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Introduction

(Machine learning is the) Field of study that gives computers the ability
to learn without being explicitly programmed.

Arthur Lee Samuel, 1959

Artificial Intelligence (AI) is a field of computer science related to the devel-
opment and study of machines and softwares capable of performing intelli-

gent/humanlike actions. The branch of AI focused on the development, study and
deployment of methods that can learn from data is called Machine Learning (ML).
One of the major problems encountered in machine learning is that of concept learn-
ing, which consists in finding rules that divide the examples in two groups: object
associated to a given concept and object not associated to that concept. Objects in the
former case are called positives (+), since they belong to the concept, while the other
examples are called negatives (-). In order to infer the rules, the learning agent is
presented with both positive and negative examples. For example, in the well-known
SPAM problem, the goal is to predict if a given e-mail is associated with the concept
of being a SPAM 1. Positive examples include e-mails containing ads, newsletters, etc,
while the other e-mails (mail from the family, boss, university etc) are the negative
ones.

Concept learning revolves around the idea of separating the objects in two groups:
positives and negatives. In some cases, the negative instances belong to another com-
mon concept, that is, the goal is to distinguish between the two concepts classes (think
of the case where the problem is to distinguish between apples and oranges). This is
also known as binary learning and, when the number of concepts classes is greater
than 2, we refer to it as multi-class learning. The space containing all the possible
classes is called the output space, while the space containing all the object is called
the input space. In order to be used in a learning procedure, objects are represented
by sets of attributes or features, which are also called the descriptions or represen-
tations of the objects. For instance, in the SPAM problem, the descriptions consist
of all the words contained in the e-mail, the hyperlinks, the mail addresses, various
technical informations, and so on. We refer to the couple object and its label as an
example, a sample or an instance. The process used by a learning agent in which a
set of examples (also called a training set/sample) is used in order to derive a classifi-
cation rule, is called supervised learning, since the agent can supervise its learning by
checking if it gets the right classes for the training examples. In general, the training
set consists only of a small part of the input space and the training agent is asked to
produce rules that can be generalized to unseen objects: these rules are expected to
correctly predict, with high probability, whether any instance is associated to a given
concept or not. The rules can also be in the form of functions (mappings from the in-
put space to the output space) and in this case, they are called hypothesis, classifiers
or predictors.

1. Stupid Person’s Annoying Mail

1



2 Introduction

Figure 1 – An example of machine learning problems: image classification.

A classification example

Let us consider the following problem (figure 1): the object are various images of
persons, animals (cats, dogs, bears, etc), objects (tables, chairs, cars, etc), which make
up the concepts, and, for simplicity sake, suppose that one image represents only one
concept (either a person, or an animal, or an object, and so on). The goal consists
in learning rules that correctly associate new unseen images to their corresponding
concepts.

Now, there are different ways to describe an image (that is to define the sets of
attributes/features) and we present here four of them. The simplest one is the color
histogram, which corresponds to the distribution of the colors in the image, that is,
for each color, we count the number of its occurrences in the image. The resulting
description is a vector, whose size is the number of retained colors and the entries
correspond to the occurrences of the colors. A second way to describe an image is by
using the words/tags associated to it. Think, for example, of images obtained from
various web pages; then the words contained in the page can be a good descriptor of
what the image is about. This representation is also called bag of words. The third pos-
sible description is fairly similar to the bag of words, except that instead of words, we
use patterns to describe an image. For instance, tigers have orange and black stripes,
so images of tigers can be described using small images containing stripes. Finally, the
last possible description we consider is the Histogram of Oriented Gradients (HOG),
which counts occurrences of gradient orientation in localized portions of an image.
This technique has been used with success for the purpose of object detection, since
its output is the shape and outline of the objects present in an image.

Once the descriptions are available, they are fed to a learning algorithm, which
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produces a classifier. The obtained classifier is then used to predicted the classes for
new images. In figure 1, the new image is classified as plane with a probability of 89%.

The four aforementioned descriptions define four ways to view the examples. Al-
though they are views of the same examples, they are by no means equivalent and
do not contain the same information. The first (color histogram) and the second view
(bag of word) contain global informations on the images: the former contains infor-
mation on the distribution of the colors on the whole image, while for the latter, it
is safe to assume that the words or tags refer more to the image as a whole, rather
than to some isolated part. On the other hand, the third (bag of images) and the forth
views (HOG) contain rather localized informations: the images in the bag of images
are only related to a small part of the whole image, same for the gradients for HOG
which are computed is small parts of the image. As such, the first two views can
be quite informative if a class is identified by the global information of the image,
such as a color proper to a class (white+polar bear), words describing exactly one
class (desert+camel), etc. The other views are more informative in other cases, such
as the aforementioned tiger example, where finding an orange and black stripes pat-
tern may be sufficient; or using HOG in order to compare the shapes contained in an
image, etc. These latter views concern localized patterns of the images.

Aside from the local versus global information, each view is more appropriate
only for some tasks. If the task consists of predicting if an image represent a camel
or a tuna fish, then the first view is well suited for this task since it is enough to
check if the dominating color in the color histogram is the orange-yellow (camel) or
the blue (tuna). At the same time, the other views can also be used to build good
predictors for other concepts. The fourth view comes in handy when the task consists
in distinguishing gazelles from lions, since their shapes are quite different. In this
last example, the first view would not be so good, since in both cases the colors are
nearly identical; same for the second and third view, since the same words/image
patterns can be used to describe the images of both classes. These observations imply
that each view can be used to build predictors that are capable of handling certain
tasks, while miserably failing at others. Learning to efficiently combine the several
classifiers learnt on the views is known as multi-view learning.

Building from the observations made on the image classification problem, the
next part of this introductory chapter delves into the motivations behind the works
presented in this thesis.

Motivations

The multi-view problem Learning from multiple views has attracted a lot of atten-
tion in the last years due to both the number of increasing data and the number of
methods employed to represent these data. In the image classification problem, the
views defined for describing the images were primarily based on image processing
techniques. Nowadays images are everywhere on the internet, from social media to
news sites and passing through various web pages. Each of these mediums treats the
images in a different way: social media regroup the images in albums, news sites use
them to illustrate the articles, and so on. It follows that these representations of the
images can be used as descriptions for the examples and thus increasing the number
of available views. However, as previously mentioned, not all the views can be used
to learn predictors that correctly recognize all the classes. This last remark rises up
an important research problem:
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How should the various classifiers be combined so that each example can be pro-
cessed by the most appropriate view?

The imbalanced problem When dealing with problems, such as image classifica-
tion, it is not unusual for some classes to be more represented than others. For ex-
ample, it is easier to have images of cat and dogs, while it is harder to have images
of whales or lions. In this cases, we say that the training set is imbalanced. The conse-
quence of an imbalanced training set in the learning procedure is that if the method is
not adapted for such cases, then it ends up training classifiers that correctly recognize
the most represented classes, while shoving aside the least represented ones. It is thus
necessary to come up with methods that take into account a possible imbalance in
the representation of the different classes in the training sample. Which brings us to
the main question for these methods:

What training criterion should the learning agent use in order to learn good pre-
dictors?

The imbalanced multi-view problem Looking back at the image classification ex-
ample, the various views defined over the training sample are appropriate for dif-
ferent tasks, and more importantly they could be used to correctly recognize some
of the classes. For instance, HOG can be used to correctly recognize classes such as
giraffes, elephants, flamingos, etc, while the color histogram is more appropriate for
polar bears, camels, etc. Another problem that may come up is that for certain ex-
amples only some of the views are available. Think of the case of automatic medical
diagnostic, where for some patients only the results for a few tests are available. In
such cases, it is possible for the learning sample to become imbalanced for a given
view: some of the classes become more represented than the others. No matter the
case, the views falling in this category bring up the same issues as in the imbalanced
classes problem. The research problem associated to these methods is the following:

How should the various classifiers be combined so that each class can be processed
by the most appropriate view?

Outline of the thesis

The works presented in this thesis fall under the category of statistical learning
theory. In order to facilitate the reading of this thesis and offer the reader a self-
contained work, Chapter 1 formally introduces the notions of statistical learning and
the tools and framework on which rely the contributions of this thesis. For each
framework, a brief (non exhaustive) review of the state-of-the-art is proposed, includ-
ing methods that have inspired this thesis. A first contribution in Chapter 1 concerns
the definition of the strength of a view, which regroups the first and third question
posed in the motivations into a single one: that of learning under uneven views.

In Chapter 2, we propose a multi-view method based on the boosting framework,
called MuMBo, which attempts to address the first question given in the motivations.
MuMBo is based on the assumption that a good strategy to build a classifier with
good generalization properties would be to encourage some sort of cooperation be-
tween the views during the training process, so that each view can focus on what it
does best and leave the other cases to more appropriate views.

Dealing with imbalanced classes in not a new problem in machine learning,
and several methods have been proposed for tackling such problems. The main ap-
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proaches consist in rebalancing the training set and modifying the learning methods
in order to take into consideration the imbalance, (cf. Section 1.4). However, to the best
of our knowledge, most imbalanced methods are based on heuristics and a theoreti-
cal approach is lacking. The aim of Chapter 3 is to propose a theoretical framework
for the imbalanced problems through the study of the norm of the confusion matrix
as an alternative optimization criterion, based on recent works by Ralaivola (2012)
and Morvant et al. (2012). We show how to bound the norm of the confusion matrix
and by doing so, we obtain a boosting method for the imbalanced problem, called
CoMBo.

To address the third question posed in the motivations, we combine the imbal-
anced framework of Chapter 3 with the notion of cooperation between views of
Chapter 2. The result is a series of optimization problems leading to several meth-
ods whose aim is to deal with imbalanced views. Chapter 4 summarizes the various
approaches and introduces a multi-view version of CoMBo.

Throughout this thesis, the various methods are tested in two different settings:
first they are tested on either artificial or UCI (Frank and Asuncion (2010)) datasets;
then we give the empirical results obtained for the automatic classification of phone
calls. This latter setting, obtained from the DECODA dataset (presented in Section
1.5), gives an insight on how the methods proposed in this thesis behave in the case
of a real-world multi-view and imbalanced problem.





Notations

S training sample
X input (instance) space
Xj input (instance) space corresponding to view j
Y output (classes) space
D unknown distribution on X⇥Y
(x, y) a training example
x the description of a training example, x 2 X
y the class of the a training example, y 2 Y
m number of training samples
ml number of training samples for a given class l
v number of views
K number of classes (size of Y)
X1 ⇥ X2 Cartesian product of X1 and X2

H an ensemble of classifiers
H(·) majority vote classifier, H 2 H
h(·) a classifier, h 2 H, h : X ! Y
A real-valued matrix, A 2 R

p⇥q, for some given p, q 2 N

A(r) the l-th row of matrix A

A(r, c), ar,c the entry of the r-th row and c-th coloumn of matrix A

lmax(A) the largest eigenvalue of matrix A

Tr(A) the trace of matrix A

A⇤ the conjugate transpose of matrix A

A · B Frobenius (entry-wise) inner product of matrices A and B

AB product of matrices A and B

C the confusion matrix for a given classifier, C 2 R
K⇥K

D (in the boosting setting) the cost matrix, D 2 R
m⇥K

a real-valued vector, a 2 R
p, for some p 2 R

k · k1 the l1-norm, both for vectors and matrices
k · k2 the l2-norm, both for vectors and matrices
k · k the operator norm, matrices only
k · kF the entry-wise Frobenius norm, matrices only
I(·) the indicator function
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In this introductory chapter we present the machine learning fields — and when
needed, the frameworks — mostly related to the works presented in this thesis.

The goal of the first part of this chapter is to give the reader an intuitive review of
machine learning and to introduce the setting on which the present thesis focuses.

In the second part, we propose a short review of the boosting framework, an
ensemble method which combines several weak classifiers into a strong one. For both
the binary case and the multi-class case, several methods are presented, such as the
AdaBoost family.

In the next part, we present a key framework for most of the methods proposed in
this work: multi-view learning. Multi-view methods make use of several informations
given by the different descriptions of the samples in order to learn better classifiers.
As previously, a short review of multi-view learning methods is presented, ranging
from fusion based ones to boosting based.

1
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Finally, the last part concerns one of the most frequent problems in ML: the imbal-
anced classes problem, where one or a few classes, are more represented than the rest.
The methods presented in this part are separated in two group: resampling methods,
which increment (resp. decrement) the number of example of the minority classes
(resp. majority classes), and re-weighting methods, which assign weight to the sam-
ples so that the majority class samples have small weight, while minority ones have
larger weights.

1.1 A brief introduction to machine learning

The field of machine learning is commonly presented as an intersection of artifi-
cial intelligence, statistics and computer science. As opposed to the broader field of
artificial intelligence, where the goal is to mimic human intelligent behavior, machine
learning focuses on inferring rules from observed data that allow computers (and ma-
chines in general) to perform a certain task. Think for instance, of how humans can
distinguish between "apples" from "oranges" only by observing some example of "ap-
ples" and "oranges". Amongst the different branches of machine learning, the most
well-known is the supervised learning coupled with the problem of classification,
which will also be the focus of this thesis.

In the supervised setting, the learning agent is presented with data (examples)
that come in the form of input-output pairs. The space X containing all the possible
inputs is called the input (or instance) space; the ensemble of outputs Y forms the
classes space. In the case of binary classification, Y contains two classes, usually noted
{−1, 1}, while in multi-class classification, which is the case of this thesis, the size of
Y is K ≥ 2, Y = {1, . . . , K}. The training dataset, S = {(xi, yi)}m

i=1, is made up of
m 2 N realizations of a pair of random variables

(xi, yi) 2 X⇥Y

drawn independently from D, a fixed unknown joint probability distribution on X⇥
Y. The goal of a learning algorithm is to use the training data S in order to find a
mapping:

h : X ! Y.

The mapping h associates an element of the input space to a class in the output space;
h is also called a classifier.

There are multiple mappings from X to Y, and the learning algorithm should
choose only one of them. In the case of supervised learning, the algorithm has access
to both the descriptions and the classes for the examples in the training sample S.
Intuitively the learning process can supervise the choice of the mapping by guiding
it towards the one that makes the least mistakes on S. In order to quantify the good-
ness of a classifier, the notion of loss functions (denoted by `) was introduced, which
measures how the prediction of a classifier fits the true class for a given example.
The simplest loss function is the misclassification error, also known as the 0-1-loss,
defined as follows:

`0−1(y, h(x)) =

⇢

1 if h(x) 6= y,
0 otherwise,

where, x 2 X, y 2 Y, and h is a mapping. Other possible losses can be defined, such
as the exponential loss (Eq. 1.1), the logistic loss (Eq. 1.2), the hinge loss (Eq. 1.3), etc.
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For simplicity sake, we give here the definitions for these losses in the case of binary
classification.

`exp(y, h(x)) = exp(−yh(x)) (1.1)

`log(y, h(x)) = log
⇣

1 + exp(−yh(x))
⌘

(1.2)

`hinge(y, h(x)) = max{0, 1− yh(x)} (1.3)

The previous losses are computed only for one example. In order to measure the
goodness of a classifier on a training same, we define the empirical risk (also called
empirical error) as follows:

ê(h, S) =
1

m

m

∑
i=1

`(yi, h(xi)).

The true risk of the classifier, measuring the probability of misclassifying an example
by the classifier, is computed as the expectation of the loss:

e(h) = E(x,y)⇠D`(y, h(x)).

It follows that the goal of the learner is to find the mapping with the lowest risk; the
risk for the perfect classifier is 0. That is, the best classifier that a supervised learning
algorithm can output is the one verifying the following condition:

h⇤ = argmin
h2YX

e(h).

However, in general, the learning algorithm does not have access to all the possible
mappings from X to Y, but rather to a smaller subset H ✓ YX. The new goal of the
learning process is to find the best possible classifier in H whose risk is minimal:

h⇤H = argmin
h2H

e(h).

Recall that e(h) depends on D a quantity that is unknown, hence, finding h⇤H is
difficult. To our rescue comes the consistency property, which states that the empirical
risk ê(h, S) converges to the true risk e(h) with the number of instances in S, that is,
the more training examples are available, the better the returned classifier is:

lim
m!∞

ê(h, S)− e(h) = 0.

This principle is also known as the Empirical Risk Minimization and it was intro-
duced in the machine learning community by Valiant (1984) in the Probably Approx-
imately Correct framework.

It follows that the goal of the learning procedure reduces to finding the classifier
that minimizes the empirical risk, computed on the training set:

ĥ = argmin
h2H

ê(h, S).

Multiple and various methods have been proposed for effectively minimizing the
empirical risk, ranging from decision trees (Quinlan (1986)) favored for their inter-
pretability, to neural networks and their mimic of the human brain, and passing
through the success story that are the Support Vector Machines (Cortes and Vap-
nik (1995)). In the following section, we present the boosting framework, yet another
approach for minimizing the empirical error, which on its own has reshaped the
machine learning landscape. At the same time, this framework constitutes the foun-
dations for most of the works in this thesis.
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1.2 Boosting

The term ensemble methods denotes all learning methods that build predictive mod-
els from a set (ensemble) of classifiers. They have received a lot of interest in the past
years and several frameworks and algorithms have been proposed. The main differ-
ence between these frameworks is related to how the set of classifiers is used during
the learning phase. Some of the most well-known methods include late fusion (de-
tailed in Section 1.3), random forests Breiman (2001), bagging Breiman (1996) and
boosting. In this section, and throughout this thesis, we are only interested in the last
framework: boosting.

1.2.1 A brief review of Boosting

Definition 1 (Strong and weak learnability Schapire (1990)) A concept class is learnable (or strongly learn-
able) if, given access to a source of examples of the unknown concept, the learner with high
probability is able to output an hypothesis that is correct on all but an arbitrarily small fraction
of the instances.

The concept class is weakly learnable if the learner can produce an hypothesis that performs
only slightly better than random guessing.

Boosting was first introduced in the statistical learning community in the form of
a philosophical question related to weak and strong learnability. Kearns and Valiant
(1989) posed as an open question whether there was a link — an equivalence, maybe
— between weak learnability and strong learnability, and more precisely, if it was possi-
ble for weak learnability to achieve the same performances as strong learnability. The
underlying idea was to establish whether it existed a way to boost a weak learning
method into an arbitrary strong one. This question was also dubbed as the hypothesis
boosting problem.

The answer to this question — which is yes — was first formally given in Schapire
(1990). The proof consisted of a learning method for directly converting a weak learn-
ing method into a strong one, whose error is arbitrarily small. As a starting point
for the method was the probably approximately correct (PAC) model introduced in
Valiant (1984). In this model, the instances are chosen according to a fixed, but un-
known, distribution and the task is to build a classification model that predicts, with
high probability, the correct label for a given instance. The PAC model is also known
as distribution-free model, since the distribution is unknown and the results given for
this model do not depend on it. Schapire (1990) make this the cornerstone for their
model: the distribution of the examples is modified in such a way that the weak
learning algorithm is focused on the hard-to-classify examples. Depending on the
distribution, some of the original training examples may be discarded, so that only
the most informative ones are conserved. This filtering procedure, coupled with the
recursive nature of the method, forces the weak learner to explore nearly the whole
distribution. In order to take advantage of this exploration, the final classifier is an
unweighted majority vote of all the classifiers learnt in the training phase, which is
virtually limited to three.

A second proof of boostability was given in Freund (1995) and, once again, it was in
the form of an iterative learning procedure, named boost by majority (BBM). Similarly to
Schapire (1990), BBM manipulates the distribution of the examples in order to force
the weak-learner to correctly classify all the examples, including the most difficult
ones. However, instead of selecting only some of the examples, BBM assigns weights
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Algorithm 1: AdaBoost Freund and Schapire (1996)

Given

— S = {(xi, yi)}m
i=1 where xi 2 X, yi 2 {−1,+1}

— Weak learning algorithm WL
— T the number of iterations
— 8i 2 {1, ..., m} D1(i) =

1
m

for i = 1 to T do

Train WL using Dt and get ht : X ! {−1,+1}
Compute: et = ∑

m
i=1 Dt(i)I(ht(i) = yi), the empirical error

Compute importance coefficient: at =
1
2 ln

⇣

1−et
et

⌘

Update Dt :

Dt+1(i) =
Dt(i) exp(−atht(i)yi)

Zt

where Zt = ∑
m
i=1 Dt+1(i) is a normalization coefficient.

end for

Output final hypothesis :

H(x) = sign
⇣ T

∑
t=1

atht(x)
⌘

to all the examples, the harder an example is to classify, the higher the assigned
weight. Freund (1995) showed also that BBM is optimal under some conditions.

