interface, then each one of those performs its own neighbors discovery

process. Furthermore, a node should have the ability to automatically announce/discover

the service(s) in the network. In [35], authors propose to have an up-to-date service

directory in the cluster-head of a hierarchically-organized Manet. Other nodes can then

simply search for the required service(s) in this directory. More advanced service discovery

and delivery protocols, e.g., Konark [36] and Allia [37], have been proposed in order to

accommodate the special characteristics of Manet. In fact, these protocols operate in

completely distributed, peer-to-peer fashion, and take into consideration device capabilities

and limitations.

• Obtains an IP address. Two approaches are proposed: stateful and stateless. A state-

ful approach consists in tracking the free and the used addresses through one or several

synchronized allocation tables, which are maintained by some nodes [38, 39]. Thus, these

nodes play the role of Dhcp server and assign free addresses to the un-configured nodes.

Whereas in a stateless approach, an un-configured node, which wants to join the net-

work, selects a random IP address and then broadcasts it to validate its usability [40]. In

principle, the first approach leads to zero address collision but requires a synchronization

between the allocation tables so as to ensure that any used address is in the allocation

table. While the second one provides more flexibility and scalability but it may lead to

address duplication [34].

To summarize, self-configuration issues still constitute an active research field for Manet [41].

Limited Resources - Most of the nodes that form a Manet (e.g., laptops, PDA, and Internet

mobile phones) are characterized by limited battery life, computing capabilities, storage size,

as well as communication capacities, bandwidth and transmission power. These limitations

constitute a critical issue; applications/protocols oriented to work in Manet should consider

the frequent occurrence of packet loss and congestion as long as the necessity to conserve the

resources. Since the node operates as, both, an end terminal and a router, optimizing packet

forwarding constitutes a cornerstone for resource conservation. This optimization is investigated
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at different layers [42], e.g., using of directional antenna [43], avoiding unnecessary transmissions

and re-transmissions [44], reducing to minimum the number of routing related messages, using

power-efficient error control schemes, and reducing the size of packets. Another factor that

impacts the design of applications/protocols is the heterogeneity, in terms of resources, of the

nodes [45]. This implies that the most powerful nodes should be charged with the roles that

consume more resources (e.g., acting as cluster-head in hierarchical Manet).

Routing - Each node operates as a router relying on a routing protocol and maintaining the

related routing table. The Internet Engineering Task Force (Ietf) Manet working group4,

standardizes the IP level routing protocol suitable for Manet. Manet working group proposes

two standard types of routing protocol:

• Reactive MANET Protocol (RMP): in this type of protocols (also called on-demand

protocol), a route is found only when it is needed. More precisely, when a source needs to

send packets to a destination node for which the source does not already have a valid route,

this latter broadcasts a route request. Once the route request reaches the destination, or an

intermediate node that has a valid route to the destination, this latter sends, in the reverse

route, a route reply. As the route reply propagates back to the source, intermediate nodes

set up forward pointers to the destination. Hence, the route from the source towards the

destination, or any intermediate node, is established. On the one hand, reactive protocols,

e.g., Aodv [46, 47], Aodvv2 [48], and Dsr [49, 50], give a reduced average of traffic

overhead as a burst of messages are generated only when a route is required. On the other

hand, they suffer from an additional transmission delay because of the lack of immediate

routes. To reduce this delay, some of these protocols propose that every node maintains a

route cache so as to avoid doing a route discovery for already known routes.

• Proactive MANET Protocol (PMP): a proactive protocol (also called table driven

or periodic protocol) is characterized by maintaining a constantly updated routing table

on each node. For this purpose, each node exchanges periodically its point of view of

the network topology with others. Henceforth, available routes in the network can be

calculated. Opposite to the reactive protocols, the proactive protocols, e.g., Olsr [51, 9],

Dsdv [52], and Tbrpf [53], guarantee instantly available routes. But, they lead, in general,

to more overhead traffic.

In order to cumulate the benefits of reactive and proactive approaches, hybrid protocols, e.g.,

Tzrp [54] and Cbrp [55], have been proposed for Manet. The basic idea is to organize the net-

work into zones or clusters. Inside the zone/cluster a proactive approach is applied, i.e., updated

routes are maintained between the nodes composing the zone/cluster. While the routes between

nodes belonging to those zones/clusters are found thanks to a reactive approach. Nowadays,

there is a large number of proposed reactive, proactive and hybrid Manet routing protocols.

However, only four of those: Aodv, Dsr, Olsr and Tbrpf are proposed for experimental Re-

quest For Comments (Rfc for short) by Ietf Manet working group. Furthermore, Aodv and

4http://datatracker.ietf.org/wg/manet/charter/
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OLSR are considered as the most mature Manet protocols whilst most of others suffer from

the lack of either updated or freely available5 implementations [41].

Security - AManet is much more vulnerable to security threats/attacks than an infrastructure-

based networks [10]. This results from three reasons. First, such a network relies on an open

radio-based medium of communication, hence the adversaries within the radio range can easily

launch the attacks [21, 42]. Second, the lack of centralized administration/security enforcement

points e.g., switches and routers, from which preventive strategies (e.g., firewalls and encryption

software) can be launched [25]. Thus, each node is vulnerable and should guarantee, by itself,

its own security [56]. Third, the dynamically reconfigurable network topology and the resource

constraints, both, complicate the development of security solutions in Manet [31].

Apart from the attacks targeting the network layer, the other attacks targeting application, link

and physical layers, are shared with infrastructure-based networks. Recall that, in Manet, the

communication between the source and destination depends on the cooperation of the inter-

mediate nodes that relay packets, therefore routing attacks have attracted significant attention

[57]. Many security schemes, e.g., authentication [58], encryption [59], access control [60], and

digital signature [61], have been proposed so as to secure ad hoc routing protocols, leading to

secure versions of Aodv and Olsr protocols, based on digital signature technique [62, 63] and

[64] respectively. However, these conventional mechanisms aim at preventing outside attacks

but they do not address the problem of compromised nodes. Moreover, new attacks emerge and

find a way to penetrate the aforementioned mechanisms [65]. Therefore, there is a need to detect

and deal with attacks. To that end, an Intrusion Detection System (IDS) is an indispensable

part of a security scheme [66].

2.3 Intrusion Detection

Intrusion Detection Systems (Ids) [67] have been proposed to constitute a second line of de-

fense [68]. Ids aims to identify “any set of actions that attempt to compromise the integrity,

confidentiality, or availability of a resource” [69]. They can operate at different layers, e.g., link,

network, application layers, and even on the security policy [70]. In Manet, the Idss that

have been initially developed for infrastructure-based network have failed because of the special

characteristics of Manet: the open medium of communication, the dynamic network topology,

the limitations of resources, and the absence of centralized administration/security enforcement

points [21, 22]. Thus, there is a need to design Idss specifically for Manet.

Most of the Idss proposed for Manet are distributed and cooperative [14]. In practice,

each node depends on locally gathered evidences or audit data, i.e., the chronological records

that describes system/network activities, so as to detect the attacks. In addition, it exchanges

information and/or alarms with other nodes in order to detect wider attacks [68, 71]. Beside

distributed and cooperative architecture, it is possible to find standalone or hierarchical Idss [23].

In standalone architecture [72, 73], each node detects individually the attacks based on

its own evidences and does not cooperate with others. Standalone Idss generally offer a modest

5A Tbrpf implementation was previously available from Stanford Research Institute (SRI), but has since then

been retracted.
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detection accuracy and address limited range of attacks [14]. On the other hand, such Idss are

suitable for the Manets where some of the nodes cannot or do not want to participate in a

cooperative detection. Here, a stand-alone Ids is installed uniquely on the powerful nodes.

Hierarchical architecture [74] has been proposed for multi-layered network infrastruc-

tures where nodes are organized into clusters. For each cluster, one node is elected as a cluster-

head according to topological, security- and/or resources-related criteria. The cluster-head is

responsible for regulating (i) the detection inside its cluster and (ii) the cooperation by exchang-

ing detection-related evidences and/or alarms, with other clusters. Although this architecture

scales, the maintenance of the clusters imposes additional challenges for the Ids.

Regardless of its architecture, an Ids performs usually three main functions: audit of the

data/evidences that are collected, attack detection, and responding [14]. Evidences are contin-

ually collected and used to find the signs of attack. The collection of evidences can be done

locally or globally ( i.e., evidences are provided by other nodes) [75]. Depending on the nature

of the attacks, evidences can include user and system call activities, communication and routing

activities, and security-related alarms [68]. In Manet, most of the Idss collects evidences by

promiscuously monitoring the wireless communications to collect evidences [74]. This method of

collection provides direct evidences (for nearby traffic) and it avoids the need to rely on evidences

from other nodes, which might lie. But, it consumes a lot of energy, and may be unreliable under

high collision rate [72].

Responding, represents the reaction that should be taken upon detecting an attack (e.g., tak-

ing countermeasures). It depends on the protocols and/or programs used, along with the type

of the attack [68]. In general, most of Ids proposes traditional responses such as broadcasting

alarms, notifying the end user, precluding the attacker from participating in packet forwarding

process, refusing to forward attacker’s packets, and reinitializing the communication channel[75].

Recently, more sophisticated response mechanism has been proposed so as to take into account

the special characteristics of Manet. For instance, authors in [57] propose a risk-aware coun-

termeasure that aims at balancing the damage, in terms of network performance, of ignoring

an attack against launching incorrectly a countermeasure. In practice, an attacker is isolated as

long as this isolation does not lead to a network partition.

The cornerstone of an Ids is the detection mechanism employed (so-called method of anal-

ysis). Classically, detection mechanisms are classified into anomaly-, misuse- (so-called also

signature-), and specification-based detection [23]. Anomaly detection reports as an intru-

sion every deviation between the standard behavior acquired during a training phase and the

current behavior of the node. This model may detect unknown attacks but it generates a high

rate of false alarms, i.e., considering a well-behaving node as an attacker. The basic challenge of

anomaly detection in Manet comes from the difficulty of building the normal behavior profiles

in such dynamic network. Misuse detection reports as intrusion any match between a series

of observed events and a predefined signature; an intrusion signature is thought as a partially

ordered sequence of events that characterizes a malicious activity. This model offers a high

accuracy but it requires that the signatures are always complete and up-to-date. Specification

detection reports as an intrusion any violation of a set of constraints on the protocols and/or

the programs used. These constraints are extracted from the specifications that describe the

correct behavior/functionalities of the protocols/programs. This model could detect unknown
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attacks while exhibiting a low rate of false alarms. However, extracting the operational con-

straints from the specifications is a time consuming task, which should be repeated for every

new (or modified) protocol and/or program. Moreover, this model cannot detect the attacks

that do not violate directly the specifications, e.g., DoS (Denial of Service) attack [76]. In the

literature, Idss for Manet use a large variety of detection mechanisms. However, the anomaly-

and specification-based detection mechanisms occupy the biggest space, while few research on

signature-based detection have been done [14].

We believe that the evaluation of an Ids should not be based hastily on its detection model

for a twofold reason. First, many Idss use a hybrid detection mechanism that belongs to more

than one detection model [75, 76]. Second, the importance of an Ids comes from its capabilities

of detecting the targeted attack(s), along with taking into account the special characteristics of

Manet (e.g., dynamic topology and limited resources). Thus, we do not follow the previous

high-level classification of the detection mechanism for presenting the most significant Idss in

Manet. We rather go deeply and describe the mathematical approach of the detection mecha-

nism used, its advantages and disadvantages, and its suitability for Manet.

2.3.1 Classification-based Detection

In classification-based detection, statistical significances are used to distinguish well-behaving

from misbehaving nodes by comparing the observed operational profile of the node (or the

network) with the normal profile(s) which are built in training phase and in the absence of attacks

[77]. Indeed, a group of features (e.g., number of advertised neighbors, delay of hello messages,

power consumption) is selected so as to describe the profile. Then, statistical properties of these

features are analyzed within a time window, and compared to their equivalents in the normal

profile. This comparison is done usually by using computational intelligence techniques (e.g.,

neural networks, data mining, Svm [78]), and aims at discovering the deviations from normal

profile. A discovered deviation confirms the occurrence of the attack.

The Ids proposed by Zhang and Lee [68, 79] is considered as a de facto standard for the idss

in Manet. It aims at detecting the attempts to falsify the routes provided by Aodv, Dsr and

Dsdv routing protocols. During the training phase, the impact of the node’s movement on the

percentage of changes in the routing table is analyzed. These changes come from the movement

(i.e., velocity, direction and position), and are provided by a Global Positioning System (Gps).

Then, during an operation phase, an actual percentage of changes differing from the predicted

one, is defined as an anomaly. In practice, each node classifies the percentage of changes in its

routing table as either predicted or unpredicted. This classification is done either by the Support

Vector Machine (Svm) Light [78], a high-dimension hyperplane-based classifier, or Ripper [80],

a rule-based classifier. An unpredicted change is then considered as an attack. If the locally

gathered evidences are not sufficient to have a certain detection result, node exchanges the

result of the local detection with its neighbors so as to deduce a global decision. Simulation-

based evaluation shows that the Svm classifier outperforms significantly Ripper. In addition,

the highest detection accuracy is obtained when the routing protocol was Dsr. Choosing a

proper time window for the analysis is a critical factor for limiting the amounts of false alarms.

Moreover, the malicious node(s) may dominate the global decision and send false accusations

and/or false praises (i.e., blackmail attack), thus this decision may not be reliable [77].
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The hierarchical Ids proposed in [81] detects blackhole and routing request flooding attacks

targeting the Aodv protocol. In practice, a Manet is organized into clusters so that the

cluster’s member with the highest residual energy and number of connections is elected as a

cluster-head. In addition, the cluster-head is periodically re-elected so as to fairly distribute

the working load. Each cluster-head searches for the abnormal behaviors of the members of its

cluster. In practice, three features are selected to characterize the normal behavior profile during

a training phase: the percentage of changes in the routing table, the propagation of the routing

packets, and the propagation of the data packets. During the operation phase, each cluster-head

monitors the cluster’s members either randomly or deterministically. The random monitoring

consists in selecting randomly a cluster member so as to transmit its own set of features to

the cluster-head. While the deterministic monitoring consists in listening to the whole traffic

generated in the cluster. A deviation, which exceeds a certain threshold, between the monitored

and the expected value of a feature is confirmed as an attack. Such deviations are identified

thanks to a one-class Support Vector Machine (1-Svm) classifier [82]; 1-Svm needs to be trained

with only normal or abnormal scenarios but not both of them.Since the nodes’ connectivity

is considered during the cluster-head election, the elected cluster-heads monitor the activities

of a large portion of network. Thus, this Ids offers a high detection accuracy. However, the

cluster-heads may become failure points. Furthermore, a malicious node may foil the detection

process by transmitting to its cluster-head false features.

In [83], a blackhole attack targeting the Aodv protocol is detected by investigating some

features like the number of route requests/replies, or the average difference of sequence numbers

in the routing messages6. If the distance between an actual value of a feature and the average

value (as recorded during the training) exceeds a given threshold, then an intrusion is reported.

This work distinguishes itself by continuous training in which the training data is updated in

every given time interval. In practice, if the data collected in the time interval δi is considered as

normal, i.e., the average difference of sequence numbers does not exceed the given threshold, then

the corresponding data will be used as training data in the next time interval δi+1. Otherwise,

it is discarded and the former training data is maintained. Thus, the training data is adaptively

defined according to the changing network environment. However, this training method may

constitute a point of failure. More precisely, if an attack is not detected within a time interval,

then the collected data for a malicious activity will be used as training data for the following

intervals.

In [73], the authors propose a two-stages application-based detection. In the first stage, Max-

ima Detection System (Mds for short) is used to detect (almost) immediately a potential attack.

This rapid detection of an attack helps in defining a threshold to calibrate the Cross-Correlation

Detection System (Ccds for short) during the second detection stage. Mds analyzes the peaks of

the Probability Density Function (Pdf) [84], which is statistically generated from the observed

interactions between the nodes at the application layer. By confronting the discovered peaks of

the Pdf to a normal profile that is created offline, Mds identifies rapidly the outlying peaks

that characterize the suspicious interactions. If a suspicious interaction is identified, Ccds is

activated and uses the detected suspicious interaction to calibrate a threshold. Ccds calculates

then the average of the application-related interactions of each node and compares those with

6Largely increased sequence numbers are known as a sign of blackhole attack
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the threshold. The nodes which have their average interactions exceeding the threshold are con-

sidered as misbehaving. This combination of two detection techniques increases the accuracy

of detection. In addition, this two-stages detection method triggers an increase in the memory

usage equals to only 7.4MB. However, the proposed Ids is prone to false positive, especially

when nodes are mobile because the threshold of the Ccds is calibrated only once during the

startup.

In [85], a more sophisticated Cross-Features Analysis (Cfa) is applied to detect both blackhole

and grayhole attacks on the Aodv and Dsr protocols. These features including the reachability

between two nodes and the number of delivered packets, are analyzed within a time windows.

This analysis attempts to quantify the relation existing between one feature fi and the remaining

features, i.e., f1, · · · , fi−1, fi+1, · · · , fk (with k + 1 defining the number of features analyzed).

During the operation phase, the probability of matching between the predicted feature fi and

the observed feature f ′
i , which is established based on f ′

1, · · · , f ′
i−1, f

′
i+1, · · · , f ′

k, is calculated

by a decision tree classifier named C4.5 [86]. If this matching probability is less than a given

threshold, then an intrusion is confirmed. The used threshold is the lower matching probability

that was observed during the training phase. Simulation-based evaluations show that the C4.5

classifier outperforms, in terms of recognizing abnormal behaviors from normal behaviors, other

classifiers such as Ripper. However, the size of the sampling data, on which the correlation

between the features is calculated, may impact largely the detection accuracy. Moreover, the

detection accuracy of this Ids is not provided. Similarly, the Ids proposed in [87] applies the

Cfa and the C4.5 so as to detect flooding and blackhole attacks targeting Olsr and Aodv

protocols. Herein, traffic-related features (e.g., number of received/transferred packets) and

Olsr- or Aodv-related features (e.g., Mpr updates for the former and route discovery for the

latter) are used for the classification. This Ids distinguishes itself by proposing to aggregate the

detection result at several hierarchical levels. More precisely, a graph-based clustering scheme is

used to organize the Manet into 3 hierarchical levels: nodes, cluster-heads, and managers. Each

node depends on a cross-features analysis (Cfa) technique along with the C4.5 classifier so as

to detect the deviation between an expected and an actual value of a feature. Then, it sends the

anomaly index, i.e., the average of the classification result of the entire monitored features, to

its cluster-head. The anomaly index is further averaged at 2 levels: at the cluster-heads, which

average anomaly indexes from neighboring nodes, and at the managers, which average anomaly

indexes from the cluster-heads. Simulation-based evaluation shows that the detection accuracy

increases along with moving up in the hierarchy. In addition, this Ids performs better on Aodv

than onOlsr since the selected attacks increasesAodv overhead, and thus abnormality becomes

more noticeable. However, a malicious node may foil the hierarchical aggregation of detection

results by sending false accusations/praises.

A cooperative Ids that uses three parallel detection engines working on MAC, routing, and

application layers is proposed in [88]. The use of multi-layers detection is motivated by the fact

that the attacks which target upper-layer protocols can be seen as legitimate events at lower-

layers, and vice versa. The Mac-layer detection engine employs a Cross-Features Analysis (Cfa)

technique like the one used in [85]. In practice, Näıve Bayes [89], a probabilistic classifier, is

used to calculate Pi(fi|f1, f2, · · · , fi−1, fi+1, · · · , fk) (with k+1 defining the number of features

analyzed), which defines the probability that a classification feature takes the value fi when
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the other features have the values (f1, f2, · · · , fi−1, fi+1, · · · , fk). During the operation phase,

if the difference between the actual and the expected probability of a feature fi exceeds a

certain threshold, then an anomaly is confirmed. The routing layer detection engine depends

on the Markov chains (state transitions) to discover the anomalies in the calculated routes.

More precisely, let s1 represents the state when the number of hop counts takes the value V 1,

while s2 represents the state when the number of routes takes the value V 2. The probability

of the transition from the state s1 to the state s2 is calculated as P (s1, s2) = N(s1, s2)/N(s1).

Note that N(s1, s2) is the number of times where, both, s1 and s2 have taken place. While

N(s1) is the number of times where s1 has taken place, regardless of other states. During the

training phase, the probability of the transition (s1, s2) is estimated. During the operation

phase, if the difference between the calculated and the expected probability (i.e., the one that

is estimated during the training phase) for the transition (s1, s2) exceeds a certain threshold,

an anomaly is confirmed. In the application layer, an association rule mining technique [90]

detects abnormal frequencies of features related to the source node, the destination node, and the

received packets. Nevertheless, there is a lack of details about how the aforementioned techniques

are used by the detector. In every node, the results of the three detection engines are combined.

In addition, the results received from neighbors are also combined with the local detection result.

Again, there is no sufficient details about the method of exchanging and combining the results.

Simulation-based evaluation shows that combining the results of the detection engines at the

different layers leads to an increase in the detection accuracy, up to 20%. However, deploying all

these detection engines increases largely the processing overhead. In addition, exchanging the

detection results between the neighbors constitutes a novel vulnerability that can be exploited

to launch a blackmail attack.

A modified Markov chain-based Ids is proposed in [91] so as to detect the attacks that

disrupt the routes established by the Dsr protocol. A malicious activity is detected when

there is an important change in the routing table. More precisely, two routing features are

monitored so as to detect possible abnormal values. The first is the percentage of changes in

the number of routes (Pcr) that represents the added/deleted routes within a certain time

window. The second is the percentage of changes in the number of hops (Pch) which indicates

the change in the sum of hops of all the routes within a given time window. Based on the

previous w consecutive values of the feature (i.e., Pcr or Pch), also called the from state,

the next value of this feature, called to state, can be predicted. If there is a large difference

between the actual and the predicted to state, an attack is detected. In practice, the Vector

Quantization (Vq)[92], a lossy data compression method based on the principle of block coding,

is used to categorize the values of a feature into symbols. The feature value whose probability

is under a certain threshold is categorized as a “rare” symbol. Thus, the noise and unnecessary

states during the construction of the Markov chain are avoided. A Markov chain is constructed

such that the from state represents the previous w ordered symbols of a categorized feature

Xi, Xi+1, · · · , Xi+w−1. Whereas to state represents the next value Xi+w (w is a parameter that

characterizes the Markov chain). By sliding a window of size w through the routing traces,

the probability of the transition from a state s1 to a state s2 is calculated as P (s1, s2) =

N(s1, s2)/N(s1). Note that N(s1, s2) is the number of times where the transition from s1, which

refers to from state, to s2, which refers to to state, has taken place. While N(s1) is the number
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of times when s1 represents the from state, i.e., s1 is the initial state of a transition. If the

difference in the probability of a transition (s1, s2) between training and operation phases exceeds

a preset threshold, attack occurrence is confirmed and neighbors are alerted. Simulation-based

evaluation shows that the classifier constructed using Pch performs better than the classifier

constructed using Pcr. It also proves that this Ids is able to detect more than 90% of routing

disruption attacks when the nodes’ mobility is relatively low. However, the detection accuracy

and the rate of false alarms are negatively affected by the mobility. This results from two

reasons. First, in a high mobility scenario, a node can notice only few changes in the routing

table before changing its location. Second, the changes in the routing table are rapid and

inconsistent when the nodes are highly mobile. Furthermore, the exchange of alerts between

the neighbors constitutes a new vulnerability that can be exploited by a malicious node so as to

launch blackmail attack.

This previous Markov chain-based Ids has been enhanced later on [93] by taking into account

the mobility impact and by adjusting the detection correspondingly. Since the speed of the nodes

does not reflectManet dynamics accurately, Link Change Rate (Lcr) is used as a unified metric

that captures the common features of different mobility models. Lcr represents the number of

changed neighbors within a time interval. For each mobility model, the corresponding Lcr is

computed as the average of nodes Lcrs. During the training phase, a normal profile is built

for each Lcr. This profile includes a detection threshold and a probability transition matrix for

the Markov chain. Here, the Markov chain is built only for one routing feature: the percentage

of changes in the number of hops (Pch). During operation phase, link change information is

collected and averaged periodically so as to have the corresponding Lcr. Then, the normal

profile whose Lcr is the closest to the calculated one is selected to be used during the next time

interval. Any difference between the expected and the actual probability of a transition in the

Markov chain, which exceeds the threshold defined in the selected normal profile, is confirmed

to be an attack. Simulation-based evaluation proves that the enhanced Ids has a high detection

rate similarly to the original Ids defined in [91]. In addition, there is a significant reduction of

the negative impact of the mobility on the detection rate and the rate of false alarms. However, a

malicious node may launch an attack without being detected in the presence of high mobility [23].

The Ids proposed in [94] uses a cost-sensitive classification that aims at minimizing the

expected cost, in terms of network connectivity, rather than the probability of misclassification.

This association between the classification and the cost is motivated by the fact that raising a

false alarm has a significantly lower cost than allowing an undetected intrusion. Predefined fixed

costs of, both, false positive, i.e., classifying a normal behavior as abnormal, and false negative,

i.e., classifying an abnormal behavior as normal, are specified for 4 types of attacks: flooding

network, interrupting the active routes, dropping route error notification, and blackhole attacks.

The detection rate and the false positive rate with and without cost sensitive classification are

compared for the following four classifiers: MultiLayer Perceptron (Mlp)[95], artificial neural

network classifier, Näıve Bayes [89], a probabilistic classifier, Linear classifier [96] that applies

linear combination of feature values, and Gaussian Mixture Model (Gmm) [97], a probabilistic

classifier. Another contribution of this work includes the utilization of cross-validation [98],

an unbiased hyper-parameter selection method that trains the classifier relying on a sequential

partition rather than a random one. In practice, the training data is sequentially divided into n
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parts so as to quantify the relation existing between the selected features. At the i-th iteration,

the part i is used to validate the performance of the classifier while the remaining parts are used

in the training. At the end, the obtained measurements are averaged. With this method, the

classification features are the number of received/forwarded route requests/replies, the number

of received/forwarded route error, the number of received/forwarded data packets, the number

of neighbors, and the percentage of changes in route entries and hop counts in Aodv-based

Manet. Broadly speaking, experiments show that including cost dimension in the classification,

surprisingly, minimizes not only the expected cost but also it decreases the misclassification

for most classifiers. However, the proposed sequential cross-validation method offers a modest

improvement on the accuracy of classification in some cases. Furthermore, this Ids considers

that a false alarm is significantly less costly than allowing an undetected intrusion. But, this

consideration is not proved in all the cases [57].

The work proposed in [99] distinguishes itself from aforementioned Idss by: (i) considering

the power consumption as a classification feature, and (ii) comparing the operational power

consumption with a set of power consumption profiles induced by known attacks rather than

attack-free profile. The basic idea in this standalone Ids is to monitor power consumption in

every node’s battery. This consumption is further compared with the predefined power consump-

tion patterns induced by known attacks, using smart battery technology. In an experimental

implementation, this Ids was able to detect up to 99% of the attacks, provided that no more

than one type of attacks takes place at the same time. It also detected multiple attacks, but

only when other activities were absent, i.e., the node is idle. Since this Ids monitors the local

hardware operation, it overrides the problem of manipulating the audit data/evidences. As a

result, it is more reliable than other Idss. However, it detects only attacks which cause irregular

power consumption and only when the nodes are idle, something that rarely occurs in Manet.

An energy-aware, neural network-based detection approach [100] searches for abnormal in-

ternal links delays so as to detect wormhole and Byzantine attacks targeting Aodv protocol.

In practice, one node is periodically elected, according to an energy-related criteria, so as to be

a root in Manet. The root identifies a spatial-time logical network topology model and esti-

mates the corresponding link delay distribution. The link delay distribution is estimated with

Network Tomography (Nt) [101], a limited-overhead technique for inferring information about

the network internal link performance based on end-to-end measurements. If the inferred link

delay distribution deviates from the expected distribution, which is defined in a training phase,

then an attack is detected.

To detect such deviation, Self-organizing Map (Som) [102], a neural network-based classifier,

is used. Simulation-based evaluation shows that the proposed Ids has a high detection rate

with a limited number of false positive. However, mobility affects negatively the detection

accuracy. Moreover, the computation overhead increases along with the network size and traffic

throughput. Since link performance data is exchanged between the nodes, a malicious node can

exploit these communications and launch a blackmail attack.

Social network analysis methods are employed to detect dropping, blackhole, sleep depriva-

tion7, and TCP SYN flooding attacks in Manet [71]. In practice, every node collects the control

7 The attacker tells other nodes that the victim node has the best routes towards all the destinations and

hence, all the traffic is oriented towards the victim. Consequently, the resources of the victim are exhausted.
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and data traffic from its ego network. An ego network is made of the node itself (ego) together

with the nodes which are connected to it (so-called alters) and all the links among those alters.

The detection engine then searches for abnormal values for social related metrics such as central-

ity measurements [103]. These measurements reflect the relative importance, in terms of packet

sending/relaying or packets overhearing, of every alter in an ego network. Similar to aforemen-

tioned works, abnormality is detected thanks to some normal profiles which are built during

an attack-free training phase. Nevertheless, the required training phase is relatively long. This

social-based detection engine creates less computational complexity compared to conventional

classification engines. However, in a high mobility Manet, a node has a limited time to create

social relations with neighbors. Hence there is maybe not enough information to realize social

analysis. Consequently, the detection accuracy decreases. Furthermore, since a malicious node

may either transmit false audit data or avoid transmitting any of them, the detection process

may be hindered or mis-leaded.

A summary of the aforementioned classification-based Idss is presented in Table (2.1). Ex-

cept [99], these Idss identify a malicious action any deviation between the predicted and the

actual value of selected feature(s). In general, their performance depends on:

• the selection of a proper set of features such that their values clearly differentiate when an

attack takes place,

• the selection of a proper classifier that categorizes accurately the observed/calculated val-

ues of a feature into the defined classes,

• training the classifier over a wide range of scenarios involving e.g., a varying mobility/den-

sity, as well as different types of attacks.

Although, most of the classification features are related to routing (e.g., percentage of changes

in route entries), other types of features (e.g., power consumption, link delay, and importance)

have been used. The classifiers are diverse: they are based on statistical, probability, rule, neural

network, data mining or even hardware techniques. Note that, C4.5 and Svm, outperforms other

classifiers. Regarding the strengths of the analyzed Idss, we can infer that: (i) the majority

exchange and/or aggregate detection results so as to increase detection accuracy, (ii) some

of theses Idss attempt to employ multiple detection stages/engines so as to enhance detection

accuracy and detect a wide range of attacks, and (iii) some of them try to minimize the processing

and communication overheads through organizing the nodes into clusters or “ego” networks. On

the other hand, we can infer that: (i) in most of the studied Idss, mobility negatively impacts the

detection accuracy, (ii) almost all of them are vulnerable to blackmail attack, (iii) the majority

of them generate extra processing and communication overheads especially in the presence of

mobility, and (iv) some of them have points of failure, e.g., root nodes or cluster-heads, that

may spoil detection process.

It is worth to mention that a large portion of the Idss in Manet are classification-based since

they are proposed to detect a wide range of attacks. However, other approaches, e.g., trust-based

Idss, are proposed to override some drawbacks of the classification approach.
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Table 2.1: Classification-based IDSs for Manet
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[79] Svm

Ripper

Routing Route falsifications - The cooperative detection enhances the local detection accuracy.

- Vulnerable to blackmail attack.

[81] 1-Svm Routing

Traffic

Blackhole

Network flooding

- Cluster-heads in a hierarchical architecture are charged of detection.

- High detection accuracy since a large portion of network activities is monitored.

- The cluster-head is a failure point and vulnerable to a blackmaile attack.

[83] Trivial difference Routing Blackhole - Training data is updated at regular time intervals.

- Dynamic training method may constitutes a failure point.

[73] Mds

Ccds

Application Injecting malformed

instructions

- A two-stage detection method offers a high detection accuracy along with limited memory

usage.

- Vulnerable to false detection decisions due to the fixed threshold of calibration.

[85] C4.5

Cfa

Routing

Traffic

Blackhole

Grayhole

- C4.5 outperforms, in terms of abnormality recognizing, other classifiers.

- The size of sampling window affects detection accuracy.

[87] C4.5

Cfa

Routing Blackhole - Hierarchical combining of anomaly indexes enhances detection accuracy.

- Vulnerable to blackmail attack.

[88] Cfa

Näıve Bayes

Markov chains

Mac

Routing

Application

- Multi-layer detection enables detecting more kinds of attacks.

- High consumption of resources.

