Thèse soutenue

Résolution de systèmes linéaires et non linéaires creux sur grappes de GPUs

FR  |  
EN
Auteur / Autrice : Lilia Ziane Khodja
Direction : Raphaël CouturierJacques Bahi
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 07/06/2013
Etablissement(s) : Besançon
Ecole(s) doctorale(s) : École doctorale Sciences pour l'ingénieur et microtechniques (Besançon ; 1991-....)
Partenaire(s) de recherche : Laboratoire : FEMTO-ST : Franche-Comté Electronique Mécanique Thermique et Optique - Sciences et Technologies (Besançon)
Jury : Président / Présidente : Pierre-Cyrille Héam
Examinateurs / Examinatrices : Raphaël Couturier, Jacques Bahi, Jens Gustedt, Frédéric Magoulès, Pierre Spitéri, Ming Chau
Rapporteur / Rapporteuse : Jens Gustedt, Frédéric Magoulès

Résumé

FR  |  
EN

Depuis quelques années, les grappes équipées de processeurs graphiques GPUs sont devenues des outils très attrayants pour le calcul parallèle haute performance. Dans cette thèse, nous avons conçu des algorithmes itératifs parallèles pour la résolution de systèmes linéaires et non linéaires creux de très grandes tailles sur grappes de GPUs. Dans un premier temps, nous nous sommes focalisés sur la résolution de systèmes linéaires creux à l'aide des méthodes itératives CG et GMRES. Les expérimentations ont montré qu'une grappe de GPUs est plus performante que son homologue grappe de CPUs pour la résolution de systèmes linéaires de très grandes tailles. Ensuite, nous avons mis en oeuvre des algorithmes parallèles synchrones et asynchrones des méthodes itératives Richardson et de relaxation par blocs pour la résolution de systèmes non linéaires creux. Nous avons constaté que les meilleurs solutions développées pour les CPUs ne sont pas nécessairement bien adaptées aux GPUs. En effet, les simulations effectuées sur une grappe de GPUs ont montré que les algorithmes Richardson sont largement plus efficaces que ceux de relaxation par blocs. De plus, elles ont aussi montré que la puissance de calcul des GPUs permet de réduire le rapport entre le temps d'exécution et celui de communication, ce qui favorise l'utilisation des algorithmes asynchrones sur des grappes de GPUs. Enfin, nous nous sommes intéressés aux grappes géographiquement distantes pour la résolution de systèmes linéaires creux. Dans ce contexte, nous avons utilisé la méthode de multi-décomposition à deux niveaux avec GMRES parallèle adaptée aux grappes de GPUs. Celle-ci utilise des itérations synchrones pour résoudre localement les sous-systèmes linéaires et des itérations asynchrones pour résoudre la globalité du système linéaire.