1.2.2 An adaptive approach to boosting

Both boosting methods presented in the previous section have been difficult to use
in practice: they depend on hyper-parameters, thus making the learning procedure
quite long. One of the major breakthroughs in boosting was the paper by Freund
and Schapire (1995) and in particular the method they introduced, named AdaBoost.
Following in the same path as the method proposed in Schapire (1990), AdaBoost ma-
nipulates the distribution over the training sample in order to identify hard-to-classify
examples. This forces the weak learner to focus on those examples, thus promoting
them during the training process and, hopefully, learning to correctly classify them.

Similarly to BBM, AdaBoost uses a filtering procedure, where a distribution over
the training samples is maintained. However, contrary to BBM, which may discard
some of the examples, AdaBoost updates the distribution so that the weight of the
misclassified examples is increased, while the correctly classified ones have their
weights decreased. The main advantage is that, at each iteration, all the examples
are used in the learning phase, and the filtering effect is simulated by the weights
assigned to the examples.

Let S = {(xi, yi)}m
i=1 be a training sample, where xi 2 X is the description and

yi 2 {−1,+1} is the class of the example. AdaBoost works as follows: first it assigns
equal weights to all the training sample, since no prior knowledge on the distribution
of the sample is supposed. Next a weak learning algorithm is called, where the inputs
consist of the training sample and the weights associated to the examples. A weak
learner h : X ! {−1,+1} is returned and the only condition on h is that it should
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(a) e1 = 0.3, a1 = 0.42 (b) e2 = 0.21, a2 = 0.66 (c) e3 = 0.14, a3 = 0.91

(d) The final hypothesis

Figure 1.1 – An example of the run of AdaBoost on a dataset containing ten examples, five of class
blue and five of class red. Three runs of the algorithm — corresponding to the top images — are

presented and for each, the weighted error rate is given, as well as the importance coefficient a. The
bottom image corresponds to the combined classifier, and the blue (resp. red) zones correspond to the

regions were the examples are classified as blue (resp. red).

perform better than random guessing. Since AdaBoost is a binary learning algorithm
— there are only two classes, -1 and +1 —, the weighted empirical error of h needs to
be lower than 0.5.

Not all the classifiers returned by the weak learner are equal, some may have an
error slightly lower than 0.5, while others may have a much lower error. In order to
quantify this, a coefficient is computed for the classifier return by the weak learning
algorithm; the better h performs on the training sample, the higher its assigned coef-
ficient. Finally, using the results of h and the importance coefficient, the weights of the
examples are updated: those of the misclassified examples are increased, while they
are decreased for the correctly classified ones. As previously mentioned, this sort-
of-filtering promotes the harder examples, thus forcing the weak learning algorithm
to focus on them. Such a process is repeated for T rounds, and the final model is
obtained by weighted majority voting of the T weak learners, where the weights cor-
respond to the importance coefficients obtained during the training phase. The pseudo
code of the algorithm is given in Algorithm 1.

An example 1 of how AdaBoost works is given in Figure 1.1, illustrating the ef-
fect of the update rule and the weighted majority vote. Since AdaBoost is a binary
classification algorithm, we only consider two classes: blue class versus red class. The
training sample, represented by circles, is made up of ten examples, five of each class.
As for the weak learning algorithm, we only allow linear classifiers parallel to the
axes.

Figure 1.1a corresponds to the first run of AdaBoost. As such, the weights of the
examples, corresponding to the size of the circles, are all equal. The first classifier re-
turned by the weak learning algorithm achieves an error of 0.3 — since it misclassifies
three blue examples — and its importance coefficient is 0.42. Using these results, the

1. The example given here is taken from Schapire and Freund (2012).
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weights of the examples are updated (as shown in Figure 1.1b): the three misclassified
blue examples have their weights increased, while the weights of the other examples
are decreased.

The second run of AdaBoost is given in Figure 1.1b. One may notice that the three
misclassified examples in step 1 have been correctly classified, since the previous
update of the weights gave more importance to these examples. As previously, the
weighted error (e = 0.21) and the importance coefficient (a = 0.66) are computed and
the distribution in updated accordingly. A third run of AdaBoost (Figure 1.1c) gives
a classifier with a weighted error of 0.14 and an importance coefficient of 0.91.

After the third run, the learning process is halted and the final hypothesis is
computed as the weighted combination of the three classifiers, shown in algorithm 1.
The colored zones in Figure 1.1d correspond to the predictions of the final hypothesis:
the blue zones (resp. red zones) corresponds to where the final hypothesis predicts
blue (resp. red). It is interesting to notice that the final hypothesis achieves a perfect
score on our toy dataset, despite the fact that all the weak classifiers made mistakes
during the training phase.

AdaBoost made a big impact in the learning community and it even made its
way into the top 10 most influential algorithms in the data mining community Wu
et al. (2007). Unfortunately, it is not the perfect learning algorithms and empirical
evaluation quickly showed its shortcomings, especially when dealing with noisy data
(for example Dietterich (2000)). Freund (2001) proposed BrownBoost, an adaptive
version of BBM inspired from AdaBoost, which was more effective in dealing with
noisy examples.

1.2.3 From binary to multi-class boosting

The version presented in Freund and Schapire (1995) was a binary learning algo-
rithm and an extension for the multi-class setting — where the number of classes is
more than two — was needed. The first version of multi-class AdaBoost, called Ad-
aBoost.M1, was given in Freund and Schapire (1996) (and further polished in Freund
and Schapire (1997)). AdaBoost.M1 is the most straightforward extension of AdaBoost
to the multi-class framework, since the algorithm is pretty much the same. The main
differences consisted in replacing AdaBoost’s binary weak learners by multi-class
learners and using the argmax operator instead of the sign one in the final hypoth-
esis. The advantage of AdaBoost.M1 is that it inherits all of the good properties of
AdaBoost. On the other hand, the main drawback resides in the fact that it uses the
same weak learning condition, that is, it requires the weak classifiers to correctly
classify more than 50% of the training set. In binary classification, this condition in
closely linked to the error of random guessing. However the error of random guessing
in the multi-class setting is not 0.5, and as such, this condition on the weak learner
is restrictive. Freund and Schapire (1996) show that simple classifiers such as deci-
sion stumps, which often fail to meet this condition, can be effectively combined in
stronger classifiers producing highly accurate predictions.

In order to overcome this difficulty, Freund and Schapire (1996) proposed a sec-
ond version of AdaBoost for the multi-class setting, dubbed AdaBoost.M2 or Ad-
aBoost.MR. Instead of using simple multi-class base classifiers, AdaBoost.M2 uses
base classifiers that return a score in [0, 1] for each couple example/class. That is, for
each example, K scores are returned, where K is the number of classes, and the label
predicted for the example is the one having the biggest score. Note that this is similar
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to ranking (hence the R in AdaBoost.MR) the labels based on the returned scores and
taking the top label as the predicted class 2.

Computing a score per couple example/label allows a better communication be-
tween the boosting procedure and the weak learner. In AdaBoost.M2, this is imple-
mented in the construction of the training sample, where a new example is created
for each couple example/label (different from the true class). So, if the original train-
ing sample contains m examples, the new training sample is made up of m(K − 1)
examples. The advantage of this extension of the training sample is that the (implicit)
weak learning condition for AdaBoost.M2 is weaker than the one for AdaBoost.M1.

Another popular multi-class formulation of AdaBoost is AdaBoost.MH 3 pro-
posed by Schapire and Singer (1999), which transforms the multi-class learning
problem to binary decision problems using the one-versus-all approach. This way
instead of learning one multi-class classifier, the goal is to train one classifier per
class, which only predicts whether or not a class is associated to an example. The
main advantage of this formulation is that it allows AdaBoost.MH to deal not only
with multi-class problem, but also with multi-label ones. As for the weak learning
condition, each of the per class weak classifiers need to perform better than random
guessing, since they deal with binary classification problems.

Most of the previous multi-class algorithms suffer from the same problem: their
weak learning condition is either too strong or not quite well defined. In order to
overcome this and to unify the different algorithms, Mukherjee and Schapire (2011)
proposed a framework suited for multi-class boosting. The main interest of this frame-
work is the extension of the weak learning condition used in the binary case to the
multi-class one, by replacing the distribution over the examples with a cost matrix.
Here we recall the definitions of the cost matrix and the edge-over-random (eor) base-
line, which can be interpreted as the random guessing in the multi-class setting.

Definition 2 (cost matrix and edge-over-random baseline) Mukherjee and Schapire (2011) The cost matrix
D is a real-valued matrix of size m⇥ K, where each row D(i) corresponds to the example i of
the learning sample, and each entry D(i, l) corresponds to the cost of predicting class l for the
example i.

The edge-over-random cost matrix D 2 R
m⇥K puts the least cost on the correct label, i.e.

the rows of the cost matrix come from the set
{

d 2 R
K : 8l, d(yi)  d(l)

 

. Deor denotes the
set containing all such matrices.

Let g ≥ 0. The edge-over-random baseline B 2 R
m⇥K is g more likely to predict the

correct label than an incorrect one on every example i : 8l 6= yi, B(i, yi) ≥ B(i, l) + g, with
equality holding for some l. Beor

g denotes the set containing all the edge-over-random baselines
parametrized by g.

In the previous definition, if we consider B as a classifier, then the parameter g

defines how much better than random guessing B performs. It plays the same role as
the edge in the binary case AdaBoost (see Schapire (2002)). Therefore, from now on,
we’ll refer to it as the edge.

With the notations introduced in Definition 2, we can now state the weakest form
of the weak learning condition as given in Mukherjee and Schapire (2011).

2. In the case of multi-label learning, it suffices to take the k top label, where k is the number of
desired labels.

3. The H in AdaBoost.MH comes from the Hamming loss, which constitutes the minimization crite-
rion for AdaBoost.MH.
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Definition 3 (edge-condition) Mukherjee and Schapire (2011) Let H be a classifier space. Then "H is boost-
able" is equivalent to:

8D 2 Deor, 9h 2 H : D · 1h  max
B2Beor

g

D · B, (1.4)

for some edge g > 0 and where 1h is the prediction matrix defined as 1h(i, l) = 1 i f h(i) = l
and 1h(i, l) = 0 i f h(i) 6= l.

Definition 3 implies that for every cost matrix in Deor, there exists a classifier in H
that performs better than the worst baseline in Beor

g . It ensures that the classifiers in H
perform better than random guessing, without requiring them to be too strong.

This multi-class boosting framework is the base of some of the works presented
in this thesis and the edge condition is a central part of most of the proofs. However,
since most of the time we deal with classifiers instead of classifier spaces, we need to
reformulate the edge condition (Equation 1.4) applied to a single classifier. This is
done for convenience sake and in order to simplify future references to the edge
condition.

Definition 4 (simplified edge-condition) Let D ✓ R
m⇥Q and matrix B 2 Beor

g , an eor-baseline, then a weak
classifier h satisfies the edge condition if :

D · 1h  D · B, (1.5)

where 1h is the prediction matrix defined as 1h(i, l) = 1 i f h(i) = l and 1h(i, l) =
0 i f h(i) 6= l.

In the proofs provided throughout this thesis, we use a special case of edge-over-
random baseline, which is defined as follows:

Definition 5 The uniform edge-over-random baseline is a cost matrix Ug so that: Ug(i, l) = 1/2 +
g/2 i f l = yi and Ug(i, l) = 1/2− g/2 i f l 6= yi.

Theorem 20 of Mukherjee and Schapire (2011) shows that under some specific
conditions — one of them related to the choice of the exponential loss as a minimiza-
tion criterion —, the edge condition given in Equation 1.4 is equivalent to the same
condition when the worst baseline is replaced by the uniform edge-over-random
baseline. This implies that these two conditions can be used interchangeably, that
is, it is possible to use the fixed uniform edge-over-random baseline instead of the
(variable) worst baseline. A fixed matrix is easier to deal with, and as such, when
needed, we’ll be using the uniform edge-over-random baseline instead of the worst
baseline.

This boosting framework is a well founded multi-class framework. Its main ad-
vantage is that it allows the use of classifiers weaker than the ones required by the
other methods. Suppose that, under some conditions, only a (small) subset of the
original training set is interesting or contains interesting informations; suppose also
(for simplification sake) that these examples are located in an isolated part of the in-
put space: then using weaker base learners allows the boosting procedure to process
these examples earlier that using a strong learner, since in the latter case the weak
learner is required to correctly classify more examples, thus lowering the chances of
taking in account the isolated examples. This is the main motivation behind the choice
of this multi-class boosting framework as the base for most of the works presented in
this paper.
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1.2.4 Other boosting methods

Even though most of this section was dedicated to the AdaBoost family meth-
ods, boosting is not limited only to adaptive boosting. Several boosting methods have
been proposed for dealing with noisy data, which was one of the shortcomings of
AdaBoost. Some of these methods include the aforementioned by BrownBoost Fre-
und (2001), GentleBoost by Friedman et al. (2000) and LogitBoost by Friedman et al.
(2000), the method presented by Nock and Lefaucheur (2002) and a recent method by
Freund (2009). A meta algorithm, called AnyBoost, regrouping all boosting methods
based on the optimization of convex loss functions, was proposed by Mason et al.
(1999).

Other works have been focused on applying boosting to other settings, such as
GradientBoost Friedman (2001) for dealing with regression problems, RankBoost Fre-
und et al. (2003) for ranking problems, CoBoosting Collins and Singer (1999) for
the semi-supervised setting, and so on. Linear Programming Boosting Demiriz et al.
(2002), also called LPBoost, tackles the boosting problem in a different way: instead
of iteratively learning the base classifiers, LPBoost uses linear programming in order
to find the best combination for a given set of classifiers.

In the multi-class setting — aside from the aforementioned extensions of Ad-
aBoost —one of the most interesting approaches is SAMME Zhu et al. (2009), which
is similar to AdaBoost.M1. The advantage of SAMME is that it requires the weak
learners to perform slightly better than 1/K, while the classifiers of AdaBoost.M1

needed to perform better than 0.5. However, Mukherjee and Schapire (2011) showed
that in their framework, even this condition was too strong and that it is possible to
build boostable classifiers that do not meet the condition.

1.3 Learning with multiple views

The term multi-view learning refers to all machine learning methods that make
use of several descriptions of the data in order to build a prediction model or a
classifier. Generally, these methods are built on the hypothesis that each description
of the data contains information that are not embedded in the other descriptions.
The common goal of multi-view methods is use all the available information in the
different descriptions in order to improve as much as possible the performances of
the classifier.

This section proposes a simple review of multi-view methods. The first part in-
troduces the notions of view, strong and weak views, as used throughout this thesis.
Next we present the fusion-based approaches, which are perhaps the most common
approaches in multi-view learning. The final part of this section is dedicated to multi-
view methods which are not necessarily related to the fusion-based ones.

1.3.1 General notions on the views

In the literature, the term multi-view learning is used to denote:
a) methods that make use of several representations of the training examples in

order to learn a predictive model;
b) the fact of observing an object from several viewpoints.

The latter is more frequently encountered in face detection/identification problems,
where multiple views of the face are available, such as the frontal view, the lateral
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ones, and so on (see, for example, Jones and Viola (2003)). Likewise, the description
of an example is called view (Janodet et al. (2009)) or modality de Sa and Ballard (1998).

In this thesis, the term view denotes a description or representation of an example,
that is, a set of attributes representing an example. For instance, the RGB histogram
of an image defines a view, same as the SIFT vector Lowe (1999). Building on this
definition, the term multi-view is used to denote all learning methods that take as
inputs multiple views defined on the learning examples. That is, the input space X is
defined as the cartesian product of several input spaces X = X1 ⇥ . . .⇥ Xv.

Since a view is defined as the description of an example, or rather a set of at-
tributes representing the example, it follows that it embeds some information on the
examples proper to the description. More importantly, the sort of information and
its quantity may be different from one view to another, depending on the attributes
that make up the views. For example, the RGB histogram view contains global infor-
mation related to the colors contained in an image, while SIFT contains more local
information related to the points of interest in an image. As a second example, in
text categorization, the lexical view made of the different words of the text, is quite
informative of the keywords, while the information contained in the syntactic view
is closely related to the structure of the sentences. A direct consequence is that the
classifiers obtained from the different views may not be equal performance wise, even
though they are learnt on representations of the same examples.

Based on this observation, we distinguish three kinds of views: weak views, strong
views and imbalanced views. These three types of views constitute key notions for this
thesis, since they are part of the main hypothesis made by the methods presented
here.

The notions of weak and strong view are closely related to the notions weak and
strong classifier as defined in the PAC setting Valiant (1984). We define a strong view
as an input space that allows to learn a classifier whose error is arbitrarily small. On
the other hand, a weak view is defined as an input space that defines classifiers that
perform only slightly better than random guessing. In other words, the notion of a
strong view is associated with the possibility to learn a good classifier on that view,
while the notion of weak view reflects the impossibility of learning such a classifier
from the instance space defined by the view.

More formally, letD be a distribution defined on X⇥Y. The best possible classifier
that can be trained for samples drawn from D is the Bayes classifier, defined as:

hbayes(x) = argmin
y2Y

P(X = y|Y = x),

where X and Y are random variables taking values in X and Y respectively. Then,
for a fixed Y, the input space X defines a strong view if the Bayes classifier’s error is
small and X defines a weak view if the error is close to the error of random guessing.
g = 1− e(hBayes) gives a measure for the strength of the view defined by X.

Both notions are based on the performances of the classifiers learnt on the input
space as a whole, independently of how it recognizes each of the classes that make
up the output space.

The third type of view, imbalanced views, takes into consideration the impact that a
classifier learnt on a view has on the different elements of the output space. In order to
illustrate the idea behind this type of view, let us reconsider the image classification
problem and the RGB histogram view constructed from the colors contained in an
image. If the classification task consists in identifying if the image represents lions,
gazelles or gorillas, then this view is informative mainly for the gorilla class, since it
can be used to build classifiers that correctly identify that particular class.
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(a) Schema representing early fusion methods
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View 2

(b) Schema representing late fusion methods
Figure 1.2 – Schemas for early and late fusion for two views.

We define the notion of imbalanced view as the input space that allows to build
classifiers that correctly recognize one class or a subset of classes. One may notice
that this definition is related to the imbalanced classes problem, where classifiers fail
to recognize all of the classes. This link will be investigate later on.

1.3.2 Multi-view learning through fusion-based methods

Fusion-based methods are amidst the first methods used when dealing with
multi-view problems. They are usually divided in two major groups: early fusion
methods and late fusion methods. The former regroups all the methods that perform
some sort of fusion of the input spaces and then train a model on the unique modified
input space. The latter often fall in the ensemble methods group, that is, they usually
train as many classifiers as there are views (one classifier per view) and then perform
some sort of fusion on the output space (the predictions of the classifiers). We now
detail both approaches.

Early fusion methods The principal idea behind early fusion methods is to combine
the different views in an unique view, which is then used to train a classifier. More
formally, let X1, . . . , Xv be v views. Then the goal of early fusion methods is to con-
struct/define a fusion operator / so that / : X1, . . . , Xv ! X, that is, it builds an
unique description space from the several description spaces it takes as parameters.
The second step consist of learning a classifier h : /(X1, ..., Xv) ! Y, where Y is the
ensemble of classes. A simple schema representing the early fusion where v views are
considered is given in Figure 1.2a. As such, these methods differ one from the other
form how they combine the views. The three main types of combinations or fusions are:
concatenation of the views, dimensionality reduction and feature selection.
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As the name suggests, the concatenation of the views consists in aligning all the
available descriptions one after the other. In this case, the fusion operator is defined
as / : X1, . . . , Xv ! X1 ⇥ . . .⇥ Xv. The advantage of the concatenation approach is
that by augmenting the dimension of the description space, the examples might be-
come separable or easier to separate than in each one of the views. However there
are several inconveniences in this approach and we’ll only list three of them. First,
if the views contain noisy attributes or attributes with little information, then the
concatenation might promote those attributes and thus implying little to no improve-
ment in the performances of the classifier h. Secondly, if the views are represented by
real-valued vectors, then they need to be normalized, otherwise views with higher
values will take the upper-hand on the others. Last but not least, increasing the size
of the description space, might heavily impact the learning time for h, thus making
the training process long and tedious.

