Modélisation et conception de circuits à base de mémoires non-volatiles résistives innovantes
Auteur / Autrice : | Santhosh Onkaraiah |
Direction : | Christophe Muller, Jean-Michel Portal |
Type : | Thèse de doctorat |
Discipline(s) : | Micro et Nanoélectronique |
Date : | Soutenance le 18/11/2013 |
Etablissement(s) : | Aix-Marseille |
Ecole(s) doctorale(s) : | École Doctorale Sciences pour l'ingénieur : Mécanique, Physique, Micro et Nanoélectronique (Marseille) |
Jury : | Président / Présidente : Ian O'Connor |
Examinateurs / Examinatrices : Jean-Michel Portal, Fabien Clermidy, Amara Amara | |
Rapporteurs / Rapporteuses : Cristell Maneux, Lionel Torres |
Mots clés
Mots clés contrôlés
Résumé
Les limites rencontrées par les dernières générations de mémoires Flash et DRAM (Dynamic Random Access Memory) nécessitent la recherche de nouvelles variables physiques (autres que la charge et la tension), de nouveaux dispositifs ainsi que de nouvelles architectures de circuits. Plusieurs dispositifs à résistance variable sont très prometteurs. Parmi eux, les OxRRAMs (Oxide Resistive Random Access Memory) et les CBRAMs (Conductive Bridge Random Access Memory) sont de sérieux candidats pour la prochaine génération de mémoire dense. Ce travail se concentre donc sur le rôle des mémoires résistives (OxRRAM et CBRAM) dans les mémoires embarquées et plus particulièrement dans les FPGAs. Pour cela, nous avons développé un modèle compact, outil indispensable à la conception de circuits intégrés. Ensuite, nous avons conçus de nouveaux circuits non volatiles tels que des flips-flops (NVFF), des tables de correspondance (NVLUT), des commutateurs 2x2 ainsi que des SRAMs (NVSRAM). Ces structures ont finalement été simulées dans le cas d’un FPGA, afin de vérifier l’impact de celles-ci sur la surface, le délai ainsi que la puissance. Nous avons comparé les résultats pour un FPGA à base de NVLUTs utilisant une structure 1T-2R composée de CBRAMs par rapport à un FPGA plus classique utilisant des SRAMs. Nous réduisons ainsi la taille de 5%, la consommation de 18% et améliorons la vitesse de fonctionnement de 24%. La thèse aborde la modélisation compacte, la conception des circuits, et l’évaluation de systèmes incluant des mémoires résistives.