- Vulnerable to blackmail attack.

[91] Markov chains Routing Route Disruption - High detection accuracy only with moderate mobility.

- Vulnerable to blackmail attack.

[93] Markov chains Routing Route Disruption - Link Change Rate is used as a unified metric of mobility.

- Reducing the negative affects of mobility on the detection accuracy.

[94] Näıve Bayes Routing Blackhole

Forging packet

Flooding network

- Including the cost dimension in the classification increases network connectivity and de-

crease the misclassification.

- Sequential cross-validation method offers a modest improvement on the detection accuracy.

[99] Smart battery Power Flooding network - Comparing power consumption with the consumption profiles of known attacks.

- Invulnerable to manipulated evidences.

- A node should be idle so as to detect the attacks who cause irregular power consumption.

[100] Som Link delay Byzantine

Wormhole

- The used neural network detects abnormal link delay with a high detection accuracy.

- Mobility and network size affects negatively the detection accuracy.

- Vulnerable to blackmail attack.

[71] Social analysis Importance Dropping packets

Sleep deprivation

Network Flooding

- Incurring less computational complexity compared to conventional classification engines.

- Mobility affects negatively detection accuracy.

- Vulnerable to blackmail attack.
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2.3.2 Trust-based Detection

Trust-based detection attempts to define to which extend a node that cooperates and/or provides

evidences should be trusted. Based on the answer, the node takes a decision about accepting

or refusing to cooperate with others. Meanwhile, answering this question requires to have a

trust system that entails two main activities: the establishment of trust relationships and the

dynamic update of these existing relationships. In general, each node monitors and examines

the behavior of the other nodes so as to establish trust relationships. In addition, the reputation

of a node (i.e., the opinion that other nodes have about it) may also be an important factor to

determine whether this node is trustful or not.

Among the first trust-based Idss in Manet Watchdog and Pathrater [72], that works on top

of Dsr protocol, are of prime interest. Watchdog aims at detecting misbehaving nodes that drop

the packets while Pathrater combines the knowledge of misbehaving nodes with link reliability

data to choose the most reliable route. In practice, when a node forwards a packet to a neighbor,

it keeps a copy of the forwarded packet in a buffer and promiscuously listens to the transmission

of this neighbor. If this latter forwards, in a certain time, a packet that matches to the one

stored in the buffer (i.e., the neighbor correctly forwards the packet), then the node removes

the packet from the buffer. Otherwise, Watchdog increases the failure counter assigned to this

neighbor. If the failure counter exceeds a certain threshold, the neighbor node is confirmed as

misbehaving. Pathrater is installed on each node in order to rate all the other nodes. More

precisely, it increases (resp. decreases) the rating of a node each time this latter successfully

forwards (resp. drops) a packet. When it is required, the metric of a route is calculated by

averaging the ratings of the nodes in this route. Since Pathrater assigns a high negative rating

for the misbehaving nodes detected by Watchdog, a low reliability metric is assigned to the routes

that contain misbehaving node(s). Consequently, they are not selected for packets forwarding.

If the Pathrater does not find any route free of misbehaving nodes to the destination, it will send

a new route request. Simulation-based evaluation shows that using Watchdog and Pathrater on

Dsr enhances the throughput of data packets. However, they increase the Dsr overhead up to

31% in some simulation scenarios. In addition, Watchdog is not able to detect packet dropping

in the presence of collisions, limited transmission power, and selective (partial) dropping.

Confident [104] is a trust-based extension of the Dsr protocol that aims at detecting

dropping attack. It distinguishes itself from Watchdog and Pathrater by: (i) exchanging alarm

messages, and (ii) punishing the misbehaving nodes. In practice, Confident consists of 4

components: a monitor, a reputation system, a trust manager, and a path manager. Monitor

promiscuously listens to neighbors traffic and reports the malicious behaviors (e.g., dropping

packets) to the reputation system. This latter maintains a rating table that registers the number

of malicious behaviors detected for every other nodes. In practice, upon receiving a report from

the monitor, the reputation system increases the rating of the reported nodes. If the rating of

a node exceeds a certain value, the reputation system classifies this latter as misbehaving and

passes this information to the path manager. Consequently, the path manager punishes the

misbehaving node by removing the routes that contains this latter. Furthermore, it refuses to

forward the packets generated by the misbehaving nodes. In addition, the trust manager sends

an alarm message to report the misbehaving nodes that have been detected. Upon receiving this

alarm message, the monitor checks whether the source of this alarm is distrustful, and hence it
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discards the alarm. Otherwise, it will be stored in a table (so-called alarm table). When several

alarms with sufficient level of reliability report a node, then the reputation system is notified

so as to add the reported node as a misbehaving one. Fortifying Dsr with Confident reduces

up to half the rate of dropped packets due to the misbehaving nodes. However, the punishment

method proposed by Confident may be exploited to launch a DoS attack against a legitimate

node. This can be done when colluding nodes cooperate so as to report on a legitimate node,

and consequently this latter would be fired from the network.

Similarly, Core [105] proposes a trust-based extension working onDsr and aims at detecting

and isolating misbehaving nodes. However, Core distinguishes itself in three points. First, the

estimation of a node’s trust value is based on the direct observations but also on the gathering of

the opinions of others. To that end, a node interrogates its neighbors about their lists of trusted

nodes. By exchanging only the positive reports, Core avoids to be vulnerable to a DoS attack

that results from false accusations against a legitimate node. Second, more importance is given

to the past observations. Hence, sporadic misbehavior, resulting from a low battery or a topology

change, in recent observations leads to a minimal influence on the trust calculation. Third, trust

value is functional, i.e., a trust value is attributed for each function (e.g., route discovery, packet

forwarding). Thus, the global trust value assigned to a node is a combination of its functional

trust values. Finally, when a node receives a request to cooperate, e.g., forwarding a packet,

the request is rejected if its source has a negative trust value. Even though Core solves the

problem of false accusations, it is vulnerable to false praises that enable the colluding nodes

to enhance their reputations. Moreover, giving more importance for past observations makes

Core vulnerable to the intoxication that takes place when: (i) a legitimate node is compromised

and starts misbehaving, or (ii) a misbehaving node tries to gain the trust of others by correctly

cooperating for a moment before it starts misbehaving.

In Ocean [106], a node relies only on its direct observations during trust establishment, and

thus the false accusations and/or praises are avoided. Ocean aims at detecting misleading and

selfish nodes in Dsr protocol. A misleading node is defined as the one that participates in route

discovery operation but does not forward the packets for others. The selfish node is the one that

does not participate neither in route discovery nor in forwarding packets for others. In order to

detect misleading nodes, Ocean follows a similar mechanisms to the one used in Confident.

More precisely, when forwarding a packet to a neighbor, the node buffers the packet checksum. If

the neighbors does not attempt to forward this packet within a certain time, the node decreases

the rating of this neighbor. Otherwise, the rating of this latter is increased. In both cases, the

checksum is removed from the buffer. Once the rating of a node falls below a certain threshold,

it is added to the so-called faulty list. A route is rated bad if the next hop in this route belongs

to the faulty list. A node that broadcasts/re-broadcasts a Route Request Message (Rreq) on

Dsr appends its faulty list to this message so as to specify the nodes to be avoided in the future

routes. Upon receiving a packet from a misleading node, the node can reject this packet. In order

to detect the selfish nodes, Ocean proposes that each node maintains a counter for every other

nodes. The counter assigned to a node is increased every time this latter forwards a packet and

vice versa. When the counter of a node falls below a certain threshold, then it will be classified

as selfish and thus, its packets will not be forwarded. Compared to the approaches where alarm

(or positive rating) messages are exchanged between the nodes, Ocean operates well in term

24



ieje f23ZY5K12 l434h3K12

of network throughput. However, it does not punish the misbehaving and/or selfish nodes.

In addition, when a node refuses to forward packets originated by a misleading/selfish node,

neighbors of this node may consider this action as misbehaving since nodes do not exchange

alarm messages.

The Ids proposed in [107] aims at detecting blackhole attack targeting the Aodv protocol.

In practice, several nodes are elected to work as monitors. They sniff the Aodv route request

(Rreq) and route replay (Rrep). It is supposed that the monitors are uncompromisable and

cover all the nodes in the network. A monitor node maintains information about every route

request/reply flow, i.e., source, destination, sequence number and the intermediate nodes that

have broadcasted the related Rreq messages. If a node sends a Rrep message without being

neither the destination nor one of the intermediates that have participated in broadcasting the

corresponding Rreq, then the suspicion value assigned to this node is increased. When the

suspicion value of a node exceeds a certain threshold, it will be confirmed that this node is an

attacker and a blocking message will be broadcasted so as to ask other nodes to cooperatively

isolate the attacker. Upon receiving a blocking message, a node increases the suspicion value

of the node(s) advertised in this message. Simulation-based evaluations prove that this simple

detection mechanism is able to greatly reduce the number of dropped packets due to blackhole

attack, especially when there is a sufficient amount of monitors. Moreover, it offers a high

detection rate along with a limited number of false alarms. However, it is oriented towards a

very specific implementation of blackhole attack and does not take into account other scenarios

(e.g., increasing maliciously the sequence number of a Rrep message before forwarding it). In

addition, a malicious node may launch a blackmail attack by tampering or forging blocking

messages.

The Ids proposed in [108] aims at detecting blackhole and gray-hole8 attacks targeting the

Olsr protocol. Indeed, a source validates the transmission path towards a destination by sending

periodically a validation message, called Pvm, to the destination. If this latter acknowledges this

message, then all the nodes composing the path are considered as well-behaving. Otherwise, the

number of failed validations is increased. If the number of failed validations exceeds a certain

value, then the source of the corresponding path activates an attack search which consists in

sending an Attacker Message Finder (Amf) that should be acknowledged by each node along

the path. The acknowledgment of Amf includes the hop count and the next node towards

the destination. Thus, the source will be able to determine at which intermediate along the

path the packets were dropped. Consequently, the misbehaving intermediate is added to a

blacklist. For the case where all the intermediates have acknowledged the Amf messages, i.e.,

the attacker drops only the data packets (Pvm), the source sends successively a Pvm message to

every intermediate. If one of these intermediates failed to acknowledge the corresponding Pvm

message within a specific time, it will be considered as an attacker and added to the blacklist.

The attacker is eliminated from the routing table as long as it exists in the blacklist. Furthermore,

its packets will be rejected. A node exchanges with its neighbors information about a detected

attacker by sending an Attack Information Message (Aim) with initial rate equals to 1. Upon

receiving an Aim message, if the rating of this message is more than a certain threshold then,

the received node adds, if not existing, the mentioned attacker into its blacklist and forwards

8 This attack refers to packets selectively dropping.
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this Aim messages to neighbors. Otherwise, the received node verifies whether the mentioned

attacker is really a misbehaving node by sending a Pvm message to the attacker. If there is

no returned acknowledge within a specific time, the node adds the attacker into its blacklist

and relays the Aim messages after increasing its rating. Otherwise, the mentioned attacker will

be deleted from the blacklist and the Aim message is relayed with a rating equal to −1. The

evaluation of this Ids shows that the overhead generated due to the detection-related messages

constitutes, at maximum, 12% of Olsr traffic. It is also worth to mention that this Ids is

vulnerable to blackmail attack where a malicious node can accuse a legitimate node through an

Aim message with a high rating. Thus, the accused node is discarded as its packets are rejected

by every node that has received the false Aim message.

The voting-based Ids proposed in [109] aims at detecting dropped or maliciously modified

packets by setting traps for the attackers. In practice, the nodes are grouped into either cliques

or clusters. In a clique, each pair of nodes are within the radio range of each other. While in

the cluster, there is, at minimum, one node that has all other members of the cluster in its radio

range. In each cluster or clique, a monitoring node is elected using various schemes. It is assumed

that a monitor can never be malicious, and is rotated periodically in order to prevent unfair

use of the resources and battery depletion. When a monitor receives a suspicious or modified

message from a node in its cluster/clique, it activates the detection process. Indeed, the monitor

broadcasts (resp. unicasts) a monitoring message to all the nodes in its cluster (resp. clique). It

is worth to mention that the monitoring message should look like any regular message, so that

no node will suspect it. Upon receiving the monitoring message, a node should forward this

message to its cluster/clique members. If any of the cluster/clique member receives a modified

monitoring message (or no message at all), it marks the corresponding node that transmitted the

modified message (or did not transmit anything) as suspicious. After that, the monitor initiates

a voting and asks its cluster/clique members to notify which nodes they believe being suspicious.

If the votes against a node exceeds a certain threshold, then the monitor confirms this latter as

malicious. The performance of this detection scheme is evaluated in a simulated Manet working

with the Aodv routing protocol. Since there is no use for intensive operation and the only traffic

exchanged is monitoring and voting messages, low processing and communication overhead is

generated. However, packet loss, due to congestions or nodes mobility, increases substantially

the ratio of false alarms. Besides, in case of an attack against the monitor or monitor failure, the

detection process will be disabled. Furthermore, the voting process is vulnerable to blackmail

attack that results in accusing (resp. praising) a legitimate (resp. a colluding) node.

[75] proposes a friend-assisted, hybrid (i.e., anomaly and misuse), and two-tier (i.e., local and

global) Ids wherein real world friendships are used to filter collected evidences. The first tier

employs only locally collected audit data and evidences in a signature-based detection engine. If

suspicious activity is detected without being able to accurately determine a specific attack, an

anomaly detection engine (also located in the first tier) is activated. However, if both engines in

the first tier are not able to confirm whether the detected suspicion is an attack or not, the second

tier which is a collaborative friend detection mechanism will be triggered. In the second tier, a

node requests its neighbors’ opinions regarding the detected suspicion. An interrogated neighbor

uses its proper local audit data and evidences to determine how it analyzes the suspicious activity,

i.e., malicious, good, or neutral. Having collected the opinions, the node takes the decision and

26



ieje f23ZY5K12 l434h3K12

notifies the participating nodes about the voting result. In order to protect the voting operation

from colluding blackmail attackers which are malicious nodes that send false accusations and/or

false praises, only the opinions of trustful nodes are considered. The trust relationships between

the nodes are initially based on the friendship of bearer in the real world. Later, these direct trust

relationships are exchanged between friends to create a new set of trust friendships. Simulation-

based evaluation, wherein dense Manets (e.g., university campus and city) are considered,

proves that when a friendships-based voting is used in place of a general voting, detection is less

susceptible to blackmail attack. However, network density, number of initial friendships, and

the age of the network are 3 factors that can largely impact the performance of this Ids. For

instance, the rate of false alarms and the detection accuracy are negatively affected by the lack

of friendships among the nodes. Since the aim of this work is to present the role of friendships

in improving the global detection, no details about the used anomaly and misuse detection are

offered.

A summary of the aforementioned trust-based Idss is presented in Table (2.2). They all

depend on monitoring the nodes’ behavior so as to build trust relationships in the network. In

practice, a rating is assigned to every node, and is increased (resp. decreased) each time the

corresponding node well behaves (resp. misbehaves). In addition to direct monitoring, some

of them employ other indicators during trust estimation such as the real world friendships and

the negative/positive ratings coming from the network. Regarding the strengths of the analyzed

Idss, we can infer that: (i) the majority cause a low processing overhead since they use simple

algorithms during trust estimation, (ii) all of those Idss do not require a training phase or

predefinition of the attacks, and (iii) mobility has limited effects on the majority of those Idss.

On the other hand, regarding the weaknesses, we can infer that: (i) the majority addresses only

dropping attack, (ii) almost all of those Idss are vulnerable to blackmail attack during voting or

alert exchange operations, (iii) some of those Idss lead to non-trivial increase in traffic overhead,

and (iv) network density and/or initial trust relationships affect the detection accuracy in some

of those Idss.

2.3.3 Automata-based Detection

Finite state machine (Fsm) or automata is used to model the correct behavior of nodes support-

ing ad hoc routing protocols. A non-expected transition between two states refers to a violation

of the routing protocol specification that may occur due to an attack.

In [1], a detection mechanism based on finite state machine is proposed for detecting link spoof-

ing, man-in-the-middle, and deny of service attacks targeting Olsr protocol. Indeed, the normal

processing of Olsr control messages is modeled in a Fsm (Figure 2.1): When a node receives a

hello message it updates its neighbor and Mpr sets. Upon receiving a Tc message, the node (i)

updates the topology and routing table and (ii) forwards the received Tc message if the node is

selected as a Mpr. In addition, the node (resp. the Mpr) should periodically broadcast hello

(resp. Tc) message. This Fsm is further used to extract the following constraints:

1. The neighboring relation must be reciprocal (e.g., ifA’s hello messages listsB as a neighbor,

then B’s hello messages must list A as a neighbor).

2. The Mprs of a node A should reach all the 2-hop neighbors of this latter.
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[72] Watchdog

Pathrater

Local Dropping packets - Enhancing data traffic throughput.

- Increasing the traffic overhead.

- Inefficient against the selective dropping or in the presence of

collisions.

[104] Watchdog

Path manager

Exchange of misbehaving list

Local

Global

Misbehaving - Reducing the rate of dropped packets due to misbehaving nodes.

- Isolating misbehaving nodes.

- Vulnerable to false accusations.

[105] Monitoring

Exchange of trustful list

Local

Global

Misbehaving - Functional estimation of trust so that past evidences are the

most relevances.

- Invulnerable to false accusations.

- Isolating misbehaving nodes.

- Vulnerable to false praises.

[106] Watchdog

Route Ranker

Local Misleading

Selfishness

- Invulnerable to blackmail attack since it uses only local observa-

tions.

- Vulnerable to false positive since no alarm message is exchanged.

[107] Watchdog

Exchange of misbehaving list

Local

Global

Blackhole - Providing a high detection accuracy.

- Reducing significantly packet loss rates.

- Vulnerable to blackmail attack.

[108] Verification messages

Exchange of misbehaving list

Local

Global

Blackhole

Grayhole

- Imposing limited resources consumption.

- Isolating misbehaving nodes.

- Vulnerable to blackmail attack.

[109] Monitoring

Voting

Local

Global

Dropping packets

Tampering packets

- Hierarchical combining of anomaly indexes enhances detection

accuracy.

- Voting mechanism is vulnerable to blackmail attack.

[75] Real world friendships

Voting

Local

Global

Route falsifications - Two-tires, hybrid detection increases detection accuracy.

- Invulnerable to blackmail attack since voting is restricted within

friend nodes.

- Limited initial friendships impacts negatively detection accuracy.
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3. If A finds itself advertised as a Mpr selector in a Tc message generated by B, then A

should have been selected B as a Mpr.

4. A Mpr must transmit periodically Tc messages and forward others’ Tc messages without

modifications.

A centralized detector analyses the hello and the Tc messages that are generated or forwarded

by each node so as to detect the violations of these properties. A violation should last over a

period of time9 before considering it as an attack. This waiting is necessary to prevent false

alarms resulting from temporary violations that arrive when, for example, network topology

changes. Simulation-based evaluation shows that this Ids is able to detect all violations of the

aforementioned constraints. Moreover, ignoring temporary violations reduces largely the rate

of false positive in some scenarios of mobility and traffic. However, the centralized detection

constitutes one failure point. Moreover, forwarding routing traffic to be processed in a central

point may expose it to falsifications along with increasing the traffic overhead.

Similar approach is proposed in [2] so as to detect malicious modifications of Aodv routing

messages. Herein, distributed sensors are used to sniff and group the routing messages (i.e., route

request (Rreq) and route replay (Rrep) messages) per request-reply flow so as to predict the

forwarding path. This prediction is done with a Fsm (Figure 2.2) that models route discovery

flow: If the source needs to find a route towards the destination, it broadcasts a Rreq message

(i.e., a transition from Source state to Rreq Forwarding state takes place) with a new sequence

number. When a Rrep message is detected then there is a transition from Rreq Forwarding

state to Rrep Forwarding state. Upon the arrival of the Rrep message to the source, the route

is set up and the flow returns to the first state. If the sequence number and/or the hop counts are

modified improperly, then the flow goes to suspicious state and an alarm is triggered. Besides,

an attacker may drop or improperly forward the Rreq/Rrep messages. It may also improperly

modify the message header fields. Therefore, sensors keep track of the routing packets that

are related to the same request-replay flow. As Rrep message is a unicast message, a sensor

can follow it easily by looking to its source and destination IP address. But this is not the

9This period is related to the intervals of hello and Tc messages used during Olsr implementation.
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case for the Rreq message, which is a broadcast message, i.e., its destination address is always

(255.255.255.255). Therefore, a new attribute, called Previous Node (Pn), is added to the Rreq

header so as to indicate the node that previously forwarded it. Hence a sensor is able to identify

the node that drops or forwards a route request/reply via a non expected path. Unfortunately,

performance evaluation is not provided. However, the previous Fsm is used recently in [110] in

order to detect blackhole and packet dropping attacks targeting Aodv. Here, simulation-based

evaluation shows that up to 93% of attacks are detected in some scenarios. Moreover, there is

a significant enhancement in the packet delivery ratio, but, colluding nodes affects badly the

detection accuracy. In addition, if a malicious node is not included in any request/reply flow,

then there is no possibility to be detected.

[3] introduces an intrusion detection approach that is based on Fsm and aims at detecting

route request/reply spoofing, dropping packets, impersonating identity, packets fabrication on

theDsr protocol. Indeed, a subset of nodes is randomly elected to act as monitors such that each

monitor observes the traffic of its neighbors. These monitors, which are periodically re-elected,

may exchange observation-related information so as to handle the case when a monitored node

moves from one monitor zone to another. To detect the attacks, monitors employ Fsms that

model, both, the proper and the improper forwarding of data packets or route requests/replies. A

Fsm, similar to the one defined for Aodv in [2], is defined to model route discovery operations on

Dsr. Another Fsm (Figure 2.3) is defined to model packet sending process and the corresponding

attacks: malicious packet modification, impersonating, and fabrication attacks. More precisely,

when a node sends a packet (i.e., the Fsm moves from state 1 to state 2), the corresponding

monitor checks first whether the packet is an originated one (i.e., state 6). In this case, the

source address of this packet should be identical to the node which has sent the packet. If not,

the monitor triggers an alarm and alerts an impersonating attack (state Alarm3). If the packet is

not an originated but a forwarded one, i.e., the node address belongs to the list of the forwarding

nodes, then the Fsm goes to state 3. This means that the monitor does not previously see the

packet, and therefore it needs to inquire neighbor monitors about this packet (state 4). If no

other monitor confirms receiving the packet once, the corresponding monitor triggers an alarm

30



ieje f23ZY5K12 l434h3K12

�";�?� �7B� ��� ¢:? £> ¤�� <�@�"@; �B�

and alerts a fabrication attack (state Alarm4). Otherwise, other monitors) should return the

packet to the corresponding monitor (state 5). This latter then checks whether some fields of

the packet are maliciously modified. If it is the case, then the corresponding monitor triggers an

alarm and reports a spoofing modification attack (state Alarm1). Simulation-based performance

evaluation presents that this Ids offers high detection rate with a limited number of false alarms

for most of the addressed attacks. Since the monitor is the only responsible for the detection

in its zone, it may constitute a single failure point. Moreover, when a compromised monitor is

inquired, it can foil the detection process by returning incorrect answers without being detected.

Since Fsm may not be sufficient to manage all the complexity of ad hoc routing protocol, Ex-

tended Finite State Machine (Efsm) are used to specify the behavior of such protocols [76, 111].

An Efsm is similar to Fsm except that its transitions and states are described by parameters

and variables respectively. In addition, Efsm allows to put constraints on the variables of the

transitions [111].

In [76], a hybrid detection that couples statistical classification-based method with an ex-

tended Fsm-based method is proposed to detect attacks against the Aodv protocol. In practice,

Aodv routing operations are modeled using an extended finite state machine (Efsm). Invalid

state (e.g., a state with a negative hops count), incorrect transition, unexpected packet delivery,

and unexpected state variable assignments are direct violations of the Aodv specification, and

thus they are considered as attacks. Since the attacks with a temporal and a statistical nature,

e.g., flooding of data and/or routing traffic, can not be recognized as violations of the Efsm,

a machine learning classification is used to distinguish normal and abnormal events. In this

method, the classifier used is Ripper [80] which is a rule-based classifier. The classification fea-

tures employed are related to the frequencies of transitions in the Efsm. For instance, a flooding

attack is detected when the frequencies of the transitions exceeds the expected frequencies that

is estimated during a training phase. Simulation-based evaluation proves that this approach

presents a high detection rate especially for the attacks related to direct violations of the Aodv

specification. However, it is not able to detect the attacks requiring a knowledge beyond a local

node, e.g., falsification of the sequence number in a routing message.
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The intrusion detection approach proposed in [111] employs also an Efsm so as to detect

attacks against theOlsr protocol. In practice, an Efsm is defined to model the normal exchange

of messages routing between two neighbors. Then, each node traces and maps the sent and

received routing messages to compare those to the Efsm. Here, the comparison is done thanks

to the Backward Checking algorithm [112]: a passive test checks in a backward fashion whether

the final state of a flow of routing messages has been reached through one of the possible

departure states according to the Efsm. In order to clarify the type of attack that causes the

detected violation, a complementary signature-based Ids is suggested to be coupled with this

approach. Analytical evaluations show that this approach is able to detect a violation of Olsr

specification. However, it is unable to determine whether this violation is generated due to an

error in the implementation or a security attack.

Instead of using Fsm in modeling the correct scenarios of the routing operations that should

be respected, some Idss [4, 5] propose to use the Fsm in order to model the attacks signatures.

During the detection, these Idss search whether there is a match between a sequence of gathered

evidences and an attack signature, and hence the occurrence of an attack is confirmed.

Aodvstat [4] is a stateful intrusion detection approach that aims at detecting dropping,

identity spoofing, network flooding and message tampering attacks targeting the Aodv protocol.

In practice, few sensors sniff the traffic and match it against predefined Fsms. In such Fsms, the

transitions between the states are annotated with actions that, if omitted from the execution

of the corresponding attack scenario, would prevent this latter to be completely successful. For

instance, figure (2.4) represents the Fsm of the flooding attack that aims at depleting network

resources: The number of packets received from a node is maintained within a specific time
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window. If this number exceeds a certain threshold, then the sender is considered as an attacker

and a depletion alert is launched. Otherwise, the counter is reset. Similar Fsms are defined for

dropping attacks, failing to replay a route request/reply, spoofing attacks (the falsification of IP

or MAC address), tampering routing message, and increasing abnormally the sequence number of

a route reply message. Note that this last attack requires that the sensors cooperate and exchange

messages (so-called Update messages) containing details of the adjacent nodes of each sensor.

32



ieje f23ZY5K12 l434h3K12

Update messages contain a list of known IP/MAC pairs, the sequence numbers of adjacent

nodes, and information about the detected attacks. Aodvstat is evaluated in, both testbed

and simulation environments. It presents a high detection rate with a limited number of false

alarms. It further triggers a limited increase in Cpu load and memory utilization. However, a

malicious node may foil the detection through false accusations and/or forged Update messages.

Moreover, Update messages increases the traffic overhead.

Fsm is also employed to model the signature of hello message fabrication in Olsr protocol

in an agent-based Ids [5]. In practice, each node uses a Simple Network Management Protocol

(Snmp) agent so as to collect audit data from the Management Information Base (Mib). After

that, events are extracted from the collected audit data and are matched to the attack signature.

The addressed attack aims to break the link between a victim node and its neighbors, and thus

a DoS takes place. To that end, the attacker impersonates the identity of the victim and sends

a faked hello message advertising one of the victim symmetric neighbor with lost link status.

Upon receiving the fabricated message, the neighbor changes the status of its link with the

victim to “heard” and stop routing packets through the victim. Figure (2.5) represents the

signature of the aforementioned attack: The detecting node, which is in this case the victim’s
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neighbor, stays in the initial state (NHOP S0) as long as it has not received any advertisement

from the victim with a “lost” status type. Upon receiving one of such advertisement (i.e.,

event NHOP E1 is extracted from the audit data), a transition to state NHOP S1 takes

place. At state NHOP S1, if a “symmetric” or “Mpr” advertisement (event NHOP E1) is

received, i.e., link type is changed twice within one hello message interval, a transition to state

NHOP S2 takes place and an attack is confirmed. Otherwise, if only ”lost” advertisements (i.e.,

event NHOP E1) are received, the behavior is considered normal. It is worth to mention that

Stepping Stone, an attack at the application layer that aims to create a telnet connection chain

until the victim, is similarly treated in this work. However, the detection of such attack can not

be done locally, i.e., by one node, but it requires the cooperation between the nodes along the

created chain. The use of Mib, as a source of events, enables gathering events about different

types of attacks on several layers (e.g., network, system and application layers). Furthermore, it
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provides a kind of abstraction/standardization of detection-related information, which facilitates

the cooperation with other Idss or security approaches. Performance evaluation was done in a

real Manet composed of 7 non-mobile nodes and shows that the proposed Ids is able to detect

the aforementioned attacks. Nevertheless, there is no detail about the detection accuracy or

the generated overhead due to mobile agent exchange. However, these mobile agents could be

compromised, and thus they constitute a novel vulnerability.

A summery of the aforementioned Fsm-based Idss is offered in Table (2.3). They depends

on Fsm to model either (i) some/all functions of the routing protocol, or (ii) the signatures of

attacks to be detected. In the first case, an unexpected transition means that there is a violation

of the protocol specification, and thus an attack is confirmed. While in the second case, reaching

one of the final states means that all the required actions for the attack to be successful have been

achieved. Hence, the attack is confirmed. In both cases, covering all details (resp. deviations)

of the protocol (resp. the attack) by the defined Fsm(s) is a critical condition of successful

detection. Regarding the strengths of the analyzed Idss, we can infer that: (i) the majority

offer a high detection accuracy, (ii) some employs extended Fsm since it has more capacity to

cover the different details and conditions in ad hoc routing protocols, (iii) mobility has limited

effects on the majority of those Idss, (iv) some of those Idss couples the Fsm-based detection

with other approach so as to address a wide range of attacks. On the other hand, regarding

the weaknesses, we can infer that: (i) the majority address specific types of attack, (ii) most of

those Idss are vulnerable to blackmail attack. (ii) some of those Idss lead to non-trivial increase

in the traffic overhead, and (iii) some of those Idss is unable, in some cases, to define the source

or the type of the attack.

2.3.4 Rule-based Detection

In this approach, grammatical rules are defined to clarify how a routing function or a network

service should be executed. Thus, a violation of one or more rules means that some nodes

operates incorrectly due to a malicious intention or an error in the implementation. Another use

of such rules is to define signs of inconsistency in the node messages. Detecting such inconsistency

leads to the conclusion that an attack is occurring. In general, detection rules are related to

packets forwarding, packets count, and route calculation.

In [6], a malicious node, which aims at falsifying routing messages, is detected using four rules

that restrict the neighborhood relations and the Mpr selection in the Olsr protocol. Indeed,

upon receiving a hello or Tc message, the node checks the satisfaction of the following rules:

1. Neighbor relation must be reciprocal (i.e., 2 neighbors must hear the hello message sent

by each other).

2. A Mpr node must be adjacent to its Mpr selectors, i.e., the nodes that select this latter

as a Mpr.

3. A node that finds itself advertised as a Mpr selector in a Tc message must be adjacent

to the originator of this message.

4. A Tc message should be received without modifications by its originator.
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Table 2.3: FSM-based IDSs for Manet

¬  ® ¯ ° ± ² ° ³ Fsms ´ ³ ³ µ ° ¶ ¶ ° ³ · ¸ ¸ · ¹ º ¶ » µ ¼ ° ½ ¹ ¾ ¿ ¿ ° ² ¸ ¶

[1] Olsr routing operation Link spoofing

Man-in-the-Middle

DoS

- High rate of detection that is based on constraints on Olsr specifications.

- Keeping an eye on temporary violations reduces the rate of false alarms.

- Central detection constitutes one failure point and increases the traffic

overhead.

- Vulnerable to blackmail attack.

[2]

[110]

Aodv route discovery operation Message Falsification

dropping packets

Blackhole

- Enhancing packet delivery ratio along with high detection rate.

- Monitoring all the messages belonging to a route request/replay flow is a

critical condition of the detection.

- Vulnerable to blackmail attack.

[3] Dsr route discovery operation

Received data packet processing

Message tampering

Message fabrication

Spoofing identity

Dropping packets

- Offering high detection accuracy.

- Monitors constitute failure points.

- Vulnerable to blackmail attack.

[76] Efsm for Aodv routing operations Message falsification

Route fabrication

Network flooding

- Efsm- and classification-based detection, addresses a wide range of attacks.

- The absence of cooperation decreases detection accuracy in the cases where

information beyond a local node is required.