Dimensionality reduction refers to all those methods that modify the input space —
usually made up of the concatenation of all the available views — in order to reduce
the number of attributes in the final input space. The latter is not necessarily a subset
of the concatenation of the views. That is, the goal is to combine several attributes
into a single one, or replace whole subsets of attributes with one meta attribute.
The fusion operator is defined as / : X1, . . . , Xv ! X, where X is an input space
proper to the method. This group of methods includes all methods that perform di-
mensionality reduction such as Principal Component Analysis (PCA) (performed on
the concatenation of the views) 4, Fischer Discriminant Analysis (FDA) Diethe et al.
(2008), Canonical Correlation Analysis (CCA) Foster et al. (2008), etc. The main ad-
vantage of these methods is that similar attributes or noisy attributes are regrouped
and replaced after the reduction phase, thus minimizing their impact in the train-
ing process. However, since attributes contained in different views are potentially
grouped together, the structures of the views are altered, which may result in loss of
information proper to the views. A second drawback for these methods, is that usu-
ally it is not easy to associate a meaning to the newly created attributes, since they
may represent heterogeneous and unreadable sets of attributes.

The third type of fusion, feature selection, is a particular case of dimensionality reduc-
tion, where a set of attributes is replaced by an attribute contained in one of the views.
The goal of these methods is to select, from all available attributes, the minimal set of
attributes (features) that keeps, or improves, the information embedded in the original
set. The fusion operator is defined as / : X1, . . . , Xm ! X ✓ X1 [ . . .[Xm. Feature se-
lection has been widely studied in different domains, such as text categorization Yang
and Pedersen (1997) (for mono-view cases), image classification Feng et al. (2013), so-
cial media Tang et al. (2013), etc. The main advantage is that is speeds up the training
time, while being more interpretable than dimensionality reduction methods. The main
inconvenience of feature selection is that it might loose information, since the final
set of attributes is just an approximation of the original.

It is interesting to notice that early fusion methods have been (implicitly) used
in learning processes even when the multi-view aspect of the data was not the main
concern. Let us take as an example the arrhythmia 5 dataset from the UCI Machine
Learning Repository Frank and Asuncion (2010). The goal for this particular dataset
is to predict if a patient is affected from one type of arrhythmia among 16. The dataset
contains 452 examples, each one described by at most 279 attributes (some of the val-

4. A comparative review for dimensionality reduction methods in the mono-view case is given in
van der Maaten et al. (2008).

5. http://archive.ics.uci.edu/ml/datasets/Arrhythmia
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Figure 1.3 – Description of the Arrhythmia dataset.

ues are unknown for some examples).Figure 1.3 gives an insight on how the various
attributes are obtained.

The first 15 attributes contain personal information on the patients, such as age,
sex, weight and height. The other 264 attributes are averages and amplitudes of var-
ious types of waves computed from 12 different channels. Based on our definition of
view (given in Section 1.3.1), the attributes can be split in several views. For instance, if
we consider that each pair channel-measure defines a view, then arrhythmia is made
up of 25 views: 1 containing the personal information, 12 representing the couples
(channel, average) and 12 representing the (channel, amplitude) pairs. We can also
regroup the attributes in 3 views (personal information, all averages, all means) and
13 views (personal information, channel 1 to 12). Whatever the number of views, ar-
rhythmia can be seen as a multi-view sample obtained through an early fusion process
— in this case, it is a simple concatenation of all the views — applied on the several
views

Late fusion methods Late fusion methods apply the fusion on the output space,
rather than on the input space, which is the case of early fusion methods. More
formally, let X1, . . . , Xv be v views and, for the sake of simplicity and without loss
of generality, we consider one classifier hj : Xj ! Y for each view j 2 {1, . . . , v},
for a total of v classifiers. The goal of late fusion methods is to construct/define a
fusion operator ~ so that ~ : Y, . . . , Y ! Y, returns a class in Y from the combination
of several predictions. For the hj2{1,...,v} and an example x = (x1, . . . , xv) described



1.3. Learning with multiple views 15

by v views, the operator ~(h1(x1), . . . , hm(xm)) 2 Y defines the final prediction for
x through the combination of the predictions returned each of the classifiers hj.
A schema for the late fusion is given in Figure 1.2b where v views are taken into
consideration.

Generally, late fusion methods are better adapted for exploiting the individuality
of each view, than early fusion methods. Indeed, since these methods train one
classifier per view, then adapting the classifier to the corresponding view seems as
a good strategy in order to make the best of the information embedded in the view.
This means that different kinds of training procedures can be applied as long as the
output spaces of the returned classifiers stay the same. While this is certainly the first
advantage of late fusion methods, it constitutes at the same time the first question to
be answered by all such methods: how to train the various classifier on their corresponding
views? or simply put what criterion should be minimized by the learning methods? The
most usual criterion is the empirical risk: for a given view, the chosen classifier should
be the one that minimizes the empirical error, computed on a given training set. This
does seem a convenient choice since most methods’ goal is to minimize the risk of
misclassifying the examples. Thus achieving a small risk for each of the classifiers
will hopefully guarantee a small risk for the combination.

A second advantage of these methods is the fusion operator which can be used
to embed different prior information, such as giving the highest priority to strong
views, or minimizing the role played by the classifiers learnt of the weak(er) views.
Due to their nature, late fusion methods usually fall in the category of ensemble
learning methods (ELM). As such most approaches developed for the combination
of the classifiers in ELM can be applied to these methods. Perhaps the most well-
known fusion approach is the weighted majority, where a weight is associated to
each classifier and the final prediction is the class that obtains the highest score. In
this case the fusion operator ~ associated to the classifiers h1, . . . , hm and applied to
an example x = (x1, . . . , xm) is defined as:

~(h1(x1), . . . , hm(xm)) = argmax
y2Y

m

∑
j=1

I(hj(xj) = y)aj,

where aj is the weight associated to the classifier hj and Y is the output space con-
taining the classes. The simple majority vote is obtained when the weights aj have
the same value for all j 2 {1, . . . , m} (usually this value is set to 1). A review on the
different combining rules is given in Kittler et al. (1998).

This brings us to the second question late fusion methods should answer: how to
compute the weighting coefficients?. The easiest way is to consider the simple majority
vote, as previously defined, but it might not be the ideal choice since it gives the same
importance to all the classifiers. Learning the coefficients can be performed through
different way: through an optimization problem where the solution defines the opti-
mal value for the considered criterion Awais et al. (2011); using a PAC-Bayesian ap-
proach Laviolette et al. (2011) (in the mono-view case) or learning them in an adaptive
way Opitz and Shavlik (1996).

Answering both question can be quite challenging, since they both depend on
different criterions and have different objectives.

The most representative candidate for the class of late fusion methods is the
Multiple Kernel Learning (MKL) approach Lanckriet et al. (2004). MKL propose to
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learn one kernel per view — and thus one classifier per view — while at the same
time learning the optimal combination for the kernels, according to the objective of
the classifiers. A kernel can be seen as a projection of the training examples from
their input space into the one defined by the kernel. Hence, the idea behind learning
a kernel per view is to make the most out of all the information contained in a view,
so that an input space where the example are separable, can be found. This can be
viewed as an answer to the first question. The second step, which consists of learning
the weights for the kernels, is performed through an optimization procedure. The
resulting solution minimizes the optimization criterion which is the minimization of
the empirical error, while at the same time being an answer to the second question.
However, MKL’s learning procedure can be quite long since both steps are time
consuming.

Early and late fusion methods propose a solution to the multi-view learning prob-
lem. Both of them have advantages and disadvantages, and an empirical comparison
of these methods is given in Snoek et al. (2005).

1.3.3 Other multi-view methods

The methods presented in Section 1.3.2 were mainly given for the supervised
setting — albeit some early fusion methods can be used for unsupervised learning.
However multi-view learning became a topic of interest mainly thanks to the work
by Blum and Mitchell (1998) in the semi-supervised setting. In their paper, Blum and
Mitchell proposed a method, named co-training, which makes use of the cooperation
between the different views in order to learn good classifiers for classifying unlabeled
data. Co-training is based on the hypothesis that the examples are described by two
views and both views are sufficient, that is, given a sufficient number of examples,
each of the views can be used to learn a good classifier 6. It was the first method to
rely upon the cooperation between the views in order to improve the performances of
the classifier. However the number of views was limited to two and it was based on
the far too strong sufficiency hypothesis. Improvements and variations of co-training
have been proposed, such as the works by Balcan et al. (2005), Yu et al. (2011), Tang
et al. (2007), Goldman and Zhou (2000), Sindhwani and Niyogi (2005), etc.

The interesting idea of the cooperation between the views was also used in the
active learning setting. Similar to semi-supervised learning, in the active learning set-
ting the goal is to label a (large) set of unlabeled example, however here we allow the
learning algorithm to interact with a human factor or oracle, which is asked to label
interesting examples. Muslea and Knoblock (2006) proposed to use the cooperation
between (classifiers learnt on different) views in order to minimize the human inter-
vention. Contrary to co-training, Muslea and Knoblock (2006) used the disagreement
between the views in order to detect the interesting example. The intuition is that
the more two views disagree on an example, the more information it contains and
the more useful it would be to include this example in the labeled set. Other works
related to multi-view active learning include Wang and Zhou (2008), Wang and hua
Zhou (2010), Zhang et al. (2009), etc.

In the supervised setting — which is the setting of the works presented in this
thesis —, the cooperation between the views was first (implicitly) used by Multiple

6. Note that this condition means that the considered views are strong views as defined in Section
1.3.1
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Kernel Methods (MKL), presented in Section 1.3.2. An extensive review of MKL Al-
gorithms is given in Gönen and Alpaydın (2011).

The main inconvenience of MKL is that the training procedure can be quite costly
and, when the views are heterogeneous, the kernels should be proper to each view.
One way to speed this up is to train simpler classifiers on each of the views and
to combine them into a strong/performing one. These are the main motivations be-
hind 2-Boost Janodet et al. (2009), a boosting method, based on AdaBoost, using
several heterogeneous views. At each iteration, one classifier is learnt per view and
the update of the weights depends on the predictions of all the classifiers. This way
the information contained in each (heterogeneous) view are taken into consideration
during the training process. The final hypothesis is the weighted majority vote of all
the trained classifiers, which ensures that the different information from all the views
are involved in the predictions.

A survey of multi-view methods in machine learning was recently proposed in
Sun (2013).

Usually in the supervised setting, the cooperation between the views is mainly
implemented in the combination of the various classifiers learnt on the views. The
closer to promoting some sort of cooperation are the MKL, even though it is not ex-
plicit in the training process, since MKL build a good kernel per view. The cooperation
between the views has also been used in the semi-supervised setting (co-training) and
the active setting (co-testing) in order to learn better classifiers and minimizing the
role of human agents in the training process (active learning). We think that encour-
aging the views to communicate between them during the training process, in the
supervised setting, can be a good strategy in order to enhance the performances of
the final classifier. This can be particularly interesting in cases when each view (cor-
rectly) recognizes only a small region of the input space (think of the case when the
training data are quite noisy and only some of them contain valuable information).
So, the communication between the views would allow each view to focus on the
examples it recognizes best and vice versa in such a way that each example would be
processed by the most appropriate view. This is one of the main motivations behind
the works described in Chapter 2 and Chapter 4.

1.4 Dealing with imbalanced classes

When dealing with real-world data, often some of the classes are less represented
than the others, that is, only a few examples from those classes are available. Think,
for instance, of the automatic disease diagnostic problem, where the number of pa-
tients infected by a disease is smaller than the number of sane patients. Such learning
problems, where classes are not represented equally in the training set, fall in the
so called imbalanced learning problem. For simplicity’s sake, we will refer as minority
classes to the least represented classes and as majority classes to the most represented
ones. The imbalanced ratio refers to the ration between the number of instances in
biggest majority class and those in smallest minority class.

Using traditional learning methods — that is, methods that do not take into con-
sideration this disproportion between the classes — is not a good strategy, since they
often over-focuson the majority classes. Henceforth methods that deal with imbal-
anced learning have been proposed in the past years and they mainly fall in two
categories:
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a) methods that modify the training sample in order to have the same number of
examples for each class;

b) methods that assign penalization costs to each class so that they have roughly
the same weighted error.

We detail both cases in the following.

1.4.1 Methods that modify the training sample

A popular way to deal with the imbalanced classes problem is to make use of
resampling methods in order to even the misbalance between the classes. The goal of
these methods is to modify the distribution of the training examples, so that all the
classes contain roughly the same number of examples. We distinguish two cases of
resampling: oversampling and subsampling.

Oversampling methods increment the size of minority classes by duplicating some
of the minority instances contained in the training set. The duplication process contin-
ues till some stopping criterion is attained. On the other hand, subsampling methods
operate on majority classes by selecting only a few of the majority instances, in such a
way that the new training set becomes balanced. The selection process can be random
or based on bootstrapping.

The main advantage of resampling methods is that they use only examples con-
tained in the original training set, thus minimizing the risk of introducing artificial
noise to the final training set. Indeed, oversampling keeps the information contained
in the majority instances, while aiming to capitalize on the information of the mi-
nority classes, while subsampling puts the minority classes on the same ground as
the majority classes, with the same number of instances per class. However, on the
downside, oversampling can lead to the duplication, thus promotion, of noisy exam-
ples or not informative ones, while subsampling may result in information loss for
the majority classes, since only a part of the original examples is kept.

It is interesting to notice that resampling methods, as presented here, can be seen
as special cases of assigning weights to the training instances (which fall in the group
of cost sensitive methods, described in Section 1.4.2). Indeed, the oversampling meth-
ods duplicate the existing instances, as such the weight assigned to each example
correspond to the number of duplicates it has in the training set(+1). On the other
hand, since the subsampling methods remove instances from the training set, the
weights correspond to boolean values, 1 if the instance is present in the final set and
0 otherwise.

Manipulating the training set is not limited to resampling methods and re-
searchers have been interested in how to augment the size of the minority classes
by forging artificial instances. The interest of artificial instances is that they allow to
better define the minority instances. Think of the case where the instances of a minor-
ity class follow a Gaussian distribution. Then, by computing the mean and standard
deviation of the instances in the training set — which makes a good estimation for
the true mean and standard deviation —, it is possible to forge new artificial data
which follow the same distribution, that is, enhance the informations related to the
minority class, while at the same time minimizing the risk of introducing noise in the
final training set.

A popular method when it comes to data generation is the synthetic minority
oversampling technique (SMOTE) by Chawla et al. (2002). It generates artificial data
by selecting two instances, one of a minority class and the second in the neighborhood
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of the first, and computing the values of the new instance’s attributes as (roughly) the
mean of the values of the selected instances’ attributes. SMOTE has received great
attention and has been used in different methods Wang and Japkowicz (2004), Batista
et al. (2004). Improvement of SMOTE have also been proposed such as Borderline-
SMOTE Han et al. (2005) and Adaptive Synthetic Sampling He et al. (2008), in order
to patch some of SMOTE’s drawbacks (see Wang and Japkowicz (2004) for further
details).

Other methods related to resampling methods for the imbalanced problem in-
clude the works by Stefanowski and Wilk (2008), Estabrooks et al. (2004), Guo and
Viktor (2004), etc.

1.4.2 Cost sensitive methods

Resampling methods, presented in Section 1.4.1, can be quite effective since they
tend to make use of the information embedded in the training sample. Alas they are
not the miracle solution. Consider, for instance, the case where the number of classes
is high and only a couple of them are majority classes (the rest are minority ones, and
the imbalance ratio is high). Using oversampling methods would result in increasing
the size of the training sample (by a lot), thus slowing down the training process.
Likewise, subsampling is not a viable choice, since it would require multiple runs in
order to have statistically significant results. This is where cost sensitive methods come
into play.

The term cost sensitive regroups all methods that make use of class-based loss
functions during the training phase in order to build models that take into account the
imbalanced rate of the training set. The main difference between resampling methods
and cost sensitive ones, is that the former are mainly used as preprocessing routines
before the actual training phase, while the latter are closely linked to the training
phase. Cost sensitive methods differ one from the other from how they define the
loss functions. A common approach is to consider per-couple-of-classes penalization
terms, usually coming from a cost matrix. Let K be the number of classes and C 2
R

K⇥K a cost matrix, then C(p, q) — p is a row and q is a column — defines the
cost of predicting class q for examples of class p. During the training procedure, if
the learning method misclassifies an example of class p as of class q, then the error
is weighted by C(p, q). These cost matrices are usually given prior to the training
procedure: they are either obtained based on prior information on the training set, or
computed during a pre-processing procedure.

As an example of methods using cost matrices, Ting (2000) proposed an extension
of AdaBoost (algorithm 1) to the imbalanced setting by using per-class misclassifica-
tion costs in the weight update formula. Three variants of AdaBoost, named SCB0-1-2,
were proposed based on where the misclassification coefficient was introduced in the
formula.

In Sun et al. (2007) a different definition for the cost matrix is used: instead of
considering per-class misclassification costs, they used per-example misclassification
cost. Their method is yet another extension of AdaBoost to the imbalanced classes
framework similar to SCB, since the misclassification costs are included in the weight
update formula.

Another interesting approach to imbalanced problems was given in Wang et al.
(2010). Their method, named AdaBoost.NC, does not depend on pre-computed cost-
matrices, but it maintains (and updates) a cost matrix parallel to the distribution. Each
example is given a penalization cost and its update depends on how well the example
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is recognized throughout the training process. The advantage of AdaBoost.NC is that
it can be easily applied to multi-class problems, contrary to other methods that apply
one-versus-one or one-versus-all approaches Abe (2004), Wang and Yao (2012).

Methods other than boosting based have also been proposed, such as works based
on bagging Barandela et al. (2003) Wang and Yao (2009), decision trees Maloof (2003),
Support Vector Machines Akbani et al. (2004), etc.

Extensive studies on defining a taxonomy for cost-sensitive methods have been
conducted in recent years such as the works provided by Galar et al. (2012) and He
and Garcia (2009).

1.4.3 Evaluations measure for the multi-class setting

Traditionally, the misclassification rate, given in Equation 1.6, has been one of the
most use methods, when evaluating the performances of a classifier.

misclassi f ication rate =
#incorrectly classified examples

#examples
(1.6)

However, in the imbalanced setting, this measure is not the fair measure to use, since
it does not take into consideration the rate of misclassification is the different classes.
Take for example, a training set made of 99% of examples of one class, and 1% of
an other class. Then the majority vote classifier, which constantly predicts the first
class, has a misclassification rate of 1%, although it is not a good predictor at all
(if the first class if non deadly mushrooms and the second one deadly mushrooms,
the consequences of this classifier would be quite severe). It is obvious that other
evaluation measures need to be considered for this particular case.

Since most learning approaches to the imbalanced problem have been developed
for the binary classification setting, it follows that most the evaluation methods have
been proposed for that setting. Most of these methods are easily extendable for the
multi-class setting, but, for simplicity’s sake, we’ll present them only in their binary
form. Same as in page 1, we note the two classes as the positive one and the negative
one.

First, let us define the confusion matrix for a given classifier h as follows:

predictedpositives predictednegatives
realpositives TP FN
realnegatives FP TN

In the confusion matrix, TP (true positives) represents the number of positive
example that are classified as positives, FP (false positives) represents the number
of negative examples misclassified as positives, FN (false negatives) represents the
number of positive examples classified as negatives and, lastly, TN (true negatives)
represents the number of correctly classified negative examples. The confusion matrix
contains informations both on how the classifier recognizes each class (rate of true
positives and rate of true negatives), and how it errs on each on them (rate of false
positives and rate of false negatives):

TPrate =
TP

TP+FN , TNrate =
TN

TN+FP , FPrate =
FP

TN+FP , FNrate =
FN

TP+FN .

TPrate, the positive class accuracy, is also called sensitivity, while TNrate, the nega-
tive class accuracy, is called specificity.



1.4. Dealing with imbalanced classes 21

Some of the usual metric computed from the confusion matrix are the accuracy
(which is also 1−misclassi f ication rate), the precision and the recall:

Acc = TP+TN
TP+FN+FP+TN , Precisionneg = TP

TP+FP , Recallpos =
TP

TP+FN

These definitions of precision and recall are given for the positive class, and obviously,
they are defined in a similar way for the negative class.

Two other measures, which make use of the previous definitions, are the G−mean
(the geometrical mean of the recalls) and F−Measure.

G−mean =
q

Recallpos ⇤ Recallneg =
p

sensitivity ⇤ speci f icity

F−Measurepos = (1 + b2)
Precisionpos ⇤ Recallpos

(b2Precisionpos) + Recallpos
, b 2 R

+

F−Measureneg = (1 + b2)
Precisionneg ⇤ Recallneg

(b2Precisionneg) + Recallneg
, b 2 R

+

Now, suppose that the classifier h returns a score, instead of a class; in this case
the example is classified as positive if the score returned by the classifier is greater
than a certain threshold. Changing the threshold has a direct effect on the previous
measures, since it changes the rates of correctly classified examples (both in the posi-
tive and negative class). Moreover, varying the threshold from the lowest value to the
highest one and computing the values of G−mean for the predictions of h, allows to
draw a curve, also known as the receiver operating characteristic (ROC) curve. The
size of the area under the ROC curve (AUC) is a good estimator of the performances
of h, and as such it has been used as an evaluation measure for classifiers in the imbal-
anced setting Bradley (1997). Similar to AUC it is possible to estimate the area under
the Recall-Precision curve, which is computed from the F−Measure rather than the
G−mean. A simple definition of AUC is the following (give for example in K. Tang
and 2011. (2011)):

AUC =
∑x12positives,x22negatives s(x1, x2)

npos ⇤ nneg
,

where npos is the number of positive examples, nneg the number of negative examples
and s is defined as follows:

s(x1, x2) =

8

<

:

1 if h(x1) > h(x2)
0.5 if h(x1) = h(x2)
0 if h(x1) < h(x2)

Since AUC is exclusively defined for the binary case, there are multiple extensions
of it to the multi-class framework. We present here the one proposed in Hand and
Till (2001):

MAUC =
1

K(K− 1) ∑
i 6=j

AUCl,c,

where K is the number of classes, i and j are classes and AUCl,c is the AUC between
class l and c.

1.4.4 Prospective evaluation measure: the norm of confusion matrix

In Chapter 3, we propose yet another measure for the goodness of a classifier,
which is the norm of the probabilistic 7 confusion matrix. However, instead of consid-
ering the whole confusion matrix, we propose to keep only the non diagonal entries,

7. In the probabilistic version, TP is replaced by TPrate, TN by TNrate, and so on.
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since they represent the errors of the classifier. For the binary case, this matrix is
defined as follows:

predictedpositives predictednegatives
realpositives 0 FNrate

realnegatives FPrate 0

It is interesting to notice that the (operator) norm of this matrix, which will be defined
later on, is equal to max{FNrate, FPrate}. So, if the norm is used as an optimization
criterion in a learning method, then the goal would be to minimize the maximum of
the two quantities, thus implicitly aiming to achieve the same error on both classes.
Further details are given in Chapter 3.

1.5 Introducing the DECODA project

The imbalanced classes problem, presented in Section 1.4, is a common occurrence
in datasets coming form real-world applications. Such is the case for the DECODA
project, which deals with phone calls classification and the goal is to predict the
theme of the phone call. Aside from the imbalanced facet of the data (some themes
are more occurring than others), phone calls present an interesting setting for multi-
view learning. The audio signal of the calls is usually noisy and/or it contains various
interferences, thus depending on the representation, some features could be more
noisy than the others. Although in Section 1.3, the notion of strength of a view is linked
to the error of the Bayes classifer, noisy features could also lead to views of different
strength. The aim of describing the DECODA problem as a multi-view on is to study
whether promoting the cooperation (both in the input and output spaces) between
various views computed from noisy features could lead to better performances than
fusion based approaches.

1.5.1 Paris from the RATP viewpoint

The DECODA project (fr. DEpouillement automatique de COnversations
provenant de centres D’Appels) deals with data coming from the Paris transport
authority (RATP, Régie autonome des transports parisiens). The data correspond
to human-human conversations between the operators and the users of the public
transport in Paris and the operators are asked to assign a theme to each conversation.
Labeled conversations can be quite useful when it comes to receiving feedbacks
from the users and planning strategies for improving the performances of the trans-
port network. However manually labeling the conversations can be quite costly and
time consuming. A viable solution is the automatically processing the data through
machine learning methods.

The automatic processing of these conversations is quite challenging because of
the spontaneous nature of the language used and the surrounding noise in most of
the speech signals. For instance, in calls made from people on the street or a subway
station, it is not uncommon for the surrounding noises (klaxons, loud voices, etc.)
to overlap with the voice of the user. The various noises can lead to not-so-reliable
features (and by extension, to not-so-reliable views), since phonetically similar words
can be mistaken one for the other. This is its turn influences the strength of the views
computed from the features, since for some view, characteristic features for one class
may be replaced by features proper to other classes. Other potential noises come also
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aapl etfc horr itnr nvgo objt pv vgc other

train 20 117 27 94 68 75 30 24 53

test 15 41 5 21 22 12 10 11 15

(a) Classes distribution in train and test

train test test

speaker #turn #word #turn #word WER

Operators 12423 81422 4341 27408 56.3

Users 10867 75545 3632 23551 67.3

(b) Dataset description
Table 1.1 – Description of the conversation corpus and WER obtained on the test corpus

from misspelled words, the accent of the speaker or even unfinished sentences, all
related to the spontaneous nature of the speech.

On the other hand, as most real-world problems, DECODA is also an imbalanced
classes problem, where some of the conversation themes are more frequent than oth-
ers. This is mainly related to the fact that phone calls on traffic issues and/or status
are more frequent than calls on fines.

To sum up, DECODA presents an interesting setting, both for multi-view ap-
proaches and imbalanced classes ones. In this thesis, these different facets are dealt
with in their corresponding chapters. Chapter 2 deals (only) with the multi-view as-
pect of DECODA (Section 2.5), while aiming to bring an answer to wether installing
(and promoting) some cooperation in the input space may lead to more robust meth-
ods. In Chapter 3 we tackle DECODA’s imbalanced classes aspect (Section 3.5). Fi-
nally, Chapter 4 regroups both the multi-view and imbalanced aspect of DECODA,
while transposing the cooperation to the output space (Section 4.5).

1.5.2 The DECODA corpus

Presenting the corpus Throughout this thesis, we work on a subset of the DECODA
corpus, made of 600 dialogs, split into 508 dialogs for training and 152 dialogs for test-
ing. Nine different semantic categories are considered: fares (aapl), timetable (horr),
traffic info (etfc), pass navigo (nvgo), lost+found (objt), itinerary(itnr), fines(pv), frequent
traveler (vgc) and other. In order to test the methods presented in this thesis, we con-
sider two different settings for the testing sample: in the first setting the transcriptions
of the data are handmade, that is, human agents are asked to transcribe the phone
calls; in the second setting the transcriptions are the outputs of an Automatic Speech
Recognition (ASR) system. We’ll refer to the first case as gold and to the second as
ASR. As for the training sample, in both cases the same sample is used, made of
handmade transcriptions of the conversations (gold).

Table 1.1 gives a summary of the considered corpus. The imbalanced nature of the
classes in the DECODA project is clearly shown in Table 1.1a: traffic info is way more
represented than frequent traveler. In Table 1.1b, the number of turns consists of both
the number of turns of the operators and that of the users. Likewise the number of
words represents the total of all the words in all the conversations. The last column,
the WER (short for Word Error Rate), gives the rate of the words that are different
between the ASR testing set and the gold testing one. In other words, it measures
how often the ASR system errs on the words it predicts; the smaller the WER the
better the ASR system performs. In our case, WER is more then 50, both for the users
and to operators. Such an WER was to be expected since we deal with spontaneous
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speech and noisy signals. In order to illustrate this, let us have a look at the following
examples:

1. gold: j’ aimerais connaître le prix d’ un billet arcueil cachan orly
ASR: aimerais connaître le prix d’ un billet arcueil cachan orly ligne

2. gold: en fait voilà je vous appelle parce que j’ ai perdu . . .
ASR: en tête voilà j’ ai une dame elle est ce que j’ ai perdu . . .

3. gold: qui a eu un accident mardi soir . . .
ASR: signalé une maxi de temps en mardi trois . . .

In the first example, the ASR achieves a nearly perfect score since all the words are
recognized correctly. The last word (ligne) is added due to the quality of the signal,
and it’s safe to assume that the last syllable of orly plays an important role in this
mistake. In the second example, the words en fait are mistakenly recognized as en tête,
which is understandable since their pronunciation is nearly the same. Lastly, both in
the second and third example, the ASR system outputs words that are phonetically
close to a part of the original words in most cases, due to the quality of the signal and
the spontaneous nature of the speech.

It is interesting to notice that there is more than a 10% absolute WER difference
between the automatic transcriptions of the operators’ turns and the users’ one. This
can be explained by the fact that most of the operators are both in the training and test
corpus and therefore the acoustic models are adapted to them. Another explanation
is that the users’ signal is significantly noisier than the operators’ one since they often
phone from a street or a subway station. However, because the recording device in
the call-center mixes the two channels, the noise affects the whole signal.

Presenting the views A conversation can be described in three different ways:

1. the content of the conversation (mainly its transcription),

2. the prosody represented by general statistics of the conversation,

3. the interaction between the speakers.

In order to process the DECODA corpus in a multi-view learning framework, we
define five different views based on the three aspects of a conversation: three for the
content, one for the prosody and one for the interaction.

Concerning the content of the conversation, we choose to represent it by the words
of the operators (first view), the words of the users (second view) and the named en-
tities (fifth view). The first and second views are quite informing on how the speakers
approach the conversations and it usually contains keywords that make it easier to
identify the theme of the conversation. For instance, in the following example, key
words such as grève pour demain strongly suggest that the theme of this particular
conversation is traffic info.

op.: bonjour
user: bonjour madame
user: à massy palaiseau demain est ce que le r e r b sont encore en grève

op.: alors écoutez concernant donc la grève pour demain nous n’ avons aucune information
pour l’ instant

user: d’ accord
op.: fin d’ après midi
Table 1.1b suggests that both views are quite sensitive to WER and to the introduc-

tion of noise from ASR systems. Due to the nature of the data, the second view may
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contain fewer informations compared to the first one, however Table 1.1b suggests
that it is less sensitive to artificial noise introduced from the ASR system.

The fifth view is build on the notion of named entities, which are atomic elements
that clearly identify one item from a set of other items that have similar attributes.
Named entities include (but are not limited to) name of persons, locations, quantities,
monetary values, etc. In DECODA, named entities are principally related to the names
of the bus/train/subway stations, public places, subscriptions and so on. This view
can be seen as a simplified version of the first two views and its goal is mainly to
guide the learning procedure towards easy-to-recognize elements of the dialogs.

The interactions between the speakers is represented by a global structure based
on the turn-taking aspect of a conversation. We propose to represent each turn by
a letter, O for operators and U for users, and a number representing the duration
of the turn normalized into 6 duration lengths. This is done to capture the fact that
sometimes the users take more time (think for example when users need to explain
a problem), and other times it’s the operators that take more time (when replying to
the users, providing informations on the services, etc.). A whole conversation is thus
described by a sequence such as: O1U4O2U5O4U1O1U1 . . .

The prosody of a conversation, and the forth view, is mainly represented by
general statistics computed from the conversation itself, such as the total duration
of the call, the speech rate (in letters per second) and speech duration for each speaker.

Although these views might not be the best representatives for the different as-
pects of the conversations, they were fixed at the beginning of this thesis and did not
change ever since.





2Promoting the cooperation
between views through boosting

2.1 Introduction and Motivations . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 A multi-view boosting method: MuMBo . . . . . . . . . . . . . . . . . . . 29

2.2.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.2 The core of MuMBo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.3 An example of MuMBo’s update rule . . . . . . . . . . . . . . . . . . . . 32

2.3 Properties of Mumbo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3.1 Bounding the training error on each view . . . . . . . . . . . . . . . . . . 35

2.3.2 Bounding the whole empirical loss . . . . . . . . . . . . . . . . . . . . . . 37

2.3.3 Results in generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4 Experimental results on artificial data . . . . . . . . . . . . . . . . . . . 41

2.4.1 Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5 A multi-view approach to DECODA . . . . . . . . . . . . . . . . . . . . . . 44

2.6 Generalization of MuMBo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.6.1 On more general cooperation coefficients . . . . . . . . . . . . . . . . . . 45

2.6.2 On the choice of the unique classifier . . . . . . . . . . . . . . . . . . . . 47

2.7 Conclusion for this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.7.1 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.7.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Nowadays, in fields such as bioinformatics or multimedia, data may be described
by different sets of attributes, also called views (see Section 1.3). In Section 1.3.1,

we defined three types of views based on the information embedded therein. The
work presented in this chapter deals with the first two type of views, weak and
strong views, where the information is contained in the input space and it can be
either global of local. While global information can be captured by classifiers learnt
on the whole input space, local information needs specialized classifiers. For instance,
if a view contains useful information only for a subset of examples, then it would be
preferable to learn a classifier that correctly classifies that particular set of examples
(and forsaking the other examples).

27
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The method proposed in this chapter, named MuMBo, is based on the multi-class
boosting framework presented in Section 1.2.2. It relies on the weak classifiers to
capture the local informations usually contained in the weaker views. This is imple-
mented by defining and maintaining one distribution for each view. Compared to
late fusion approaches presented in Section 1.3.2, where the classifiers are learnt sep-
arately, the originality of MuMBo consists in promoting the cooperation between the
views, so that each view can focus on the examples it recognizes the best. MuMBo’s
aim is to capitalize on the information extracted from each view, so that each example
is processed by the most appropriate view, and vice versa.

The motivations, principles (and hypothesis) and the algorithm itself are pre-
sented in Section 2.1 and Section 2.2. In Section 2.3, we give a theoretical study of
the boosting properties of MuMBo, related to the empirical error and true risk, while
Sections 2.4 and 2.5 relay the results of MuMBo on synthetic data and data from the
DECODA corpus. Finally, in Section 2.6, we detail a general version of MuMBo and
Section 2.7 offers a discussion on the implications and prospects of the work in this
chapter.

The work presented in this chapter was first published in the Proceedings of
the 11th European Conference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases, ECML-PKDD 2011, Athens, Greece, Koço and
Capponi (2011). The work presented in Section 2.5 was first published in the Pro-
ceedings of the 13th Annual Conference of the International Speech Communication
Association, Interspeech 2012, Portland, Oregon, Koço et al. (2012).

2.1 Introduction and Motivations

In many application domains of machine learning, such as bioinformatics or mul-
timedia indexing, the descriptions of the data may come from several sources or
views, for instance, in Masulli and Mitra (2009), Mansoorizadeh and Charkari (2010).
When facing a classification or a regression task, the use of multiple views might be
of great interest, since each view is supposed to carry information not embedded in
other views (cf. Section 1.3). Many methods exploit these enclosed information in or-
der to select the most informative sources, or set of features, and build models which
either best discriminate data concepts or best describe one concept among others,
Culp et al. (2009), Sridharan and Kakade (2008).

Most of these selective methods base their choices on the training set as a whole
and, as such, they tend to discard localized or isolated information, which could be
useful to compensate the lack of performance on some (group of) learning examples.
Think for example of the case of noisy data, which is quite a common issue for data
coming from real-life problems. In such cases, only a part of the training examples
contains useful information, while the noisy part usually tends to mislead the train-
ing method and worsen the generalization capabilities of the learnt models. When
the noise rate of a set of feature descriptions reaches a threshold, which depends
on the problem, no learning algorithm has been proved, neither theoretically nor ex-
perimentally, to be able to lessen the strain put on the generalization capabilities of
classifiers. In such scenarios, the interest of considering multi-view learning meth-
ods — and multi-view approaches in general — resides in the fact that the localized
lack of classifiers trained on one view, can be compensated by the performances of
the classifiers trained on the other views. The main idea here consists in installing
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some sort of cooperation between the views in order to obtain classifiers with better
generalization properties..

In the review of multi-view methods, given in Section 1.3, we saw that in the
supervised learning case, the most common multi-view methods were the fusion ap-
proaches, both early and late ones. The main drawback of fusion based methods
resides in the fact that there is little to no communication between the views. In the
early fusion case, this lack of communication may lead to increasing the number of
noisy attributes, while in late fusion, since the classifiers are learnt independently on
each view with no communication whatsoever, it may lead to a redundancy of the
learnt classifiers (think of the case where classifiers learnt on different views recog-
nize the same examples). This simple observation implies that fusion based methods
perform better when the considered views are independent. Alas such (strong) con-
dition can be quite difficult to achieve in practical cases, since the views often share
mutual information.

We think that promoting the cooperation between the views during the train-
ing phase, can be an interesting way to establish a sort of communication between
them during the learning phase. More precisely, when a classifier on a view fails to
recognize a region of the the instance space, it entrusts the other views with the clas-
sification of the examples contained in that region. One of the major difficulties is
then to delimit, for each view, the concerned subareas, without penalizing the gen-
eralization capabilities. Instead of locating precisely these subareas, we propose an
algorithm based on boosting (a framework presented in Section 1.2), whose principle
is to slightly remove the hard-to-classify examples from the learning space of one
view, while encouraging other (more adapted) views to process these examples. This
way, we expect the examples to be processed by the most appropriate views.

In order to implement this principle, we designed MuMBo as a boosting-like al-
gorithm based on a multi-class version of AdaBoost and adapted for the multi-view
framework. The interest of using a boosting framework similar to AdaBoost is two
fold: the presence of a distribution and the iterative nature of the method. Maintain-
ing a distribution over the training sample can be seen as a way to encode different
information on the examples, which in our case are closely related to the capability of
a view to recognize a certain part of the instance space. As such, each view is associ-
ated with a weak learning algorithm, and one distribution per view is maintained. On
the other hand, the iterative nature is an excellent tool for the detection of the hardest
examples. At each iteration, the distribution update takes into account not only the
performances of that view in classifying learning examples, but it also embeds the
performances of the other views. Hence, the capabilities of every view to process the
examples are broadcasted to all the views.

2.2 A multi-view boosting method: MuMBo

2.2.1 Motivations

MuMBo is a multi-view boosting algorithm: each example of the learning sample
S is represented by several sets of features, which are called views. Each of these
views can be used to train models, which are then used to classify other examples.
Even though the models are learnt on different representations of the same examples,
they are by no means equal, performance wise. This is especially true when the noise
or the quantity of information contained in each view is different form one view to
another, mostly due to the differences in the associated representation spaces. In this
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case, the classifiers learnt on some of the views perform better than those learnt on
other views. Based on the performances of the classifiers learnt on each view, we
distinguish two different type of views: strong views and weak views. Roughly, the
notion of a strong view is associated with the possibility to learn a good classifier on
that view, while the notion of weak view reflects the impossibility of learning such a
classifier from the instance space defined by the view. In Section 1.3.1, the notion of
strength of a view was linked to the error of the Bayes classifier learnt on the view.
The lower the error of the Bayes classifier, the stronger the view.

MuMBo was designed in order to learn a classifier in a multi-view setting, where
views are supposed to be of different strength. Also, we assume that among the views,
there exists at least one strong view, while the others are weak(er) views. In the case
where there is only one strong view, we refer to it as the major view (V), while the
others are called minor views (v1, · · · , vz).

The main interest of placing such a hypothesis as the foundation of MuMBo, is
mainly in order to avoid the cases where all the views are weak ones, hence making
the learning process quite challenging. Think of the case where the noise rate in
each view is such that it makes it impossible to learn a good classifier with good
generalization properties. Another way to look at this hypothesis is that the learning
process consists of using the few informations contained in the weaker views, in order
to improve the performances of the major view (strong views). On a side note, this
hypothesis is usually verified in most real-world problems, even though it may seem
as too strong and/or restrictive. For instance, in the introductory example on image
classification (cf. Figure 1), we argued that the four views defined on the images
(histogram of colors, bag of words, bag of images and HOG) can be used to train good
classifiers depending on the classification task. That is, for a classification problem, it
is possible to find a view that allows to train a good classifier.