[111] Efsm for hello and Tc messages ex-

change and processing in Olsr

Link spoofing - Capacity to detect violations of Olsr specification.

- Incapable of deciding whether an attack is the cause of an violation or not.

[4] Identity spoofing attack

Network flooding attack

Dropping packet attack

Routing message falsification attack

Identity spoofing

Network flooding

Dropping packets

Message falsification

- Offering high detection accuracy along with limited increase in Cpu load

and memory usage.

- Exchanging Update message increases traffic overhead.

- Vulnerable to blackmail attack.

[5] DoS

Stepping Stone attack

Message fabrication

Telnet chain

- Offering a high level of standardization.

- Capacity to detect the addressed attacks.

- Detection-related mobile agent could be compromised and constitute new

vulnerability.
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If one or more rules are not respected then the routing table is modified to eliminate the routes

containing the malicious node(s) that has caused this disrespect. The detection ability is evalu-

ated with the link spoofing attack on hello messages over a network composed of 11 non-mobile

nodes. In this method, the link spoofing implementation falsifies the hello message with links

to both a non-adjacent and a fictive node. Thus, the attacker is guaranteed being selected as

a Mpr. Similar rules are defined in [113] to detect link spoofing attack on Tc messages. In

both works [6, 113], rules violation can be detected, but identifying the responsible is not always

guaranteed. For instance, let a node X declares, in its Tc message, B as a Mpr selector, and

B does not include X as an adjacent node in its hello message. When a node A receives, both

X’ s Tc and B ’s hello messages, A can not recognize who is the misbehaving node between X

and B.

Instead of defining rules for a correct behavior that should be respected, others propose to

define rules that, if are achieved, give indications about the occurrence of an attack. In [114], four

rules, in a conditional form (If (cond.) Then), are used to detect replaying, forging and tampering

routing message attacks targeting the Aodv protocol. Each node collects and analyses Rreq

and Rrep messages that the node can overhear within its transmission range. To that end,

each node maintains in a table (so-called extended history table (Eht)) information about the

received or overheard Rreq/Rrep messages (e.g., source IP, destination IP, sequence number,

hop count, etc.). Upon receiving or overhearing a new routing message, the node searches for

the inconsistencies between this message and the information maintained in its Eht. If an

inconsistency is detected then an attack is reported. Otherwise, the information contained in

this message will be added to the Eht. An inconsistency is confirmed when, at least, one of the

following rules takes place:

1. The same Rreq or Rrep message has been received earlier from the same node X. Thus,

X is accused of a replay attack.

2. A node X sends a Rrep even though this latter has not received the corresponding Rreq

message. Thus, X is accused of a forging attack.

3. A node X modifies the source sequence number before re-broadcasting a Rreq message.

A tampering attack is then reported.

4. A node X increases the destination sequence number before relaying a Rrep message. X

tampers the Rrep message to be in the route between the source and the destination.10.

According to simulation-based evaluations, the proposed Ids presents an acceptable detection

rate against basic attacks. However, it was less efficient against more complex attacks, e.g.,

forging Rrep messages with a high destination sequence number, especially when the number

of nodes in the network is less than 60.

In [115], a link spoofing in Olsr routing messages is detected by mistrust reasonings. Indeed,

intrinsic rules (similar to those used in [6, 113]) are derived from the Olsr specification. These

rules describe the consistency that should be available between hello and Tc messages. Inspired

from these rules, the following mistrust reasonings are derived:

10Recall that the route with the highest destination sequence number is considered as the freshest route and

hence, it is selected to relay the packets between the source and the destination.
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1. If a node X declares in its Tc message a links set that is not contained in the links set

declared in the X’s hello message, then X must be mistrusted.

2. If a node A finds itself as a Mpr selector in a Tc message of a non-neighbor or a non-Mpr

node X, then A mistrusts X.

3. If X2 is selected as a Mpr for X1, then X2 should forward the Tc messages of X1.

Otherwise, both X1 and X2 are mistrusted.

4. If X1 announces, in a hello message, X2 as a neighbor while this latter does not include

X1 as a neighbor in its hello messages, then both X1 and X2 should be mistrusted.

5. If a node X, which is selected as a Mpr, does not periodically broadcast a Tc message

declaring its Mpr selectors, then X is mistrusted by its Mpr selectors.

6. If a node X, which is selected as a Mpr, does not forward the data and routing packets

sent by its Mpr selectors, then X is mistrusted by its Mpr selectors.

7. If X1 and X2 have the same neighbors set, then they should have the same Mprs11.

Otherwise, both X1 and X2 are mistrusted.

8. If X1 and X2 have the same neighbors set and a node A selects both of them as Mprs,

then X1 and X2 should be mistrusted.

9. If theX1’s neighbors set is contained in theX2’s neighbor set, thenX1 must not be selected

as a Mpr. Otherwise, both X1 and X2 are mistrusted.

Each node continually searches for the inconsistencies in the received hello and Tc messages

by checking whether one (or more) of the aforementioned mistrust reasonings takes place.

Simulation-based evaluation proves the ability of this detection approach to detect the exis-

tence of an inconsistency in others’ routing message when an attacker sends falsified hello or Tc

messages. However, identifying the misbehaving node(s) is not always guaranteed.

The Ids defined in [74] proposes to have a hierarchical consolidation of the evidences gathered

at different network layers. In practice, network is organized in clusters at several levels so

that a cluster-head is elected according to topological-, security-, and resources-related criteria.

Each node observes the activities of its neighbors in order to accumulate link-layer, network,

and higher layers counts and statistics (e.g., number of received/forwarded packets, packets

header and payload). The observations gathered are then successively aggregated by moving

those up the hierarchy. Hence, summaries about each node behaviors are consolidated and

correlated at the cluster-head of the top level in the hierarchy. The dropping packets attack

is detected when the difference between the number of forwardable packets received by a node

and the number of forwarded packets sent from this latter exceeds a specific threshold. Mim

attack against the Aodv routing protocol is illustrated as follows: an attacker increases the

sequence number of a received route request Rreq message before forwarding it. Upon receiving

the falsified Rreq message, the destination overrides the legitimate Rreq message that has a

lower sequence number and thus, the attacker is inserted into the route between the source

11X1 and X2 may select different Mprs if the these Mprs have the same neighbors.
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and the destination. Detecting this attack is done again by using the observations related to

each node’s received/forward Rreq messages, which are flowed upward in the hierarchy. The

successive aggregation of routing information permits not only discovering the presence of a

falsified Rreq message but also specifying the source of this falsification. In order to prevent

excessive redundancy, the responsibility of the network and of the higher layers observation of

each end-to-end flow is assigned to the first and last intermediate nodes in the flow. Moreover,

several backups are maintained by the cluster-head at the highest level to avoid this latter to

be a failure point. However, the detection accuracy and the overhead generated of this Ids is

under question due to the absence of experiments. Also, a cluster-head, in lower levels, still

constitutes a failure point that, if compromised, could mislead the detection process. Moreover,

the hierarchical aggregation of observations is vulnerable to the blackmail attack.

In [116], Grammatical Evolution (Ge) is explored to detect dropping, route request flooding,

and route disruption attacks targeting the Aodv protocol. Inspired from the natural evolu-

tion, Ge is an evolutionary computation technique that aims at evolving programs written in a

Backus-Naur Form (Bnf) grammar. Bnf grammar is a formal description of a language com-

posed of several rules. In this work, Ge is used make detection programs evolving in order to

discover the ones that offer the highest detection accuracy. A detection program, i.e., a genome,

is represented by a variable-length string so that each 8 bits refers to a rule from the Bnf gram-

mar (Table 2.3.4). The features used in the grammar are mobility-related (e.g., changes in the

number of neighbors, number of recently added routes, etc.) and packets-related (e.g., number

of route sending/receiving request/replay packets, number of non forwarded data packets, etc.).

During the evolution, crossover and mutation are applied on the population, i.e., the current

programs, to create new programs. These latters are then integrated into the next generation.

In addition, the fitness for every novel program is calculated based on a training scenario. The

fitness of a program reflects its detection accuracy, and is calculated as follows: Fitness= detec-

tion rate - rate of false alarms. After 2000 generations, the program with the highest fitness,

i.e the highest detection accuracy, is chosen for each attack type. Simulation-based evaluation

shows that the chosen evolved programs present a high detection rate even in high mobility sce-

narios. However, the chosen program for dropping attack generates a high rate of false alarms

even in the scenarios without attack or mobility. In addition, the similarity between the training

scenario, on which the evolution is based, and the operational scenario is a critical condition of

a high detection accuracy.

A summary of the aforementioned rule-based Idss is provided in Table (2.5). These Idss employ

grammatical or conditional detection-rules that are significantly oriented for attacks targeting

ad hoc routing protocols. More precisely, these rules are built based on the specification of

the routing protocol, usually extracted from the Request for Comments (Rfcs). They aim at

defining either constraints on the routing and packet forwarding functions to be respected, or

signs of misbehaving nodes that violates the specification of the routing protocol. Regarding

the strengths of the aforementioned Idss, we can infer that: (i) all those Idss have the capacity

to detect a violation of the routing protocol specification, (ii) the majority are standalone Ids,

i.e., detection process does not include cooperation, in terms of evidences or alarms exchanged

between the nodes, and thus they are protected against the blackmail attack, (iii) some of those
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Table 2.4: BNF grammar used for detection rules generation

S = <code>

<code> ::= if(<cond>) raise alarm()

<cond> ::= <cond><set-op><cond> | <expr><relop><expr>

<expr> ::= <expr><op><expr> | (<expr> <op><expr>) |
<pre-op>(<expr>) | <pre-op2>(<expr>) | <var>

<op> ::= + | - | / | *
<pre-op> ::= sin | cos | log | ln | sqrt | abs | exp | ceil | floor
<pre-op2> ::= max | min | pow | percent
<rel-op> ::= < | ≤ | > | ≥ | == | !=
<set-op> ::= and | or
<var> ::= feature set

Idss address a wide range of attacks which result in inconsistencies in the routing operations,

(iv) some of those Idss aggregate hierarchically gathered routing- and packet forwarding-related

evidences, and thus the source of an inconsistency or a malicious action is identified accurately,

and (v) some of those Idss employ a genetic algorithm technique to enhance the rate of detection.

On the other hand, we can infer the next weaknesses that: (i) some of those Idss address only

specific types of attack, (ii) the majority are not able to identify accurately the source of a

malicious action or an inconsistency in the routing operations, (iii) almost all those Idss evaluate

the capacity of detection and ignore other important metrics such detection accuracy and the

generated overhead, and (iv) some of those Idss are vulnerable to blackmail attack.

2.4 Summary

In this chapter, we have provided a detailed overview about the Mobile Ad hoc NETwork

(Manet). This network is composed of wireless mobile nodes that dynamically organize them-

selves in temporary and arbitrary topology. These nodes further communicate without the need

of preexisting networking infrastructures. In Manet, a node communicates directly with all

the other nodes within its wireless coverage range. When the destination is not in the coverage

area of the source then the intermediate node(s) forward the packets from the source to the

destination. Thus, each node in Manet operates as a router relying on a routing protocol and

maintaining the related routing table.

Securing Manets is particularly challenging because these networks rely on an open radio-based

medium of communication. In addition, they are by nature cooperative, hence there is an ab-

sence of centralized management/security enforcement points e.g., switches and routers, from

which preventive strategies can be launched. Thus, traditional ways of securing networks relying

on e.g., firewalls and encryption technologies, should be enriched with reactive mechanisms, such

as the Intrusion Detection Systems (Idss) that constitute a second line of defense.

The Idss that have been proposed for Manet vary significantly in terms of their architecture,

detection mechanisms, and applied responding strategies. Most of them have a distributed and

cooperative nature since it is the more suitable choice for running on top of Manet. However,
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Table 2.5: Rule-based IDSs for Manet
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[6, 113] Neighborhood relations and

Mpr selection in Olsr

Link spoofing - Capacity of detecting falsification in Olsr routing messages.

- Identifying the source of a detect inconsistency is not always guaranteed.

[114] Route discovery in Aodv Replay routing message

Forging routing message

Tampering routing message

- Providing accepted detection rate against elementary attacks.

- Invulnerable to blackmail attack.

- The absence of the cooperation between the nodes reduces the efficiency

against the complex attacks.

[115] Neighborhood relations and

Mpr selection in Olsr

Link spoofing - Capacity of detecting inconsistency in Olsr routing messages.

- Specifying the misbehaving node that causes an inconsistency is not guar-

anteed.

[74] Attacks against Aodv Dropping packets

Man-In-the-Middle

- Hierarchical aggregation of observations enables identifying the malicious

node that has launched the detected attack.

- Efficient against the complex attacks that require cooperative detection.

- Vulnerable to blackmail attack.

[116] Attacks against Aodv Dropping packets

Route request flooding

- Grammatical Evolution of detection rules enhances significantly detection

rate even in the presence of mobility.

- Generating non-trivial number of false alarms.

- Similarity between evolution scenario and operation scenario is critical for

successful detection.

- Triggering a non-trivial processing overhead.
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several Idss have either a hierarchical or a standalone architecture. We used the detection mech-

anisms to list and to classify the most well-known Idss for Manet. Indeed, these mechanisms

of detection fall under four categories:

• Classification-based detection: The basic idea in such detection mechanisms is to classify

the values of a group of features, which are observed during a slot of time, into either

normal or abnormal state. These features are selected because their values change signifi-

cantly when an attack takes place. In practice, routing- and traffic-related features (e.g.,

percentage of changes in the number of advertised routes, number of route request/re-

sponse messages, packet forwarding delay) are the most used features. However, other

types of features are also used such as energy consumption and centrality measurements

which is a social-related feature. The classifier(s) used is/(are) responsible for classifying a

feature’s value into one of the defined classes. There is a wide range of classifiers which are

based on statistics, probabilities, rules, neural networks, data mining, or even hardware

techniques. Regardless of its technique, a classifier needs to be trained so as to be able

to classify a feature’s value. The training takes usually place in an attack-free Manet

wherein the classifier learn the legitimate values of a feature. Thus, any value that is

not in these legitimate values means that an attack is taking place. However, one of the

aforementioned Idss does the inverse, and trains its classifier in the presence of known

attacks. Classification-based Idss are proposed to handle a wide range of attacks, even

the unknown ones. However, the necessity of a training phase, that takes place usually in

a scenario different from the operating scenarios, and the negative impact of mobility on

the performance constitute the basic obstacles to employ them in Manet.

• Trust-based detection: Here, each node aims at identifying the distrustful nodes, and

further avoid, as much as possible, cooperating with such nodes. Towards this purpose,

each node observes its neighbors, i.e. the nodes within its radio range, in order to increase

(resp. decrease) its trust in the neighbor node that cooperates correctly (resp. misbehaves).

The observed cooperation is mostly related to packet forwarding and/or route calculation in

the proactive routing protocol (e.g., Dsr and Aodv). In addition to the self-observations,

some of the trust-based Idss use recommendations where each node provides, periodically

or upon the reception of a request, information about its distrustful nodes. In order to

avoid the false accusations, some of these Idss propose to solely exchange information

about the trustful nodes. Others propose to accept only the recommendations provided

by the trustful nodes. Since the algorithms used in building the trust relations between

the nodes are usually simple, these Idss impose a limited computing overhead. However,

using the recommendations increases traffic overhead, and makes these Idss vulnerable to

false praises or accusations. Moreover, they are targeting limited types of attack, basically

the dropping packets.

• Automata-based detection: This mechanism of detection depends on building a Finite

State Machine (Fsm) in order to model either the routing functions or the attack’s sce-

narios. In the first case, if the routing activity of a node triggers unexpected or unknown

transitions in one of the employed Fsms then an attack is confirmed. While in the second

case, if the routing activities of a node lead to the final state in a Fsm, which identifies the
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required actions for an attack to be successful, then this attack is confirmed. The majority

of the Idss that are based on Fsms are oriented for the known routing protocols such as

Aodv and Olsr. They also provides a high detection accuracy. However, some of those

are not able to identify the source or the type of the detected attack.

• Rule-based detection: Such detection depends on rules that have a conditional form (If

cond. Then). Those rules are used to identify either the correct behavior or the malicious

actions. In the first case, the rules represents the conditions that should be respected

during, e.g., the route calculation or packet forwarding. Thus any violation of these con-

ditions is considered as an attack. In the second case, the rules represents the actions

that could be realized by the attacker. Thus, achieving one or more of these rules means

that an attack has taken place. Similarly to the Automata-based detection, the rule-based

Idss are mostly used for the attacks targeting the routing protocols. However, some of

those Idss add some rules concerning packet forwarding. In general, these Idss are not

cooperative, and hence they are not able, in most of the cases, to identify precisely the

source of an attack.

To sum up, these listed Idss should be considered in the context for which they are proposed.

However, we can generalize that the cooperative Idss are most adapted to the dynamical nature

of Manet, and they are able to detect a wide range of attacks. There is a wide diversity of the

proposed intrusion detection approaches and methods for Manet. We cannot consider that one

detection approach/method is better than the others in all the cases. They should be compared

according to the operating scenario or environment. In addition, using more than one detection

method in the same time increases the detection accuracy. However, ensuring the integration of

several detection methods is not a trivial task.

All the listed Idss focus on their capabilities of detecting the attacks and aim at providing

a high detection accuracy. More precisely, they aim at increasing the detection rate along with

minimizing the number of false alarms. But, few of those take into account the other factors

that can deeply affect the intrusion detection in Manet. In fact, the accuracy of detection could

be severely affected by the misbehaving nodes which aim at bypassing or even disrupting the

detection. To achieve their purpose, these misbehaving nodes may provide incorrect evidences

or improperly perform the detection-related operations. Therefore, a good Ids should be able to

identify or, at minimum, avoid the damages coming from such nodes. A proper Ids for Manet

should not only offer a high detection rate, but it should also takes into account the performance

issues in such networks. Indeed, maintaining the available resources (e.g., battery life, band-

width, processing capabilities) is a critical condition for any system or protocol oriented to work

in Manet. Minimizing the consumed resources should not be ignored or forgotten during all

the detection phases, i.e., evidences gathering, diagnosis and correlation, and countermeasures.

Otherwise, the node will be forced to choose between keeping detecting the attacks, and thus

losing rapidly its resources, or abandoning the detection in order to stay for a longer time in the

network. Since Manet mostly operates over open, unpredictable, and maybe hostile environ-

ments, the evidences provided to the Ids could be incorrect or even falsified. Thus, there is a

need to evaluate the reliability of the detection results obtained by the Ids.
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Overall, there is a high need to have an Ids in place that offers a high detection accuracy

and takes into account the dynamic and distributed nature of Manet. It must be robust,

invulnerable, and resist against the misbehaving nodes. It must consider the performance issues

and find a trade-off between detection accuracy and resources consumption. It must handle the

doubt about its results and provides a metric of detection reliability. In this thesis, a lightweight

and robust intrusion detection system for Manet is proposed to handle all the above mentioned

circumstances.
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3.1 Introduction

Securing ad hoc networks is particularly challenging because these networks often operate in

adverse or even hostile environments [57, 117]. In addition, the open radio-based medium of

communication facilitates the listening of transmissions [42]. The dynamic topology [21], the

lack of centralized security enforcement points (e.g., switches and routers) [25] and the low

degree of physical security of the mobile devices/nodes [79], make Manet more vulnerable

to intrusions/attacks compared to traditional infrastructure-based networks [10]. Conventional

preventive approaches, e.g., authentication [58], encryption [59], access control [60] and digital

signature [61], significantly reduce the scope of the potential attacks but cannot eliminate it. In

addition, new attacks emerge and find a way to penetrate the aforementioned mechanisms [65].

This naturally calls for proposing reactive mechanism, such as the Intrusion Detection Systems
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(Ids for short) [67], as a second line of defense against the attacks that would succeed [66]. Ids

attempts to identify both outsiders (i.e., non authorized nodes trying to break into the system

and misuse it) and insiders (i.e., nodes with a legitimate access that abuse their privileges) [117].

In Manet, the Idss have to face the following challenges:

• the limitation of the node’s power supply requires an energy-efficient intrusion detection

so as to maximize the survivability of the node and of the network,

• the stringent computing power, e.g., memory size and CPU processing, of the majority of

the nodes in Manet makes the Idss that impose intensive calculations impractical,

• the available bandwidth and radio frequencies are largely restricted and vary rapidly, thus

heavily and excessive radio transmissions are not recommended,

• the intrusion detection must seamlessly adapt to the topological changes that result from

the mobility,

The Idss that have been developed for the infrastructure-based networks failed to meet these

challenges. This calls for designing new Idss that take into account these peculiarities.

We propose a lightweight and robust intrusion detection system for ad hoc routing protocols

(Lidr). Lidr distinguishes itself by auditing logs instead of sniffing/inspecting the traffic as it

is the case with almost all Idss designed to operate in Manet. Note that sniffing packets

requires setting the wireless interface to promiscuous mode, which leads to a permanent strain

of energy [118]. Moreover, it significantly consumes the computing power due to the packet-level

analysis [73]. Our Ids classifies the intrusion evidences according to their gravity and level of

suspicion. Thanks to such classification, the in-depth intrusion diagnosis is carefully planned.

Indeed, this diagnosis starts only when there is a sufficient degree of suspicion. In order to

minimize the traffic generated when gleaning intrusion evidences, our Ids is distributed and

cooperative: it parses logs as close as possible from the device that generates it. Finally, the

proposed Ids does not require any change on the implementation of the used routing protocol,

services, or applications because it extracts the evidences from the logs. Routing logs (and

any other beneficial logs) are parsed; this consists in discovering the suspicious actions of other

node(s) so as to identify a pattern that characterizes an intrusion attempt. In other words,

the discovered evidences are matched against a set of predefined intrusion signatures. Contrary

to most other Idss, our system applies a signature-based detection rather than anomaly-based

detection which is based on identifying the deviations from the normal behavior of the node/the

network. This choice is motivated by the fact that signature-based detection guarantees a high

rate of detection along with a limited number of false alarms [119]. However, even though the

signature-based detection cannot detect unknown attacks, it should be used, at minimum as

a first stage of detection to detect accurately and lightly the wide range of the known attacks

targeting Manets [75].

Although physical, data link and network layers are all subject to vulnerabilities, our Ids is

dedicated to the attacks on the network layer. Indeed, the vulnerabilities in the physical and data

link layers are common to Ieee 802.11 wireless networks, while the vulnerabilities in network

layer are specific to ad hoc networks. More specifically, zeroconf and routing protocols constitute

the main target of attacks [56]. The reason is threefold. First, no security countermeasure is
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specified or implemented as a part of the drafts or Rfcs (Request For Comments) proposed

through the Internet Engineering Task Force Manet12 or Zeroconf13 working groups. Second,

any device may operate as a router, which facilitates the manipulation of multi-hops messages

as well as the compromising of the routing functionality. Third, since routing is one of the

most vital functions in Manet, disrupting the correct operations of the routing protocol causes

the most devastating damage [57]. Although these attacks threaten both routing and zeroconf

protocols, we hereafter concentrate on the routing protocol and illustrate our presentation by

exemplifying attacks on a proactive, link state routing protocol calledOlsr. We further evaluate

the performance of our Ids by challenging it against an attack we purposely developed. The

evaluation takes place in a simulated Manet coupled with virtual machines. More details are

covered in the remaining part of this chapter. In Section 3.2, we provide an overview about

Olsr and further details the attacks targeting this protocol. Then, we introduce our Ids in

Section 3.3 and evaluate its performance in Section 3.4.

3.2 Attacks on the OLSR Protocol

Attacks on routing protocols fall into two main categories, passive versus active [120]. A passive

attack typically intercepts the routing messages in order to get an access to useful information

without disrupting the routing functions. An active attack involves an unauthorized action (e.g.,

the fabrication or tampering of the information). Thus, the normal functioning of the Manet

is disrupted [121]. Active attacks are further sub-classified according to the action witch is

undertaken on the routing messages into: drop, modify and forward, as well as active forge

attacks [122]. But before going further, let first introduce the Olsr protocol [9] and then detail

the attacks targeting this protocol (3.2.2).

3.2.1 Background on OLSR

The Optimized Link State Routing protocol (Olsr for short) is a proactive (or table driven)

and link state routing protocol, tailored for Manet. It was originally drafted in 2000 as part

of the effort carried by the Ietf Manet working group [123], and then finalized as the Request

For Comment (Rfc 3626) [9] in 2003. Recently, a second version of Olsr (also called Olsrv2)

has been drafted [124]. Olsrv2 distinguishes from its predecessor by considering the notion of

link metric rather than only the hop count for measuring the shortest path. It is supposed that

Olsrv2 would have more modular and flexible architecture that facilitates add-ons extensions

for e.g., security, QoS, and multicast [125]. It will also possess a simplified packet format and

reduced-size messages due to address compression [126]. However, both Olsr and Olsrv2,

retain the same basic algorithms and mechanisms that are hereafter detailed. Olsr aims at (i)

maintaining a constantly updated view of the network topology on each node and (ii) reducing

the overhead resulting from disseminating the control messages. One fundamental is the notion

of MultiPoint Relay (Mpr): each node selects a subset of its 1-hop neighbors to be its Mprs.

Mprs are charged of forwarding the control traffic that is intended for a periodic diffusion

12http://www.ietf.org/dyn/wg/charter/manet-charter.html
13http://www.zeroconf.org
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over the entire network. The basic idea is to select the minimum number14 of Mprs so as to

reduce the number of nodes retransmitting control messages and hence, keep to a minimum

the bandwidth overload. It is highly encouraged to use Olsr in large and dense networks, as

the optimization done using Mprs works efficiently in such a context. Another optimization

consists in spreading only partial links state, i.e., a node advertises only the nodes that have

selected it as Mpr (named Mpr Selectors). However, additional link state could be flooded for

redundancy purposes. Olsr works in a completely distributed manner, and does not require any

central entity. It does not necessitate a reliable transmission of control messages; the periodical

generation/sending of control messages sustains the reasonable loss of messages.

In Olsr, we can note the next basic functions15:

The neighborhood discovery aims at discovering the nodes that are within radio range.

These nodes are named the 1-hop neighbors. It also attempts to define whether the links with

the 1-hop neighbors are bidirectional (i.e., symmetric) or unidirectional (i.e., asymmetric). For

this purpose, each node periodically broadcasts a hello message including1617: (i) the 1-hop

neighbors from which a recent control message has been received but the symmetric links with

them have not yet been confirmed, (ii) the 1-hop neighbors with which symmetric links, and (ii)

the 1-hop neighbors that are selected to act as Mprs.

Table 3.1: Link Code of a hello message

ÇÈÉÊ ËÌÍÎÏ

UNSPEC LINK No information is provided about the link

ASYM LINK Link is asymmetric, i.e., neighbor interface can be haired

SYM LINK Link is symmetric

LOST LINK Link has been lost

ÐÎÈÑÒÓÔÕ ËÌÍÎÏ

SYM NEIGH Node has, at least, one symmetrical link with this neighbor

MPR NEIGH Node selects this neighbor as a Mpr

NOT NEIGH Node is no longer or not yet considers the neighbor as a symmetric

Upon receiving a hello message, the node updates its routing table. More particularly, if the

node finds itself advertised as a neighbor then it confirms the existence of a symmetric link with

the originator of the message. Otherwise, it defines the link as asymmetric. If the node finds

itself selected as Mpr neighbor, then the originator of the message is defined as Mpr selector.

The received hello message permits also to learn the 2-hops neighbors and further to select the

best Mprs.

14A redundant Mpr may be selected to increase the reachability, but the overhead is also increased.
15Other functions of Olsr are provided in Appendix A
16The link layer information provided by e.g., the Ieee 802.11 protocol, may also be used.
17The hello message has a Time To Live (Ttl) equals to 1, thus it is not relayed to more than one hop.
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Multipoint Relay selection. As aforementioned, the optimization of Olsr comes from the

fact that the control traffic is only relayed by a subset of nodes called Mprs. Indeed, when a

node broadcasts a control message then only its Mprs retransmit this message. While the non-

Mpr nodes process the message, if they receive it, without retransmitting it. As a consequence,

the overhead resulting from flooding the control traffic is reduced. Figure 3.1 illustrates the

difference between the classical flooding and the optimized flooding that depends on the Mprs.

In Figure 3.1-a, when the node in the center broadcasts a message, all its 1-hop neighbors

retransmit this message. Thus, every 2-hops neighbor receives the same message several times.

As a consequence, there is a great overhead resulting from the large number of redundant

retransmissions. While in Figure 3.1-b, only the 1-hop neighbors that are selected as Mprs

(represented by the black circles) retransmit the message emitted by the node at the center.

The other 1-hop neighbors (represented by the white circles) do not need to retransmit this

message because the Mprs have already covered all the 2-hop neighbors. Hence, the redundant

retransmissions, and consequently the traffic overhead, are significantly reduced.

�";�?� B78� 6ª><<"  v<7 :£�"«"Ö�� §::�"@; �×�

In order to have the maximal optimization, each node should select the smallest possible

Mprs set 18. On the other hand, the node must select sufficient Mprs that enable its messages

to be diffused into the entire network. To answer the aforementioned requirements, the node

must respect three basic rules during the Mpr selection.

• Rule 1: The node must select its Mprs from its symmetric 1-hop neighbors. Thus, the

Mprs can relay the messages emitted by the node. In Figure 3.2, A considers B, D, and

E as symmetric 1-hop neighbors. Therefore, MPRA should be a subset of {B,D,E}.

• Rule 2: The Mprs should cover, in terms of radio range, all the symmetric 2-hops

neighbors. Thus, a message emitted by the node and relayed by its Mprs is received by all

the symmetric 2-hops neighbors of this node. Covering the symmetric 2-hop neighbors by

the Mprs is necessary to ensure diffusing the broadcast messages into the entire network.

As a consequence, a 1-hop neighbor that is the only one to provide reachability to a 2-hops

18Redundant Mprs may be selected in order to increase the reachability of the node. Such increase is recom-

mended, for example, when a lot of changes in the neighborhood are observed.
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�";�?� B7�� Ø©� Mprs are selected from the symmetric 1-hop neighbors

neighbor should be selected as a Mpr 19. Figure 3.3 illustrates the impact of the coverage

of the 2-hops neighbor on the Mpr selection that is done by the node A. Here, A aims

at selecting the smallest subset of its 1-hop neighbors set (i.e., {B,D,E}) that covers its
2-hop neighbors C, F , and G. A selects B as a Mpr because this latter is the only 1-hop

neighbor that covers C. Similarly, A selects E as a Mpr because E is the only 1-hop

neighbor that covers G. Since D provides reachability only to F which is already covered

by a Mpr (i.e., E), A does not select D 20. Thus, A ensures having the smallest Mprs set

that covers its 2-hops neighbors.

�";�?� B7B� �=� <�ª� �":@� "«£> � :¢  :v�?>;�

• Rule 3: The willingness to forward traffic on behalf of others should be considered during

the Mprs selection. In fact, being a Mpr is costly in terms of resources (e.g. battery life)

because theMprs relay the broadcast traffic in the network. Thus, some nodes may not ac-

cept (or not prefer) to be selected as Mprs in order to maintain their resources. Therefore,

the node must select the 1-hop neighbors that accept to be Mprs. The higher the willing-

19Note that this rule is valid provided that the 1-hop neighbor accepts to be a Mpr.
20Note that D will be selected as a Mpr if A desires to have redundant Mprs in order to increase its reachability.
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ness of the 1-hop neighbor to be a Mpr, the bigger the chance that this neighbor is selected

as a Mpr. Note that, every node advertises its willingness through the hello message. This

willingness takes one of five values ranging from WILL NEVER to WILL ALWAYS (Table

3.2). In practice, the node must (resp. must not) select as a Mpr the 1-hop neighbors that

have a willingness equals to WILL ALWAYS (resp. WILL NEVER). In Figure 3.4, we il-

lustrate the impact of willingness on the Mpr selection that is performed by A. Similarly

to Figure 3.3, A selects E as a Mpr because this latter is the only 1-hop neighbor that

covers G. Moreover, E does not refuse to be a Mpr because it has a willingness equals to

WILL DEFAULT. In contrast to Figure 3.3, A selects D as a Mpr even though D covers

only the 2-hops neighbor F , which is already covered by a Mpr (i.e., E). This happens

because D has a willingness equal to WILL ALWAYS. Moreover, A does not select B as

a Mpr even though this latter is the only 1-hop neighbor that covers C. This happens

because B has a willingness equals to WILL NEVER, i.e., it refuses to be selected as a

Mpr.