As pointed out in the introduction, the basic principle of MuMBo is to encourage
each view to focus on the examples are hard to process in other views, while being
easy for the view itself. Hence, it assumes that if one representation space does not
embed information on one (set of) examples, part of that information can be provided
by other representation spaces.

2.2.2 The core of MuMBo

Views, distributions and cost matrices The proposed algorithm, called MuMBo
(the simplified version in Algorithm 2 and the complete one in Algorithm 3), is an
attempt to encourage the cooperation between views of different strengths.The goal
of MuMBo is to enhance the performances of the classifiers usually learnt only on the
stronger views, through the use of the informations contained in all the views, espe-
cially the weaker ones. This implies that throughout the learning process, each view
should be able to keep (and eventually exploit) its individuality/typicality and not to
be influenced (too much) by the other views. In the boosting frameworks presented
in Section 1.2, information related to the capability of recognizing the training exam-
ples are embedded in a distribution maintained over the learning sample. As such,
defining and maintaining a distribution per view seems to be a reasonable choice
for keeping each view’s individuality. In MuMBo, the updates of the distributions are
primarily based on the results obtained from the classifiers learnt on their correspond-
ing views. More precisely, the weights of the examples that are correctly classified are
systematically updated, while for the misclassified examples, the update is closely
related to the cooperation. By doing so, we expect a distribution to keep track of the
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Algorithm 2: MuMBo: MUltiModal BOosting (in a nutshell)

Initialize each D1,j

for t = 1 to T do

for j = 1 to m (for each view) do

Train ht,j with learning algorithm Lj on Dt,j

Compute edge dt,j and at,j =
1
2 ln

1+dt,j

1−dt,j

end for

Update cost matrix Dt,j (for each view)
Choose

8

<

:

ht = argmax
ht,j

(edge ht,j on Dt,G)

dt = {edge o f ht on Dt,G}

Compute at =
1
2 ln 1+dt

1−dt

Update Dt,G, the global cost matrix
end for

Output final hypothesis :
H(x) = argmax

l21,...,k

fT(x, l)

performances of its view, in particular it should keep track of the examples that are
easily recognized.

MuMBo is based on the multi-class boosting framework given in Mukherjee and
Schapire (2011), where distribution are replaced by cost matrices. The framework
was recalled in Section 1.2. In Algorithms 2 and 3, the cost matrices are denoted
Dt,j, where t corresponds to the iteration and j 2 {1 . . . v} corresponds to the view.
The cost of classifying the example (xi, yi) in class l for the view j at iteration t, is
given by Dt,j(i, l). The cost of example (xi, yi) is given by Dt,j(i, yi) and a simple way
to pass from the cost-matrix representation to a distribution is to affect the weight
−Dt,j(i, yi)/ ∑

m
e=1 Dt,j(e, ye) to the example (xi, yi).

Installing the cooperation in MuMBo The cooperation between the views is im-
plemented in two different parts of the learning process. Firstly, we promote the
cooperation between the views by computing cooperation coefficients for each example
in all the views. Secondly, a unique classifier is chosen at each iteration, thus finding
the most adapted view for the sample (and the distribution).

The cooperation coefficients, noted d in Algorithm 3, take binary values (0 or 1)
and they are closely related to the performances of the classifiers learnt on all the
views. Their role is to detect, for each view, the examples that need to be updated.
We distinguish two cases when examples can be updated:

1. examples correctly classified in a view,

2. examples misclassified by all the views.

More precisely, for a given example i, view j and iteration t, if the classifier learnt on
j correctly classifies i, then its coefficient dt,j(i) is 1, thus allowing the costs of i to be
updated in view j. If i is misclassified in j but it is correctly classified in at least one
of the other views, that dt,j(i) is 0, that is, the costs for example i are not updated in
view j. By doing so, the view j is less likely to focus on example i, at least in the short
term, since it may not be informative in j and, more importantly, it is recognized by
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at least one other view. If i is misclassified by all of the views, then its coefficient is 1

for all the views. This is done in order to promote the example i in all the views, so
that it can be correctly classified by at least one of them.

As a boosting method, MuMBo builds the final hypothesis by iteratively adding
weak classifiers coming from the different views and selected based on some coop-
eration criterion. The second part where the cooperation between the views is imple-
mented is the choice of a unique classifier at each iteration. In MuMBo, this classifier
is chosen from the v classifiers learnt on the views, and more precisely, it is the one
that has the smallest error on the global cost matrix. The intuition behind this crite-
rion is that the smaller the error, the more appropriate a view is for the considered
cost matrix. This choice is closely related to the fact that boosting methods can be
seen as gradient descent in the function space, cf. Mason et al. (1999). In our case,
the function space is limited to the v classifiers learnt on all the views. As shown in
Mason et al. (1999), choosing the classifier that has the smallest error on the global
cost matrix ensures that the drop in error of the combined classifier is maximal.

In order to keep track of the selected classifiers and to choose the most appro-
priate view, a global cost matrix is maintained, denoted Dt,G in Algorithms 2 and 3.
The selected view is the one that better recognizes the training set weighted by the
global cost matrix. The update of this cost matrix depends only on the performances
of the selected classifiers, hence it embeds the different informations coming from
the (selected) views. Including this global cost matrix, the number of cost matrices
maintained at each iteration is v + 1, that is, v local cost matrices maintained by the
views and one global cost matrix maintained by all the views.

The pseudo-code of MuMBo is given in Algorithm 3. The output classifier is a
weighted combination of the base classifiers chosen during the training phase and
the predicted label is the one that has the biggest score, give by fT(x, l) in Algorithm
3 for an example x and label l.

2.2.3 An example of MuMBo’s update rule

An example of how this update process works and its impact on the learning pro-
cess is shown in Figure 2.1. For simplicity reasons, we consider a binary classification
problem, red class versus blue class. Each class contains five examples, numbered from
1 to 5, and each example is described by six attributes divided in three views of two
attribute each. The weights of the examples are proportional to the cost put on the
correct class. Figure 2.1a corresponds to the first iteration, and as such, the weights of
all the examples are equal. The weak classifiers considered during the learning pro-
cess are lines parallel to the axes. At each iteration, MuMBo trains one classifier per
view, which correspond to the lines given in Figure 2.1a. The red (resp. blue) arrow
defines the zone where the examples are predicted as belonging to class red (resp.
blue).

In each view, some of the examples are correctly classified, while the others are
misclassified. Let us take a closer look to the cooperation coefficients computed for
the first view. In this first view the examples 1r, 2r, 4r, 1b, 3b and 5b are correctly
classified, while 3r, 5r, 2b and 4b are misclassified. The cooperation coefficients for
the correctly classified examples are automatically put to 1, as for the misclassified
examples’, they depend on the performances of the other views. Examples 3r, 2b
and 4b are misclassified in the first view, however they are correctly classified in the
second and third view, hence their coefficients are put to 0 for the first view. The last
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(a) The weights of the examples and the weak classifiers learnt on each view during the first iteration.

(b) The updated weights during the second iteration and the learnt classifiers.
Figure 2.1 – An example of the cooperation promoted between the views for MuMBo.

example, 5r, is misclassified by all the views and, since we want all the examples to
be processed by the most appropriate view, 5r is to be promoted in all the views, thus
its cooperation coefficient is put to 1 for the all the views. Finally, for the first view
we have: 1) the costs of the examples 1r, 2r, 4r, 1b, 3b and 5b will be decremented
since they are recognized by the view; 2) the costs of the examples 3r, 2b and 4b are
not updated; and 3) the cost of example 5r is incremented since all the views failed
to recognize it.

The same process is repeated for all the views and the resulting costs (weights)
are given in Figure 2.1b. Note that due to the performance of the classifier learnt on
the third view, the weight of the example 5r is bigger in the third view than on the
other views. Despite this, the third view still fails to recognize the example 5r during
the second iteration. However, due to the increased weight of 5r in all the views, the
views 1 and 2 correctly classify it in the second iteration. It is interesting to notice that
views 1 and 2 are indeed more appropriate to process example 5r, since in view 3, it
is nearly an outlier.

2.3 Properties of Mumbo

This section is dedicated to the theoretical properties of MuMBo. We start by
showing that, for a given view v, if the weak classifiers learnt on v verify the edge
condition, given in Equation 1.5, then the total cost of the classifier made of the all
the classifiers learnt on v decreases after each iteration. This roughly means that for
every view independently, a boosting process takes place. The second result consists
in showing that the choice of the unique classifier at each iteration drives down the
error of the majority vote, that is the classifier obtained from the combination of all
the uniques classifiers.
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Algorithm 3: MuMBo: MultiModal Boosting

Given

— S = {(xi, yi)}m
i=1 where xi 2 X1 ⇥ X2 ⇥ ...⇥ Xv, yi 2 {1, ..., K}

— v weak learning algorithms WL
— T the number of iterations
— 8i 2 {1, ..., m}, 8j 2 {1, ..., v, G}, 8l 2 {1, ..., K} f1,j(i, l) = 0

— 8j 2 {1, ..., v, G} D1,j(i, l) =

⇢

1 if yi 6= l
−(K− 1) if yi = l

for i = 1 to T do

for j = 1 to v do

Train WL using Dt,j and get ht,j

Compute:

dt,j =
−∑

m
i=1 Dt,j(i, ht,j(i))

∑
m
i=1 ∑l 6=yi

Dt,j(i, l)
and at,j =

1

2
ln

1 + dt,j

1− dt,j

end for

for j = 1 to v do

Update cost matrices:

Dt+1,j(i, l) =

8

<

:

exp( ft+1,j(i, l)− ft+1,j(i, yi)) if yi 6= l

−
K

∑
p 6=yi

exp( ft+1,j(i, p)− ft+1,j(i, yi)) if yi = l

where ft+1,j(i, l) =
t

∑
z=1

I(hz,j(i) = l)az,jdz,j(i)

and dz,j(i) =

⇢

1 if hz,j(i) = yi or 6 9q, hz,q(i) = yi

0 otherwise
end for

Choose ht = argmax
ht,j

(dt,ht,j
), where dt,ht,j

=
−∑

m
i=1 Dt,G(i,ht,j(i))

∑
m
i=1 ∑l 6=yi

Dt,G(i,l)

Compute dt = dt,ht
and at =

1
2 ln 1+dt

1−dt

Update Dt,G :

Dt+1,G(i, l) =

8

<

:

exp( ft+1,G(i, l)− ft+1,G(i, yi)) if yi 6= l

−
K

∑
j 6=yi

exp( ft+1,G(i, j)− ft+1,G(i, yi)) if yi = l

where ft+1,G(i, l) =
t

∑
z=1

I(hz,m(i) = l)az,m

end for

Output final hypothesis :

H(x) = argmax
l2{1,...,K}

fT(x, l), where fT(i, l) =
T

∑
t=1

I(ht(i) = l)at
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The most important property – a bound on the generalization error of Mumbo –
is proved in the last part of this section.

2.3.1 Bounding the training error on each view

The first result that we give in this section shows that, for a view j, the loss of the
majority classifier

Hj(x) = argmax
l2{1···K}

T

∑
t=1

I(ht,j(x) = l)at,j

decreases at each iteration, provided that the weak classifier learnt on that view ver-
ifies the weak learning condition Eq. 1.5 on the cost matrix Dt,j. Even though this
result may not seem interesting at first, it implies that at each iteration the view j
focuses on the most informative examples for that view, which is the goal of MuMBo.

The following theorem is an adaptation to our Algorithm of Lemma 24 presented
in Mukherjee and Schapire (2011).

Theorem 1 (bounding the empirical loss in view j) For a given view j, suppose the cost matrix Dt,j is chosen
as in the Algorithm 3, and the returned classifier ht,j verifies the weak learning condition Eq.
1.5 for Dt,j and Udt,j

, i.e. Dt,j · Iht,j
 Ct,j ·Udt,j

.
Then choosing a weight at,j > 0 for ht,j makes the error at time t, et,j =

m

∑
i=1

∑
l 6=yi

exp( ft,j(i, l)− ft,j(i, yi)), at most a factor

tt,j = 1− 1

2
(eat,j − e−at,j)dt,j +

1

2

(

eat,j + e−at,j − 2)

of the loss before choosing at,j, where dt,j is the edge of ht,j.

Proof. Let S+ be the set of the examples correctly classified by ht,j, S− the set of the
examples misclassified by all the j classifiers returned by WL, and S−+ the set of
the examples misclassified by ht,j and correctly classified by at least one of the other
ht,p, p 6= j.

For readability reasons, we introduce the quantities:

Lt,j(i) = ∑
l 6=yi

exp( ft,j(i, l)− ft,j(i, yi)), and ∆t,j(i, l) = ft,j(i, l)− ft,j(i, yi).

Recall that the only hypothesis made in the theorem is that ht,j verifies the weak
learning condition:

Dt,j · Iht,j
 Dt,j ·Udt,j

(2.1)

The left side of this equation can be written as:

Dt,j · Iht,j
= −∑

i2S+

Lt−1,j(i) + ∑
i2S−

e∆t−1,j(i,ht,j(xi)) + ∑
i2S−+

e∆t−1,j(i,ht,j(xi))

and the right side can be written as:

Dt,j ·Udt,j
= ∑

m
i=1

⇣

−Lt−1,j(i)(
1−dt,j

K + dt,j) + Lt−1,j(i)(
1−dt,j

K )
⌘

= −dt,j∑
i

Lt−1,j(i)

So, using the edge condition in Eq. 2.1, we have:
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−∑
i2S+

Lt−1,j(i) + ∑
i2S−

e∆t−1,j(i,ht,j(xi)) + ∑
i2S−+

e∆t−1,j(i,ht,j(xi))  −dt,j∑
i2S

Lt−1,j(i)

hence:

∑
i2S+

Lt−1,j(i)− ∑
i2S−[S−+

e∆t−1,j(i,ht,j(xi)) ≥ dt,j∑
i2S

Lt−1,j(i) (2.2)

In order to compute the drop in loss ∑i Lt−1,j(i)−∑i Lt,j(i) after choosing ht,j with
weight at,j, let us consider three cases:

1. For i 2 S+:

We have ft,j(i, l)− ft,j(i, yi) = ft−1,j(i, l)− ( ft−1,j(i, yi) + at,j), thus:

L+ = ∑
i2S+

Lt−1,j(i)− ∑
i2S+

Lt,j(i)

= ∑
i2S+

Lt−1,j(i)− ∑
i2S+

e−at,j Lt−1,j(i)

=
(

1− e−at,j
)

∑
i2S+

Lt−1,j(i)

2. For i 2 S−:

L− = ∑
i2S−

Lt−1,j(i)− ∑
i2S−

Lt,j(i)

= ∑
i2S−

e ft−1,j(i,ht,j(i))− ft−1,j(i,yi) − ∑
i2S−

e ft,j(i,ht,j(i))− ft,j(i,yi)

= ∑
i2S−

e ft−1,j(i,ht,j(i))− ft−1,j(i,yi) − ∑
i2S−

e ft−1,j(i,ht,j(i))+at,j− ft−1,j(i,yi)

= − (eat,j − 1) ∑
i2S−

e ft−1,j(i,ht,j(i))− ft−1,j(i,yi)

= − (eat,j − 1) ∑
i2S−

e∆t−1,j(i,ht,j(xi))

3. For i 2 S−+:

L−+ = ∑
i2S−

e ft−1,j(i,ht,j(i))− ft−1,j(i,yi) − ∑
i2S−

e ft,j(i,ht,j(i))− ft,j(i,yi)

= ∑
i2S−

e∆t−1,j(i,ht,j(xi)) − ∑
i2S−

e∆t,j(i,ht,j(xi))

= 0 since the value of ft,j does not change for these examples.

So, the drop in loss L = L+ + L− + L−+ is:

L =
(

1− e−at,j
)

∑
i2S+

Lt−1,j(i)− (eat,j − 1) ∑
i2S−

e∆t−1,j(i,ht,j(i))

=
⇣

e
at,j−e

−at,j

2

⌘

 

∑
i2S+

Lt−1,j(i)− ∑
i2S−

e∆t−1,j(i,ht,j(i))

!

−
⇣

e
at,j+e

−at,j−2
2

⌘

 

∑
i2S+

Lt−1,j(i) + ∑
i2S−

e∆t−1,j(i,ht,j(i))

!

≥
⇣

e
at,j−e

−at,j

2

⌘

 

∑
i2S+

Lt−1,j(i)− ∑
i2S−[S−+

e∆t−1,j(i,ht,j(i))

!

−
⇣

e
at,j+e

−at,j−2
2

⌘

 

∑
i2S+

Lt−1,j(i) + ∑
i2S−[S−+

e∆t−1,j(i,ht,j(i))

!
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Using the result we obtained in (Eq. 2.2) and the fact that e∆t−1,j(i,ht,j(i))  Lt−1,j(i),
we obtain the following lower bound of the loss drop:

L = ∑
i

Lt−1,j(i)−∑
i

Lt,j(i)

≥
⇣

e
at,j−e

−at,j

2

⌘

dt,j∑
i

Lt−1,j(i)

−
⇣

e
at,j+e

−at,j−2
2

⌘

 

∑
i2S+

Lt−1,j(i) + ∑
i2S−[S−+

Lt−1,j(i)

!

≥
⇣

e
at,j−e

−at,j

2

⌘

dt,j∑
i

Lt−1,j(i)−
⇣

e
at,j+e

−at,j−2
2

⌘

∑
i

Lt−1,j(i)

≥
⇣

e
at,j−e

−at,j

2 dt,j − e
at,j+e

−at,j−2
2

⌘

∑
i

Lt−1,j(i)

Hence the loss at round t, ∑i Lt,j(i), is at most a factor 1 − 1
2 (e

at,j − e−at,j)dt,j +
1
2

(

eat,j + e−at,j − 2) of the loss in round t− 1.

We thus proved that, in each view m, the training error (cost) decreases. Using

the result of the previous theorem and tuning at,j to 1
2 ln

1+dt,j

1−dt,j
, we get the following

bound on the loss of the classifier, Hj defined as the weighted combination of weak
classifiers learnt in view j after T iterations:

eT,j  (K− 1)
T

∏
t=1

q

1− d2
t,j  (K− 1) exp

(

−1

2

T

∑
t=1

d2
t,j

)

(2.3)

On the one hand, this results shows that, as long as the edges of the weak classi-
fiers are positive, then the loss of the combined classifier decreases after each iteration.
On the other, it means that, for a classifier ht,j, its edge should be the highest value
for which the weak learning condition Eq. 2.1 still holds. More precisely:

dt,j = sup
n

g : Dt,j · Iht,j
 Dt,j ·Ug

o

= sup

(

g : Dt,j · Iht,j
 −g

m

∑
i=1

∑
l 6=yi

e∆t−1,j(i,l)

)

.

The last part suggests that the best value for dt,j is edge g is the one that verifies
the equality, that is:

g : Dt,j · Iht,j
= −g

m

∑
i=1

∑
l 6=yi

e∆t−1,j(i,l) ) dt,j =
−∑

m
i=1 Dt,j(i, ht,j(i))

∑
m
i=1 ∑l 6=yi

Dt,j(i, l)
.

We have thus derived the expression given in Algorithm 3 for the computation
of dt,j. Note that the edge dt,j is positive only if the classifier ht,j verifies the weak
condition.

2.3.2 Bounding the whole empirical loss

At each step t of the Algorithm 3, one classifier is selected among v weak clas-
sifiers, where v is the number of views, that is, the space of weak hypothesis H is
limited to {ht,1, · · · , ht,v}. The chosen classifier ht is the one that achieves the largest
edge on the global cost matrix Dt, or simply put, the one that has the smallest error
on the training sample weighted by the global cost matrix.

Bounding the drop of the loss after each iteration is done in a similar fashion as
in Theorem 1. The main differences consist in
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— replacing ht,j, dt,j, at,j and Dt,j by ht, dt, at and Dt,G in the theorem and in the
proof;

— considering only two cases, S+ the examples correctly classified by ht and S−
the examples misclassified by ht.