�";�?� B7¥� �=� <�ª� �":@� "«£> � :¢ ¦"ªª"@;@�<<

Table 3.2: Levels of willingness

ÙÈÚÚÈÉÑÉÎÏÏ ÛÔÜÎ ÙÈÚÚÈÉÑÉÎÏÏ ÝÞÚßÎ

WILL NEVER 0

WILL LOW 1

WILL DEFAULT 3

WILL HIGH 6

WILL ALWAYS 7

Declaring the MPR Information. In addition to relay the control traffic, the Mprs are in

charge of routing the messages between the nodes. In fact, any route is composed of a sequence

of Mprs along the path from the source to the destination. Therefore, every Mpr periodically
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broadcasts a Topology Control message (Tc for short), which is intended to be diffused over the

entire network. In this message, the Mpr declares its Mpr selector set, i.e, the 1-hop neighbors

that have selected it to act as a Mpr 21. Based on the information included in the Tc message,

nodes update their topological information and further calculate the routes. Tc messages are

periodically sent but if the Mpr selector set changes, a new Tc message should be transmitted

as soon as possible in order to override the stale topological information. In order to keep track

of the most recent topological information, the Tc message is provided with a sequence number

called Ansn (Advertised Neighbor Sequence Number) 22. If the node receives a Tc message

whose Ansn is less than the Ansn that is registered for the message’s originator then the node

ignores this message.

Gateways and multiple interfaces nodes. OlsrManet operates either in isolated manner

or connected to other networks (or even Internet) where other routing protocols, e.g., Ospf 23,

are used. In the latter case, external routing information is injected into the OLSR routing

domain through gateways. A gateway is a node that is equipped with, both, Olsr and non-

Olsr interfaces. In Figure 3.5, X is a gateway that has, in addition to the Olsr interface, an

Ethernet interface which is associated to a local area network (Lan for short). The gateway

�";�?� B7¨� à>��¦>¡ "@ Olsr

imports (and resp. exports) the routes provided by other routing protocols (resp. Olsr). In

order to announce its reachability to an external host and/or network, the gateway periodically

broadcasts a Host and Network Association (Hna) message. In this message, the gateway lists

the network address and netmask of the associated external host and/or network. Thus, the

recipient of the Hna message has a sufficient information to calculate the routes towards the

external host and/or network. Note that the gateway differs from the node which runs Olsr on

multiple interfaces in order to, for example, increase its connectivity. In Figure 3.6, X has two

Olsr interfaces, Inter X1 and Inter X2, witch are in the radio range of Y and Z respectively. In

21A Mpr may declare additional topological information, e.g., its Mprs and/or its 1-hop neighbors, for redun-

dancy purposes.
22Ansn is wraparound number, i.e., when it reaches an extreme boundary, it is reset to zero.
23www.ietf.org/rfc/rfc2328.txt
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order to avoid considering each interface as an independent node, X needs to map its interfaces

to one identity. For this purpose, X first chooses one of its interfaces to be the main address 24

25, which is used as the originator address in the routing messages emitted by X. After that, X

�";�?� B7×� ��ª�"£ª� "@��?¢> �< @:�� "@ Olsr

maps the other interfaces to its main address through broadcasting, on a regular basis, a Multiple

Interface Declaration (Mid) message. In this message, X announces its main address as well as

its other Olsr interfaces. Thus, other nodes recognize that Inter X1 and Inter X2 belong to

the same node X. It is worth to mention that Mid and Hna messages are disseminated by the

Mprs since the information included in these messages must be delivered to all nodes. However,

Mid and Hna messages are excluded from the specification of Olsrv2. In this version, the Tc

message is responsible for declaring the node’s multiple interfaces and/or non-Olsr interface(s).

Overall, Olsr is a proactive ad hoc routing protocol that provides constantly updated routes.

Therefore, this protocol goes in favor of the applications that do not accept long delay in trans-

mitting data traffic. Nodes exchange Olsr control traffic thanks to two types of message: a

hello message that enables neighbor discovery and further Mpr selection, and a Tc message

that serves in advertising the link state information between the nodes so that the available

routes can be found. The standard specification document of Olsr does not define security

measures. However, it lists possible vulnerabilities including: the breach of confidentiality, the

breach of integrity, non-relaying, replaying, and security threats coming from insecure external

routing domain. In the following section, the attacks targeting Olsr are represented.

3.2.2 Attacks Classification and Modeling

Attacks against Olsr are hereafter detailed and classified according to the model introduced

in [11]. This model provides a level of expressiveness necessary to specify the relationship

between the actions and their related consequences. We further enrich this model with temporal

annotations (Table 3.3). As a consequence, complex attacks, their constituting actions and

consequences are successfully depicted and categorized as drop attack, active forge attack, and

modify and forward attack.

24Note that if the node has only one Olsr interface then this interface is used as the main address.
25There is no rule of choosing the main address but the node should keep the same main address all the time.
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Table 3.3: Notations
áÔââßÉÈÛÞãÈÔÉ

Y
Mt−−→ X At t, Y sends a message M that is received by X

Y
Mt−−→ At t, Y sends a message M

Y 6 Mt−−→ Y does not send a message M at t
Mt−−→ X X receives a message M at t

6 Mt−−→ X X does not receive a message M at t

äÞÕÞâÎãÎÕÏ

△t,▽t Period of time

∋: Such that

Card(X) connectivity of X

I Set of malicious nodes

NSX Set of 1-hop neighbors of X

sq Sequence number

hc Hop count

wX Willingness of X to forward packets on behalf of others

MPRX MPRs of X

SelMPRX
MPR Selectors set of X

åÎÏÏÞÑÎÏ

Hello Hello message

TC Topology Control message

MID Multiple Interface Declaration

HNA Host and Network Association

CM Control Message

RM Received Control Message

FM Control Message intended to be forwarded

3.2.2.1 Drop Attack

In practice, a drop attack consists in dropping a control message instead of relaying it. This

dropping has an impact only if the dropped control message is intended to be forwarded: as

illustration, suppressing a hello message that is broadcasted over one hop, is natural. Thus,

threatened messages are restricted to the messages that are created and/or broadcasted by a

Mpr so as to be re-diffused by other Mprs, i.e., Topology Control (Tc), Multiple Interface

Declaration (Mid), and Host and Network Association (Hna) messages. More particularly, let

us consider a host H that sends a control message which is intended to be forwarded. This

message, which is originated at t (H
FMt−−−→ I), is received by a malicious node I that drops it.

In practice, I drops a control message if it does not forward this message during a period |t′− t|
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lower than the maximum allowed26 period △t:

H
FMt−−−→ I, I 6 FMt′−−−→, |t′ − t| > △t

⇓
I ∈ I

(3.1)

Such dropping is naturally applied on any packet that is empty, expired, duplicated, or out of

order. In addition, restrictive forwarding is provided: (only) the 1-hop neighbor(s) of H that

have been selected by H to act as Mpr(s) forward. Apart from the aforementioned conditions

that lead to a convenient dropping, the remaining dropping may be attributed to an intruder

(or a compromised node), a selfish or a malfunctioning node. The attempt to drop any packet

is termed blackhole attack. In practice, it should be concluded that I creates a blackhole if I

forwards no message, i.e., FMI(△t) = 0, even though it has received some forwardable messages,

i.e., RMI(△t) 6= 0, during a period of time △t.

RMI(△t) 6= 0, FMI(△t) = 0

⇓
I ∈ I,

I is a blackhole

(3.2)

A gray hole corresponds to a selective dropping that is performed arbitrarily or according to

some criteria e.g., a given source or destination in the message. It is detected by taking into

account additional fine-grained or discriminative criteria, including, for instance, the choice

of a specific final or 1-hop-away destination or source, the percentage of packets received or

forwarded, the message type. In a nutshell, when the difference between received and forwarded

control messages during a period of time exceeds a certain threshold α, I should be concluded

as a gray hole. The value of α is a policy decision, which is predefined by the end user. However,

α should exceed the rate of natural dropping that results from collision, limited transmission

power, lost packets, etc [72]. In [127], experiments show that α should not exceed 10% (resp.

15%) for the 20 (resp. 60) node network in order to detect more than 90% of gray holes.

|RMI(△t)− FMI(△t)| < α

⇓
I ∈ I,

I is a gray hole

(3.3)

Rather than dropping the routing control messages, an opposite misbehavior consists in intro-

ducing falsified routing information.

3.2.2.2 Active Forge Attack

An active forge attack takes place when a node introduces/provides novel deceptive routing

control messages. Among others, the broadcast storm stems from forging control messages so

26Any control message is characterized by an emission interval as well as a holding time in the routing tables.

These two related values participate in setting a validity time that should be herein considered in conjunction

with the message type.
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as to exhaust resources (e.g., energy, network bandwidth) and saturate the communication

medium. For this purpose, an intruder I forges a large number of control messages CM within

a short period of time ▽t (see Expression 3.4). This attack may be local (e.g., targeting the

1-hop neighborhood through hello message) or global (e.g., applied on the messages that are

relayed). It may also be conducted in a distributed manner with several colluding nodes that

are simultaneously emitting (a large amount of) control messages.

I
CMt−−−→, I

CM ′
t−−−→, |t′ − t| < ▽t

⇓
I ∈ I

(3.4)

A special type of broadcast storm is the routing table overflow attack, which threatens especially

the proactive routing protocols (e.g., Olsr) as they periodically update the routing informa-

tion [128]. One or several colluding intruders prevent the well-behaving nodes from discovering

new routes by dumping the network with route advertising non-existing nodes. In general, a

broadcast storm constitutes a kind of denial of service that is characterized by a high visibility.

Therefore, it is typically combined with masquerading - although, less intrusive attacks may also

be preferred. Masquerading lies in maliciously switching the identity of the originator of a con-

trol message CM (I
CM(I)t−−−−−→, I

CM(S)t−−−−−→). Note that this case is distinguished from a node that

holds several interfaces and that advertises them in a dedicated Mid message. Apart from mas-

querading a denial of service, identity spoofing may be intended to create conflicting route(s).

The identity spoofing is a fundamental step for creating loop(s) wherein some legitimate nodes

spin the same control message(s) to infinity. As pointed out in [129], the spoofing attack may

also be coupled with a modification of the willingness field so as to impact the Mpr selection

(Expression 3.5). In practice, if I emits a hello message including an originator address already

assigned to another node S (I
hello(S)−−−−−→ D), then I modifies the local topology as seen by its 1-

and 2-hops neighbors. In addition, if I modifies the willingness field w′
S of S (with w′

S 6= wS),

then the selection of S as Mpr is impacted; recall that Mprs are selected among the nodes with

highest willingness and in case of multiple choices, the node which provides a reachability to the

maximum number of nodes is primarily selected. For instance, a node whose willingness attribute

set to WILL NEV ER (resp. WILL ALWAY S), is never (resp. always) selected as Mpr, i.e.,

w′
S = WILL NEV ER ⇒ S /∈ MPRD (versus w′

S = WILL ALWAY S ⇒ S ∈ MPRD).

S
hello(S,wS)t−−−−−−−−→ D, I

hello(S,w′
S)t

′

−−−−−−−−→ D,

|t′ − t| < △t, wS 6= w′
S

⇓
I ∈ I,

S is spoofed,

w′
S = WILL NEV ER ⇒ S /∈ MPRD,

w′
S = WILL ALWAY S ⇒ S ∈ MPRD.

(3.5)

Active forge attacks are not restricted to identity spoofing (possibly coupled with a tampering

of the willingness field). They also cover the tampering of control messages including incorrect
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adjacent links (hello messages), topology information (Tc messages), and network interfaces

(Mid and Hna messages). In the following, we detail each of those. In the first case (expression

3.6), I forges a hello message, which declares a list of 1-hop and symmetric neighbors NS′
I

differing from the real set NSI .

I
hello(NS′

I)t−−−−−−−→, NS′
I 6= NSI

⇓
I ∈ I

(3.6)

Whenever forging the set of neighbors NS′
I , the attacker has three options:

1. declaring a non-existing node as a symmetric 1-hop neighbor, implies that I (or another

misbehaving node) is further selected as a Mpr (Expression 3.7). Indeed, if I advertises

a non-existing node N (N /∈ N with N defining the set of nodes composing the Olsr

network27), I ensures that no other (well-behaving) Mpr claims being a 1-hop symmetric

neighbor of N . Recall that the set of Mprs is selected so that all the 2-hops and symmetric

neighbors are covered thus, I is surely selected as a Mpr.

S
hello(NSS)t−−−−−−−→ I, I

hello(NS′
I)t′−−−−−−−−→ S, |t′ − t| < △t,

∃N ∈ NS′
I ∋: N /∈ N ∩NSI

⇓
I ∈ I,

∃I ′ ∈ I ∩NSS ∋: I ′ ∈ MPRS ,

Card(NS′
I\(NS′

I ∩N )) > 0.

(3.7)

This assertion is verified as long as no other misbehaving neighbor of S is claiming the

same. Overall, inserting at least one non-existing neighbor (∃N ∈ NS′
I ∋: N /∈ N ∩NSI)

guaranties that a misbehaving node I ′ (with I ′ ∈ I) is selected to act as Mpr of S

(∃I ′ ∈ I ∩ NSS ∋: I ′ ∈ MPRS). In addition to the above, the connectivity of I is also

artificially increased (Card(NS′
I\(NS′

I ∩N )) > 0).

2. declaring that an existing node is a symmetric 1-hop neighbor while the declared node is far

away (i.e., is not a neighbor) or is an asymmetric neighbor (∃X ∈ NS′
I ∩N ∋: X /∈ NSI).

This claiming increases artificially the connectivity of I, i.e., Card((NS′
I\NSI) ∩N ) > 0.

If no (well-behaving) Mpr covers S (∄A ∈ N\I ∋: A ∈ NSS ∧X ∈ NSA), then at least

27According to the Olsr RFC [9], messages can be flooded into the entire network (with a maximum network

diameter defined by the message Time To Live field, TTL for short), or flooding can be limited to nodes within

a diameter (defined in terms of number of hops) from the originator of the message. For the sake of clarity, let

be N represent the network in both case.
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one misbehaving node (e.g., I ′) is selected as a Mpr of S (∃I ′ ∈ I ∋: I ′ ∈ MPRS).

S
hello(NSS)t−−−−−−−→ I, I

hello(NS′
I)t′−−−−−−−−→ S, |t′ − t| < △t,

∃X ∈ NS′
I ∩N ∋: X /∈ NSI

⇓
I ∈ I,

Card((NS′
I\NSI) ∩N ) > 0,

∄A ∈ N\I ∋: A ∈ NSS ∧X ∈ NSA

⇓
∃I ′ ∈ I ∋: I ′ ∈ MPRS .

(3.8)

Such insertion typically characterizes an attempt to create a blackhole: I introduces a

novel path toward M that whenever selected provisions the blackhole.

3. omitting an existing 1-hop neighbor and symmetric node P (∃P ∈ NSI ∋: P /∈ NS′
I),

decreases artificially the connectivity of both P and I (NSI * NS′
I). Note that if P has

no other connectivity than the one obtained through the misbehaving node I, P becomes

isolated.

S
hello(NSS)t−−−−−−−→ I, I

hello(NS′
I)t′−−−−−−−−→ S, |t′ − t| < △t,

∃P ∈ NSI ∋: P /∈ NS′
I

⇓
I ∈ I,

∃I ′ ∈ I ∩NSS , NSI * NS′
I .

(3.9)

Overall, falsifying the neighboring adjacency by inserting (existing or non existing) neighbor(s)

and/or omitting real neighbors potentially perverts the local topology seen by S (and more

generally by one another) and impacts the Mpr(s) selection function carried by S. Nevertheless,

in order to be selected as a Mpr of S (or to prevent its selection), there is no need for I to

falsify the neighboring adjacency. Recall that, in a hello message, a field, termed willingness,

designates the node’s willingness to carry traffic on behalf of others. Indeed, I prevents (resp.

ensures) its selection as Mpr, by simply setting its willingness field to the value WILL NEV ER

(resp. WILL ALWAY S). On the whole, the Mpr selection is impacted by either falsifying the

topological information included in hello message or by making use of the willingness attribute.

Another (perhaps more straightforward) alternative refers to a slander node I declaring (resp.

not declaring) itself as a Mpr although it has not (resp. has) been selected as a Mpr [130]. For

this purpose (Expression 3.10), I forges a Topology Control (Tc) message including an incorrect

set of 1-hop symmetric neighbors that have selected I as a Mpr. Depending on the required

level of redundancy, a Mpr advertises:

1. the Mpr selector(s) SelMPRI
of I, or,

2. the Mpr selector(s) along with the Mpr of I: SelMPRI
∪MPRI , or,

3. the 1-hop neighbors NSI of I (hence including the Mpr selectors and the Mpr of I).

58



jeie n33Ohr5 12 3b4 ÆJÁÅ kZ131h1Q

Let AI representing the set advertised in the Tc message: AI = SelMPRI
∨(SelMPRI

∪MPRI)∨
NSI . This attack consists in I advertising an incorrect set A′

I differing from the real one AI :

I
TC(A′

I)t−−−−−→ S,A′
I 6= AI

⇓
I ∈ I

(3.10)

In particular, the possible falsifications lie in either I inserting a non-existing node, or inserting

an existing node but non Mpr selector, or omitting a node belonging to AI . Upon the reception

of a falsified Tc message, S uses the advertised set in this message to update its point of view

of the network topology. Consequently, the routing table of S would be corrupted. This cor-

ruption contaminates the Olsr network and also any interconnected routing domain. Indeed, a

node, well-behaving or not, acting as a gateway exports the wrong Olsr routes. Symmetrically,

a malicious node may also import incorrect routes to the Olsr domain. This latter attack

termed sinkhole, involves a malicious node I defining itself as a gateway that provides an access

to associated host(s) and/or network(s). This gateway generates periodically a Hna message

including those host(s) and/or network(s) (i.e., the related address(es) and netmask(s)). This

attack constitutes a generalization of the previously-defined forging of corrupted Tc messages:

a node advertises either non-existing or existing but unreachable nodes, or omitting advertising

reachable nodes. The similarity with the Tc active forging leads us not detailing it.

Overall, the aforementioned forge attacks (e.g., link or route spoofing attacks, sinkhole) neces-

sitate to tamper specific message fields while keeping this message syntactically correct. More

generally, bogus control messages can be forged, hence creating an implementation-dependent

effect. Generally speaking, similar tampering may be performed by a malicious node that has

acted as a Mpr prior forwarding a falsified control message.

3.2.2.3 Modify and Forward Attacks

The modify and forward attacks are characterized by an intermediate that captures control

messages and replays or modifies those messages before forwarding them. This also includes

the replaying of a control message that includes: delaying the emission of this message by

recording and forwarding it later (potentially in another area), or repeating this message. As a

consequence, routing tables are updated based on obsolete information. Note that each message

contains a field indicating the period of time during which this message is considered valid and

hence it is used to update the routing table. Both attacks can be systematic (i.e., targeting any

multi-hops control traffic) or selective. They may also be performed in a distributed manner

(Expression 3.11) with two intruders: one recording the control message from one region so

as to replay it in another region (i.e., the one of the colluding intruder). Without loose of

generality, let I1 (resp. I2) be the node that records (resp. replays) the control message. In

practice, I1 tunnels the control traffic by e.g., encrypting the routing message and/or relying

on an alternative network interface (that may be advertised or not). Then, I2 replays it. This

attack leads to the creation of a wormhole whose length depends on the distance separating

the two intruders. Note that I2 should replay the message during a period (△t) represents the

validation time of the message. Otherwise, this message is directly ignored upon its reception.
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In addition, I2 may wait for a period (▽t) before replaying the message in order to ensure that

the topological information included in this message becomes obsolete. However, such wait has

no big importance when I1 and I2 are in different regions.

S
CM(S)t−−−−−→ I1, I1

CM(S)−−−−→
enc

I2, I2
CM(S)t′−−−−−→ Y,

S 6∈ NSY ,▽t < |t′ − t| < △t

⇓
S ∈ NSY

⇓
I1, I2 ∈ I

(3.11)

In order to stay invisible, both I1 and I2 may keep the identification field unchanged: the source

is S rather than I1 or I2. This possibility corresponds to a masquerading. Sequence numbers

constitute a standard mechanism that provides protection against replay attacks given that the

sequence delivery is not required byOlsr. In counterpart, their usage can be hijacked so that the

destination drops the message rather than using it. In practice, a malicious node I increases28

(resp. decreases) the value of the sequence number sq (S
CM(S)t,sq−−−−−−→ I, I

CM(S)t′,sq′−−−−−−−→, sq′ 6= sq)

so that the destination assumes that S is providing the freshest (resp. an obsolete) route and

therefore ignores the subsequent (resp. the actual) control message(s).

S
CM(S)t,sq−−−−−−→ I, I

CM(S)t′,sq′−−−−−−−→, sq′ 6= sq, |t′ − t| < △t

⇓
I ∈ I

(3.12)

A malicious node I may also corrupt the routing table by maliciously modifying a received control

message before forwarding it. This modification consists in tampering either the contents of the

message or the identification of its source. The former case is similar to the aforementioned forge

attack, wherein the malicious node tampers theMpr selector set in Tcmessage, theOlsr routes

in Hna message or the interface(s) identification in Mid message. While in the latter case, a

malicious node I forwards the packet containing the control message without changing the source

address [131]. Consequently, two non-consecutive intermediates along the path of this message

consider themselves as 1-hop neighbors although they are not in the communication range of

each other. A malicious node may also disrespect the flooding mechanism in Olsr (Expression

3.13). This happens when the malicious node retransmits a control message that is received

from a non Mpr selector node [129].

I 6∈ MPRS , S
CMt−−−→ I, I

CMt′−−−→, |t′ − t| < △t

⇓
I ∈ I

(3.13)

28A Wraparound mechanism is implemented; when the sequence number reaches an extreme boundary, it is

reset to zero.
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This attack and any malicious forwarding of a control message, even though this message is not

tampered, are classified as modify and forward attacks.

On the whole, attacks targeting Olsr protocol are classified into three types:

• drop attack that consists in totally or selectively dropping the control messages (e.g.,

dropping Tc message in order to foil route calculation).

• active forge attack that attempts to poison Olsr’s functionalities by introducing novel

deceptive control messages (e.g., a hello message including an incorrect neighbor set that

leads to foil mpr selection).

• modify and forward attack lies in an intruder that captures and modifies a control

message before forwarding it (e.g., increasing the sequence number of a Tc message, hence

the subsequent Tc messages are ignored) .

An intruder launches the attack either in a standalone manner or in collusion with other in-

truder(s), constituting what so-called Byzantine attack (e.g., wormhole), together usually cou-

pled with masquerading. Detecting these attacks is far from being a trivial task because a minor

deviation on an attack makes it undetectable. In addition, an attack can be composed of sev-

eral sub-attacks. In order to tackle these issues, we described the attack as general as possible,

hence circumventing possible deviations. We further propose a distributed, cooperative, log-,

and signature-based intrusion detection system that detects composed attacks as much as their

parties.

3.3 Intrusion Detector

In Lidr, the attack detection is organized under three operational phases (Figure3.7):

• Evidence gathering. Events are either gathered locally by parsing logs or obtained by

requesting other nodes. More precisely, the routing logs (or any other beneficial log) are

continuously parsed in order to extract information about the routing activities of the

nodes. Meanwhile, information on the routing activities can be obtained by interrogating

other nodes. Overall, both local and remote information is time-stamped and stored in a

database.

• Diagnosis which consists in analyzing the extracted information so as to discover suspi-

cious evidences. These evidences are then matched against predefined intrusion signatures

in order to decide whether an attack occurs or not. Local evidence suggest the presence of

an intrusion but they may not be sufficient to prove the intrusion, then additional evidences

are obtained by interrogating other nodes.

• alarm spread If the diagnosis confirms the existence of an attack then an alarm is

broadcasted over the network. This alarm contains information about the detected attack

and the identity of the attacker(s).

Before going further, let us first introduce the architecture of Lidr and then detail its operations.
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3.3.1 Conceptual Architecture

In order to cope with the dynamic nature of Manet, Lidr is both distributed and cooperative.

The proposed architecture (Figure 3.8) requires that every node participates in the detection29.

More precisely, each node contains an instance of the Ids, which independently detects the signs

of suspicion and cooperates with other instances so as to conduct the diagnosis in a broader

range. Our system is written in Perl30. It is conceptually structured into four components:

• Coordinator which constitutes the heart of our Ids that orchestrates the other compo-

nents. It also performs the cornerstone functionalities: it dynamically parses the logs so as

to extract the suspicious signs and matches them against predefined intrusion signatures.

Furthermore, it triggers the communication manager (resp. the alarm notifier) in order to

launch the advanced diagnosis (resp. alert the network about a detected intruder).

• Communication manager that gathers information from the network about the suspi-

cious node(s) as required by the Coordinator. Meanwhile, it answers to the cooperation

requests coming from other nodes. This component runs into a separate thread so that

other detection operations are not blocked.

• Knowledge database includes the information that is extracted from the logs or provided

by other nodes through the communication manager. This database is built on Mysql31.

Stored information encompasses neighborhood, Mpr selection and topology related infor-

mation in Olsr, etc.

• Alarm notifier: is responsible for alarming the network when an intrusion is detected.

Note that more countermeasures, e.g. ignoring intruder’s packets or excluding the intruder

from the routing table, can be also included.

3.3.2 Evidence Gathering

Our system distinguishes itself from other Idss by extracting signs of attack attempts from the

logs instead of sniffing the traffic. Hence, it minimizes the consumption of energy and computing

power (e.g., memory and CPU processing). In fact, sniffing traffic necessitates that the wireless

network interface stays in the promiscuous mode at all time, thus it can overhear all the packets

29It is possible that a node with very limited resources delegates some of the detection operations to a neighbor

device that has high resources. However, the trustworthiness of the delegate device and the efficiency, in terms of

maintaining the resource, of such delegation are still under question.
30http://www.perl.org
31http://www.mysql.com
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within its transmission range. But the promiscuous mode consumes more energy and hence

reducing rapidly the lifetime of the nodes. Indeed, a non-destination node in the radio range

of either the sender or the receiver overhears some or all of their traffic. For the IEEE 802.11

MAC protocol, a non-destination node in discarding mode (i.e. non-promiscuous) enters into

a reduced energy consumption mode and discard others’ traffic [132]. Such mode requires less

energy than the idle mode, which is the default mode in ad hoc network, while a non-destination

node operating in the promiscuous mode listens to all the traffic, whether or not it is the

intended destination. Figure 3.9 represents a part of the experimental measurements realized

in [118] about the energy consumption of an IEEE 802.11 2Mbps wireless card. It shows the

significant difference in energy consumption between promiscuous and non-promiscuous mode32.

Besides increasing the amount of consumed energy, sniffing traffic imposes a huge computing

overhead [73]. More precisely, the packet-level analysis, which is applied on the sniffed packets,

strains significantly the available resources, i.e., memory and CPU processing. Moreover, since

all the traffic in the radio range is sniffed, many of the analyzed packets would be redundant

and add nothing to the detection. In order to avoid this permanent strain of resources, our

system does not sniff the traffic but it rather depends on the logs as a source of the evidences.

In practice, it collects and parses in real time the local routing logs. Note that additional

logs, e.g., system-, security-related logs, could be integrated and correlated. With the Olsr

protocol, the portions of logs that characterize neighborhood relationships, Mpr selection, and

topological information are highlighted (Figure 3.10). More precisely, the 1-hop neighbors, the

2-hops neighbors, the topological entities, and the Mprs of other nodes are maintained in the

Knowledge database. Figure 3.11 provides a simplified view of the used database. Note that the

maintained information is extracted from the received hello and Tc messages. More precisely,

each node depends on the received hello message to specify the 1-hop neighbors and their types,

the 2-hops neighbors, and the Mprs of other (neighbor) nodes, while the Tc messages enables

32Note that the consumption in the non-promiscuous mode is, sometimes, negative because it requires less

energy than the reference idle mode.
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specifying the Mpr selectors and the topological point of view of others. This information is

temporally correlated as to detect signs of attack attempts.

�";�?� B788� � ©�«> :¢ �©� ¤@:¦ª��;� �>�>�><�

3.3.3 Attack Diagnosis

In our Ids, the proposed diagnosis is logically composed of two stages: preliminary and in-depth

(advanced) diagnosis. Such composition serves in reducing the detection overhead. The pre-
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liminary diagnosis consists in correlating the information maintained in the knowledge database

with the predefined intrusion signatures so as to discover suspicious actions and/or evidences.

More precisely, the objective is to state if a precondition of an attack is met. Recall that an at-

tacker needs to realize a set of preconditions/actions (e.g., falsifying neighborhood relationships)

so as to achieve its malicious objective (e.g. the attacker is selected illegally as a Mpr). Upon

discovering a suspicious evidence/precondition, an in-depth diagnosis takes place. An in-depth

diagnosis is potentially not only memory but also bandwidth consuming because it involves (i)

examining the local logs and (ii) requesting other nodes so as to collect additional intrusion evi-

dences, correlate and match those against the defined intrusion signatures. Thus, such diagnosis

must be carefully-planned, i.e., should be initiated only when a sufficient degree of suspicion

exists and terminated as soon as a result is obtained. For this purpose, we propose to classify

the attack evidences according to their levels of suspicion. According to this classification, an

evidence falls into one of the four following groups:

• Initial-evidence-group contains the evidences that lead to launch an in-depth diagnosis over

the network,

• Suspicious-evidence-group contains the evidences that lead to identify a node as suspicious,

but they are not sufficient to launch an in-depth diagnosis,

• Confirmed-evidence-group contains the evidences that confirm the occurrence of an attack.

This results in terminating the diagnosis and declaring the suspicious node as an intruder.

• Cancel-evidence-group contains the evidences that eliminate the suspicion. This results in

terminating the diagnosis and declaring the suspicious node as a legitimate node.

65



0bOc34Z je f23ZY5K12 l434h3K12 ÁÃ534Â l4gKhO34g 31 ng b1h Å1uting Protocol

These groups are populated with the evidences that are extracted from the logs. If an evidence

belonging to the initial−evidence−group is discovered, then, an in-depth diagnosis is launched

so as to confirm (i.e., an evidence belonging to confirmed − evidence − group is detected) or

infirm (i.e., an evidence belonging to cancel− evidence− group takes place) the intrusion; both

lead to the termination of the diagnosis. Relying on these groups, the evolution of the attack and

the related diagnosis is easily followed. In addition, their compactness facilitates the lightweight

discovering of the long-terms attacks. It is worth mention that an in-depth diagnosis is launched

in an independent thread, thus other detection operations are not blocked. In addition, during

the in-depth diagnosis, the applied process depends on the used intrusion signature(s), i.e., the

nature of the attack under diagnosis. For instance, when the intrusion signature aims at detecting

the link or route spoofing attacks, then an in-depth diagnosis will include an interrogation of

other node(s). While when the intrusion signature aims at detecting the drop or the broadcast

storm attacks, then in-depth diagnosis performs some statistics on the routing and/or data

traffic forwarded by the suspicious node. It is clear that the intrusion signatures constitute the

cornerstone in diagnosis and therefore, they should be carefully established. In our Ids, we

maintain the intrusion signatures in the form of conditional rules (IF cond. THEN state.). They

are established based on the attack models previously introduced in (3.2.2). These models permit

specifying the obligatory and optional preconditions as well as the consequences of an attack.

By distinguishing the obligatory preconditions, i.e., those that are necessary for the effectiveness

of the attack, from the optional ones, an intrusion signature would deal with unknown variations

of attack that exploit similar mechanism and lead to the same consequence(s).

Overall, the mechanism for detecting attack is resumed as follows (Figure 3.12): first, Olsr

logs are parsed in order to extract information about the neighbor relations, Mprs set, Mpr

selectors set, and topological point of view of other nodes. This information is analyzed in order

to discover suspicious evidences. If an evidence with a sufficient level of suspicion is discovered

then the in-depth diagnosis is launched. This diagnosis consists in matching the discovered

evidences against the predefined intrusion signatures. It includes also interrogating other nodes,

if necessary. The in-depth diagnosis terminates by either receiving an evidence that confirms

the attack or an evidence that denies it. In the former case, an alarm message is diffused in

the network as to announce the attacker identity and information about the attack. While

in the latter case, the suspicion is eliminated. To have more clear idea, we further exemplify

the signature establishment and the diagnostic procedure related to one active attack: the link

spoofing.

3.3.4 Link Spoofing Attack

A link spoofing attack lies in falsifying hello message(s) so as to modify the local topology

perceived by adjacent nodes. This attack influences the Mpr selection. In particular, this

attack has a global impact: the Mpr position provides the intruder the possibility to eavesdrop,

tamper, mis-relay or drop the traffic. As discussed in 3.2.2 (and further detailed in Expression

3.6), an intruder performs a link spoofing attack through one of the three following cases:

1. It advertises a non-existing and symmetric node. Thus, the intruder guaranties33 being

33Unless another attacker advertises the same non-existing node.
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selected as a Mpr because this non-existing node is uniquely covered by the intruder,

2. It advertises existing but non-neighboring node(s). The intruder is selected as a Mpr if

the advertised node(s) is (are) not already covered by another (well-behaving or malicious)

Mpr.

3. It keeps under wraps neighboring and symmetric node(s). In this case, the connectivity of

the intruder and consequently its chance of being selected as a Mpr are both decreased.

Used in a standalone manner, this attack aims at decreasing the connectivity of one or

several nodes; a complete isolation necessitates that no other (well-behaving) Mpr covers

that node(s).
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We develop an attack (Expression 3.14) wherein an intruder falsifies a hellomessage that contains

both a non-existing node (Case 1) and existing but non-neighboring nodes (Case 2). The reason

that motivates this choice is twofold. First, by advertising a non existing node N , the intruder

I ensures being selected as a Mpr by the victim S (∃N ∈ NS′
I ∋: N /∈ N ∩ NSI). Note that

with the last versions of the Olsr’s Rfc, a node (that is potentially an intruder) may dictate

its selection as a Mpr by advertising (in a hello message) its high willingness to relay messages.

Nevertheless, previous versions (and their related implementations) ignore this case. Regardless

of the version of the protocol, our intruder (as aforementioned previously) guaranties being

selected as a Mpr by advertising a non existing and symmetric node. Second, by announcing

common neighbors with another node L (Case 2), I increases the probability that L is not

selected as a Mpr (I replacing L) and henceforth increases its proper ascendancy. Note that

the attack we developed does not consider the third case that involves reducing the intruder’s

connectivity. Nevertheless, attack signature deals with it.

S
hello(NSS)t−−−−−−−→ I, I

hello(NS′
I)t′−−−−−−−−→ S, |t′ − t| < △t,

∃N ∈ NS′
I ∋: N /∈ N ∩NSI ,

∃L ∈ MPRS ∋: [NSL\NSI ] ⊆ [NS′
I\NSI ]

⇓
I ∈ I, L /∈ MPRS ,

∃I ′ ∈ I ∋: I ′ ∈ MPRS ,

Card(NS′
I\(NS′

I ∩N )) > 0

Card((NS′
I\NSI) ∩N ) > 0.

(3.14)

Herein, a key challenge stems from the need to generate a hand-coded intrusion signature that

models such attack and henceforth permits to detect it.

Signature Establishment: As mentioned before, a link spoofing attack aims at inflecting

the Mpr selection; such selection is triggered upon a change in the symmetric 1- and 2-hops

neighborhood. Rather than launching an in-depth diagnosis upon every change in the 1- or 2-

hops symmetric neighborhood, we keep to a minimum the number of these diagnoses by initiating

it only at the occurrence of an event related to a link spoofing attack. More precisely, we ignore

the changes in the 1-hop neighborhood (e.g., apparition of 1-hop neighbor) because they are

observed by the node itself. Thus, they are not subject to the remote falsification which is

the cornerstone of a link spoofing attack. In contrary, changes in the 2-hops neighborhood are

considered as long as they impact the Mpr selection. In practice, the evidence that reveals a

link spoofing attack (Table 3.4) are broken down into:

• a Mpr replacement (Evidence 1 or E1 for short) that results from a change in the covering

of the 1-hop neighbors; one (or several) 1-hop neighbor(s) (possibly the replacing Mpr)

increase(s) it (their) coverage to the detriment of the replaced Mpr34.

34A replace Mpr is a 1-hop neighbor that is excluded from the Mprs set even though it provides the same

connectivity in both the previous and current Mpr selection round.
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• No Mpr replacement takes place but an already selected Mpr is detected as misbehaving

node. For instance, a misbehaving Mpr may drop, falsify or mis-relay the control messages

(E2). Note that an evidence of a special interest herein refers to a node promoting itself

as a Mpr without having been selected as a Mpr. A misbehaving Mpr includes also the

case wherein a Mpr continually advertises the same 2-hops neighbors set despite it is no

more valid. Contrary to other cases, this one is not event-driven and should be handled

based on random or periodical checks.

• a Mpr is the only one that covers one or several nodes (E3).

• a Mpr covers partially its adjacent neighbor(s) (E4).

• a Mpr provides connectivity to a non-neighboring node (E5).

The occurrence of either E1 or E2 constitutes the starting point of an in-depth diagnosis. E1

and E2 belong to the initial-evidence-group. The act of being the only Mpr that provides the

connectivity to node(s) (E3) is suspicious but is not sufficient to launch an in-depth diagnosis

because this situation is typical in a sparse network. Furthermore, two nodes within the covering

range of each other often fail in communicating due to the unpredictable nature of wireless

transmission resulting from, e.g., obstacles, noises. Thus, diagnosing E3 is especially difficult

under no specific assumption. Overall, the occurrence of E1 or E2 and optionally E3 leads to

an in-depth diagnosis (Expression 3.15). In practice, the 1-hop neighbor(s)35 of the suspicious

Mpr are interrogated. Note that, part of the interrogated nodes may express a different opinion

that results from the malicious nodes or an obsolete routing information. This calls for taking

into account their respective reputation as we will see in the next chapter.

E1 ∨ E2, optional(E3)

⇓ ⇓
(E4 ∨ E5 ) (!E4 ∧ !E5)

⇓ ⇓
The suspicious Mpr The suspicious Mpr

is an intruder. is well-behaving.

(3.15)

If the obtained answers confirm (resp. deny) that the suspicious Mpr covers partially its neigh-

bors (E4) and/or advertises a distant node as 1-hop neighbor (E5), then the MPR is declared

as an intruder (resp. well-behaving) and the diagnosis is terminated. Obviously, the cooperation

between the nodes constitutes a cornerstone in our in-depth diagnosis.

Diagnosis. The in-depth diagnosis of a link spoofing attack consists in verifying the existence

of a symmetric and neighboring relationship between a suspicious Mpr and its advertised 1-

hop neighbors (Algorithm 1). More precisely, this diagnosis follows the following steps. First,

the Mpr that have been replaced by another Mpr (or a 1-hop neighbor) are identified (lines

1-2) because such replacement represents the initial evidence of a link spoofing attack (E1 in

35These neighbors are announced in the neighbor advertised by the suspicious Mpr.
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Table 3.4: Evidences characterizing a link spoofing attack

IÉÈãÈÞÚ#ÎÝÈÜÎÉÛÎ#ÑÕÔßÍ

E1 a Mpr is replaced by a 1-hop neighbor or by an already selected Mpr

E2 a Mpr behaves maliciously i.e., it tampers, mis-relays or drops the control messages.

SßÏÍÈÛÈÔßÏ#ÎÝÈÜÎÉÛÎ#ÑÕÔßÍ

E3 a Mpr is the only node that provides connectivity to one (or more) 2-hops neighbor(s).

áÔÉCÕâÎÜ#ÎÝÈÜÎÉÛÎ#ÑÕÔßÍ

E4 a Mpr advertises a partial set of 1-hop neighbors.

E5 a Mpr advertises non-neighboring node(s) as 1-hop neighbors(s).

áÞÉÛÎÚ#ÎÝÈÜÎÉÛÎ#ÑÕÔßÍ

E6 a Mpr is defined as an intruder/well-behaving node.

Algorithm 1 :In-depth diagnosis

1: OldMprs = GetReplaced-Mpr();

2: SuspiciousMprs= GetReplacing-Mpr();

3: for (suspicious ∈ SuspiciousMprs) do

4: InterrogatedNodes = GetCommon2HopsNeighors (suspicious,OldMprs);

5: for (2HopsNeighbor ∈ InterrogatedNodes) do

6: if (LinkExistence(2HopsNeighbor, suspicious) == false) then

7: Generate-Alarm(suspicious);

8: end if

9: end for

10: Cancel-Suspicious(suspicious);

11: end for

Table 3.4). For this purpose, the function GetReplaced-Mpr is called (Line 1). It establishes

the Mpr that have been replaced by comparing the current Mprs and the 1-hop neighbors

that were Mprs in the last selection of Mprs. Then, the Mprs sharing 1-hop neighbor(s)

with a replaced Mpr, are identified (function GetReplacing-MPR, line 2). Those identified

Mprs are tagged as suspicious and are subject to further analysis (lines 3-11); the objective

is to verify whether some spoofed links have been advertised so as to replace the Mpr. It

follows that the 1-hop neighbors that are common to a replaced Mpr and a suspicious one are

determined (GetCommon2HopsNeighors function, line 4). Note that these 1-hop neighbors also

correspond to the 2-hops neighbors of the node launching the diagnosis. They are interrogated

(LinkExistence function) so as to verify the existence of links. The interrogation of a 2-hops

neighbor, denoted Ai, consists in sending a request to Ai asking if this latter considers the

suspicious Mpr as a 1-hop neighbor at a specific time t. Whenever possible, this request is sent
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without going through both the suspicious Mpr I or any colluding intruder I ′. This eluding

is necessary in order to prevent I and I ′ from dropping the request and/or forging a deceptive

answer. Therefore, the 1-hop neighbor(s) (primarily the Mpr(s)) that covers the interrogated

2-hops neighbors is provided36 the request. If no answer is obtained (i.e., the related time-

out elapses), then the request is sequentially transferred through the rest of the covering 1-hop

neighbors (keeping in mind that, as aforementioned, Mprs are primarily selected). However,

when no neighbor is left, then a (multi-hops) alternative path is searched for in the routing

table to reach Ai. Note that the verification related to a suspicious Mpr is performed within

an independent thread hence, the diagnosis of one node (and the result waiting) is not blocking

to others. If Ai denies being a 1-hop neighbor of the suspicious Mpr, then a countermeasure

is triggered. More precisely, an alarm that establishes the detected attacker(s) is broadcasted

(Generate-Alarm function, line 7). Otherwise, if no deny takes place, the suspicious Mpr is no

longer suspected (Cancel-Suspicious function, line 10). In both case, the diagnosis terminates.

Note that if no answer is provided37, then the suspicious Mpr is tagged as not verified and the

degree of suspicion in this latter goes up.

3.4 Performance Evaluation

In order to evaluate the performance of our Ids, a mobile ad hoc network has been simulated

using the network simulator Ns338 [133]. Each node in the simulated network is further coupled

with a LinuX Container (Lxc) virtual machine39 [134]. The reason that motivates this coupling

is twofold. First, Ns3 offers the possibility to simulate a large-scale mobile ad hoc network.

Second, Lxc, an operating-system-level virtualization tool, permits to run multiple isolated

machines (also called containers) on a single modified hosting kernel40. Each container has its

own resources (e.g., process tree, network interface, Ip address). Thus, the resource consumption

(e.g., memory usage) can be isolated and measured. In practice, an instance of the Ids is installed

on each container that appears as a standalone/separated machine. Figure 3.13 exemplifies the

coupling between nodes in Ns3 and Lxc containers. From the Ids perspective (as well as

from any application installed on the container), the emission and reception of packets is done

through the network interface (eth0), while the container contains a simulated ethernet card

(veth), which is connected through an ethernet bridge towards a kernel tap device (tap)41. The

ethernet bridge implements the forwarding of link-level frames. The interface tapRouter [135] is

implemented in Ns3 and used to exchange packets between the tap device and the WiFi device,

which enables Ns3 nodes to communicate over an Ieee 802.11- and OLSR-enabled Manet.

Overall, the outgoing packets from eth0 in the container are delivered to the WiFi device at the

corresponding node in the simulated network and vice versa. Simulation is carried out using

36The suspecting node S is aware of the connectivity between the nodes that form its two hops neighbors. Thus,

S may select the one (if it exists) that covers Ai.
37Inconsistent answers lead also to a claim in the degree of suspicion as we will see in the next chapter.
38http://www.nsnam.org
39http://lxc.sourceforge.net
40Up to 1024 containers over a single hosting kernel.
41Note that for each container-node coupling, new tap and ethernet bridge should be defined in the hosting

kernel.
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the aforementioned platform (Figure 3.14), wherein the hosting device is equipped with 32GB

of memory and 2 Intel(R) Xeon(R) (6) Core @2.40GHz Cpus. The containers hold a Fedora 12

operating system.

�";�?� B78¥� � <@>£<©:� :¢ �©� �v>ª�>�":@ �@v"?:@«�@�

We consider a Manet composed of N = 30 nodes split into 25 well-behaving nodes and 5
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Table 3.5: Simulation parameters
����$���	� %$��
	��

Simulator Ns3 + Lxc virtual machines

Container operating system Fedora 12

Hosting device memory 32GB

Hosting device CPU 2 Intel(R) Xeon(R) (6) Core @2.40GHz

����$���& '()*�

Number of mobile nodes 30

Number of intruders 5

Topology 310× 310 m2

Wireless physical layer protocol IEEE 802.11b

Transmission range 90m

Maximum bandwidth 1Mbps

Traffic V4PingHelper: 56 bytes Icmp packet/node/s

Mobility model RandomWalk2d

Maximum speed 8 m/s (or 28.8 km/h)

Simulation time 140 s

O+�� %�	�		$

Hello message interval 2 s

Tc message interval 5 s

intruders42. Intruders launch repeatedly the implemented link spoofing attack43 (as described in

Expression 3.14). Nodes communicate via Ieee 802.11b and are characterized by a transmission

range Tx of 90m. Note that the previous communication parameters are inspired by a study

on ad hoc network [136]. Nodes randomly move, following the so-called RandomWalk2d [137]

mobility pattern provided by Ns3: each node moves according to a randomly chosen direction

at a given speed that is the same for all the nodes. When a node hits the network boundaries

(unless specified otherwise, the network area is defined by a square area of S = 310× 310 m2),

it rebounds following a reflexive angle. Data traffic is further modeled using the V4PingHelper

application in Ns3: each node exchanges 56 bytes Icmp44 echo requests to one another and

waits for 1s before sending it again. We use Olsr as the underlying routing protocol, preserving

the configuration parameters promoted in the RFC 3626 (e.g., hello message interval is 2s). For

each experiment, the simulation is launched 5 times, each lasting for 140s. Then, we present the

maximal, the minimal, and the average values.

We aim at evaluating the performance of our system in terms of:

• Intrusion detection rate that reflects the capacity of detecting successful intrusions45,

42The objective of having 5 intruders, and not only one, is to test whether our system is able to handle several

intruders at the same time.
43In our experiments, the number of successful intrusions varies between 15 and 33 because the intruder’s

capacity for launching the attacks depends on its position, and thus this capacity varies according to the applied

mobility and density.
44www.ietf.org/rfc/rfc792.txt
45A successful intrusion causes the replacement of a legitimate Mpr of the victim by an intruder.
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• False positive rate that measures how long a legitimate node is wrongly designated as an

intruder,

• Detection overhead which represents the additional network traffic that is generated be-

cause of intrusion detection. Note that further benchmarks are also provided in terms of

memory usage.

Based on those performance indicators, we evaluate the performance of our Ids.

Network Density. In order to evaluate the scaling properties of our system, we vary the

density of the network. This density corresponds to the average number of neighbors, which is

defined in [138] as follows:

Density =
N.π.T 2

x

S
(3.16)

Where N is the number of nodes, Tx is the transmission range of the node, and S is the area

where the nodes are moving. By varying the area, we obtain different network densities. Indeed,

we selected an interval of density that ranges from 6 up to 16 neighbors, which includes the

intruder, the victim and the remaining neighbors. Note that having 16 neighbors represents a

high density that is difficult to be reached in reality. Figure 3.15(a) shows that the detection rate

keeps higher than 80% regardless of the network density. This demonstrates the relatively limited

impact of the network density on the performance of our Ids. More precisely, the intrusion

detection rate slightly rises from 93.5% up to its maximum 96.3% when the density varies from

6 up to 8 neighbors. Then, a slow diminution is observed: dense networks (with a density

exceeding 8) are characterized by a high collision rate, which increases the amount of dropped

packets including the diagnosis-related ones. Hence, the detection rate declines. Similarly,

Figure 3.15(b) highlights that the average percentage of false positive is neglectful (under 5.9%).

The analysis of several cases of false positive leads us to find that a false positive occurs when

two nodes own different live-times for the bidirectional link that connects them. Consequently,

one of the two nodes still confirms the existence of this link while the other one denies it.

To override this problem, the period during which those links are considered valid should be

amplified as proposed in [1]. Figure 3.16(a) presents the average increase of the memory usage

caused by intrusion detection. This usage fluctuates between 17.6MB and 22.2MB. It is also

worthy to mention that contrary to Olsr, our system does not assign additional functionalities

to Mpr. In fact, each node may launch the detection, thus our Ids provides an homogeneous

load among the nodes. As illustrated in Figure 3.16(b), the traffic caused by detection-related

communications is very low compared to Olsr traffic (under 0.5% for a network density inferior

to 8). It then slowly rises to reach 1.3% when the network density is 16. In order to understand

the slight fall when the density reaches 14, we compare the average number of suspicious cases

with regards to a varying density. This average was 70.8 (resp. 65.8) with density equals to 12

(resp. 14). Consequently, the number of diagnosis-related packets is smaller with density equals

to 14 than with density equals to 12. Even though more neighboring links should be verified in

the dense network, there is a limited rising in the consumption of the resources, either memory

usage or traffic overhead. This results from the fact that in the dense network each node has

more neighborhood relations and hence, more information about the network topology. Thus,
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interrogating few nodes would be sufficient to gather the required information about the links

of the suspicious Mpr. Still, a higher network density leads to more collision and consequently

more dropped diagnosis-related packets.
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Figure 3.15: Intrusion detection rate (a), and False positive rate (b) depending on the network

density

Mobility In order to isolate the influence of the mobility, the network density is frozen to 8.

Then, we launch the simulation with a gradual moving speed ranging from 0 m/s to 8 m/s (i.e.,
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Figure 3.16: Memory usage (a), and Traffic (b) depending on the network density

around 28.7 kilometers/hour equivalent to 17.89 miles/hour). Note that increasing the moving

speed above this value makes us dealing with a Vehicular ad hoc NETwork (Vanet for short)

[139], where the routing protocols of MANET are not feasible or do not provide the optimum

performance [140]. The detection rate falls when the speed increases (Figure 3.17(a)). This

results from the ever changing topology that results in increasing the number of broken links

and the related drops of diagnosis-related packets. However, the proposed Ids still provides a

high detection rate, e.g, the average of detection rate is 70.7% with a moving speed equals to
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8m/s. Note that even though the detection rate decrease along with the moving speed (i.e.,

less diagnoses conclude by confirming/canceling the suspicion), almost all the launched attacks

are listed as suspicious actions. Moreover, every attacker has been detected at minimum one

time in the majority of simulation rounds. Figure 3.17(b) shows that the higher the moving

speed, the greater number of false positives. This results because more out of date feedback
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Figure 3.17: Intrusion detection rate (a), and False positive rate (b) depending on the network

mobility

(i.e., diagnostic answers) are used in the diagnosis. Anyway, this percentage remains less than
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12% even with the high mobility. The memory usage (Figure 3.18(a)) rises staidly from 17.6MB

to 26.5MB, which is reasonable even for resource-limited devices. The impact of the mobility

on the bandwidth is shown in Figure 3.18(b). The Ids traffic comparing to the Olsr traffic

significantly grows from 0, 36% up to 3.1% for speed ranging from 0m/s up to 2m/s. Then, the

bandwidth usage gradually increases and reaches almost 6% when the moving speed is equal to

8m/s. This increase comes from the fact that more diagnosis-related requests/answers are sent

several times due to packets lost. However, this overhead is still negligible compared to the one

generated by the Olsr protocol.

Discussion. It is clear that the density of the network holds less influence than the mobility

on our Ids. More mobility in Manet causes more dropped diagnostic packets and hence less

diagnosis concludes with a final result, i.e., confirming or refuting the suspicious. However,

comparing the launched attacks to the discovered suspicious events shows that the majority of

attacks are tagged as suspicious events and considered for further diagnosis. Hence, coupling our

system with a mechanism of credibility/trust will lead, in worst case, to decline the trustworthi-

ness of the intruders. Note that the mobility has a negative influence on all the Idss especially

the cooperative ones where there is an exchange of evidences/alerts. Table ?? provides a short

performance comparison between our system and other Idss that are presented in the previous

chapter. Non of the Idss, including ours, discussed the impact of blackmail attacks whereas

the majority of those Idss are cooperative; i.e, nodes exchange the evidences and alerts so as

to enhance the detection accuracy. But this cooperation could be exploited by the malicious

nodes as to falsify the evidences and alerts. More precisely, they may provide false accusations

(resp. praises) so as to conclude that a legitimate (resp. a malicious) node is an intruder (resp.

a benign node). In our Ids, detecting the falsified link(s) of a suspicious Mpr depends largely

on the proper cooperation of Mpr. A malicious node and/or possibly colluding node may foil

the detection by providing incorrect information about the suspicious Mpr. Furthermore, when

the interrogation messages are uniquely passed/provided through a malicious node, this latter

can prevent the conclusion of the diagnosis by simply dropping the interrogation requests. Such

dropping interrogation-related messages can take place not only because of the malicious nodes

but also due to the absence of routes or collision, which is very common in Manet. Therefore,

there is a need for:

• evaluating the correctness level of the returned feedback/answers so as to decide whether

they should be considered or not during the diagnosis,

• providing the capability of concluding the diagnosis even though the gathered evidences

are not complete.

It is worth to mention that gathering and processing all the evidences, especially in the dense

networks, leads to consume a lot of the available bandwidth, as well as increasing nodes’ activi-

ties. High consumption of the bandwidth might cause bottlenecks in communication, whilst the

increase in the node’s activities does not help in maintaining its resources. Therefore, limiting

the diagnosis on the minimum number of evidences, which can provide the required level of

detection accuracy, helps in providing a lightweight detection.
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Figure 3.18: Memory usage (a), and Traffic (b) depending on the network mobility

3.5 Summary

The attacks targeting ad hoc routing protocols and more specifically the Olsr protocol pertain

to three classes: dropping, modify and forward, and active forge attacks. Drop attacks aim to

drop completely or selectively the control messages, thus preventing routes building/maintaining

in the network. The modify and forward attacks consist in maliciously modifying critical fields/-

contents in the control messages (e.g. sequence number, source address) before forwarding them.

79



C�É�ÐÄÅ ÀÁ �ÊÐÅÏ�ÑÇÊ �ÄÐÄËÐÑÇÊ ���ÐÄÈ �Ä�ÑËÉÐÄ� ÐÇ �� �ÇË  Çuting Protocol

They also include delaying/repeating the emission of the control message(s), so that the routing

tables of other nodes are updated based on obsolete information. The active forge attack, the

malicious node takes the initiative and forges novel deceptive control messages in order to either

exhaust the resources in the network, or poison the neighborhood and topological point of view

of others. More precisely, by introducing incorrect neighbor set and/or willingness in the hello

messages, the malicious node prevents its neighbors from correctly specifying their 1- and 2-hops

neighbors, and further selecting their Mprs. While advertising non existing (resp. hiding exist-

ing) Mpr selectors in the Tc messages leads to adding incorrect (resp. eliminating valid) routes

in the network. In order to facilitate the definition of intrusion/attack signatures, we extend a

description model - an attack is expressed as the preconditions and the resulting consequences

- and enrich it with temporal annotations. An intrusion signature takes the highest abstracted

form so as to circumvent all possible deviations of the intrusion. Once hand coded, these signa-

tures are utilized by our Ids; a log-based, distributed and cooperative intrusion detection system

dedicated to operate in mobile ad hoc networks. The proposed system distinguishes itself by

analyzing the logs generated by the routing protocol, instead of sniffing the traffic, in order to

extract intrusion evidences. These latter are then compared against the predefined intrusion

signatures during intrusion diagnostic. Such diagnosis searches for more evidences for confirm-

ing/refuting attack’s occurrence. It may include the interrogation of other nodes or doing some

statistics about the traffic of the suspicious node(s). In order to minimize the overhead resulting

from the diagnosis, this latter should be carefully planned, i.e., it is activated only when there

is a sufficient degree of suspicion about the attack, and is deactivated when a diagnostic result

is concluded. For this purpose, discovered evidences are categorized into four groups according

to their degree of suspicion/gravity:

• Initial-evidence-group contains the evidences that lead to activate a diagnosis over the

network,

• Suspicious-evidence-group contains the evidences that reinforce the suspicion but they

cannot, lonely, activate the diagnosis,

• Confirmed-evidence-group contains the evidences that terminate the diagnosis by confirm-

ing the occurrence of an attack,

• Cancel-evidence-group contains the evidences that eliminate the suspicion and terminate

the diagnosis by declaring the suspicious node(s) as legitimate(s).

We further develop a link spoofing attack on the Olsr protocol, build the related detection

signatures/rules, and evaluate the performance of our Ids relying on the Ns3 simulator coupled

with Lxc virtual machines. This evaluation environment enables measuring the detection accu-

racy, as well as the amount of consumed resources. Comparing the performance of our system

with other Idss shows that the former has one of the highest detection rate. It also generates an

acceptable number of false positive. Moreover, our system is one of the rare Idss that takes into

account the consumption of resources as a critical factor during the evaluation. In our Ids, the

traffic overhead and the increase in the memory usage that result due to the detection operations

are low and could be tailored by the resources-constrained devices.

It is worth to mention that our Ids can be easily adapted to detect attacks against other ad
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hoc routing protocols (e.g., Aodv) (or even the attacks against other layers such as application

and data link layers in Manet). For this purpose, there is a need to: (i) modify the parser so

as to suit the logs of Aodv, and (ii) add the signatures corresponding to the attacks against

Aodv protocol 46. The remaining operations, i.e., interrogating other nodes, matching evidences

against the intrusion signatures and the countermeasure, keep unchanged.

Even though Lidr presents a high detection accuracy and a remarkable maintenance of re-

sources, it still needs to override some challenges. Otherwise, its performance could be degraded.

In fact, existing a large number of evidences to tackle during the diagnosis leads to a high re-

source consumption. Moreover, malicious node(s) may foil the detection by fabricating incorrect

evidences. In the next chapter, we tackle these challenges by coupling our system with a trust

mechanism that serves in evaluating the gathered evidences before using them in the detection.

In addition, we propose the confidence interval as a measure that helps in finding a trade off

between detection accuracy and resource consumption.

46We have already started defining and modeling the attacks against Aodv protocol.
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Table 3.6: Comparing Lidr performance with other Idss
l m n o p q r s t u

protocol

v q w x y z

of nodes

{ t r z q | y z } ~ � � � p � s t u

speed

� y r y � r s p t z � r y � � � } y � p } s r s � y z � r y { t � z y � } y s t

memory usage

{ t � z y � } y s t r z � � �

fic overhead

Lidr Olsr 30 16.6% 0-8 m/s 70.7%− 96.3% 0%− 13.2% 17.6 - 26.5 MB 47.8 - 621.5KB

(0.36% − 5.97%

of Olsr traffic)

[108] Olsr 30 3.3%, 6.6%,

10%

- - - - 6% − 12% of

Olsr traffic

[1] Olsr 10 10% 0 m/s Detection is possible - - -

[5] Olsr 7 14.3% 0 m/s Detection is possible - - -

[115] Olsr 5 20% 0 m/s Detection is possible - - -

[6] Olsr 11 9% 0 m/s Detection is possible - - -

[71] Aodv 30 3.3% 0-5 m/s 30.67%− 90% 0%− 20% - -

[81] Aodv 50 2% 0-20 m/s 90% 5% - -

[83] Aodv 30 3.3% 1-20 m/s 70%− 82% 12%− 18% - -

[100] Aodv 20, 50 10% 1-10 /ms 96.4%− 98.7% 0.79%− 0.93% - 900kB

[107] Aodv 52 3.8% 0-20 m/s

(Fixed Idss)

100% 0%− 0.6% - -

[109] Aodv 5, 21 20%, 23.8% 0-10 m/s 50%− 100% 0%− 30% - -

[110] Aodv 30 - 0-20 m/s 70%− 100% 0.5%− 15% - -

[76] Aodv 50 Random 0-20 m/s 79± 10%− 92± 3% 5± 1%− 32± 8% - -

[4] Aodv 10,20,50 - 0-10 m/s 0%− 100% 0%− ≫ 100% 0.2%− 0.6% -

[114] Aodv 20-200 - 0-20 m/s 30%− 95% 0%− 16% - -

[116] Aodv 50 - 1-20 m/s 99.8%− 100% 0.83%− 8.46% - -

[79]

Aodv - - - 88.48± 4.14%− 97.1± 0.32% 1.45± 0.72%− 20.2± 6.27% - -

Dsdv - - - 85.23± 3.28%− 90.61± 2.99% 5.37± 3.10%− 26.3± 5.49% - -

Dsr - - - 85.2± 2.38%− 99.1± 0.37% 0.03± 0.04%− 15.3± 4.08% - -

[72] Dsr 50 40% 0-20 m/s - - - 11% − 31.3% of

data traffic

[91] Dsr 30 3.3% 3-5 m/s 60%− 100% 2.5%− 50% - -

[88] Dsr 30 - - 75% 1.2% - -

[3] Dsr 50 2% 0-20 m/s 83.7%− 97.4% 1.3%− 7.2% - -
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4.1 Introduction

Our Ids needs to face two threats. First, the blackmail attack that consists in a malicious

node which sends incorrect evidence(s) so as to foil the detection. For instance, during the

verification of the links that are advertised by a suspicious Mpr, a colluding node may confirm

the existence of falsified link(s) so that this Mpr is not discovered. A malicious node may also

accuse a legitimate Mpr by denying the correctness of the advertised link(s). In both cases, the

diagnosis may end with an incorrect result. Second, the evidences may be contradictory because

legitimate nodes own different visions of the topology. Such difference is due to the mobility

or to the obsolete routing information. Thus, there is a need for specifying to what extend

a diagnosis is reliable. Moreover, gathering many evidences implies (i) a high consumption of

resources and (ii) the dropping of some messages. This requires to find a trade-off between the

detection reliability and the amount of the evidences that has to be gathered. To override the

aforementioned challenges, we propose to:
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• Couple our Ids with a trust system that helps in reducing the impact of the blackmail

attacks.

• Employ the confidence interval as a measure of the detection reliability and also as a mean

for determining whether additional evidences should be gathered to provide a reliable

diagnosis.

More precisely, we propose an entropy-based trust model that specifies whether a node is trustful

according to its historical participation to the intrusion detection. In practice, every time a

node provides a correct (resp. an incorrect) evidence during a diagnosis, its trustworthiness is

increased (resp. decreased). Here, self-observed evidences (also referred as first hand, or direct-

observations) are uniquely used in estimating the trust. Recommendations coming from other

nodes (also called second hand, indirect-observations) are not considered for three reasons. First,

they are subject to falsifications. This renders the trust model vulnerable to false accusations

and/or false praises. Second, exchanging such recommendations imposes more traffic overhead.

Third, they are subject to the point of view of the recommender. During the diagnosis, every

gathered evidence is first pondered according to the trustworthiness of its source. Then, it

is merged with other pondered answers coming from other nodes. If the combination of the

gathered evidences confirms the attack, then the trustworthiness of every node that provided an

answer confirming (resp. denying) the existence of the attack is increased (resp. decreased) and

vice versa. In the proposed trust model, the increase (resp. decrease) of a node’s trustworthiness

is associated with the role that this node plays in protecting (resp. harming) the network. More

precisely, the higher the risk of a detected attack the greater the increase (resp. decrease) of the

trustworthiness of the nodes that participate in detecting (resp. colluding) this attack. Thus,

assessing the risk of an attack is based on two factors: the level of evolution of this attack and

the vulnerabilities (or the attacks) that may be derived from it. The evolution level represents

to which extend the attacker is far from achieving its attack: the larger the evolution of the

attack, the greater the risk. The derived vulnerabilities represent the possibility to launch other,

usually more serious, attacks based on this attack: the more derived vulnerabilities, the higher

the risk of the attack. The aforementioned factors of risk are estimated based on an attack tree.

Moreover, we propose to use the confidence interval of a diagnosis so as to find a trade-

off between the resources consumption and the detection reliability. Thus, our Ids can decide

when to stop (or at minimum reduce) the gathering of evidences. This also helps in deciding

whether a countermeasure should be launched or not. In fact, such decision is critical since

punishing a legitimate node (resp. permitting an intruder to continue misbehaving), decreases

the performance of Manet and may partition it47 [57]. The confidence interval is a range of

values that contains, with a specific level of certainty, the true value of the diagnostic result.