Moreover, the result given in Equation 2.3 (and the choice of dt) remains valid:

eT  (K− 1)
T

∏
t=1

p

1− dt  (K− 1) exp

(

−1

2

T

∑
t=1

d2
t

)

(2.4)

where eT =
m

∑
i=1

∑
l 6=yi

exp( ft(i, l)− ft(i, yi)).

Since the hypothesis space is quite limited, it is possible that none of the classifiers
verify the weak learning condition on Dt. In such cases, one may either chose to halt
the learning process or, if the weak classifiers are trained by resampling, reiterate the
learning process on the views till at least one of the classifiers achieves a sufficient
edge.

2.3.3 Results in generalization

In this section we show that the generalization error of the final hypothesis learnt
by Mumbo after T iterations, can be bound and that this bound converges towards 0
with the number of iterations.

The generalization error of a classifier f is defined as the probability to misclas-
sify a new example. For multi-class algorithms such as AdaBoost.MR, Schapire et al.
(1998) show how to bound the generalization error of the final hypothesis as a func-
tion depending on the margins of the learning examples. We first recall the definitions
and the bound on the generalization error. Then we extend these results to Mumbo.

Generalization Error for Multi-class Problems

The final hypothesis of Mumbo is a multi-class classifier, thus its output space can
be defined as Y = {1, 2, ..., K}. In this section, the weak classifiers (called also base
classifiers) h 2 H are defined as mappings from X ⇥ Y to {0, 1}, where X is some
description space. The label y is predicted as a potential label for xi if h(x, y) = 1.
Note that these classifiers are equivalent to I[ht(x) = l], the weak classifiers used in
Algorithm 3.

Let C denote the convex hull of H, that is :

C =
(

f : (x, y)! ∑
h2H

ahh(x, y)|ah ≥ 0 and ∑
h

ah = 1

)

For an example x and a label y, a classifier f in C predicts y as the class of x if
argmax

l2Y

f (x, l) = y. The margin of an example is then defined as:

margin( f , x, y) = f (x, y)−max
l 6=y

f (x, l)

The function f misclassifies an example x if the margin given by f on the couple
(x, y) is negative or zero.

Using the previous definitions, Schapire et al. give proof of the following theorem
in Schapire et al. (1998):
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Theorem 2 (Schapire et al.[1998]) Let D be a distribution over X ⇥ Y, and let S be a sample of m examples
chosen independently at random according to D. Assume that the base-classifier space H is
finite, and let d > 0. Then with probability at least 1− d over the random choice of the training
set S, every function f 2 C satisfies the following bound for all q > 0 :

PD [margin( f , x, y)  0]  PS[margin( f , x, y)  q]+

O

 

1p
m

+

✓

log(mK) log(|H|)
q2

+ log(1/d)

◆1/2
!

More generally, for finite or infinite H with VC-dimension d, the following bound holds
as well, assuming that m ≥ d ≥ 1:

PD [margin( f , x, y)  0]  PS[margin( f , x, y)  q]+

O

 

1p
m

+

✓

d log2(mK/d)

q2
+ log(1/d)

◆1/2
!

In Theorem 2, the term PD [margin( f , x, y)  0] is the generalization error of the
function f . The term PS[margin( f , x, y)  q] is the empirical margin error of f on
the sample S, that is, the proportion of examples of S which are misclassified, or
which are correctly classified but with a margin smaller than q. In the last part of this
section, we use eq( f , S) instead of PS[margin( f , x, y)  q]. Finally, the second term in
the theorem is a complexity penalization cost.

Mumbo

The previous theorem holds for every voting method using multi-class classifiers
as weak classifiers, thus it holds also for Mumbo since his final hypothesis is HT(x) =
argmax
l21,2,...,K

fT(x, l), where :

fT(x, l) =

T

∑
t=1

ht(x, l)at

T

∑
t=1

at

Note that this new definition on fT is simply a normalized version of the original fT

given in Algorithm 3.
The weak classifier ht chosen at each iteration is selected from a set of classi-

fiers {ht,1, ..., ht,m}. These classifiers are selected from potentially different spaces of
hypothesis, namely H1, ...,Hm. Thus the space of hypothesis H from which ht is se-
lected is the union of H1, ...,Hm. We deduce by the definition of the VC-dimension
given in Vapnik (1998) that dH = min{dH1

, ..., dHm
}.

We have yet to show that the generalization error decreases with the number of
iterations. To do so, it is sufficient to prove that the empirical margin error decreases,
since the second term in Theorem 2 is a constant.

The following lemma, based on Lemma 4.1 from Janodet et al. (2009), gives an
upper bound for eq( fT , S).

Lemma 1 The empirical margin error of Mumbo after T iterations is bounded by :

eq( fT , S)  (K− 1)

m

 

T

∏
t=1

(1 + dt)
1+q

2 (1− dt)
1−q

2

!
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Proof. Let l = argmax
y0 6=y

f (x, y0). For readability reasons, we write
T

∑
t=1

as ∑
t

and
T

∏
t=1

as ∏
t

.

By the definitions of the margin and f , we have:

margin( f , x, y) = f (x, y)− f (x, l) =
∑
t

ht(x, y)at

∑
t

at
−

∑
t

ht(x, l)at

∑
t

at

Hence,

margin( f , x, y) < q ,
∑
t

ht(x,y)at

∑
t

at
−

∑
t

ht(x,l)at

∑
t

at
 q

, q∑
t

at −
✓

∑
t

ht(x, y)at −∑
t

ht(x, l)at

◆

≥ 0

Let Ai = −
✓

∑
t

atht(xi, y)−∑
t

atht(xi, l)

◆

and B = q∑
t

at. We deduce that

P[margin( f , xi, y)  q] = 1 , Ai + B ≥ 0, that is, exp(Ai + B) ≥ P[margin( f , x, y) 
q]. Thus, eq( fT , S)  1

m

m

∑
i=1

exp(Ai) exp(B).

eq( fT , S)  1
m

m

∑
i=1

exp(Ai) exp(B)

 1
m

m

∑
i=1

exp

✓

−(∑
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The precedent lemma gives a bound on the empirical margin error. As it was

shown in Schapire et al. (1998), if q < d/2, then (1 + dt)
1+q

2 (1− dt)
1−q

2 < 1. Using this
result and the precedent lemma, we claim that the generalization error decreases with
the number of iterations:

Theorem 3 Let q > 0 be a fixed margin, then the empirical margin error eq( fT , S) converges towards 0 with
the number of iterations, if the edge of the weak hypothesis selected at each iteration is > 2q.

This last theorem and the bound given in Theorem 2 together prove that the gener-
alization error of the final hypothesis of Mumbo decreases with the number of iterations.
Indeed, the second term of the bound in Theorem 2 is a constant, since all the param-
eters, including dH, are constant in a given problem, and Theorem 3 proves that the
first term of the bound decreases with the number of iterations.
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2.4 Experimental results on artificial data

In order to experimentally validate and illustrate our approach of multiview learn-
ing with boosting, we mainly used synthetic data that obey the underlying hypothesis
of Mumbo. After explaining the used protocol, this section presents and discusses the
results of experiments.

2.4.1 Protocols

Data generation

Data is generated within 3 views, and clustered in two classes {−1,+1}. In each
view, the descriptions of examples are vectors of real values. Examples of each class
y are generated along a gaussian distribution G[my,v, sy,v], one per view v. In order
to simulate weak views, we introduce some uncertainty in the description of the
examples of both classes:

— In each view, the distributions of classes may overlap: some examples are likely
to belong to both classes 1. This allows to increase the error of the Bayes classi-
fier, thus lowering the strength of the view.

— In each view, some examples are generated using a uniform distribution, the
same for both classes. We denote by h the rate of example generated by such a
distribution.

One major view is generated, with various values of hM. The two minor views are

generated with hm = 3−2hM

4 in such a way that half of the "noisy" examples in view
M are likely to be sane in minor views.

Figure 2.2 presents an example of a learning sample with 20 examples per class.
Each example of the learning sample is represented by three views: the major view is
on top, with hM = 0.38; other views are minor ones, with hm = 0.56. The parameters
of the examples’ distribution within each class are represented by the red and green
ellipses. The same example is pointed out in each view, in order to illustrate the
distribution of information among views.

We can associate the disruption amount (distribution overlap and noise on de-
scriptions) with the edge-over-random capabilities of weak-classifiers. The more dis-
ruption we have in a view v, the more gv = 1− e(hBayes) is low on that view. Such
a sample generation process was designed in order to fit the hypothesis leading to
the design of Mumbo: views are rather weak, and learning a classifier on the whole
sample needs a cooperation between learners on each view, since information is dis-
tributed among views.

Processing experiments

Each weak classifier on view v is obtained by training a linear SVM on a sub-
sample of examples randomly drawn from the current distribution of v. We check
that each weak classifier trained on the view v complies with the definition of weak
classifiers in the theoretical scheme of Mukherjee and Schapire (2011). Results are the
mean of 10 experiments: one experiment is made up of (1) the generation of learning
and test samples, (2) the learning process, and (3) the evaluation process.

As said in introduction, Mumbo was designed as an alternative way to fuse classi-
fiers. We thus compare it with two naive other methods of fusion, and with Adaboost:

1. For these examples x, P(y = +1|x) = P(y = −1|x))
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Figure 2.2 – An example of the multi-view artificially generated data for MuMBo.

1. late fusion SVM: one RBF SVM is trained on each view, and the final decision
is a margin-weighted combination of their results;

2. early fusion SVM: descriptions of each example are concatenated, then a RBF
SVM is trained on the single resulting view;

3. early fusion Adaboost: descriptions of each example are concatenated, then Ad-
aboost is trained on the single resulting view, with a RBF SVM on a subsample
of examples as the weak learner.

Classifiers performances are computed using a testing sample drawn from the
same setting that generated the learning sample, but twice bigger.

2.4.2 Results

We present here two kinds of results: an illustration of the behaviour of Mumbo,
and a comparison of Mumbo with naive fusion-based approaches.

Illustration of boosting properties

Figure 2.3 reports, on the left, the boosting-like behaviour of Mumbo. As expected,
the empirical costs on each view decrease with iterations, and the estimation of the
generalization error also decreases. On the right, the figure pictures a first comparison
of Mumbo with Adaboost (in an early fusion setting). We obtained this results with
|S| = 80 and hM = 0.38, but the same outlines of behaviours are observed whatever
the parameters are (|S| from 20 to 200, and hM from 0 to 0.5).
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Figure 2.3 – Empirical and test errors of Mumbo (left), and Mumbo vs. Adaboost early fusion

The bad results of Adaboost are not surprising. Indeed, it processes examples on
only one view that concatenates the three smaller views. Since data was generated
such that half of the disrupted examples on the major view are not disrupted in
the minor views, the concatenation of descriptions leads to about 75% of noisy data.
Adaboost is well-known to be sensitive to the noise, so one cannot expect better
results, despite the true convergence of its empirical error.

In addition, which is not reported here, we observed that, whatever hM is (always
under 0.5), weak classifiers on minor views are selected in some rounds, in addition
to the weak classifiers of the major view which are the most often selected. First
rounds tend to only select the classifiers of the major view, then the minor views are
alternatively selected with the major view. Besides, this behaviour can be observed on
the first rounds on Figure 2.3. It empirically proves that Mumbo actually encourages
views to cooperate.

Comparison with other approaches

Table 2.1 compares Mumbo with basic early and late fusion approaches (where
fused classifiers are RBF SVM), with different values of hM and different sizes of
the learning sample. Late SVM is the best fusion approach with this type of data,
which is not surprising since data is partially noisy (either in description or because

|S| = 80, hM 0.5 0.38 0.25 0.12 0

Early+SVM 0.390 0.410 0.437 0.396 0.389

SVM+Late 0.246 0.229 0.263 0.254 0.232

Early+Adaboost 0.415 0.420 0.403 0.364 0.358

Mumbo 0.148 0.152 0.168 0.174 0.164

|S| = 120, hM 0.5 0.38 0.25 0.12 0

Early+SVM 0.367 0.382 0.396 0.389 0.343

SVM+Late 0.198 0.225 0.240 0.208 0.279

Early+Adaboost 0.425 0.415 0.466 0.411 0.389

Mumbo 0.02 0.036 0.012 0.026 0.020

Table 2.1 – Comparison of Mumbo with early fusion and late fusion (where base classifiers are RBF
SVM). Note that results of Adaboost are given after 200 iterations (like Mumbo): raw results show

that it obtains a slightly better results after about 50 iterations, then tends to overfit.
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distributions overlaps). Yet Mumbo is better for it processes the collaboration among
views, thus leading each view to focus on the examples disrupted in other views.

However, the learning time of Mumbo is many longer than the learning time
of Late SVM (about 200 times slower). The collaboration slightly improves the results
when the major view is disrupted. This is quite obvious with smaller learning samples
(when |S|=15 or 30).

2.5 A multi-view approach to DECODA

The task we consider in the DECODA project is that of phone calls classification,
as described in Section 2.2. In Section 1.5.2, we described the categorization task as
a multi-view learning problem, with views based on the content of the content, its
prosody and the interaction between the speakers. We recall here the five views:

1. word transcription of the user’s turns,

2. word transcription of the operator’s turns,

3. turn taking description between the operator and the users,

4. dialog and average turn duration, % of speech for each speaker, speech rate (in
letters per second),

5. bag of named entities extracted from the word transcriptions.

Two experimental setting have been tested:

1. test(gold): the classification performance of each method is evaluated on features
obtained on the reference transcriptions (gold) of the test corpus

2. test(ASR): in this case the features are obtained on the ASR transcriptions.

To compare the results of MuMBo with a standard classification approach, we
use the Icsiboost Favre et al. (2007) implementation of AdaBoost. Firstly, to check the
strength of each view, we present in Table 2.2 the classification error rate obtained on
the two experimental settings with AdaBoost. As expected the two lexical views (V1
and V2) clearly outperform the other views.

setting error V1 V2 V3 V4 V5

test(gold) # 40 43 107 104 82

% 26.3 28.3 70.4 68.4 53.9

test(ASR) # 65 55 107 104 82

% 42.7 36.2 70.4 68.4 53.9

Table 2.2 – Classification errors with AdaBoost on the five views (V1 . . . 5) without fusion (152

examples in the test sample).

Three fusion algorithms between the views are compared in Table 2.3:
— AdaBoost with late fusion (fusion of the decisions taken independently by each

view);
— AdaBoost with early fusion (all the views are merged together);
— and our multiview algorithm MuMBo.

The weak classifiers used in the three cases are decision stumps and the algorithms
ran for 1000 iterations. We noticed that adding the weak views V3, V4, V5 to the strong
ones improves the classification performance of all the algorithms, except in the case
of early AdaBoost on test(gold): it means that weaker views still carry some useful
information. Late or early fusion don’t have a strong impact on the AdaBoost perfor-
mance in our experiments.
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Algo Errors test(gold) test(ASR)

AdaBoost(early) # 37/152 49/152

% 24.3 32.2

AdaBoost(late) # 37/152 46/152

% 24.3 30.3

MuMBo # 32/152 38/152

% 21.1 25.0

Table 2.3 – Classification errors for MuMBo and Adaboost (late fusion and early fusion) on the two
experimental settings

As we can see MuMBo gives better results than AdaBoost on both settings, es-
pecially when the classification process is applied on the noisy ASR data. This is
particularly encouraging as our main motivation for using MuMBo was to be able to
spread the classification weights more equally on the different views in order to be
more robust when one view fails, as this is the case in the setting test(ASR) where the
main lexical views are affected by the high WER of the ASR transcriptions.

MuMBo view 1 view 2 view 3 view 4 view 5

test(gold) 393 429 16 92 70

test(ASR) 393 429 16 92 70

AdaBoost view 1 view 2 view 3 view 4 view 5

test(gold) 418 452 18 80 48

test(ASR) 418 452 18 80 48

Table 2.4 – # of selection for each view with MuMBo and Adaboost on the DECODA corpus

Table 2.4 shows that MuMBo encourages the cooperation between the different
views as the number of selections of the stronger views (V1 and V2) is smaller for
MuMBo than for AdaBoost. This cooperation allows the classification weights to be
distributed more equally among the views.

2.6 Generalization of MuMBo

In this section we propose two possible improvements, or rather generalizations,
of MuMBo. The first improvement is related to the computation of the cooperation
coefficients, while the second one concerns the choice of the unique classifier at each
iteration.

2.6.1 On more general cooperation coefficients

The cooperation coefficients, noted d is Algorithm 3, are one of the tools used to
enforce the collaboration between the views. Their goal is to promote for each view
the best examples, that is, the examples that are easier to recognize within that view.
Another way to see this, is to consider these coefficients as flags that designate for
each view the examples that should be updated. In Algorithm 3, the cooperation co-
efficients take boolean values and they are computed as shown in Section 2.2.2. Recall
that for a given view, the weight of an example is updated — that is, its cooperation
coefficient for that view is set to 1 — only if the weak classifier correctly recognizes
the example in this view, or if ti is not recognized in any view. This constitutes at the
same time the main advantage behind the coefficients’ choice: they are easy to inter-
pret. On the other hand, the main inconvenience is that they are not flexible, since we
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have the choice between only two values. Having a larger choice can be quite useful
in some cases.

Suppose that multiple views have been defined for a given problem and that a
small number of training examples — we’ll note them Sv — are recognized within
only one view. Using the binary update rule, the weights of these examples change
only on the view that recognizes them, while the other views will focus less on them.
Now, suppose that for whatever reason, during the early learning phase, only the
classifiers from the other views are selected as the unique classifiers. This means that
the resulting classifier, made up of the combination of the unique classifiers, will
poorly recognize the examples of Sv, and these examples will only be taken into
consideration in later steps of the training procedure.

As a second example, take the case where, for a given view, an example is repeat-
edly misclassified, even though it might not be one of the hardest examples for that
view. This may due to the fact that the learnt classifiers are weak ones, performing
slightly better than random guessing. The binary update does not change the weight
of that example for the considered view, hence it is taken into consideration only in
later stages.

The two previous examples show that the binary update rule may not be the
perfect choice. Indeed, in the first example, it would be preferable to slightly update
the weight of the examples Sv in all the views, so that a unique classifier recognizing
these examples is chosen earlier in the learning phase. The same is valid for the
second example also, since it would help the view to recognize that example earlier.
In order to overcome these shortcomings, we propose to consider a more general form
of the cooperation coefficients. Instead of considering only boolean values, these new
coefficients take their values in [0, 1]. The values of these coefficients are chosen in
a similar way as shown in Section 2.2.2: if an example is correctly classified, or is
misclassified by all the views, its coefficient is 1. The main difference is that in the
case where an example is misclassified in a view, but correctly classified in (at least)
one other view, its coefficient in that view might not be 0.

Some possible choices for the new coefficients are the following:
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∣, the number of classifiers

that misclassify xi.
The main interest of selecting coefficients that take values in [0, 1] is that Theorem

1 still holds. This implies that all the results shown in Section 2.3 which depend on
that theorem, are valid even for the continuous coefficients. We give here its formula-
tion for the continuous case.

Corollary 1 (bounding the empirical loss in view j in the continuous case) For a given view j, suppose
the cost matrix Dt,j is chosen as in the Algorithm 3, the returned classifier ht,j verifies the
weak learning condition Eq. 1.5 for Dt,j and Udt,j

and, that for each example, the cooperation

coefficient takes its value in [0, 1].
Then choosing a weight at,j > 0 for ht,j makes the error at time t, at most a factor

tt,j = 1− 1

2
(eat,j − e−at,j)dt,j +

1

2

(

eat,j + e−at,j − 2)

of the loss before choosing at,j, where dt,j is the edge of ht,j.
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Proof. The proof of this corollary is the same as the one given in Theorem 1. We refer
the reader to Theorem 1 for the definition of the various quantities utilized here.
The main difference is the computation of the drop in loss for the examples in S−+,
examples misclassified in view j, but correctly classified in at least one of the other
views.

L−+ = ∑
i2S−+
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The rest of the proof is the same as in Theorem 1.