During the diagnosis, if all the values in the corresponding confidence interval confirm (resp.

affirm) the existence of an attack, then the true diagnostic result does the same (i.e. it confirms

or affirms the existence of an attack). This means that the obtained diagnostic result, which

belongs to the confidence interval, is sufficiently reliable and thus, no more evidences are needed.

Otherwise, i.e., the confidence interval contains contradictory values, the required reliability is

47For instance, excluding a legitimate node due to an unreliable detection result leads to divide the network

into two sub-networks when the excluded node is the unique connector between these two sub-networks.
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not yet achieved. Thus, further evidences should be gathered before concluding the diagnosis.

More details are covered in the remaining part of this chapter. Section 4.2 provides an

overview about the concept of trust and the trust models in Manet followed by a description of

the proposed entropy-based trust model. In Section 4.3 provides a statistical background about

the confidence interval followed by a description of how this interval is employed in our Ids.

4.2 Trust-based Intrusion Detection

The concept of trust has been originally used in social sciences in order to represent the level

of faith about the behavior of a particular entity (e.g. a person or a thing) [141]. In computer

science, trust has been defined as follows [142]: “... trust (or, symmetrically, distrust) is a

particular level of the subjective probability with which an agent will perform a particular action,

both before [we] can monitor such action (or independently of his capacity of ever to be able to

monitor it) and in a context in which it affects [our] own action”. The utility of trust for taking a

decision is explained in the definition provided in [143]: trust is a subjective probability that helps

the trusting entity in taking binary decisions by balancing known risks and the trustworthiness

of the trusted entity. Note that trust can be seen not only as a probability but also as a

belief. For instance, trust is defined in [144] as the belief that an entity has, based on its own

direct experiences, in another entity’s capabilities, honesty, and reliability. Entity, here, can

be a user, a computer, a smart phone, or a service provider. The previous definition ties the

trust with the direct experiences of the trusting entity. However, information about the trusted

entity’s behavior can be provided by other entities in the form of recommendations. These

recommendations play an important role in building the reputation of the trusted entity and

thus, expecting its future actions [145]. In order to better understand the concept of trust, the

following characteristics should be considered:

• Trust has a dynamic nature, i.e., the value of trust changes over the time,

• Trust is subjective, i.e., different entities may assess different levels of belief with respect

to a trusted entity due to different experiences with this latter,

• Trust is asymmetric, i.e., the belief that the trusting entity has in the trusted entity is not

necessary mutual,

• Trust is not always transitive, i.e., if A trusts B and B trusts C, then it is not necessary

that A trusts C,

• Trust is function- or context-dependent, i.e., the level of belief between two entities is

related to their considered interactions. For instance, an entity can be trustworthy for

forwarding packets but not for detecting attacks.

Overall, trust can be defined as the level of belief/faith the trusting entity places on the trusted

entity’s capabilities and willingness to do/offer something in a given context and in a specific

time slot. The trusting and the trusted entities are associated with a unidirectional relation

called trust relationship. This relationship is characterized by three basic attributes: time slot,

context, and trust value (Figure 4.1). The trust value expresses the strength of the relationship,
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i.e., the level of trustworthiness that the trusting entity assigns to the trusted entity in a given

context during a specific time slot. Thus, several trust relationships may hold: each one is a

unique combination of the aforementioned attributes (i.e., trust value, time slot and context).

Initiating a trust relationship refers to deriving the trust value. This deriving generally depends
48 on the direct interactions and/or the recommendations. With direct interaction, the trust

relationship is realized by a direct contact between the trusting and trusted entities. More

precisely, the trusting entity depends on its own observations and experiences with the trusted

entity to derive the degree of trust that should be assigned to this latter. Initiating the trust re-

lationship by recommendation (also known as obtaining reputation) implies that the trust value

is derived based on references/recommendations collected from third party mediators. In order

to reduce the effects of unfair recommendations, the trusting entity commonly uses the trust

value assigned to the mediator, as a trustworthy recommender, to weight the recommendations

coming from this latter. The aggregation of the weighted recommendations results in the so-

called reputation of the trusted entity (Figure 4.2). Building the trust relationships, determining

and maintaining the trust values, and taking trust-based decisions constitute the overall trust

model [146].

In Manet, the largest portion of the trust models is proposed to protect the routing proto-

col [147] against both selfish and misbehaving nodes [72, 104, 148, 149]. In practice, the source

of a packet searches for the routes which do not contain untrustworthy nodes [150]. Other trust

models have been further proposed for authentication [151, 152], access control [153], key man-

agement [154], and intrusion detection [155] purposes in Manet. We present our trust model

(§4.2.1) that aims at building trust relationships and which is integrated into our Ids so as to

have a robust intrusion detection (§4.2.2). The assessment of the attack risk is introduced in

(§4.2.3). We then evaluate the robustness of the proposed trust-based detection against the

falsified evidences (§4.2.4).

48Recently, several works are based on social engineering and real world friendships in order to build trust

relationships between entities.
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4.2.1 Entropy-based Trust Model

We propose a distributed trust model that relies on the past evidences in order to establish the

trust relationships between the nodes. A trust relationship TA,B between two nodes A and B

represents to which extend A believes that B would act as expected (e.g., B forwards, without

malicious modification, a control message towards the destination). This belief is represented as

a trust value assigned to B. Several properties are taken into account during the calculation of

a trust value:

• Property 1: the beneficial activities that are performed by a node increases the trust

value assigned to this latter. While the node’s harmful activities decrease its trust value.

Examples of the beneficial activity include rightly relaying the traffic and providing a

correct evidence during the intrusion diagnostic. In contrast, a harmful activity is related

to, e.g., launching an attack or providing incorrect answers/evidences during the intrusion

diagnostic.

• Property 2: the degree of gravity (versus reputability) of a harmful (versus beneficial)

activity influences the risk for other nodes. Hence this degree should be reflected in the

calculation of the trust value. For instance, relaying correctly the packets is less reputable

than supplying correct answers to a diagnosis-related request.

• Property 3: fresh activities should be privileged in opposition to stale activities. Such

privilege is needed so as to reduce the impact of Intoxication [156], a malicious node gains

the trust of others by telling the truth over a sustained duration and only then starts lying.

• Property 4: first hand evidences (i.e., activities, either harmful or beneficial, that are

observed by the node itself) are privileged compared to the second hand observations which

are subject to controversial.

The above properties are enforced as follows. The node A calculates the trust T∆t(A,B) of the

node B based on the n evidences eA,B
1 , ..., eA,B

i , ..., eA,B
n about B which are observed/collected
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by A during a time slot ∆t:

TA,B
∆t =

n
∑

j=0

αje
A,B
j + βTA,B

∆(t−1) (4.1)

The trust value ranges from 0 (i.e., complete distrust) up to 1 (i.e., complete trust), i.e.

TA,B
∆t ∈ [0, 1]49. Beneficial and harmful evidences eA,B

j take respectively positive and nega-

tive values (property 1). A weighting factor αj pondered eA,B
j so as to reflect the degree of

gravity/reputability of this evidence (property 2). Meanwhile, a forgetting factor β permits to

privilege fresh evidences rather than the stale evidences that were computed at the previous time

slot ∆(t− 1) (property 3). As long as no new activity is observed, the trust value is periodically

updated i.e., either increased or decreased until it reaches the initial trust value. This ensures

the redemption of nodes over time. Expression (4.2) represents how a node A updates the trust

value T∆t(A,B) of a node B when no activity is observed/collected about this latter.

TA,B
∆t = βTA,B

∆(t−1) (4.2)

In this expression, we note the association between the trust value before and after the fading:

the forgetting factor β is formulated such that the higher (resp. the lower) the trust value before

the fading, the smaller the decrease (resp. the increase) in the trust value after the fading.

Note that the assignment of an initial trust value to a node that joins the network or moves to

a new neighborhood is critical: the ignorance of historical activities of the nodes represents a

major challenge for the trust model [143]. In fact, being pessimistic implies to assign a low trust

value. A side effect is that new nodes may be less interrogated and may lack of opportunities to

increase their trust value. Alternatively, the optimistic assignment of a high trust value favors

the renewal of untrustworthy nodes which look for novel reputations. We believe that the initial

trust value should be adapted according to the criticality of the application for which the trust

model is developed: for instance a low initial trust value will be provided to support military

applications. In our experiments, we select an initial trust value of 0.4, which is fairly low and

ensures the defense nature of our trust model such that re-entering the network with a new

identity is not so interesting.

When the observations of A are not sufficient, additional evidences are gathered from other

nodes. These evidences are less reliable than the local evidences. Thus, an uncertainty is

involved. To compute such uncertainty, the entropy, a measure of uncertainty stated in infor-

mation theory [157], is used. In practice, trust is established through a third party (termed

concatenated propagation) and through recommendations provided by multiple sources (called

multipath propagation) [149, 158]. Let a recommendation RA,S represent how much A trusts the

recommendations generated by S. A builds its belief about B according to the recommendation

of S, a third party:

TcA,B
∆t = RA,S

∆t TS,B
∆t (4.3)

Note that if A does not have an idea about the trustworthiness of S (i.e., RA,S = 0) then the trust

between A and B is still unknown (i.e., TcA,B
∆t = 0). When multiple nodes S1, S2, ..., Sm generate

a recommendation, A estimates its belief about B by applying the maximal ratio combining on

49We apply a Wraparound mechanism such that if the calculated trust value exceeds the upper limit (i.e., 1)

or drops down the lower limit (i.e., 0) then the nearest limit is used as a trust value.
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the recommendations. In this combination, a recommendation is weighted according to the

ratio of its provider’s trust value to the sum of trust values of all recommendation providers.

Thus, a recommendation that comes from a trusty (resp. unreliable) node is amplified (resp.

attenuated):

TmA,B
∆t =

m
∑

i=1

wi.T
Si,B
∆t (4.4)

with wi =
R

A,Si
∆t

m∑

j=0
R

A,Sj
∆t

The aforementioned trust model is adapted to our Ids so as to protect the intrusion diagnostic

from the blackmail attacks.

4.2.2 Trusted Intrusion Diagnostic

We adapt the entropy-based trust model in order to build trust relationships between the nodes

in the context of detection. The relationship TA,B between two nodes A and B represents

to which extend A believes that B would return non falsified answers/evidences during the

diagnosis. In order to establish TA,B, A relies on the diagnosis-related evidences provided by

B: TA,B increases (resp. decreases) every time B provides correct (resp. incorrect) evidence

for a diagnosis initiated by A. In addition, A uses the alarms which are broadcasted when an

intrusion is taking place. An alarm serves as a second-hand evidence that changes the trust

value of the node(s) advertised as intruder(s) through the concatenated propagation (Formula

4.3). The amount of change depends on the trustworthiness of the alarm originator. In order to

avoid the false accusations, an alarm message is considered only if it agrees with the self belief of

the receiver. As usual, if the malicious nodes constitute the majority of the interrogated nodes,

then a node A may be vulnerable to a brainwashing [156].

We further exploit the trust model so as to merge the evidences, even the inconsistent ones,

during a diagnosis: the evidences are combined using the multipath propagation (Formula 4.4).

Here, a returned evidence takes the value −1 if it confirms the existence of an attack, otherwise it

takes the value 1. It is then weighted according to the trust value of its provider; an evidence that

is provided by a trustworthy (resp. untrustworthy) node is amplified (resp. attenuated). The

maximal ratio combination of these weighted, positive or negative, evidences represents the di-

agnostic result. Let illustrate the calculation of a diagnostic result by considering a link spoofing

attack that is taking place between a suspicious node I and one of its neighbor S. During such

diagnosis, other nodes (S1, ..., Sm) are interrogated to verify their neighborhood relations with I.

Suppose that the interrogated nodes have provided the evidences noted eS1,I , ..., eSi,I , ..., eSm,I .

These evidences are then combined according to (Formula 4.5) such that eSi,I
i is pondered with

a weighting factor wi. This factor represents the ratio of the trust value of Si (the provider of

this evidence) to the sum of the trust values of all nodes that have provided answers.

DetectA,I
∆t =

m
∑

i=1

wie
Si,I
i (4.5)

with wi =
TA,Si

m∑

j=0
TA,Sj

.
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Recall that an evidence eSi,I
i is either equal to 1 - the link which is advertised by I is correct,

meaning that I does not carry a spoofing attack - or to −1 - the advertised link is wrong. If an

interrogated node Si does not return an evidence (before the waiting time elapses) then eSi
= 0.

Overall, a link spoofing is detected when DetectA,I
∆t is nearly equal to −1. Once stated, this result

is used to update the trustworthiness of I, as well as S1, ..., Sm. Indeed, if DetectA,I
∆t is less than

0 (i.e., a link spoofing attack is detected) then the attacker I and every interrogated node Si that

denies the existence of a spoofing (i.e., eSi,I
i is equal to 1) lose a part of their trustworthiness.

While the trustworthiness of an interrogated node Sj that confirms the existence of a spoofing

(i.e., e
Sj ,I
j is equal to −1) is increased. In contrast, if there is no spoofing (i.e., DetectA,I

∆t is

more than 0) then the trustworthiness of the nodes that confirm the existence of a spoofing

is decreased. While the trustworthiness of the nodes that deny the existence of a spoofing is

increased. In both cases, the amount of increase/decrease in trustworthiness is associated to the

risk of the detected attack.

4.2.3 Attack Risk

We propose to amplify the preventative nature of our trust model taking into account the attack

risk which varies depending on: (i) the damages that may be caused by an attack and (ii) the

degree of acomplishment of the attack. In practice, each evidence e (Expression 4.1) is pondered

with a degree of gravity α that reflects the risk of the attack. This risk depends of two key

factors50:

• Attack evolution: an attack is seen as an (ordered) sequence of actions that are realized

by the attacker (and colluding node(s)) so as to achieve malicious purpose(s) (e.g., falsifying

Mpr selection in Olsr protocol). An attack tree is a systematic method that has been

proposed so as to assess the cause-consequence relationship between the actions composing

the attack [159]. The root of this tree represents the first action (or the state) that should

be realized by the attacker while the leaves represent the goals of the attack. When

the attack evolves, i.e., the attacker goes deeply in the tree and approaches the leaves,

the damages become closer. Therefore, the risk is proportional to the level of attack’s

evolution l. In our model, l is measured as the depth of the tree.

• Derived attacks: a successful attack may open the door for others, perhaps more serious,

attacks. For instance, gaining maliciously a Mpr position may be intended to tamper

packets. The degree of gravity is proportional to the number d of potential attacks that

can be derived.

The above properties are used to calculate the degree of gravity α for an activity or an evidence

e as follows:

α = l ∗ d (4.6)

Let us illustrate the estimation of the degree of gravity with a link spoofing attack defined in the

previous chapter. For this purpose, we build the attack tree (Figure (4.3)), which is composed of

50Note that another factor may be considered so as to reflect the subjective point of view of the security engineer.

For instance, an attack that leads to violate the confidentiality or a denial of service is considered too risky in an

ad hoc network developed for military purposes [16].
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3 levels. First, the attacker should be a 1-hop neighbor of the victim (root action). The second

level contains the three types of link spoofing: non-existing 1-hop neighbor is advertised, existing

but non neighboring node is advertised as a 1-hop neighbor, or 1-hop neighbor is omitted. By

taking the first and/or the second option, the attacker increases its connectivity and hence can

be chosen as Mpr by the victim (second leaf). In addition, a legitimate Mpr may be excluded

from the Mpr set of the victim (optional leaf). While the third choice of the link spoofing leads

to reduce the connectivity of both the victim and the attacker. This latter is no more chosen

as Mpr (third leaf). When the attacker succeeds, it may launch other derived attacks. For

instance, when the attacker succeeds to be selected as a Mpr of the victim then all the traffic

of this latter will be forwarded to the attacker. Consequently, the attacker may mis-relay the

packets or replaying them in other places by tunneling them toward another colluding node and

hence a wormwhole is realized. The attacker may also drop all packets (blackhole attack) or

some selective ones (grayhole attack). Both may lead to a DoS attack. The DoS may be realized

also when the attacker maliciously excluding himself/herself from the Mpr set of the victim.

Supposing that an intruder I launches a link spoofing attack against one of its 1-hop neighbors

������ � ³¢ ´�ªµ ¦¬©©¶ª� ¨¥¥¨¤µ ¥���

(i.e., I has already exceeds the first level of the attack tree). For this purpose, I sends a false

hello message advertising a non-existing node as 1-hop neighbor (i.e., attack is evolved into the

second level of the attack tree (l = 2)). If the attack succeeds and becomes a Mpr then he/she

would have the possibility to realize 4 further attacks: mis-relaying, replaying , blackhole and/or

grayhole attacks. According to Formula (4.6), the degree of gravity is α = 2∗4 = 8. Once stated,

this degree of gravity (resp. reputability) is used to update the trust value of the nodes that

provided incorrect (resp. correct) evidences during the diagnosis related to the aforementioned

scenario of link spoofing attack.
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4.2.4 Evaluation

We analytically evaluate 51 the proposed trust model such that the aforementioned formulas

are used to estimate: (i) the evolution of the trustworthiness for, both, well-behaving and

misbehaving nodes, (ii) the trust fading, and (iii) the aggregation of the evidences. We consider

a case study that contains, unless specified, 16 nodes including 1 attacker that performs a link

spoofing attack and 4 misbehaving nodes. The misbehaving nodes constitute 26.3% of the

network and aim at foiling the detection by confirming that the falsified neighborhood relation

advertised by the attacker is true. Initially, each node is assigned a random trust value. The

attacker launches a link spoofing attack that, unless specified, takes place during the overall

experiment. Similarly, the misbehaving nodes always supply incorrect evidences during the

diagnosis. The evolution of trustworthiness as seen by the node under attack is presented
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in Figure 4.4. The constant maintaining of the well-behaving and misbehaving explains the

(monotonous) ascending versus descending rate of the node trustworthiness. One may note the

defensive nature of our trust model: the trust associated to a liar falls dramatically regardless of

the initial trust, whereas the well-behaving nodes with a low initial trust value gain moderately

the trust of others. Then, if the attack ceases (Figure 4.5), both liars and well-behaving nodes

recover due to the forgetting factor. One may note that the nodes with a high or medium initial

trust value reach the default trust value (herein 0.4) in the the first rounds. Nodes with small

initial trust values recover slowly: they are assigned with the default trust value after passing 25

rounds without providing any diagnostic evidence. This represents the defensive nature of our

trust model which demands a long misconduct-less duration before trusting a former liar. Figure

(4.6) shows the impact of using the trustworthiness during the intrusion diagnostic. Here, the

51The trust model is already implemented and integrated into Lidr (Appendix C.3). However, we still need to

execute it in our simulator.
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diagnosis-related evidences are inconsistent due to the presence of liars. They are aggregated

according to Expression 4.5 such that each evidence is pondered with the trust value. When the

trust value assigned to each node reflects its true nature, i.e, liars have low trust values while

the well-behaving nodes have high trust values, then the diagnosis correctly refers whether an

attack takes place. It is worth to mention that the trustworthiness of the nodes evolve correctly,

and hence the diagnosis concludes correctly, provided that the impact of the liars is less than

the impact of the well-behaving nodes. However, the sum of liars ’s weighted evidences should

be less than the sum of the well-behaving nodes’ evidences. Otherwise, an intoxication takes

place and the legitimate nodes starts losing their trustworthiness in favor of the liars. In order

to evaluate the impact of the liars, diagnostic result has been calculated for several percentages

of liars (Figure 4.7). As expected, augmenting the percentage of liars delays the conclusion of

the diagnosis: more interrogation rounds are required until the diagnostic result approaches −1

(meaning that an attack has occurs). However, the diagnostic result continues falling down and

approaching −1 along the time even when the liars constitute 43.2% of the nodes. During the

last rounds, the detection converges to −0.8 regardless of the percentage of liars: the trust values

of the liars diminish dramatically in the last rounds, and thus their influence on the detection

almost disappears.
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Overall, the node cannot misbehave and still have a high trust value in the same time.

Decreasing the trustworthiness of the misbehaving nodes diminishes their impact on the detec-

tion. Obviously, the accuracy of the intrusion detection is enhanced when the trust values of

the nodes reflect properly their true nature. However, the presence of inconsistent answers/ev-

idences during the diagnosis always generates a doubt about the diagnostic result. Waiting for

more diagnostic and trust estimation rounds before concluding the diagnosis, so as to reduce the

level of doubt, means that more evidences are gathered. Consequently, more resources will be
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consumed before obtaining the diagnostic result. Therefore, there is a need to find a trade-off

between the detection accuracy and the resources consumption.

4.3 Statistics-based Interrogation

In this section, we provide a background about the inferential statistics and the confidence

interval. We further detail the mathematical definition and computing of the confidence interval,

the confidence level, and the sampling error (4.3.1). In (4.3.2), we present how the confidence

interval is integrated in our Ids as a measure of reliability. We then evaluate the efficiency of

using the confidence interval in order to find a trade-off between the detection accuracy and the

resources consumption (4.3.3).

Statistics are defined in [160] as the science of gathering, organizing, interpreting, and an-

alyzing data so as to make decisions. They refer to the set of mathematical procedures that

condense, usually, large quantities of information into a few simple informative facts and figures

[7]. These facts and figures answer the questions about a group (or groups) of individuals.

For example, the effects of the summer job on the average income in France, or the analysis

of the political attitudes for men compared to women during the presidential election. In sta-

tistical terminology, the entire group of individuals for which statistics are established is called

population. The population is not uniquely composed of people, but it could be a population

of measurements, corporations, or anything. Regarding the size of the population, it may be

small e.g., the students in a class, or extremely large e.g., the adults who are registered voters

in France. Since the examination of all the individuals forming a large population is very costly

in terms of money, time, and resources, the statistical studies are limited to a smaller group of

individuals, more manageable, that are typically selected from such population. More precisely,

the characteristics of a population (e.g., mean, median, standard deviation) are usually inferred

based on a subgroup of the individuals which represent this population. Mostly, this selection

is done randomly, i.e., population individuals have equal chance to be selected, although, non-

random criteria-based selection could be also used [8]. In statistical terminology, such selected

set of individuals is called a sample, and is intended to represent the population. The selected

sample can vary in size. After finishing examining a sample, the results are then generalized

back to the entire population. A population characteristic, e.g., mean or median, is termed a

parameter; a population parameter is usually a numerical/quantitative value that describes

a population. A characteristic of a sample is termed a statistic (or an estimate); a sample

statistic is a numerical/quantitative description of a sample. Figure (4.8) represents the full

relation between a population and its sample. Statistics are classified into two general branches:

descriptive statistics which involve organizing, simplifying, summarizing and displaying data in

a more manageable form, and inferential (called also inductive) statistics that use probabilistic

techniques so as to examine a sample from a population, and then make a generalization on

the obtained answers in order to improve our knowledge about this population. In other words,

the sample statistics are used as a basis for estimating the population parameters. Inferential

statistics allow us to have facts and answers about the large population without need to examine

all its individuals. However, to which extend these facts generalized from a sample are accu-

rate? This question should be asked because a sample is still a representative of its population,
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but it does not necessary give a perfectly accurate reflection about the whole population. A

discrepancy is usually existing between a population parameter and the corresponding sample

statistic. In statistic, this discrepancy is termed sampling error. We illustrate the concept

of sampling error in Table 4.1. Let consider a population of 10 students, and further choose

randomly two samples from this population, each one is composed of 4 students. Note that the

individuals of these samples are distinct. Here, two characteristics are calculated: the average

age and the average height, for the population as well as for the selected samples. Since the

characteristics of a sample depend on its individuals, the sample statistics vary between the two

selected samples. For instance, the average age in the first sample equals to 19.75, while it is

equal to 19.0 in the second sample. Moreover, neither the statistics of the first nor the second

sample are identical to the population parameters (e.g., the average age in the population is

19.4). It is worth to mention that we present two samples of many of possible samples. Each of

these latter typically contain different individuals, thus producing different statistics. Imagine

now that we classify the students according to the age, i.e., the population is divided into two

groups such that the first group contains the younger students while the second group contains

the older students. We then select one sample from each group. Again, the sample statistics will

vary from one sample to another, and are typically not identical to the population parameters.

Overall, no matter how we select the samples, they will mostly produce different statistics. As

aforementioned, this variation of sample statistics from one sample to another, and further from

the corresponding population parameters represents the concept of sampling error. Thus, there

is a need to evaluate the accuracy of a sample-based estimation of a population parameter. For

this purpose, the confidence interval is designed to override the effects of sampling error on

the precision of a sample statistic [161].

The confidence interval is used so as to represent statistical imprecision or uncertainty associ-

ated with the estimation of a population parameter (e.g., proportion, mean) from a sample [162].
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Table 4.1: Sampling error

P=>?@ABC=E =G HI JB?KLEBJ

S������ M�� N���8�

Eric 18 175

Laura 19 165

Mouhannad 20 170

Francoise 22 167

Julien 19 180

Kate 17 177

Ali 21 185

Brian 18 181

Sara 20 161

Kristen 17 172
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Eric 18 175

Laura 19 165

Mouhannad 20 170

Francoise 22 167
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Kate 17 177

Ali 21 185

Brian 18 181

Sara 20 161
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A common example of confidence interval statement is a pollster’s claim that he (or she) is, for

example, 95% confidant that the percentage of vote for a presidential candidate is, for example,

42% with a margin of error equals to 4%. In this case, it is obvious that the voting population is

very large (e.g., the voters registered in the United States). Thus, the previous survey is surely

based on a group of possible voters (i.e., a sample). The percentage 42% represents the point

estimate of the true percentage of votes. However, a point estimate is not recommended with

inferential statistics due to the sampling error, i.e., we cannot figure out to which extend the

point estimate is close to the population parameter [162]. To override this shortcoming, the

pollster uses the interval estimate, the true percentage of votes for the mentioned candidate

is specified as between two values. In practice, this interval (i.e., [38%, 46%] in our example)

is estimated by adding (resp. subtracting) the margin of error (i.e., 4%) to (resp. from) the

percentage of votes (i.e., 42%). Since the pollster specifies 95% as a degree of confidence (i.e.

he or she is 95% sure that the true percentage of votes is within the estimated interval), then

the interval [38%, 46%] is considered as a 95% confidence interval. This means that under re-

peated and random sampling under identical conditions, this confidence interval will contain the

sample-based percentage of votes 95% of the times. In other words, the pollster is 95% sure that

the interval [38%, 46%] would contain the true percentage of votes if all possible voters (i.e. all

the individuals in the population) are included in his/her survey. The confidence interval is seen

as a measure of certainty around a sample statistic, telling us the range of values within which

the true population parameter lies with a given degree of confidence. This degree of confidence

is termed as confidence level (cl for short). The confidence interval helps in estimating, with

a specific degree of confidence, the opinion of a population based on a limited-size sample from

this population. We employ the confidence interval in our Ids such that instead of gathering and

processing all the evidences, a subset of these latter is used to estimate whether or not an attack

takes place. Thus, we reduce the amount of gathered and processed evidences that are necessary

to detect the attack. In addition, since the confidence interval is based on a specific confidence
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level, we guarantee the required detection accuracy. As a result, the confidence interval permits

to find a compromise between the detection accuracy and the resources consumption (Figure

4.9).

F����� ��R� X
��� �8� 10�Y���1� �����O7 �0 �
��5��  606�7��0�Z
 06��ion.

The confidence interval is largely used in election surveys in order to estimate the opinion of the voters

about a political candidate. Since interrogating all the voters is impossible, such estimation is based on

a sample of voters. We adapt this concept in order to estimate, based on only a subset of evidences, the

opinion of the network about a suspicious device. This estimation is related to a degree of certainty and

helps in reducing time and resources consumption in the intrusion detection.

Before delving into the utilization of the confidence interval with our Ids, let us introduce the

mathematical background on the confidence interval.

4.3.1 Confidence Interval

We hereafter describe the computation of the confidence interval for the mean which is the most

used population parameter [162]. The confidence interval for other population parameters, e.g.,

proportion, median, is similarly computed. Given the sample mean (i.e., the point estimate) µs

and the sampling error ε (also called standard error) that is calculated according to a specified

confidence level (cl for short), the population mean µ is delimited by a lower limit (µs − ε) and

an upper limit (µs+ε), i.e., µs−ε < µ < µs+ε. The interval [µs−ε, µs+ε] is the cl% confidence

interval of the population mean. It is obvious that the key element during the estimation of the

confidence interval is the sampling error of the mean. When the sampling distribution of the

mean follows a normal law, the sampling error is calculated as follows [161]:

ε = zα/2
σs√
n

(4.7)
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With a sample size denoted n, and a standard deviation σs of the sample that is calculated as

follows:

σs =

√

√

√

√

√

n
∑

i=0
(µs − xi)

2

n− 1

(4.8)

with x1, x2, ..., xn correspond to the sample individuals.

The factor zα/2 is related to both the required confidence level and the form of the sampling

distribution. The confidence level refers to the expected percentage of times where the esti-

mated confidence interval would contain the sample mean, under repeating sampling from the

population [8]. Hence, it refers to the probability that the true value of the population mean

falls into the estimated confidence interval. Thus, the larger the confidence level, the higher

the certainty that the confidence interval contains the true value of the population parameter.

The confidence level is usually written as 100(1 − α)% where α, which is less than or equal to

1, represents the portion of the sampling distribution outside the confidence interval. In order

to understand the relation between the confidence level and α, let introduce some terms and

theorems. In statistics, the probability distribution of a variable x specifies the likelihood or

the percentage for each value that x can take within a range. This range is limited between the

minimum and the maximum statistically possible values of x. Moreover, the probability that x

would assume a value within a specific interval can be obtained by determining the area under

the probability distribution graph that is limited by this interval. For instance, assuming that

Figure 4.10 shows the graph of the probability distribution of a variable x, the percentage of the

area between a and b refers to the probability that x has a value within the interval [a, b], i.e.,

Pr(a < x < b). The sampling distribution of a sample mean (or any other sample statistic) is

F����� ��Q[� \�0//�7��] ��
���/���0� 0� ^

the probability distribution of the mean obtained under repeated sampling of the population [8].

Supposing that the sampling distribution of the mean has a normal distribution form (Figure

4.11), the percentage of the area under the distribution graph, for example, from µ− ε to µ+ ε

represents the probability that the mean has a value within the interval [µ− ε, µ+ ε]. In other

words, this area contains the samples whose means fall into the interval [µ− ε, µ+ ε]. Thus, the

interval [µ− ε, µ+ ε] is considered as a confidence interval with a confidence level equals to the
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percentage of the area from µ− ε to µ+ ε. The lower and upper tails of the distribution graph,

where the mean is less than µ − ε or more than µ + ε respectively, represents the probability

that the sample mean is not within the interval [µ − e, µ + e]. In other words, they contain

the samples which their means are not within the confidence interval. Thus, they reflect the

sampling error. It is clear that by increasing the width of the interval [µ − ε, µ + ε] (the tails

of sampling error henceforth become narrower), the probability that a sample mean is within

the confidence interval increases. Therefore, the width of the confidence interval increases along

with the confidence level. In Figure 4.11, we assume that the interval [µ− ε, µ+ ε] constitutes

95% (or 100(1 − 0.05)%) of the distribution area. Thus, the area outside this interval consti-

tutes 100% − 95% = 5% of the total distribution area such that each tail covers 0.025 of the

distribution. α in (Formula 4.7) refers to the total area in both tails of the distribution graph,

and α/2 (in our example α/2 = 0.025 ) refers to the area in each one of the tails. Since the

sampling distribution of the mean has a normal form, we determine the percentage for every

area specified by an interval through the Table of areas for the standard normal distribution also

called Z-distribution (Appendix B.1) [160]. The Standard normal distribution is a special case of

the normal distribution with mean 0 and standard deviation 1. Furthermore, if the percentage

F����� ��QQ� S567��� ��
���/���0� 0� �8� 5��

of an area (i.e., the required confidence level) is known, then the corresponding interval (called

z-score) can be taken from the standard normal distribution table. In Formula 4.7, zα/2 repre-

sents the z-score that corresponds to the area of the Standard Normal distribution where α/2 is

excluded from each tail. For instance, if the required confidence level is 95% (i.e., α/2 = 0.025),

then the corresponding z-score is z0.025 = 1.96. Table (4.2), contains the z-scores for the most

commonly used confidence levels.

So far so good, but can we use the z-score with the sampling distributions that are not normal?

To answer this question, one should discuss the size of the sample52. If all the possible samples of

the population are considered, then the mean of the sampling distribution of the mean is equal

52If the standard deviation of the population is known, then the z-score is used regardless of the sample size

and the sampling distribution form. However, in this case, it is practically meaningless to estimate the confidence

100



ÂÁÀÁ �ÐÉÐÑ�ÐÑË���É�Ä� �ÊÐÄÅÅÇ�ÉÐÑÇÊ

Table 4.2: z-scores for the most commonly used confidence levels.

_=E`KLEaL @LbL@ zcJa=dL

80% 1.28

90% 1.65

95% 1.96

99% 2.58

99.9% 3.29

to the population mean [160]. However, considering all the possible samples from an infinite

or large population is practically impossible. Therefore, the mean of the sampling distribution

of the mean differs from the population mean. The law of large numbers [163] states that

this difference which reflects the sampling error, decreases along with the sample size [8]. More

precisely, the sampling error decreases as the sample size increases. In addition, according to

the central limit theorem introduced by Pierre Simon Laplace [164], as the sample size gets

larger, the sampling distribution of the mean begins to look like a normal distribution. In

practice, regardless of the population form, once the sample size exceeds 30, then the sampling

distribution of the mean can be approximated by a normal distribution [160]. Thus, the z-score is

used when the sample size exceeds 30. Otherwise, with small samples, the sampling distribution

of the mean is considered as a t-distribution (also called Student’s t-distribution, or Gosset

distribution) [8]. The t-distribution is quite similar to the normal distribution, but the former

has larger tails comparing to the latter as it is illustrated in Figure 4.12. This means that the

confidence interval based on t-distribution is wider than it would be if this confidence interval

was based on the normal distribution. Thus, the t-distribution is less precise than the normal

distribution. However, as the sample size increases, the difference between the two decreases

F����� ��Qe� f0�57 ��
���/���0� 1056��� �0  �.��
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until it is not of practical importance. It is worth to mention that each particular curve of

the t-distribution is determined by a degree of freedom (df for short), such that changing the

interval of the mean because knowing the standard deviation of the population means that the true population

mean is already known.
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value of df changes the shape of the t-curve [160]. Given n the size of the sample on which the

estimation is based, then the df of the corresponding t-distribution is n − 1. Therefore, when

n < 30 then the sampling error is calculated as follows:

ε = tα/2
σs√
n− 1

(4.9)

Where the value of tα/2 can be taken from the table of areas for the t-distribution (see Appendix

B.2), with df = n− 1.

Overall, the estimation of the confidence interval of a population mean involves the following

steps:

1. Collect a sample from the population.

2. Calculate the sample mean µs and the sample standard deviation σs.

3. In order to ascertain the portion of the sampling distribution that is excluded from the

confidence interval, subtract the required confidence level to 100 and divide the result by

2 so as to obtain α/2.

4. When the sample size n is more than or equal to (resp. less than) 30, select the zα/2 (resp.

tα/2 with df = n− 1) from the z-distribution (resp. the t-distribution) table.

5. Use Formula 4.7 (resp. Formula 4.9 when n < 30) to calculate the sampling error ε.

6. Estimate the confidence interval as [µs − ε, µs + ε]

Increasing the confidence level leads to increase the certainty that the true population mean is

within the corresponding confidence interval. However, it renders the confidence interval wider,

thus the precision is reduced. Similarly, increasing the sample size reduces the sampling error

and the confidence interval becomes narrower while its precision rises.

4.3.2 Lightweight and Reliable Evidence Gathering

The computation of the confidence interval during the diagnostic permits our Ids to: (i) mini-

mize the number of gathered and processed evidences while maintaining the required detection

accuracy, and (ii) measure to what extend the diagnosis is reliable, especially in the presence

of inconsistent evidences. In other words, finding a compromise between the resource consump-

tion and the detection accuracy implies to be informed about when gathering more evidences

is redundant and does not change the obtained result. For this purpose, Lidr is enriched in

order to exploit the confidence interval as a measure of reliability (Figure 4.13). In practice, the

first steps of detection, which consist in extracting the evidences from the logs and matching

those evidences against the intrusion signatures, remain unchanged. The change takes place

when remote evidences are gathered from other nodes: rather than gathering all the evidences,

only a subset/sample of those evidences are gradually gathered. This subset is gathered by

randomly and uniformly interrogating a group of candidates that provide the evidences about

the suspicious node. Based on the gathered evidences, a diagnostic result is calculated as usual,
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i.e., the gathered evidences are pondered according to the trustworthiness of their sources and

further aggregated according to Formula 4.5. The result represents a sample statistic that may

differ from the true diagnosis (i.e., the one that would be obtained if all evidences in the network

are gathered and processed). Therefore, the sampling error of the obtained diagnostic result

is calculated. Formula 4.7 (resp. Formula 4.9 with a number of gathered evidences bellow 30)

is used. Here, the applied confidence level reflects the required detection accuracy, i.e., if the

required accuracy is high then a high confidence level is chosen and vice versa. Then, the con-

fidence interval of the diagnostic result is estimated based on the computed sample error. The
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true diagnostic result53 should be within the estimated confidence interval. Thus, the sample-

based result is accepted only if the estimated interval is homogeneous, i.e., all its values deny

(Figure 4.14(c)) (resp. confirm (Figure 4.14(d))) that the suspicious node is an intruder. If

the confidence interval is heterogeneous, then the true diagnostic result can either confirm or

deny the attack. This means that there remains a doubt about the obtained diagnostic result

and thus, more evidences should be gathered before completing the diagnosis (Figure 4.14(a),

4.14(b)). For a better understanding, given DetectA,I as the result of a diagnosis initiated

by A as to verify whether a suspicious node I is an intruder or not. DetectA,I is calculated

based on a group of gathered evidences e1, e2, ..., en. Let ε the sampling error of DetectA,I and

95% is the used confidence level. Then, the 95% confidence interval of the diagnostic result is

[DetectA,I − ε,DetectA,I + ε] such that DetectA,I − ε and DetectA,I + ε are, respectively, the

lower and the upper limits of the interval. Recall that a diagnostic result takes a value between

−1 and 1 (i.e., −1 ≤ DetectA,I ≤ 1) such that a negative (resp. a positive) result means that the

suspicious node is an intruder (resp. a legitimate node). When the confidence interval contains

only negative values, i.e. DetectA,I + ε ≤ 0, then 95% of the evidence samples, under repeating

random sampling from the evidence population, confirm that the suspicious node is an intruder.

Similarly, when the confidence interval contains only positive values, i.e. DetectA,I −ε > 0, then

95% of the evidence samples, under repeating random sampling from the evidence population,

confirm that the suspicious node is a well-behaving node. In both cases, we are 95% sure about

the diagnostic result, thus no more evidences have to be gathered and the diagnosis is concluded.

On the other hand, if the confidence interval contains, both, negative and positive values, i.e.

((DetectA,I−ε ≤ 0) ∧ (DetectA,I+ε > 0)), then some evidence samples confirm the existence of

an attack while others deny it. This means that the diagnostic result is not yet reliable and thus,

more evidences should be gathered and processed. It is clear that when the confidence interval

is wide, i.e., it offers imprecision estimation of the diagnostic result, then there is less chance

to conclude this diagnosis. Recall that the larger the sampling error, and thus the wider the

confidence interval, the lower the precision of this interval. Several factors impact the sampling

error:

• Sample size: increasing the number of evidences that are used in calculating the diagnostic

result leads to reduce the sampling error.

• Detection accuracy: the higher the required detection accuracy, i.e., the used confidence

level, the larger the sampling error. In our Ids, the detection accuracy is fixed at 95%.

• Inconsistency of evidences: the higher the variance between the sample evidences, and

hence the larger the sample standard deviation, the larger the sampling error. Here, the

inconsistency of evidences represents the difference, in terms of the impact on the diagnostic

result, between the trust-based pondered negative evidences, which confirm the existence

of an attack, and the trust-based pondered positive evidence, which deny the existence

of an attack. As this difference approaches 0, as the inconsistency increases. Hence, the

confidence interval becomes wider.

53Note that the true diagnostic result, which is based on all evidences, answers correctly whether or not an

attack takes place providing that the falsified evidences constitute less than the half of the evidences population.
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Figure 4.14: Employing the confidence interval as a measure of detection reliability.

It was aforementioned that when the confidence interval is heterogeneous, i.e., it contains, both,

negative and positive values, more evidences are gathered so as to obtain a homogeneous interval.

More gathered and processed evidences make the corresponding confidence interval becomes

narrower, i.e., its precision increases. This leads mostly54 to a homogeneous interval, which

terminates the diagnosis. However, when the inconsistency of evidences is high, many evidences,

and consequently a long diagnosis, are required before obtaining a homogeneous interval. More

precisely, if the difference between the positive and the negative pondered evidences is always

near to 0 even after gathering new evidences, then the confidence interval becomes narrower but

it still contain both negative and positive values. In such cases, continuing gathering blindly more

evidences wastes resources. To tackle this issue, we propose to use a precision threshold pthr,

54Supposing that all evidences in the network have been gathered, if the diagnostic result is 0, which means

that the positive and negative evidences are completely equivalent, then it is not possible to decide whether the

suspicious node is an intruder or not.
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which reflects the precision of the confidence interval. If the sampling error falls below pthr, i.e.,

the estimated confidence interval achieves the required precision, then the diagnosis terminates

regardless whether this interval is homogeneous or not. When the diagnosis is terminated with

a confidence interval still heterogeneous, then the suspicious node is not confirmed neither as

an intruder nor as a legitimate node (Expression 4.10). However, its trust value is decreased.

The value of pthr is an operational parameter that is specified by the end user. The lower the

value of pthr, the higher the detection accuracy, but the larger the resources consumption and

diagnosis duration.


















I is an intruder if DetectA,I + ε ≤ 0

I is a legitimate node if DetectA,I − ε > 0

More evidences are required if (DetectA,I − ε ≤ 0 ∧DetectA,I + ε > 0) ∧ (ε > pthr)

I is unrecognizable if (DetectA,I − ε ≤ 0 ∧DetectA,I + ε > 0) ∧ (ε ≤ pthr)
(4.10)

4.3.3 Evaluation of the Reliability-based Diagnosis

We evaluate to which extend employing the confidence interval allows to find an efficient trade-

off between detection accuracy and resource maintaining. For this purpose, we evaluate the

impact of the number of evidences (i.e., the sample size) on the sampling error, and hence on the

width of the confidence interval. We further show that estimating the confidence interval enables

specifying accurately when the diagnostic result is reliable enough. Thus, the collect of redundant

evidences is avoided. In addition, we present the large enhancement, in terms of economizing

resources consumption, that is achieved thanks to the employment of the confidence interval

in our Ids. The aforementioned evaluations are mathematically performed55. We consider a

case study where a node initiates a diagnosis so as to detect a link spoofing attack. During

this diagnosis, this node sequentially interrogates 4, 8, 12, 16 and 20 other nodes such that each

interrogated node provides only one evidence. In other words, there are five rounds of diagnostic.

In each round the diagnostic is calculated based on the up-to-now gathered evidences. Moreover,

the corresponding 95% confidence interval is computed56. The interrogated nodes are initially

provided random trust values. We consider that 25% of the nodes are misbehaving. This means,

there is always evidences inconsistency in the five diagnostic rounds.

Figure 4.15 shows the evolution of the sampling error along with the increase of the number

of evidences. The sampling error decreases as long the number of used evidences is increased. In

fact, there is a dramatical decline of the sampling error when the number of used evidences rises

from 4 to 8. After that, this decline continues but in a slight manner. This means that increasing

the gathered and processed evidences always leads to reduce the sampling error and thus, the

precision of the confidence interval goes up. However, after a specific number of evidences (in

our scenario 8), the precision enhancement falls down until it becomes negligible. But, when

the evidences gathering should be stopped? To answer this question, we analyze the diagnostic

result and the corresponding confidence interval at each diagnostic round (Figure 4.16). The

55Integrating the confidence interval into our Ids is ready (Appendix C.3) and will be soon evaluated in our

environment of simulation.
56Since the number of evidences, i.e., the sample size, is less than 30 then t-distribution is used to compute the

sampling error.
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diagnostic result has always a negative value that confirms the existence of an attack. Recall

that the diagnostic result ranges from −1 to 1 whereas a negative (resp. positive) result means

that the suspicious node is an intruder (resp. a well-behaving node). When the diagnostic result

is based on only 4 evidences, the corresponding confidence interval is heterogeneous ( i.e., it

contains both negative and positive values) and the diagnosis is not yet reliable. Based on 8

or more evidences makes the confidence interval of the diagnostic result homogeneous and the

existence of an attack can be reliably confirmed from the second round of diagnosis, i.e., with 8

evidences. Moreover, the confidence interval becomes narrower, i.e., its precision rises, along with

the number of evidences. But, the final result (i.e., an attack has taken place) will not be changed.

Therefore, gathering more than 8 evidences is a waste of resources. To illustrate the improvement

in resources consumption, we study the impact of employing the confidence interval on the

number of detection-related messages that are exchanged in the network. Figure 4.17 shows the

number of messages that are necessary to gather the evidences under three scenarios: (i) the

node charged of detection diagnoses about one suspicious case, (ii) 10 independent suspicious

cases, and (iii) 20 independent suspicious cases. Under the three scenarios, we propose that
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the gathering process is optimal such that gathering one evidence requires only two messages

(request/answer). This means there is no consideration for message dropping and re-sending due

to, e.g., the collision in the network. For instance, terminating the diagnosis after 8 evidences

instead of 20 economizes, at minimum, 24, 240, 480 messages when there is 1, 10, 20 suspicious

cases respectively.

4.4 Summary

In this chapter, we tackled three key challenges facing our Ids: (i) its vulnerability to blackmail

attack, (ii) the necessity of finding a compromise between detection accuracy and resources con-
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sumption, and (iii) the necessity of guaranteeing the reliability of detection.

During the intrusion diagnostic, misbehaving node may provide incorrect evidences. Thus, the

diagnostic may blame (resp. exonerate) a legitimate node (resp. an intruder). In order to make

the diagnostic robust against such falsified evidences, an entropy-based trust model has been pro-

posed and integrated into our Ids. Indeed, an evidence is first pondered by the trustworthiness

of its source before being used in the diagnostic. Thus, the evidences coming from distrustful

(resp. trustful) nodes have less (resp. more) impact on the diagnostic result. The trustworthi-

ness of a node is increased (resp. decreased) each time this latter provides a correct (resp. an

incorrect) diagnostic-related evidence. Therefore, the more the node misbehaves and provides

incorrect evidences, the lower is its trustworthiness, and hence the less is its damaging impact

on the diagnosis. During the estimation of a node’s trustworthiness, its recent participations in

the intrusion diagnostics are privileged over the stale ones. This privilege helps in avoiding the

effects of the intoxication that takes place when: (i) a legitimate node with a high trust value

becomes compromised and starts providing incorrect evidences, or (ii) a malicious node tries to

gain the trust of others by providing correct evidences for a while before it starts participating

maliciously in the diagnostics. The trustworthiness of a node is also associated with its role in

detecting the serious attacks. More precisely, the higher the risk of an attack, the larger the

increase (resp. decrease) of the trustworthiness of the nodes that have participated in detecting

(resp. hiding) this attack. This means that the preventative nature of our Ids is amplified along

with the level of danger in the network. The risk of an attack increases as: (i) it evolves and

approaches its final goals, and (ii) more vulnerabilities or attacks can be derived from it. The

evaluation of trust-based intrusion detection shows that the impact of blackmail attacks fades

along with the evolution of trust relations between the nodes.

We are inspired from the inferential statistics so as to estimate the opinion of the entire network

about a suspicious node. Indeed, the confidence interval of the diagnostic result has been em-

ployed so as to achieve a compromise between resources consumption and detection reliability.

During a diagnostic, the gathered evidences are used to compute the confidence interval of the

obtained diagnostic result. This interval is computed according to a specific confidence level

that reflects the required detection accuracy. It further contains the true diagnostic result that

would be obtained if all the evidences in the network are gathered. More evidences are gradually

gathered and processed as long the corresponding confidence interval is heterogeneous, i.e., it

contains, both, values that confirm the attack and values that deny it. Increasing the number

of used evidences lead to rise the precision of the confidence interval, and further the reliability

of the diagnostic result. When the confidence interval becomes homogeneous, i.e., all its values

confirm (or deny) the attack, the diagnostic result is considered sufficiently reliable. Here, no

more evidences are gathered since they will not changed the obtained result. However, in the

presence of highly contrary evidences, obtaining a homogeneous confidence interval may require

gathering many evidences. To override this problem, we proposed to terminate the diagnostic

when the precision of the corresponding confidence interval rises over a predefined threshold.

Overall, the confidence interval enables our Ids to specify accurately when the required relia-

bility is achieved, hence more evidences are redundant and should not be gathered. Moreover,

employing the confidence interval guarantees the reliability of detection. The evaluation of the

proposed statistical-based diagnostic proves that the confidence interval reduces significantly the
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amount of the diagnostic-related messages.
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CONCLUSION

In this thesis, I have proposed a lightweight and robust intrusion detection system for ad hoc

routing protocols (Lidr for short). More precisely, this Ids aims at detecting the attacks

targeting the Olsr routing protocol. For this purpose, it extracts evidences and signs of attacks

from the local routing logs. Then it correlates them with the predefined intrusion signatures.

An attack is confirmed when a sequence of observed evidences matches an intrusion signature.

If the local evidences are not sufficient to confirm or affirm an attack, an in-depth diagnosis is

triggered. This in-depth diagnosis consists in asking other nodes to gather more evidences about

the suspicious node(s). An evidence provided by another node is first weighted according to the

trustworthiness of its provider. The trustworthiness of a node is established by an entropy-based

and risk-aware trust system that increases (resp. decreases) the trustworthiness of a node each

time this node provides correct (resp. incorrect) evidence. The amount of such increase/decrease

is related to the risk of the attack that reflects both the evolution of this attack and its possible

consequences/damages. In addition, the confidence interval of the diagnosis is used as a measure

of reliability that serves in determining whether the suspicious node is an intruder or not. In

particular, during the diagnostic phase, gathering and processing more evidences is repeated as

long as the corresponding confidence interval is heterogeneous, i.e., some of its values confirm

the attack while others affirm it. When all the values in the confidence interval confirm (resp.

affirm) the attack, then the diagnosis is terminated by confirming the suspicious node as an

intruder (resp. a well-behaved node). Some experiments have been realized so as to evaluate

the performance of this Ids and its suitability for Manet. The proposed Ids is well adapted

to the dynamic topology of Manet and offers a high detection accuracy. In fact, this Ids has

a distributed nature; each node is charged with analyzing its local logs and protecting itself.

In other words, all nodes perform similar functions and there is no need for central node(s) to

be charged with special functions. This means that this Ids does not contain failure points

resulting when, for example, a central node moves away or leaves the network. In addition

to ensuring its own security, each node cooperates with others to exchange and to match the

evidences with the intrusion signatures. This cooperation offers a global point of view about

the activities of the node under investigation, and hence it enhances significantly the detection

accuracy. Furthermore, considering the temporal dimension of the evidences during the diagnosis
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enables detecting the long-term attacks. The detection accuracy of the proposed Ids has been

evaluated in a simulated Manet wherein different scenarios of density and mobility are applied.

The analysis of the results shows that the density of the network has a small impact on the

performance of the proposed Ids. For instance, when the density57 reaches up to 16, the average

of the detection rate exceeds 81% and the average of the false alarms rate is less than 6%.

Similarly to the density, the mobility has a small impact on the false alarm rate: increasing the

mobility leads to a small decrease in the detection rate. The detection rate remains relatively

high; it exceeds 70% for a node speed equals to 8m/s (i.e., 28.8 km/h).

The proposed Ids efficiently saves the available resources, e.g., battery life, computing ca-

pabilities, and bandwidth. Hence, it is easily tolerated by the limited-resources devices. This

conservation results from a threefold reason:

• The restriction of, both, the number and the duration of the in-depth diagnosis. In fact,

the in-depth diagnosis includes gathering and correlating global evidences and therefore it

is a costly operation in terms of resources. Therefore, this diagnosis is carefully planned. In

practice, the evidences are categorized according to their gravity so that only the evidences

with a sufficient level of gravity activate the in-depth diagnosis. In addition, the in-depth

diagnosis is completed as soon as an evidence, which can confirm (or affirm) the attack, is

provided.

• Minimizing the resources that are consumed due to evidence gathering and processing. In

fact, the proposed Ids extracts the evidences of attacks from local logs that are carefully

selected. It avoids traffic sniffing because this latter leads to: (i) a permanent strain of

energy as a result of keeping the network interface in the promiscuous mode, and (ii)

a significant strain of memory and CPU processing as a result of applying packet-level

analysis on all the packets, including those which are not related to the diagnosis.

• Avoiding the waste of resources resulting from gathering and processing the redundant

evidences. The redundant evidences are those that do not change the diagnostic result

(or for which the change is negligible). In order to identify such evidences, the confidence

interval is employed as a measure of detection reliability. A reliable diagnostic will not be

changed even though new evidences are gathered and processed, and hence such evidences

become redundant. Therefore, when the confidence interval refers to a reliable diagnosis,

this latter is directly terminated.

Results of computational experiments show that the traffic overhead, which is generated by the

proposed Ids, is very limited and could be ignored compared to the routing-related traffic. In

addition, this Ids imposes a limited increase of the memory usage that ranges from 17.6MB to

22.2MB. Furthermore, the employment of the confidence interval shows that more than 50% of

gathered evidences are redundant and can thus be avoided.

The proposed Ids offers, for the first time, an indicator of the detection reliability. This

indicator is based on the confidence interval of the diagnosis and is calculated according to

the required detection accuracy. It helps in eliminating the doubt about the detection result,

57Recall that the network density reflects the average number of the neighbors count
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launching a counter measure, are safely made.

The proposed Ids is also protected against misbehaving nodes which aim at spoiling the

detection by providing falsified evidences. This protection results from coupling this Ids with

the entropy-based trust model. Recall that this trust model establishes and maintains the trust

relationships between the nodes in the detection context. It further amplifies its preventive

nature when the level of risk is high. Such amplification is realized by largely decreasing the

trustworthiness of the misbehaving nodes. In addition, the trust model resists to intoxication

that happens when: (i) a legitimate node with a high trust value is compromised and starts

providing incorrect evidences, or (ii) a malicious node tries to gain the trust of others before

beginning to provide falsified evidences. This resistance is due to the fact that the newest

evidences are privileged. The performance evaluation of the trust model shows that the trust

relationships are correctly evolving. More precisely, the misbehaving nodes continually lose their

trustworthiness, and hence their impact on the detection gradually disappears. As a result, the

proposed Ids is able to detect the attacks even when the misbehaving nodes constitute up to

43% of the network.

Perspectives and Future Works: our evaluation highlighted the performances of our Ids,

as well as its high suitability for the limited-resources devices. Nevertheless, this evaluation is

intended to be enriched with additional attacks threatening Olsr and potentially other routing

protocols, e.g., Aodv. Moreover, other evaluation criteria such as the energy consumption or the

CPU processing58 will prove the lightweight of the detection. Ongoing work includes new series

of experiments focused on measuring the reliability, i.e., the confidence interval, under a real

Manet. For this purpose, I am using several Nexus S smartphones59 embedding the Android

operating system60. These smartphones are configured to support ad hoc networking, and, a

compatible version ofOlsr 61 has been installed. It is worth to mention that the implementation

of our IDS, as used during the simulation, can be transparently transferred to the smartphones.

However, there are still several challenges of the performance evaluating in a real Manet. For

instance, this includes making the smartphones following the required model(s) of mobility.

In the near future, two main research directions are envisioned. The former lies in tuning the

risk evaluation depending on the context and the latter refers to improving the event sampling

by taking into account predefined criteria. More precisely, we have proposed an indicator of the

attack risk that depends of the degree of evolution of the attack and the predictable vulnera-

bilities. The concept of risk is inadequately treated in Manet; to the best of our knowledge,

this is the first time the risk of the attacks targeting the ad hoc routing protocols is proposed.

One idea would be to relate the attack risk with the operating environment and the nature of

the mission (e.g., military purpose). This implies to consider a subjective dimension during the

risk assessment. Another improvement would consist in providing, instead of the random and

uniform sampling, a stratified random sampling [8]. In this sampling, the nodes are stratified

58Previous attempts to measure the CPU usage failed due to an bug in the Lxc virtual machine. As planned

in the near future, the use of real smartphones will permit to monitore the CPU processing.
59www.samsung.com/us/mobile/cell-phones/GT-I9020FSTTMB
60http://www.android.com
61www.olsr.org/releases/0.5/olsrd-0.5.6-android-samsung-galaxy.tgz
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into n groups according to e.g., the trust value, the neighborhood, the battery level, etc. During

the diagnosis, the sample is selected by gathering evidences from the n groups according to pre-

defined percentages (p1%, p2%, ..., pn%). However, the selection inside a group is randomly. As

a result, the stratified random sampling ensures that the sample has a certain combination and

respects predefined conditions. For instance, it enables having a sample such that the majority

of evidences are gathered from the trustful nodes. At the same time, every node, even those

that are, for instance, distrustful, still has the chance to offer evidences for the diagnosis.

Future Tracks: According to the International Telecommunication Unit (Itu) [165, 166], the

Internet of Things (IoT) can be envisioned as providing all the objects and devices with the

ability to connect to a network termed IoT. Thus, object and devices can exchange information,

produce/consume services within a digital world. The IoT is one of the most promising tech-

nologies that would change many domains, e.g. logistics, business/process management, assisted

living, and e-health. But several social and technical challenges remain to fulfill the idea of IoT,

among them the security [167] which is of prime importance. Security solutions for IoT networks

should take into account, among others: (i) the existence of heterogeneous routing technologies

where the multi-hop ad hoc routing occupies a non negligible part [168], and (ii) the severe

constraints on, both, the computing capacity and the energy of the many things/objects [167].

Since ad hoc routing and limited resources are key elements in our Ids, it would be interesting

to study the adapting of our system for detecting the attacks in IoT networks.

Meanwhile issues e.g., gathering or correlating a huge amount of evidences are shared not only

with the IoT but also with Grid and Cloud computing [169]. Evidences are gathered from

the different, usually geographically-separated, administrative domains. Consequently, detect-

ing attacks in such networks does not only consume many resources but also requires a long

time. Note that the longer the duration of detection, the larger the damages of the attack. The

use of confidence interval as a measure of detection reliability ensures minimizing the number

of gathered evidences, and henceforth the duration of detection, along with maintaining the

required level of accuracy. We believe that the confidence interval should be considered during

the correlation in a Grid Security Operation Center (Gsoc) [170], a security event manager for

grid computing proposed in FEMTO-ST/DISC laboratory62 .

62www.femto-st.fr/fr/Departements-de-recherche/DISC/Presentation/
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OLSR FUNCTIONS

Olsr performs the following core functionalities:

1. Link sensing and neighborhood discovery

2. Multipoint Relay selection

3. Declaration of the MPR and of the topology-related information

4. Packet formating and forwarding

5. Route calculation

The first three functionalities have been explained in Chapter 3. We hereafter detail the other

functions, namelly the packet formating and forwarding and the route calculation.

Packet Format and Forwarding. The unique format applied for all Olsr packet is provided

in Figure A.1. Each packet may encapsulate several messages of potentially different types (e.g.,

hello, Tc). A packet is further embedded into a Udp datagram. Upon reception of a packet,

the included messages are treated individually. In practice, the receiver first checks whether

the message is generated by itself or has been expired (i.e., the packet Time To Live is set to

0). If not, the node verifies whether the message has already been received and processed. For

this purpose, the node maintains a duplicate tuple composed of the address of the message’s

originator, the Message Sequence Number (Msn), a boolean indicating whether this message is

already retransmitted, the interface(s) on which this message has been received, and the tuple

expiration time. If the message is received for the first time, then no corresponding Duplicate

Tuple exists and the message is processed. The message type precises also whether the received

message should be considered for forwarding or not. Recall that the Tc, Hna, andMidmessages

are considered to be forwarded, while the hello message is not. It is worth to mention that the

Olsr’s packets are transmitted only between 1-hop neighbor nodes while the olsr’s message

may be flooded within a specific diameter, in terms of number of hops, or to the entire network.
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Calculating Routing Table. In Olsr, each node maintains a routing table. An entry in the

routing table consists of the the destination address, the next hop address, and the estimated

distance to the destination. When a node wants to forward packet(s) toward a destination,

it selects the relevant route (i.e., the routing entry), if exist, with the minimal distance. The

routing table is re-calculated when a change in the symmetric neighbors takes place, or a used

topology entry is expired. Note that re-calculating the routing table does not trigger any type

of transmission. A route is seen as a sequence of hops through the Mprs from the source to

the destination. Routes are calculated based on the topology information diffused and included

in the Tc messages. More precisely, each node uses the received Tc messages to build and

maintain a topology table which records topological information, i.e., the Mprs of other nodes.

In particular, an entry of the topology table is a pair in the form [last hop, destination] wherein

the last hop corresponds to the originator of a received Tc message, while the destination is the

node advertised as a neighbor in this message. The routes are built by tracking the connected

pairs in a descending order. Indeed, when a node S wants to find the path towards another node

D, it first searches for a pair [X,D]. If this pair exists, it increases the distance by 1 and searches

for another pair [Y ,X], and so forth until it finds that Y is one of its 1-hop neighbors. Thus,

the required route is calculated and Y is considered as the next hop towards the destination

D. Note that if there are two (or more) 1-hop neighbors that are can be selected as a next hop

towards a destination, then the one with the highest willingness and the highest amount of Mpr

selectors is preferred.
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DISTRIBUTION TABLES

z-critical value. Figure B.1 provides the z critical value. This value is used to estimate the

confidence interval when the number of gathered evidences ≥ 30. Recall that this value is

related to the used confidence level and represents the portion outside the confidence interval in

the standard normal distribution. To understand how the z critical value is taken from this table

let have the following example. If the used confidence level is 95% then the upper tail outside

the confidence interval constitutes (100 − 95)/2 = 0.025 of the area of the standard normal

distribution. While the left area constitutes 0.975. In Figure B.1, we find the latter value (i.e.,

0.975) at the intersection of the line 1.9 with the column 0.06. Thus, the z criteria value that

corresponds to the confidence level 95% is 1.96.

t-critical value. Figure B.2 provides the t critical value. This value is used to estimate the

confidence interval when the number of gathered evidences < 30. Recall that this value is

related to the used confidence level and represents the portion outside the confidence interval in

the student t-distribution. We select the t critical value at the intersection of the column of the

required confidence level and the line of the used degree of freedom (df). During the estimation

of the confidence interval, the used df is the number of gathered evidences - 1.
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awww.math.bgu.ac.il/ ∼ ngur/Teaching/probability/normal.pdf
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LIDR IMPLEMENTATION

Lidr is implemented in Perl63, which facilitates the text processing and hence the processing of

the Olsr logs. Although this version of our Ids considers the link spoofing attack, other attacks

may be considered by specifying the evidences to be searched in the logs and the information

to be exchanged during the diagnostic. In practice, our code is organized into three basic units:

the logs parsing (Section C.1), the communication manager (Section C.2), and the diagnostic

(Section C.3).

C.1 Logs Parsing

Listing C.1 contains the core function associated with the reading and parsing of the Olsr logs:

information related to the 1-hop neighbors, the 2-hop neighbors, and the Mprs is extracted and

further maintained in a database. This database is realized in Mysql 64. It is worth to mention

that the format of the Olsr logs depends of the version/implementation of the protocol.