Bottom line, choosing cooperation coefficients in [0, 1] gives more flexibility to the
algorithm, while at the same time keeping the theoretical properties.

2.6.2 On the choice of the unique classifier

The choice of the unique classifier at each iteration, given in Algorithm 3, depends
on the cost obtained from the classifiers on the global cost matrix: the chosen classifier
is the one that achieves the smallest cost, that is, the largest drop in loss. In Section
2.2, we argued that this choice is mainly due to the fact that the boosting process can
be seen as a gradient descent in the function space. Here we propose several methods
for improving the choice of the unique classifier made by MuMBo.

In Section 2.3.2, we slightly touched upon one of the weak points of MuMBo: the
classifier space for the choice of the unique classifier is quite limited, since it contains
only the classifiers learnt on each view. The direct consequence is that it might be
necessary to re-train the classifiers on all the views, since none of the learnt classifiers
might verify the weak learning condition Eq. 1.5 for the global cost matrix. It means
that the weak learning algorithms are asked to train classifiers strong enough to sat-
isfy the weak learning condition for two different cost matrices: the global cost ma-
trix and the one of the view associated to the algorithm. An improvement of MuMBo
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would then consist in choosing stronger learning algorithms; although one may argue
that this kinda defeats the purpose of using a boosting procedure. Another possible
improvement is that of considering a larger set/space of classifiers, built from the
weak classifiers learnt on the views. Such a space is, for instance, the space contain-
ing all the possible linear combination of the weak classifiers. The underlying idea
is that of choosing two or more weak classifiers at each iteration, compared to the
unique classifier chosen by MuMBo:

ht(x) = argmaxl2Y

v

∑
j=1

I(ht,j(x) = l)bt,j.

The coefficients bt,j can be computed in various ways: using optimization problems,
prior information on the views, heuristics, etc. However the most straightforward

way would be to compute the coefficients as 1
2 ln

1+dt,j

1−dt,j
, where dt,j is the edge of the

classifier learnt on view j on the global cost matrix. Note that in this case MuMBo
becomes similar to 2-Boost Janodet et al. (2009), except for the fact that MuMBo trains
its weak classifiers on different distributions.

Obviously other combinations can be considered, as long as at least one of the
classifiers contained in the final classifier space satisfies the weak learning condition.

Other possible improvements of MuMBo are related to the actual choice of one
unique classifier. In Algorithm 3, we proposed to select the classifier with the smallest
error/loss on the cost matrix, a greedy criterion that ensures a small empirical error
on the training set. However, other measures can be considered, which may hopefully
make an impact on the generalization error. Kuncheva and Whitaker (2003) claim that
the accuracy of an ensemble learning method is closely related to the diversity of the
classifiers that make up the ensemble. A selection criterion would than be to choose
at each iteration, the classifier that optimizes the diversity of the ensemble made up
of the previously selected classifiers. However, the optimization of the diversity of an
ensemble remains an open research problem: the "good" degree of diversity depends
on the learning problem.

Selection criterions can also be based on prior informations on the views, such as,
defining the proportion of weak classifiers selected from each view, or giving priority
to view that correctly classify an interesting subspace of the input space. In the latter
case, the subspace can also be the one defined by instances of the same class, that is,
at each iteration, the selected view is the one that better recognizes one of the classes.

Similarly to the improvements proposed in Section 2.6.1, the advantage of these
improvement is that all the theoretical properties proven in the previous sections
remain valid, as long as the classifier selected at each iteration satisfies the weak
learning condition.

2.7 Conclusion for this chapter

2.7.1 Related works

In Section 1.3, we presented several multi-view approaches, for different settings,
such as semi-supervised learning, active learning, and so on. In the supervised set-
ting, early and late fusion-based approaches are only empirical ways to process the
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whole useful information available on samples. On the other hand, the Multiple Ker-
nel Learning (MKL) approaches Lanckriet et al. (2004) (also presented in Section
1.3.2), used to process multi-view samples, is then a costly way to rank the views.
As a supervised method, it could be compared to MuMBo, but MKL does not pro-
mote the cooperation between views: it is more a way to select the strongest views.

The closest approaches to MuMBo are co-training Blum and Mitchell (1998) and
GBoost Saffari et al. (2010), in the semi-supervised setting, and 2-Boost Janodet et al.
(2009) and ShareBoost Peng et al. (2011), in the supervised one. Co-training is a multi-
view approach in the semi-supervised setting, where views iteratively cooperate for
producing classifiers that converge to the same final hypothesis. GBoost is a general-
ization of co-training, where the learning process is based on the boosting framework
and the unlabeled data are also used in the training process in order to improve the
performances of the views and making them less sensitive to label noise. However
MuMBo is different from both these methods, since it works in the supervised set-
ting and it does not assume that the classifiers agree on the same examples. Indeed,
MuMBo relies on the disagreement between the views.

MuMBo is closer to 2-Boost and ShareBoost, not only because they are super-
vised methods, but also because the three methods rely on the boosting framework
in order to take advantage of the multi-view nature of the problems. However, the
motivations behind MuMBo and the two other methods are not the same. 2-Boost is
designed to use one specific weak learner per view, in order to manage homogeneous
views. Then, 2-Boost maintains only one global distribution of examples, whereas
MuMBo maintains as many distributions as views. Theoretically speaking, though,
the generalization error bound of MuMBo is proven in a similar way than that of
2-Boost, integrating the several hypothesis spaces. Also, in Section 2.6, we proposed,
as an amelioration of MuMBo, to define the unique classifier as a combination of all
the classifiers, which is the case of 2-Boost.

ShareBoost can be seen as a particular case of 2-Boost. They both maintain a single
distribution over the training sample and, during the training procedure, trains as
many weak classifiers as there are views, but ShareBoost only keeps the best one
(whose weighted error is minimal), similarly to MuMBo. The motivation behind this
choice is to implement a co-training-like procedure in the supervised setting: during
the training process, each view is encouraged to deal with the examples it recognizes
best, thus, hopefully, minimizing the number of hard-to-classify examples for the
other view. Although this might seem as a similarity with MuMBo, there is no guar-
antee that the cooperation does take place, since the classifiers learnt on the views are
weak ones. Other versions of ShareBoost have been proposed, such as rShareBoost
Peng et al. (2011), which randomly chooses the unique classifier at each iteration.
rShareBoost tries to find for a given problem, the most appropriate views (think of
this as a ranking of the view), thus minimizing the cooperation between them.

Recently, in Kadri et al. (2013) we proposed to tackle the multi-view learning prob-
lem through the multi-task perspective. The idea behind the framework proposed
therein is to reformulate the multi-view learning problem as a multi-task one, where
the goal is to learn a classifier that depends on a multi-task kernel defined over the
input space. In the case of multiple views, the input space is made up of all the views
input spaces and Kadri et al. (2013) define the kernel matrix as a block kernel matrix,
where each block correspond to the kernel matrix between two views. This formula-
tion takes into consideration the within- and between- views information, which is
close to the notion of cooperation between views, used in MuMBo.
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2.7.2 Conclusion

We presented the MuMBo algorithm (Section 2.2), which is a boosting-like method
in the setting of multi-view learning, where views are of different strength with re-
gard to a classification task. The idea underlying MuMBo is to encourage the coop-
eration between stronger and weaker views. To implement this idea, the originality
of MuMBo, as a boosting algorithm, is to maintain one distribution of examples per
view, and to proceed to distribution updates that allow some views to focus on ex-
amples that are hard to classify in other views.

Theoretical results for the boosting properties of MuMBo, within the theoreti-
cal framework of Mukherjee and Schapire (2011), were given in Section 2.3: first we
showed that the empirical error decreases with the iterations, then using this result,
we proved a bound on the generalization error of MuMBo, thus showing that the
true risk decreases with the iterations. An interesting property of MuMBo was also
proved in 2.3: the empirical error of the combination of all the classifiers in one view
decreases with the number of iterations. This means that a boosting process takes
place for each view, thus allowing it to focus on the most interesting examples.

As expected theoretically, the boosting usual behavior is observed throughout the
experiments in Section 2.4, and the results of MuMBo are very good on synthetic data,
generated to simulate real-life data, with noisy data and weak views.These results
validate the relevance of the MuMBo algorithm when cooperation among weak views
is mandatory for obtaining a strong classifier. Results on empirical and generalization
bounds, as proved in Section 2.3, are also observed.

Several improvements of MuMBo were proposed in Section 2.6, both on the choice
of the unique classifier at each iteration and the choice of the cooperation coefficients.
As a result of these improvements, MuMBo can be seen as a family of multi-view
boosting methods, regrouping all methods respecting the conditions given in 2.6.

The works presented here on MuMBo open up different questions leading to fu-
ture works, both in the theoretical and practical aspect. When presenting the possible
improvements in Section 2.6, the bound given in Corollary 1 is obtained by using a
lower bound for the case S−+, contrary to the bound in Theorem 1, which is more ap-
propriate for the choice of the cooperation coefficients. Future works will be focused
on finding better per view bounds depending on these coefficients, and incorporat-
ing them in the bound on the empirical error computed from the global cost matrix.
This will allow to carry the idea of cooperation from the cost matrix to the empirical
error bound, and ultimately to the generalization error bound. However, concerning
the latter bound, we think it would be more interesting to find other bounds directly
based on the multi-view framework, related to the complementary of the views, or
the definitions of strong and weak views, as given in Section 1.3.1.

MuMBo is an algorithm that may be categorized as an ensemble of classifiers.In
the literature, it was proved that without diversity between combined classifiers, the
resulting classifier can not be better than the best of the combined classifiers. Many
measures of diversity have then been studied so far Kuncheva and Whitaker (2003).
We think that the hypothesis underlying MuMBo promote such a diversity. In that
sense, future work will aim at obtaining some theoretical results between diversity
and classification accuracy of MuMBo.

Last but not least, based on the success of MKL, future works will center on
implementing the concept of selecting appropriate learners for each view in MuMBo.
This includes both theoretical and empirical aspects.
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Dealing with the imbalanced classes problem consists in learning a classification
model form data, where the distribution of examples among classes is skewed.

In such cases, the simple (empirical) error rate is not the right measure to use for
quantifying the goodness of a classifier, since it would favor major classes over mi-
nor ones. Section 1.4 introduced several measures that are mode adapted for these
methods, such as the MAUC, F-measure and cost-weighted error. Before tackling the
imbalanced views problem, this chapter proposes a novel framework for (single view)
imbalanced learning methods.
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In Section 1.4.4, we briefly argued that an interesting error measure would be the
norm of the confusion matrix. Based on recent works on the confusion matrix as an
error measure by Morvant et al. (2012), Ralaivola (2012), we use the confusion matrix
as a starting point for learning imbalanced methods in the supervised setting. A first
contribution in this chapter consists in showing in Section 3.2.1 that minimizing the
norm of the confusion matrix leads to a common base for most existing imbalanced
methods. This base comes in the form of an optimization problem, which depends
on loss functions computed over two classes and representing the loss of mistaking
one class for the other.

As a second contribution, in Section 3.2.2 and Section 3.2.3,we adapt the afore-
mentioned optimization problem to the boosting framework and derive an extension
of AdaBoost.MM (Mukherjee and Schapire (2011)) for the imbalanced classes prob-
lem. The booting properties of the new method, called CoMBo, are proven in Section
3.2.4, while Section 3.4 gives empirical results of CoMBo on various UCI datasets.
Section 3.5 presents the performances of CoMBo for the imbalanced aspect of DE-
CODA. Finally Section 3.6, wrap it all up with a discussion on the contributions of
this chapter and the future works.

The work presented in this chapter was first published in the Proceedings of the
5th Asian Conference on Machine Learning, ACML 2013, Canberra, Australia, Koço
and Capponi (2013). The work presented in Section 3.3 was first published in the
Proceedings of the 29th International Conference on Machine Learning, ICML 2012,
Edinburgh, United Kingdom, Morvant et al. (2012).

3.1 The confusion matrix as an error measure

This section deals with the imbalanced classes problem and gives a brief overview
of the existing methods, both in the binary multi-class problem. This is followed by
the motivations of choosing the confusion matrix as an error measure. We conclude
with the formal definition of the confusion matrix and the optimization objective.

3.1.1 Introduction and Motivations

In this chapter we tackle a learning problem that is a common occurrence in data
coming from real-world scenarios: the imbalanced classes (data) problem. Learning
from imbalanced data concerns theory and algorithms that process a relevant learn-
ing task whenever data is not uniformly distributed among classes. When facing im-
balanced classes, the classification accuracy is not the fair measure to be optimized,
as advocated in Fawcett (2006). Accuracy can be quite high in case of extreme im-
balanced data: majority classes are promoted, while minority classes are not recog-
nized. Prediction is biased toward the classes with the highest priors. Such a bias gets
stronger within the multi-class setting.

As an example of where this problem in encountered and its effects, let us con-
sider two classification problems: automatic diagnosis of a disease and mushrooms
categorization. In the first case, the classification problem consists in detecting if a pa-
tient is infected with a disease or if he is sane. Obviously (and thankfully) whatever
the considered disease may be, it is fairly easier to collect data from sane patients
than from infected ones. A simple classifier learnt from the data is the majority vote,
which constantly predicts the majority class — here, that a patient is not infected.
This classifier has an excellent accuracy (think of the cases where the sane patients
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make up 95-99% of the training sample), however the consequences of always pre-
dicting sane can be quite heavy, especially if the considered disease is life-threatening.
In the second case, the task consists of labeling mushrooms as safe, deadly or sick (as
in, they make a person ill, without being life-threatening). The distribution over the
mushrooms shows that 18% of the mushrooms are safe, 81% make a person sick and
only a mere 1% are deadly. Two majority classifiers can be built from this distribution:
the first predicts sick, with an accuracy of 81%, while the second predicts not deadly,
with an accuracy of 99%. However much as in the first case, the side-effects of these
predictions can be quite catastrophic.

Generalizing from these examples, the goals and motivations of imbalanced
classes methods revolve around designing classifiers that better take into account
the probability distribution of each class, both when these are known and unknown.

In the binary setting, learning from imbalanced data has been quite studied over
the past years, leading to many algorithms and theoretical results He and Garcia
(2009). It is mostly achieved by either resampling methods for rebalancing the data
over classes (for example Estabrooks et al. (2004)), or/and by dealing with cost-
sensitive methods (for example Ting (2000)), which take advantage of prior informa-
tions — potentially on the class distributions — in order to penalize the errors made
on the training set, or with additional assumptions such as active learning within
kernel-based methods (for example: Bordes et al. (2005)). Whatever the approach, the
goal stays the same: force the learning method to achieve similar error rates on both
classes, by promoting the examples of the minority class.

Learning with imbalanced data within a multi-class or multi-label setting is still an
open research problem, which is sometimes adressed through the study of some alter-
nate measures of interest. Most of times, generalizing the binary setting to the multi-
class setting is based on the one-vs-all (or one-vs-one) usual trade-off Abe (2004).
Recently, Zhou and Liu (2010) proposed a well-founded general rescaling approach
of multi-class cost-sensitive learning, that pointed out the need of separating misclas-
sification costs from imbalance rates during the learning phase.

It is worth noticing that specific learning tasks other than classification have been
ad- dressed through the optimization of relevant measures within the multi-class
imbalanced setting Chapelle and Chang. (2011), Yue et al. (2007), Wang et al. (2012),
K. Tang and 2011. (2011). Although related to accuracy, these measures are intended
to better model what one would expect to be a a relevant performance measure in
such a setting. Meanwhile, the correlations between these alternative measures and
accuracy have been partly studied Cortes and Mohri (2004) without any theoretical
result so far He and Garcia (2009).

Cost-sensitive methods are usually based on a cost matrix which embeds misclas-
sification costs carrying various meanings. These methods weight the error measure
according to the class-based cost of each misclassification, for instance computed
from the confusion matrix results Elkan (2001). Indeed, the confusion matrix is one
of the most informative performance measures a multi-class learning system can rely
on. Among other information, it contains how much the classifier is accurate on one
class, and the way it tends to mistake each class for other ones (confusion among
classes).

In the binary classification setting, cost-sensitive approaches provide algorithms
that somehow optimize a metric computed from the raw confusion matrix where the
entries of a row sum up to the number of examples of the class corresponding to the
row. Basically, a raw confusion matrix is a square matrix that represents the count
of a classifier’s class predictions with respect to the actual outcome on some labeled
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learning set. Computed from the raw matrix, the probabilistic confusion matrix (Section
3.1.2) exhibits an interesting property: the entries of a row sum up to 1, independently
from the actual number of examples of the class corresponding to the row. With
such property, the confusion matrix constitutes a great equalizer tool that can be
used to overcome the class-imbalance problem. Moreover, if one only considers the
non-diagonal elements in the matrix, then summing over a row gets quite informing
about how the corresponding class is correctly handled by the predictor at hand. This
section explores one way to capitalize on this property: we advocate that directly
minimizing the norm of the confusion matrix is helpful for smoothing the accuracy
among imbalanced classes, so that minority classes are considered as important as
majority classes.

The contributions of this section are mainly motivated — and based — by pre-
vious works on the confusion matrix Morvant et al. (2012), Ralaivola (2012), where
the novelty resides in the use of the norm of the confusion matrix as an error mea-
sure. Building upon these motivations, we sketch up a boosting algorithm, based on
the multi-class setting proposed in Mukherjee and Schapire (2011), that is ensured
to minimize the norm of the confusion matrix, hence minimizing the classification
error as proven in Section 3.2. Albeit the proposed methods can be seen as a simple
extension of AdaBoost.MM to the imbalanced classes setting, the main contribution
of this chapter is the framework given in Section 3.2.1, which is a common base for
most cost-sensitive learning methods.

Before tackling the main part of this chapter, we need to give the formal definitions
of the confusion matrices and the optimization problem.

3.1.2 The confusion matrix as an error measure

When building predictors, most Empirical Risk Minimization based methods op-
timize loss functions defined over a training sample and depending on the number
of misclassified data. This reveals to be a poor strategy when tackling problems with
class-imbalance, since minimizing the estimated error may result in overfitting 1 the
majority classes.

As previously argued, a common tool used for estimating the goodness of a clas-
sifier in the imbalanced classes scenario is the confusion matrix. We give here the
probabilistic definitions of the true confusion matrix and the empirical confusion matrix.

Definition 6 (True and empirical confusion matrices) The true confusion matrix A = (al,j) 2 R
K⇥K of a

classifier h : X $ {1, . . . , K} over a distribution D is defined as follows:

8l, j 2 {1, ..., K}, al,j
de f
= Ex|y=lI

(

h(x) = j
)

= P(x,y)⇠D(h(x) = j|y = l).

For a given classifier h and a sample S = {(xi, yi)}m
i=1 ⇠ D, the empirical confusion matrix

AS = (âl,j) 2 R
K⇥K of h is defined as :

8l, j 2 {1, ..., K}, âl,j
de f
=

m

∑
i=1

1

ml
I(h(xi) = j)I(yi = l).

An interesting property of these matrices is that the entries of a row sum up to
1, independently from the number of examples contained in the corresponding class.
Moreover, the diagonal entries represent the capability of a classifier h to recognize

1. Once again, we abuse the language and use the term overfit to refer to methods and/or classifiers
that recognize only a few classes.
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the different classes, while the non-diagonal entries represent the mistakes of the
classifier.

In this chapter, and in the following sections, we propose a framework which
makes use of the confusion matrix as an error measure in order to learn predictors
for the imbalanced classes case. As such, we need to redefine the confusion matrices,
so that only the mistakes of the classifier are taken into consideration. This is done by
keeping the non-diagonal entries and zeroing the diagonal ones:

Definition 7 For a given classifier h, we define the empirical and true confusion matrices of h by respectively
CS =(ĉl,j)1l,jK and C=(cl,j)1l,jK such that for all (l, j):

ĉl,j
de f
=

⇢

0 if l = j
âl,j otherwise,

cl,j
de f
=

⇢

0 if l = j
al,j otherwise.

(3.1)

These new definitions take into consideration only the mistakes of the classifier,
hence the interest of keeping the non-diagonal entries and zeroing the diagonal ones.