Listing C.1: Parsing OLSR logs
sub hand l e l o g s {- ./00 123 04/ 256/ 7 8 9: ;66</88 ;26 04/ =;<;>/0/<8 5? @C D522/ct ion .mE( $nodeIP , $nodeNumber )=@ ;

my $dbh1=&connectDB threads ( $nodeNumber ) ;

- G/;6123 04/ 2/H I 1 2 / 8 12 04/ I 53 ? 1 I /J ? 1 I /KM1 I / N N O;1I−>new(name=>"/var/log/olsr/OLSR$nodeNumber.log" , maxinterval=>0.1 , i n t e r v a l =>0.1,

a d j u s t a f t e r=>1) or d ie "I could not open OLSR logs" ;

whi le ( de f ined ( $ l i n e=$ f i l e −>read ) )

{- PQ0 <; D0 123 12 ?5<>;0 1 52 ;R5S0 04/ T−hop ne ighborsi U ( $ l i n e =˜ /(\d{0 ,}\ .\d{0 ,}) s\ s (\d{0 ,}) ( . ∗ ) \ sNeighborTuple \( neighborMainAddr=

(\d{1 ,3}\ .\d{1 ,3}\ .\d{1 ,3}\ .\d{1 ,3}) \ ,\ s s t a t u s =([a−zA−Z]+) ( . ∗ ) /)

{

$cur r ent t ime= $1 ;

$n1= $4 ;

$sth= $dbh1−>prepare ( "insert into OLSR_1hop_Neighbors(node_ip , n1_ip , time) values (?,?,?)" ) ;

$sth−>execute ( $nodeIP , $n1 , $cur r ent t ime ) ;

}- PQ0 <; D0 123 12 ?5<>;0 1 52 ;R5S0 04/ V−hop ne ighborse W X i U ( $ l i n e =˜ /(\d{0 ,}\ .\d{0 ,}) s\ s (d{0 ,}) ( . ∗ ) \sTwoHopNeighborTuple \( neighborMainAddr=(\d{1 ,3}\ .\d

{1 ,3}\ .\d{1 ,3}\ .\d{1 ,3}) \ ,\ stwoHopNeighborAddr=(\d{1 ,3}\ .\d{1 ,3}\ .\d{1 ,3}\ .\d{1 ,3}) \ ,\

sexpirat ionTime=(\d{0 ,}\ .{0 ,1}\d{0 ,}) ( . ∗ ) /)

63http://www.perl.org
64http://www.mysql.com
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{

$cur r ent t ime= $1 ;

$n1= $4 ;

$n2=$5 ;

$exp time= $6 ;

i f ( $exp time > $cur r ent t ime )-YY Z \ J256/9: /] J2V ^ ^f
$sth= $dbh1−>prepare ( "insert into OLSR_2hop_Neighbors(node_ip , n1_ip , n2_ip , time) values (?,?,?,?)" ) ;

$sth−>execute ( $nodeIP , $n1 , $n2 , $cur r ent t ime ) ;

}

}- ./00 123 04/ 256/ 7 8 =5120 5? _1/H ;R5S0 04/ 2/0H5<` 05=5I 53ae W X i U ( $ l i n e =˜ /(\d{0 ,}\ .\d{0 ,}) s\ s (d{0 ,}) ( . ∗ )BEGIN dump TopologySet f o r OLSR Node ( . ∗ ) /)

{

$cur r ent t ime= $1 ;

i f ( $x t ime topo logy != $cur r ent t ime )

{

$ok topo logy= 1 ;

}

e l s e {

$ok topo logy= 0 ;

}

}

e l s i f ( $ l i n e =˜ /(\d{0 ,}\ .\d{0 ,}) s\ s (d{0 ,}) ( . ∗ ) \ sTopologyTuple \( destAddr=(\d{1 ,3}\ .\d{1 ,3}\ .\d

{1 ,3}\ .\d{1 ,3}) \ ,\ s lastAddr=(\d{1 ,3}\ .\d{1 ,3}\ .\d{1 ,3}\ .\d{1 ,3}) ( . ∗ ) /)

{

$cur r ent t ime= $1 ;

$de s i p= $3 ;

$ l a s t i p=$4 ;

i f ( $ok topo logy == 1)

{

$x t ime topo logy = $cur r ent t ime ;

$sth= $dbh1−>prepare ( "insert into Topology_entry(node_ip , dest_ip , last_ip , time) values (?,?,?,?)" ) ;

$sth−>execute ( $nodeIP , $des ip , $ l a s t i p , $cur r ent t ime ) ;

}

}- PQ0<; D0 123 12 ?5<>;0 1 52 ;R5S0 04/ b:G8e W X i U ( $ l i n e =˜ /(\d{0 ,}\ .\d{0 ,}) s\ s (d{0 ,}) ( . ∗ ) \sComputed MPR se t f o r node\ s (\d{1 ,3}\ .\d{1 ,3}\ .\d

{1 ,3}\ .\d{1 ,3}) :\ s \ [ ( . ∗ ) \ ] / )

{

$cur r ent t ime= $1 ;

$MPR= $5 ;

i f ($MPR ne ’’ )

{

whi le ($MPR =˜ /(\d{1 ,3}\ .\d{1 ,3}\ .\d{1 ,3}\ .\d{1 ,3}) /g )

{

$sth = $dbh1−>prepare ( "insert into OLSR_MPR_Info (node_ip , mpr_ip , time)values (?,?,?)" ) ;

$sth−>execute ( $nodeIP , $1 , $cur r ent t ime ) | | d ie $DBI : : e r r s t r ;

}- PQ0<; D0 123 04/ 8S 8= 1 D 1 5S b:G\ 8 ^Y./0 sup i c i ou s ( $nodeIP , $current t ime , $nodeNumber , $dbh1 ) ;

}

}

}

$sth−>f i n i s h ( ) ;

c l o s e (FILE) ;

}

The Get suspicious function (Listing C.2) is called at the end of the parsing function. It analyses

the neighborhood and the Mpr-related information in order to identify the suspicious Mprs. In

practice, this function searches for a node that is recently selected as a Mpr and whose neighbor

set contains the neighbor set of an previous-Mpr. Here, the new Mpr could be an intruder that

falsifies its 1-hop neighbors set in order to be selected as a Mpr and further exclude a legitimate

Mpr. Such case represents an evidence with a sufficient level of gravity that triggers an in-depth

diagnostic as we will see in Section C.3.

Listing C.2: Identifying the suspicious MPRs
sub Get su sp i c i ou s {

my( $node ip , $curr t ime , $nodeNumber , $dbh thread )= @ ;

my $sth=$dbh thread−>prepare ( "select time from OLSR_MPR_Info where node_ip=" . $dbh thread−>quote ( $node ip )

. " and time <" . $ cur r t ime . "order by time desc limit 1" ) ;

$sth−>execute ( ) ;

my @ex time= $sth−>f etchrow ( ) ;
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i f ( de f ined ( $ex t ime [ 0 ] ) ){

my $ sq l= "select Distinct n2_ip from OLSR_2hop_Neighbors where node_ip=" . $dbh thread−>quote ( $node ip ) . "

and time=" . $ cur r t ime . " and n1_ip in (select mpr_ip from OLSR_MPR_Info where node_ip=" . $dbh thread−>

quote ( $node ip ) . " and time=" . $ex t ime [ 0 ] . ") and n2_ip in (select n2_ip from OLSR_2hop_Neighbors where

node_ip=" . $dbh thread−>quote ( $node ip ) . " and time=" . $ex t ime [ 0 ] . ") and n1_ip not in (select mpr_ip

from OLSR_MPR_Info where node_ip=" . $dbh thread−>quote ( $node ip ) . "and time= " . $ cur r t ime . ")" ;

$sth= $dbh thread−>prepare ( $ sq l ) ;

$sth−>execute ( ) ;

my $unsure 2hop="" ;

whi le (my @row = $sth−>f e t ch row ar ray ){

i f ( $row [ 0 ] ne $node ip ){

$unsure 2hop="’" . $row [ 0 ] . "’," . $unsure 2hop ;

}

}- M126123 04/ b:G8 04;0 D;S8/ 04/ /Q / D I S 8 1 52 5? /Q−MPRs and tag them as su sp i c i o u si U ( $unsure 2hop ne "" ){

$unsure 2hop = subs t r ( $unsure 2hop , 0 , l ength ( $unsure 2hop ) −1) ;

$ sq l= "select Distinct n1_ip ,n2_ip from OLSR_2hop_Neighbors where node_ip=" . $dbh thread−>quote ( $node ip

) . " and time= " . $ cur r t ime . " and n2_ip in (" . $unsure 2hop . ")and n1_ip in (select mpr_ip from

OLSR_MPR_Info where node_ip=" . $dbh thread−>quote ( $node ip ) . " and time=" . $ cur r t ime . ")" ;

$sth= $dbh thread−>prepare ( $ sq l ) ;

$sth−>execute ( ) ;

$ v e r i f i e d 2hop="" ; $x n1="" ;

whi le (@row = $sth−>f etchrow ( ) ){

$n1=$row [ 0 ] ;

$n2=$row [ 1 ] ;

$ sq l="select node_ip from OLSR_2hop_Neighbors where node_ip=" . $dbh thread−>quote ( $node ip ) . " and

time=" . $ex t ime [ 0 ] . " and n1_ip=" . $dbh thread−>quote ( $n1 ) . " and n2_ip=" . $dbh thread−>quote

( $n2 ) ;

$sth1=$dbh thread−>prepare ( $ sq l ) ;

$sth1−>execute ( ) ;

i f ( $sth1−>rows == 0){

i f ( $x n1 eq "" ){

$v e r i f i e d 2hop= $n2 ;

}

e l s i f ( $x n1 ne $n1 ){

eva l {- 96 /2 0 1 ? a 1 2 3 04/ T−hop r e l a t i o n s h i p s to be v e r i f i e dJ804TKJ6R4 thread−>prepare ( "insert into MIM_alarm (node_ip ,unsure_mpr_ip ,

h2_checked_ip ,time ,result) values (?,?,?,?,?)" ) ;

$sth1−>execute ( $node ip , $n1 , $ve r i f i ed 2hop , $curr t ime , 0 ) | | d ie $DBI : : e r r s t r ;

}or do { pr in t "error insertion suspicious $@ ..\n" ; } ;

$ v e r i f i e d 2hop=$n2 ;

} e l s e

{ $v e r i f i e d 2hop=$ve r i f i e d 2hop . "," . $n2 ;}

$x n1 = $n1 ;

}

}

i f ( $x n1 ne "" ){

eva l {

$sth1=$dbh thread−>prepare ( "insert into MIM_alarm (node_ip ,unsure_mpr_ip ,h2_checked_ip ,time ,result)

values (?,?,?,?,?)" ) ;

$sth1−>execute ( $node ip , $n1 , $ve r i f i ed 2hop , $curr t ime , ’0’ ) | | d ie $DBI : : e r r s t r ;

} or do { pr in t "error insertion suspicious2 $@...\n" ; } ;

}

}

}

}

C.2 Communication Manager

Listing C.3 performs the cooperations with others. The cooperation attempts to verify the

neighborhood relationships. In practice, the node may receive interrogations about its relation

with a specific node at a given time. In such case, the node checks its database in order to either

confirm or deny being a 1-hop neighbor of the node under investigation. Note that TCP-based

bidirectional communication is realized between the requester and responder nodes during the

cooperation. In addition, the communication manager runs in a separate thread so that other

functions are not blocked.

Listing C.3: Handling cooperation requests
sub hand l e coope ra t i on {
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my( $nodeIP , $port )=@ ;

my $socke t Ch i ld = new IO : : Socket : : INET(

LocalHost => $nodeIP ,

LocalPort => $port ,

Proto => "tcp" ,

L i s t en => 5 ,

Reuse => 1

) or d ie "ERROR in Chield Socket Creation $nodeIP: $!\n" ;

whi le (1 ) {

$ c l i e n t s o c k e t = "" ;- gDD/=012 ; D522/D0 1 52 </]S /8 0 ?<5> ;2504/< 256/J D I 1 / 2 0 s o c k e t = $socket Chi ld−>accept ( ) ;

$ r e s u l t="" ;

$pee r addre s s = $ c l i e n t s o c k e t −>peerhost ( ) ;

$pee r po r t = $ c l i e n t s o c k e t −>peerport ( ) ;

$ c l i e n t s o c k e t −>recv ( $ r ec i eved data ,2024) ;

@msg= s p l i t (/ / , $ r e c i ev ed da ta ) ;- h;26I123 ; </]S/8 0 >/88;3/i U ( $msg [ 0 ] eq "R" ){

$unsur mpr=$msg [ 1 ] ;

$ cur r t ime=$msg [ 2 ] ;

@ l i s t v e r i f i c a t i o n= s p l i t (/ ,/ , $msg [ 3 ] ) ;

$dbh ch i ld= &connectDB threads ( $nodeNumber ) ;

my $ s t h c h i l d=$dbh chi ld−>prepare ( "select distinct time from OLSR_2hop_Neighbors where node_ip="

. $dbh chi ld−>quote ( $nodeIP ) . "order by time desc limit 1" ) ;

$ s th ch i l d−>execute ( ) ;

my @ex time= $s th ch i l d−>f etchrow ( ) ;

i f ( de f ined ( $ex t ime [ 0 ] ) ){

$counter=0;

whi le ( ( $ex t ime [ 0 ] < $cur r t ime )&&($counter < 5 ) ){

s l e ep (10) ; $counter++;

$ s t h c h i l d=$dbh chi ld−>prepare ( "select distinct time from OLSR_2hop_Neighbors where

node_ip=" . $dbh chi ld−>quote ( $nodeIP ) . "order by time desc limit 1" ) ;

$ s th ch i l d−>execute ( ) ;

@ex time= $s th ch i l d−>f etchrow ( ) ;

}

}

$x t ime = $cur r t ime − 2 ;

i f ( $ex t ime [ 0 ] < $x t ime ){

pr in t "logs are slowly traited\n" ;

$ r e s u l t="0," ;

} e l s e

{-D4/D` 1 ? 04 / < / 1 8 ; I 1 2 ` R/0H//2 04 1 8 256/ ;26 04/ S28S< b:GU j k ( $ i =0; $ i < s c a l a r ( @ l i s t v e r i f i c a t i o n ) ; $ i++){

i f ( $ l i s t v e r i f i c a t i o n [ $ i ] eq $nodeIP ){

$ s q l c h i l d="select count(n1_ip) from OLSR_2hop_Neighbors where node_ip=" . $dbh chi ld−>

quote ( $nodeIP ) . " and n1_ip=" . $dbh chi ld−>quote ( $unsur mpr ) . " and (time

between " . $x t ime . " and " . $ cur r t ime . ")" ;

@get count = $dbh chi ld−>s e l e c t r ow a r r ay ( $ s q l c h i l d ) ;

i f ( $get count [ 0 ] == 0){

$ r e s u l t= $ r e s u l t . "-1," ;

}

e l s e {

$ r e s u l t= $ r e s u l t . "1," ;

}

} e l s e

{

$ s q l c h i l d="select count(n1_ip) from OLSR_2hop_Neighbors where node_ip=" .

$dbh chi ld−>quote ( $nodeIP ) . " and n1_ip=" . $dbh chi ld−>quote (

$ l i s t v e r i f i c a t i o n [ $ i ] ) . " and (time between " . $x t ime . " and " . $ cur r t ime

. ")" ;

@get count = $dbh chi ld−>s e l e c t r ow a r r ay ( $ s q l c h i l d ) ;

i f ( $get count [ 0 ] != 0){

$ s q l c h i l d="select count(n1_ip) from OLSR_2hop_Neighbors where node_ip=" .

$dbh chi ld−>quote ( $nodeIP ) . " and n1_ip=" . $dbh chi ld−>quote (

$ l i s t v e r i f i c a t i o n [ $ i ] ) . " and n2_ip=" . $dbh chi ld−>quote ( $unsur mpr

) . " and (time between " . $x t ime . " and " . $ cur r t ime . ")" ;

@get count2 = $dbh chi ld−>s e l e c t r ow a r r ay ( $ s q l c h i l d ) ;

i f ( $get count2 [ 0 ] == 0){

$ r e s u l t= $ r e s u l t . "-1," ;

} e l s e

{ $ r e s u l t= $ r e s u l t . "1," ;}

} e l s e

{

$x t ime = $cur r t ime − 4 . 5 ;

$ s q l c h i l d="select count(dest_ip) from Topology_entry where node_ip=" .

$dbh chi ld−>quote ( $nodeIP ) . " and dest_ip=" . $dbh chi ld−>quote (

$ l i s t v e r i f i c a t i o n [ $ i ] ) . " and (time between " . $x t ime . " and " .

$ cur r t ime . ")" ;

@get count = $dbh chi ld−>s e l e c t r ow a r r ay ( $ s q l c h i l d ) ;

i f ( $get count [ 0 ] != 0){
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$ s q l c h i l d="select count(dest_ip) from Topology_entry where node_ip=" .

$dbh chi ld−>quote ( $nodeIP ) . " and dest_ip=" . $dbh chi ld−>quote

( $ l i s t v e r i f i c a t i o n [ $ i ] ) . " and last_ip=" . $dbh chi ld−>quote (

$unsur mpr ) . " and (time between " . $x t ime . " and " . $ cur r t ime .

")" ;

@get count2 = $dbh chi ld−>s e l e c t r ow a r r ay ( $ s q l c h i l d ) ;

i f ( $get count2 [ 0 ] == 0){

$ r e s u l t= $ r e s u l t . "-1," ;

} e l s e

{ $ r e s u l t= $ r e s u l t . "1," ;}

} e l s e

{ $ r e s u l t= $ r e s u l t . "0," ; }

}

}

}

}

$ c l i e n t s o c k e t −>send ( $ r e s u l t ) ;

}- M5<H;<6123 ;2 ;28H/< 05H;<68 ;2504/< 256/e W X i U ( $msg [ 0 ] eq "N" ){

$unsur mpr=$msg [ 1 ] ;

$ ta rge t node=$msg [ 2 ] ;

$ cur r t ime=$msg [ 3 ] ;

eva l {

$socket2 = new IO : : Socket : : INET (

PeerAddr => $target node ,

PeerPort => $port ,

Proto => "tcp" ,

Reuse => 1

) or pr in t "ERROR in N-R Socket Creation $target_node: $!\n" ;

i f ( de f ined ( $socket2 ) ){

$msg2 = "R $unsur_mpr $curr_time" ;

$socket2−>send ( $msg2 ) ;

$socket2−>recv ( $recv data ,1024) ;

c l o s e $socket2 ;

}

} ;

i f ( $ recv data eq "" ){

$recv data="unreachable target" ;

}

$ c l i e n t s o c k e t −>send ( $ recv data ) ;

} e l s e

{ pr in t "Unknown command @msg \n" ;}

c l o s e $ c l i e n t s o c k e t ;

}

}

C.3 Diagnostic Unit

The intrusion diagnostic is the heart of our Ids. It contains the functions that match the

evidences with the intrusion signatures, which potentially involves cooperation. It is also in

relation with the trust handler and the the diagnostic confidence interval establisher.

Link Spoofing Detection Listing C.4 represents the function that verifies the relationships

of a suspicious Mpr. In practice, it handles every declared 1-hop neighbor relation of the

suspicious Mpr in a separate thread that further interrogates other nodes in order to confirm

or deny this relation. Every returned answer is weighted according to the trustworthiness of its

provider. Then, all the weighted answers are combined to obtain the result of the diagnostic. In

addition, the function calc CI(), which calculates the confidence interval is called. Finally, the

trustworthiness of the suspicious Mpr and of the interrogated nodes are updated according to

the obtained result and the corresponding confidence interval.

Listing C.4: In-depth diagnostic
sub MIM Detection{

$port="6001" ;

my( $node ip , $unsur mpr , $ve r i f i ed 2hop , $curr t ime , $ex time , $nodeNumber , $dbh thread )= @ ;
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my @ l i s t p a r t i c i p a t i o n s r e s u l t s =() ;

my @l i s t answer node =() ;

my @ l i s t v e r i f i e d n o d e s =() ;

my @ l i s t v e r i f i e d n o d e s= s p l i t (/ ,/ , $ v e r i f i e d 2hop ) ;

my $msg="R $unsur_mpr $curr_time $verified_2hop" ;

my $returned answer="" ;

my $pa r t i c i p a t="" ;- n/ I / D 0 1 23 04/ 1 2 0 / < < 53; 0 /6 256/8J8 ] IK"(select n1_ip from OLSR_2hop_Neighbors where node_ip=" . $dbh thread−>quote ( $node ip ) . " and n1_ip <>" .

$dbh thread−>quote ( $unsur mpr ) . " and time=" . $ cur r t ime . ") UNION DISTINCT (select n2_ip from

OLSR_2hop_Neighbors where node_ip=" . $dbh thread−>quote ( $node ip ) . " and time=" . $ cur r t ime . " and n1_ip="

. $dbh thread−>quote ( $unsur mpr ) . " and n2_ip <>" . $dbh thread−>quote ( $node ip ) . ")" ;

my $sth=$dbh thread−>prepare ( $ sq l ) ;

$sth−>execute ( ) ;

whi le (@row = $sth−>f etchrow ( ) ){

$returned answer="" ;

$ r ecv data="" ;

$ t a r g e t i p=$row [ 0 ] ;

eva l {

my $ socke t th r ead = new IO : : Socket : : INET (

PeerAddr => $ ta r g e t i p ,

PeerPort => $port ,

Proto => "tcp" ,

Timeout => 2 ,

Reuse => 1

) or do pr in t "no route to $target_ip \n" ;- n/26123 04/ D55= /<;0 1 52 </]S /8 0i U ( de f ined ( $ socke t th r ead ) ){

$socket thread−>send ( $msg ) ;

$ socket thread−>recv ( $recv data ,1024) ;

$returned answer=$recv data ;

my @r e s l i s t= s p l i t (/ ,/ , $returned answer ) ;- g66123 04/ D55=/<;0 /6 256/ 12 0 5 04/ I 1 8 0 5? = ; < 0 1 D 1 = ;2 0 8
# This l i s t s e r v e s in updating the nodes ’ t ru s two r th in e s spoXq ( @l i s t answer node , &nodeIp to nodeNumber ( $ t a r g e t i p ) ) ;

push ( @ l i s t p a r t i c i p a t i o n s r e s u l t s , [ @ r e s l i s t ] ) ;

c l o s e $ socke t th r ead ;

}

}

}-r5>R12123 04/ </0S<2/6 ;28H/< ;R5S0 ; 8S 8= 1 D 1 5S 8 < / I ; 0 1 52
#This combination takes in to account the t ru s two r th in e s s o f source sU j k ( $ i = 0 ; $i<s c a l a r ( @ l i s t v e r i f i e d n o d e s ) ; $ i++){

$ r e s u l t =0;

$sum TV=0;

my $ c oun t e r p a r t i c i p a t e s =0;

@p o s i t i v e l i s t =() ; - 04/ 256/8 04;0 D52?1 <> 04/ 8 S 8= 1 D 1 5S 8 I 1 2 `s2 /3; 0 1 _ / l i s t =() ; - 04/ 256/8 04;0 6/2a 04/ 8S 8= 1 D 1 5S 8 I 1 2 `s I 1 8 0 s u b r e s u l t s =() ;

f o r ( $ j =0; $j<s c a l a r ( @ l i s t answer node ) ; $ j++){

i f ( $ l i s t p a r t i c i p a t i o n s r e s u l t s [ $ j ] [ $ i ] !=0) {

$ c oun t e r p a r t i c i p a t e s +=1;

$TV = $ l i s t t v s [ $ l i s t an swe r node [ $ j ] −1 ] ;

$ sub r e s = $ l i s t p a r t i c i p a t i o n s r e s u l t s [ $ j ] [ $ i ] ∗ $TV;

$ r e s u l t += $sub r e s ;

$sum TV += $TV;

push ( @ l i s t s u b r e s u l t s , $ sub r e s ) ;

-D4/D` 1 ? 04/ _ / < 1 ? 1 / 6 256/8 </0S <2/6 ; = 5 8 1 0 1 _ / 5< 2/3;0 1 _/ answersi U ( $ l i s t p a r t i c i p a t i o n s r e s u l t s [ $ j ] [ $ i ] > 0)

{

push ( @po s i t i v e l i s t , $ l i s t an swe r node [ $ j ] ) ;

} e l s e {

push ( @nega t i v e l i s t , $ l i s t an swe r node [ $ j ] ) ;

}

}

}

i f ($sum TV != 0){

$ r e s u l t = $ r e s u l t /$sum TV ;

$ r e s u l t = eva l s p r i n t f ( ’%.4f’ , $ r e s u l t ) ;- r;I DS I ;0 1 23 04/ D 52 ? 1 6 /2 D/ 1 2 0 / < _ ; IJ D 1KD; I D CI (\ @ l i s t s u b r e s u l t s , $sum TV , $curr t ime , $unsur mpr ) ;

$nbr=&nodeIp to nodeNumber ( $unsur mpr ) ;- t=6;0123 04/ 0 <S 8 0H5 <0 4 12 /8 8 5? 04/ 8S 8= 1 D 1 5S 8 b:G ;DD5<6 ing to the r e s u t l

# and the corresponding con f idence i n t e r v a lJ I 1 8 0 t v s [ $nbr−1]= change su sp i c i on tv ( $ l i s t t v s [ $nbr −1] , $ c i , $ r e su l t , $curr t ime , $nbr ,

$ c oun t e r p a r t i c i p a t e s ) ;- t=6;0123 04/ 0 <S 8 0H5 <0 4 12 /8 8 5? 04/ = ; < 0 1 D 1 = ; 0 /6 256/8i U ( $ r e s u l t > 0 . 1 ) {

f o r ( $k=0;$k<s c a l a r ( @ p o s i t i v e l i s t ) ; $k++){

$ l i s t t v s [ $ p o s i t i v e l i s t [ $k]−1]= &change t ru s t va l u e ( $ l i s t t v s [ $ p o s i t i v e l i s t [ $k ] −1] ,

$sum TV , 1 , $curr t ime , $ p o s i t i v e l i s t [ $k ]−1) ;

}

f o r ( $k=0;$k<s c a l a r ( @n e g a t i v e l i s t ) ; $k++){
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$ l i s t t v s [ $ n e g a t i v e l i s t [ $k]−1]= &change t ru s t va l u e ( $ l i s t t v s [ $ n e g a t i v e l i s t [ $k ] −1] ,

$sum TV , −1, $curr t ime , $ n e g a t i v e l i s t [ $k ]−1) ;

}

} e l s i f ( $ r e s u l t < −0.1){

f o r ( $k=0;$k<s c a l a r ( @ p o s i t i v e l i s t ) ; $k++){

$ l i s t t v s [ $ p o s i t i v e l i s t [ $k]−1]= &change t ru s t va l u e ( $ l i s t t v s [ $ p o s i t i v e l i s t [ $k

] −1] ,$sum TV , −1, $curr t ime , $ p o s i t i v e l i s t [ $k ]−1) ;

}

f o r ( $k=0;$k<s c a l a r ( @n e g a t i v e l i s t ) ; $k++){

$ l i s t t v s [ $ n e g a t i v e l i s t [ $k]−1]= &change t ru s t va l u e ( $ l i s t t v s [ $ n e g a t i v e l i s t [ $k

] −1] ,$sum TV , 1 , $curr t ime , $ n e g a t i v e l i s t [ $k ]−1) ;

}

}

&p r i n t T r u s t t o F i l e ( $curr t ime ,\ @ l i s t t v s ) ;

}

}

}

Calculation of the Confidence Interval Listing C.5 represents the function that calculates

the sampling error. This error is used for estimating the confidence interval of the diagnostic

result. The T-score (Appendix B.2) is used in this function because the size of the evidences

sample is less than 30 in our experiments. However, if the size of the evidences sample exceeds

30 then the T-score should be replaced by the z-score (Appendix B.1).

Listing C.5: Calculating the confidence interval
sub ca l c C I {

my( $ l i s t , $sum tv , $time , $unsur mpr ) = @ ;- O−s co r es0K\TVuvwx y zu {w{ y { uT |V y V u vvx y V u }vT y V u zzv y V u{x } y V u {w6 , 2 . 262 , 2 . 228 , 2 .201 , 2 .179 , 2 .160 ,

2 .145 , 2 . 131) ;

@ l i s t r e s=@{ $ l i s t } ;

$n= @ l i s t r e s ;- r;I DS I ;0 1 23 04/ >/;2U jk ( $ l =0; $ l < $n ; $ l++){

$sum += $ l i s t r e s [ $ l ] / $sum tv ;

}

$re s=$sum ;

$m= $sum/$n ;- r;I DS I ;0 1 23 04/ 80;26;<6 6/_ 1; 0 1 52J8S>Kw~
f o r ( $ l =0; $ l < $n ; $ l++){

$sum += ($m−$ l i s t r e s [ $ l ] ) ∗∗2;

}

i f ( $n > 1){

$sum =$sum/( $n −1) ;

}

$SD= eva l s p r i n t f ( ’%.4f’ , sq r t ($sum) ) ;- r;I DS I ;0 1 23 04/ 8;>=I123 / < < 5 <J D 1K J0 � J2−1] ∗($SD / sq r t ( $n ) ) ;

$ c i= eva l s p r i n t f ( ’%.4f’ , $ c i ) ;

return $c i ;

}

Discussion on the Diagnostic Result Listing C.6 shows the function that verifies whether

the result is sufficiently reliable. This function also decides whether to launch the alarm (or

eliminating the suspicion), updates the trustworthiness of the suspicious Mpr and retards the

conclusion of the diagnostic if necessary.

Listing C.6: Discussing the diagnostic result
sub change su sp i c i on tv {

my( $x tv , $c i , $res , $curr t ime , $nbr , $ c oun t e r p a r t i c i p a t e s )=@ ;

$tv =0.4; $value=0; $div=1;- �/<1 ?a 1 23 H4/04/< 04/ < / 8 S I 0 1 8 < / I 1 ; R I / 5< 250i U ( $ r e s > 0){

i f ( $ r e s − $c i > 0){

$value =0.075/ $div ;

pr in t "the suspicious 1-hop relation surely exists \n" ;

}
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e l s i f ( $ r e s − $c i =< 0){

$value =0.05/ $div ;

pr in t "Diagnostic should be continued \n" ;

}

} e l s i f ( $ r e s <= 0){

i f ( $ r e s + $c i <= 0){

$value=−0.2/$div ;

pr in t "$unsur_mpr is surely intruder \n" ;

alarm ( ) ;

} e l s i f ( $ r e s + $c i > 0){

$value=−0.1/$div ;

pr in t "Diagnostic should be continued \n" ;

}

}

$ l i s t c h a n g e s [ $nbr−1]= $cur r t ime ;- t=6;0123 04/ 0 <S 8 0H5 <0 4 12 /8 8 5? 04/ 8S 8= 1 D 1 5S 8 b:Gi U ( ( $x tv + $value ) > 1){

$tv=1;

} e l s i f ( ( $x tv+ $value ) < 0) {

$tv=0;

} e l s e

{ $tv= $x tv + $value ; }

return $tv ;

}
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Résumé :

Les réseaux mobiles ad hoc, communément appelés MANET (Mobile Ad hoc NETwork), sont de

plus en plus présents dans notre environnement quotidien. Ils deviennent de fait une pierre angulaire

des applications commerciales, militaires ou scientifiques. Cependant, ces réseaux sont amenés à

opérer dans des environnements ouverts, ce qui les rend particulièrement vulnérables. Ainsi, les

méthodes traditionnelles de sécurisation préventives s’appuyant par exemple sur des pare-feux et du

chiffrement, ne sont plus suffisantes et doivent être agrémentées de mécanismes réactifs comme les

systèmes de détection d’intrusions. Concevoir un système de détection d’intrusion pour les MANETs

est difficile car il est nécessaire d’assurer à la fois une détection précise tout en limitant l’utilisation des

ressources (en termes de mémoire, de batteries et la bande passante) et en rendant adaptable à la

dynamicité du réseau ad hoc. De plus, le système de détection ne doit pas être la cible d’attaques ou

de falsification. Nous avons proposé dans cette thèse un système de détection ciblant des exigences.

Dans un premier temps, nous avons étudié les attaques qui menacent les MANETs, en se concen-

trant sur les attaques visant le protocole de routage OLSR (Optimized Link State Routing). Puis, nous

présentons notre système qui offre un taux élevé de détection et se singularise par une utilisation

efficace des ressources. Notre système analyse les traces de routage au lieu de surveiller le trafic,et

cela, afin d’identifier toute évidence d’activité suspecte. Puis, il fait correspondre les évidences à un

ensemble de signatures prédéfinies; une signature est perçue comme étant un ensemble partielle-

ment ordonné d’événements caractérisant une intrusion. En outre, notre système établie le degré de

suspicion des évidences de manière à limiter le nombre et la durée de ces opérations coûteuses.

Nous proposons de nous baser sur une intervalle de confiance pour mesurer la fiabilité de détection.

Cette mesure statistique permet de limiter la collecte et le traitement des évidences et de prendre

une décision en tout état de cause. Afin d’améliorer la robustesse de notre système, nous le couplons

à un modèle de confiance basé sur l’entropie. Ainsi, des crédits sont attribuées aux nœuds ce qui

réduit l’effet néfaste des évidences falsifiées fournies par les nœuds. Le modèle de crédit proposé

prend en compte le niveau de risque des attaques. Plus précisément, la perte de crédit dépend des

conséquences de l’attaque. Nous avons expérimenté le système proposé en considérant plusieurs

scénarios de mobilité et de la densité. Les résultats montrent que notre détecteur offrent un taux de

détection élevé en adéquation avec les ressources disponibles.
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