Let p = [P(y = 1), ..., P(y = K)] be the vector of class priors distribution, then it
is easy to see that:

R(h)
de f
= P(x,y)⇠D(h(x) 6= y) = kpCk1, (3.2)

where k · k1 is the l1-norm. This result means that it is possible to retrieve the true
error rate of h from its confusion matrix.

Due to the definition of the confusion matrix in definition 7, one may notice that
if, for a given classifier h, the norm of the confusion matrix is 0, then the classifier h
is perfect, as in it makes no mistakes. This implies that an interesting estimator for
the goodness of a classifier is the norm of the confusion matrix: the closer it is to 0,
the better the learnt classifier performs. Here the selected norm is the l2-norm, also
called the operator norm, which is a generalization of vector p-norms to matrices and
it is defined as follows:

kCk de f
= max

v 6=0

kCvk2

kvk2

de f
=
q

lmax(C⇤C),

The interest of choosing the operator norm as an error measure is that in the binary
setting, the operator norm of the confusion matrix is:

kCk = max{FNrate, FPrate},
where FNrate and FPrate are defined in Section 1.4.3. This means that minimizing the
operator norm of the confusion matrix is equivalent to minimizing the error rate on
the least recognized class. If this is done using an iterative process, then minimizing
the error on the least recognized class at each iteration aim to achieve roughly the
same error rate for both classes.

Moreover, using the definition of the operator norm, Equation 3.2 and the equiva-
lence between norms in finite dimensions, we obtain the following result on the link
between the operator norm and the true risk:

R(h) = kpCk1  kpk1kCk1 = kCk1 
p

KkCk (3.3)

Equation 3.2 and Equation 3.3 together imply that minimizing the norm of the
confusion matrix can be a good strategy in order to have a small risk. Our aim is thus
to find a classifier ĥ that verifies the following criterion:

ĥ = argmin
h2H

kCk (3.4)
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3.2 A boosting approach to the minimization of the confusion

matrix norm and its theoretical properties

In this section, we bound the operator norm of the matrix, which allows us to
make the connection between the confusion matrix and the usual methods for imbal-
anced classes problems. In a second time, we make use of the bound on the confusion
matrix in order to derive a boosting method for imbalanced classes based on a recent
multi-class boosting framework.

3.2.1 Bounding the confusion matrix

The result given in Equation 3.4 minimizes the operator norm of the true confu-
sion matrix, but it is difficult to use in a practical case, since the underlying distri-
bution D is unknown. A popular way to overcome this difficulty is to make use of
the empirical estimation of the confusion matrix. Theorem 1 in Ralaivola (2012) gives
the relation between the true and the estimated norm of the confusion matrix. 2 We re-
call here a particular formulation of this theorem applied to the supervised learning
setting, where the considered loss is the indicator function I.

Corollary 2 For any d 2 (0; 1], it holds with probability 1− d over a sample S(x,y)⇠D that :

kCk  kCSk+

v

u

u

t2K
K

∑
k=1

1

mk
log

K

d
,

where CS is the empirical confusion matrix computed for a classifier h over S.

The previous corollary suggests that our goal may boils down to minimizing the
empirical norm of the confusion matrix, which is fairly similar to the other optimiza-
tion problems, where empirical error measures are considered. Unfortunately due to
the nature of the considered confusion matrix, finding the analytical expression of the
norm reveals to be quite challenging. This is why we propose to optimize an upper
bound of kCSk2 instead.

kCSk2 = lmax(C
⇤
SCS)  Tr(C⇤SCS)

The matrix C⇤SCS is positive semi-definite, meaning that all its eigenvalues are
positive. Since the trace of a matrix is equal to the sum of all its eigenvalues, we
choose to upper-bound the norm of the confusion matrix by the trace of C⇤SCS. We
can now focus on the value of Tr(C⇤SCS).

Tr(C⇤SCS) =
K

∑
l=1

C⇤SCS(l, l) =
K

∑
l=1

K

∑
j=1

ĉ⇤l,j ĉj,l

=
K

∑
l=1

K

∑
j=1

ĉj,l ĉj,l =
K

∑
l=1

∑
j 6=l

ĉl,j ĉl,j (3.5)


K

∑
l=1

∑
j 6=l

ĉl,j =
K

∑
l=1

∑
j 6=l

1

ml

m

∑
i=1

I(yi = l)I(H(i) = j) (3.6)

2. Note that even though the theorem is applied to the online setting in the original paper, it holds
as well for the supervised case.
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Most of the previous equalities are simple rewritings of the involved terms, while
the inequality comes from the fact that the entries of the confusion matrix CS are at
most 1. We have now an upper bound of the norm depending only on the entries of
the confusion matrix.

The drawback of this bound is the presence of the indicator function, which is
not optimization friendly. One way to handle this difficulty is to replace the indicator
function with loss functions defined over the two classes corresponding to the indices
l and j in the bound.

For a given classifier h and a sample S, let `l,j(h, x) be the loss of h choosing class
j over class l for the example x, such that 8(x, y) 2 S and 1  l, j  K, 0  I(h(x) 6=
y)  `l,j(h, x). The bound on the confusion matrix can be now expressed using loss
functions:

Tr(C⇤SCS) 
K

∑
l=1

∑
j 6=l

1

ml

m

∑
i=1

I(yi = l)I(H(i) = j)

=
m

∑
i=1

∑
j 6=yi

1

myi

I(H(i) = j) 
m

∑
i=1

∑
j 6=yi

1

myi

`yi ,j(h, xi).

(3.7)

The resulting bound is a sum over two penalization terms for all the learning
examples: the first term is 1

myi
and the second one represents the newly introduced

loss function. The first term is often used in the imbalanced classes problems in order
to simulate the resampling effect over the training sample. Indeed, by multiplying the
weight of an example with the inverse of the number of examples having the same
class, the distribution over the classes becomes more uniform, thus promoting all the
classes the same way. Resampling over the examples achieves the same effect, since it
aims to retain the same number of examples for each class.

The second term is common in the imbalanced classes setting, where cost-sensitive
methods — either per-class based or per-couple of classes based — have been devel-
oped. In these methods this term depends on some misclassification cost computed,
or simply given, prior to the learning phase.

Based on these observations, it follows that the last term of the bound given in
Equation 3.7 is quite similar to usual terms in optimization problems for the imbal-
anced classes setting. As such it can be seen as a common base for most imbalanced
classes learning problems, since it encompasses both resampling and penalization, as
advocated in Zhou and Liu (2010). Motivated by these results, and as an intermediate
conclusion, we strongly think that minimizing the operator norm of the confusion
matrix defined as in Equation 3.1, yields a good strategy for the imbalanced classes
problem.

3.2.2 Towards a boosting method

Let H be an ensemble of classifiers and S = {xi, yi}m
i=1 a learning sample. Our

goal is to find a classifier Ĥ which can be written as a weighted combination of all
the classifiers of H and at the same time, it minimizes the norm of the confusion
matrix. That is:

Ĥ = argmin
H2H

kCSk2, (3.8)

where:
H(·) = argmaxl2{1,··· ,K} ∑

h2H
ahI(h(·) = l) and ah ≥ 0, 8h. (3.9)
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In order to make use of the bound given in Equation 3.7, we need to choose loss
functions adapted to our problem. We start off by defining score functions for each
example i and each class l as follows:

fH(i, l) = ∑
h2H

ahI(h(xi) = l), 8i 2 {1, · · · , m}, l 2 {1, · · · , K}.

These simple functions measure the importance that the classifier H gives to each
class for a given example. Since the prediction rule is based on the argmax (Eq. (3.8)),
H returns the class with the highest score. If H correctly classifies an example, than
the score given to its true class is higher than the score given to any of the other
classes. Hence a good idea for the loss functions would be to consider the difference
between the score given to a class and the one given to the true class:

`yi ,j(H, xi) = fH(i, j)− fH(i, yi), 8j 6= yi.

If an example is correctly classified then the loss is negative for all the classes j,
while if it is misclassified, then for at least one of the classes, the loss is positive. This
observation reveals to be the main downside of these losses, since it implies that the
requirements for the bound in Equation 3.7 might not be met. That is, it is possible
that for some j 6= y, `l,j(h, x)  I(h(x) 6= y). This is why we propose to consider the
exponential losses instead, and to rewrite our goal Eq. 3.8 as:

Ĥ = argmin
H2H

m

∑
i=1

∑
j 6=yi

1

myi

exp
⇣

fH(i, j)− fH(i, yi)
⌘

.

Finding the optimal solution for the last equation can be quite challenging, since
it depends on the size of H and the weights associated to each classifier in H. A
popular approach when dealing with ensembles of classifiers is to use an iterative
greedy method based on the boosting framework. The goal of such methods is to
select at each iteration the best classifier h 2 H — and its weight a — that minimizes
the loss. The main advantage of boosting methods resides in the fact that the selected
classifier h, and generally all the classifiers in H, need only to perform slightly better
than random guessing. They are also known as weak classifiers.

Suppose that at iteration t, the classifiers h1, · · · , ht 2 H have been chosen in
order to minimize the loss of Ht(·) = argmaxl2{1,··· ,K} ∑s=1···t asI(hs(·) = l). In the
following iteration, the chosen classifier would be the one verifying:

ht+1, at+1 = argmin
h2H,a

m

∑
i=1

∑
j 6=yi

1

myi

exp
⇣

ft+1(i, j)− ft+1(i, yi)
⌘

, (3.10)

where ft+1(i, j) = ∑s=1···t asI(hs(xi) = j) + aI(h(xi) = j)
This last optimization problem is quite similar to the one defined for Ad-

aBoost.MM Mukherjee and Schapire (2011). As such, the method proposed in this
paper is an extension of AdaBoost.MM to the imbalanced classes setting.

In order to use the boosting framework given in Mukherjee and Schapire (2011),
we need to define a cost matrix D so that 8i, and 8l 6= yi, D(i, l)  D(i, yi). Due
to the similarity of our minimization problem 3.10 and AdaBoost.MM’s, the most
straightforward choice for D is the following :

Dt(i, l)
de f
=

8

>

>

<

>

>

:

1
myi

exp( ft(i, l)− ft(i, yi)) if l 6= yi

− ∑
j 6=yi

1
myi

exp( ft(i, j)− ft(i, yi)) otherwise.
(3.11)
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3.2.3 The Confusion Matrix Boosting Algorithm

The pseudo-code of the proposed method named CoMBo is given in Algorithm 4.
The inputs : a training sample S, the total number of iterations T and a weak learner
W . During the initialization step, the score functions f are set to zero and the cost
matrix D is initialized accordingly.

The training phase consists of two steps: the weak learner W is used in order
to build the weak classifiers, and the predictions of ht are used to update the cost
matrix Dt. At each round t, W takes as input the cost matrix Dt and returns a weak
classifier ht. The cost matrix is then used to compute the weight at for ht, which can
be seen as the importance given to ht. at depends on the edge dt obtained by ht over
the cost matrix Dt. For boosting methods based on AdaBoost, the edge measures the
difference of performances of the classifier and of random guessing (Mukherjee and
Schapire 2011). The underlying idea is that the better ht performs over Dt, the greater
the edge dt and at.

The update rule for the cost matrix is designed so that the misclassification cost
is increased for the examples that are misclassified by ht, while it is decreased for the
correctly classified ones. This forces the weak learnerW to focus on the most difficult
examples. Then, using the term 1/myi

in the update rule, allows the misclassification
cost of an example to depend not only on the ability to correctly classify a hard
example, as in AdaBoost.MM, but also on the number of examples of S having the
same class yi.

The output hypothesis is a simple weighted majority vote over the whole set of
weak classifiers. So, for a given example, the final prediction is the class that obtains
the highest score.

3.2.4 Bounding the loss

First off we recall the minimal weak learning condition as given in Mukherjee and
Schapire (2011).

Definition 8 Let Deor be the space of all cost matrices D which put the least cost on the correct label, that is
8(xi, yi), l, D(i, yi)  D(i, l). Let Beor

g be the space of baselines B which are g more likely to
predict the correct label for every example (xi, yi), i.e. 8l 6= yi, B(i, yi) ≥ B(i, l) + g. Then,
the minimal weak learning condition is given by :

8D 2 Deor, 9h 2 H : D · 1h  max
B2Beor

D · B, (3.12)

where H is a classifier space, and 1h is the matrix defined as 1h(i, l) = I[h(i) = l].

Much as in the case of MuMBo given in Chapter 2, we consider a particular case
of baselines, which are the closest to the uniform. These baselines, noted Ug, have
weights (1 − g)/k on incorrect labels and (1 − g)/k + g on the correct ones. The
weak learning condition is given by :

D · 1h  D ·Ug (3.13)

All of the weak classifiers returned by WL during the training phase verify this weak
learner condition.

The following result shows that the general loss decreases with each iteration,
provided that the weak classifier ht satisfies the weak learning condition Eq. 3.13.
This result and its proof are fairly similar to the ones given for AdaBoost.MM.
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Algorithm 4: CoMBo : Confusion Matrix BOosting

Given

— S = {(x1, y1), ..., (xm, ym)} where xi 2 X, yi 2 {1, · · · , K}
— T the number of iterations, WL a weak learner
— 8i 2 {1, · · · , m}, 8l 2 {1, · · · , K} f1(i, l) = 0

— D1(i, l) =

( 1
myi

if yi 6= l
−(K−1)

myi
if yi = l

for t = 1 to T do

Get ht with edge dt on Dt, and at =
1
2 ln 1+dt

1−dt

where :

dt =
−∑

m
i=1 Dt(i, ht(xi))

∑
m
i=1 ∑l 6=yi

Dt(i, l)

Update D :

Dt+1(i, l) =

8

>

<

>

:

1
myi

exp( ft+1(i, l)− ft+1(i, yi)) if l 6= yi

− 1
myi

k

∑
j 6=yi

exp( ft+1(i, j)− ft+1(i, yi)) if l = yi

where ft+1(i, l) =
t

∑
z=1

I[hz(i) = l]az

end for

Output final hypothesis :

H(x) = argmax
l21,...,k

fT(x, l), where fT(x, l) =
T

∑
t=1

I[ht(x) = l]at

Lemma 2 Suppose the cost matrix Dt is chosen as in the Algorithm 4, and the returned classifier ht satisfies
the edge condition for the baseline Udt

and cost matrix Dt, i.e. Dt · 1ht
 Dt ·Udt

.
Then choosing a weight at > 0 for ht makes the loss at round t at most a factor

1− 1

2
(eat − e−at)dt +

1

2

(

eat + e−at − 2)

of the loss before choosing at, where dt is the edge of ht.

Proof. We give here a sketch of the proof, since most of the computation are similar
to the ones given in Theorem 1.

For readability reasons, let us note by Lt, and Lt(i) the following losses:

Lt =
m

∑
i=1

∑
l 6=yi

Dt(i, l) =
m

∑
i=1

∑
l 6=yi

1

myi

exp( ft(i, l)− ft(i, yi)) and

Lt(i) = ∑
l 6=yi

Dt(i, l) = ∑
l 6=yi

1

myi

exp( ft(i, l)− ft(i, yi)).

The weak classifier ht returned by WL satisfies the edge condition, that is:

Dt · 1ht
 Dt ·Udt

, (3.14)

with dt being the edge of ht on Dt.
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Denote S+ (resp. S−) the set of examples of S correctly classified (resp. misclassi-
fied) by ht. Using the different definitions of Dt, 1ht

and Udt
, the classification costs of

ht and Udt
are given by:

Dt · 1ht
= −∑

i2S+

Lt−1(i) + ∑
i2S−

1

myi

exp ( ft−1(i, ht(i))− ft−1(i, yi))

= −At
+ + At

−

Dt ·Udt
= −dt

m

∑
i=1

Lt−1(i) = −dtLt−1

Injecting these two costs in Eq. 3.14, we have :

At
+ − At

− ≥ dtLt−1. (3.15)

Taking a closer look at the drop of the loss after choosing ht and at, we have:

Lt−1 − Lt = ∑
i2S+

Lt−1(i)(1− e−at) + ∑
i2S−

1

myi

exp(∆ ft−1(i, ht, yi))(1− eat)

= (1− e−at)At
+ − (eat − 1)At

−

=

✓

eat − e−at

2

◆

(At
+ − At

−)−
✓

eat + e−at − 2

2

◆

(At
+ + At

−)

where ∆ ft−1(i, ht, yi)) = ft−1(i, ht(i))− ft−1(i, yi).
The result in 3.15 gives a lower bound for At

+ − At
−, while At

+ + At
− is upper-

bounded by Lt−1. Hence,

Lt−1 − Lt = ∑
i2S+

Lt−1(i)(1− e−at) ≥ (
eat − e−at

2
)dtLt−1 − (

eat + e−at − 2

2
)Lt−1.

Therefore, the result of the lemma:

Lt 
⇣

1− eat−e−at

2 dt +
eat+e−at−2

2

⌘

Lt−1 =
⇣

(1−dt)
2 eat + (1+dt

2 e−at)
⌘

Lt−1. (3.16)

The expression of the loss drop given in the Lemma 2 can be further simplified.
Indeed, if we choose the value of at as given in the pseudo-code of Algorithm 4, than

the loss drop is simply equal to
q

1− d2
t . Note that for the choice of dt, the arguments

given in Section 2.3 are still valid, thus obtaining the value of dt in Algorithm 4. Since

the value of d2
t is always positive,

q

1− d2
t is smaller than 1, thus the loss Lt is always

smaller than Lt−1. The following theorem resumes this result.

Theorem 4 Let d1, · · · , dT be the edges of the classifiers h1, · · · , hT returned by WL at each round of

the learning phase. Then the error after T rounds is K(K − 1)∏
T
t=1

q

1− d2
t  K(K −

1) exp
n

−(1/2)∑
T
t=1 d2

t

o

.

Moreover, if there exists a g so that 8t, dt ≥ g, then the error after T rounds is exponen-

tially small, K(K− 1)e−Tg2/2.
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3.3 Confusion matrices in the PAC-Bayesian framework

In Section 3.2, we used the result in Corollary 2 in order to justify the use of the
empirical confusion matrix instead of the true one. However, other works have proven
a link between the true confusion matrix and the empirical one. In this section, we
briefly present results for the Gibbs classifier and the Bayes classifier in the PAC-
Bayesian setting 3. Let H ✓ YX be an ensemble of classifiers, and P a distribution
defined over H. The Gibbs classifier GP is a stochastic classifier which predicts the
label of x 2 X by first drawing h 2 H according to P and then returning h(x). On the
other hand, the Bayes classifier in the PAC-Bayesian setting, we’ll denote it BP , is the
majority vote classifier weighted by P . The Bayes classifier is similar to the majority
vote defined in Eq. 3.9, where for a given classifier h 2 H, ah is the probability of
choosing h according to P .

The goal of PAC-Bayesian methods is to find a posterior distribution Q leading
to good generalization results, given a prior distribution P and a training set S. Let

CGP and CGP
S denote the true and empirical confusion matrix of the Gibbs classifier

GP . In Morvant et al. (2012), we show the following bound on the norms of the two
matrices:

Theorem 5 Let X be the input space, Y = {1, . . . , K} the output space, D a distribution over X⇥Y (with
Dm the distribution of a m-sample) and H a family of classifiers from X to Y. Then for every
prior distribution P over H and any d 2 (0, 1], we have:

PS⇠Dm

(

8Q on H, kCGQk  kCGQ
S k+

s

8K

m−−8K

h

KL(Q||P) + ln
⇣m−

4d

⌘i

)

≥1− d.

where m− = miny=1,...,K my is the minimal number of examples from S which belong to the
same class, and KL in the Kullback-Leibler divergence between distributions Q and P defined
as:

KL(Q||P) = Eh⇠logQ
Q(h)
P(h) .

Proof. Deferred in Section A.5, page 112.

The following proposition gives the relation between the norm of the Gibbs clas-
sifier’s confusion matrix and the Bayes classifier’s one.

Proposition 1 Let K ≥ 2 be the number of classes. Then CBQ and CGQ are related by the following inequality:

kCBQk  KkCGQk. (3.17)

The final classifier of CoMBo is a collection of several (weak) classifiers selected
from a certain H ⇢ YX. Normalizing the weights associated to the classifiers, gives a
distribution on H, similar to the posterior distribution Q in Theorem 5. As pointed
out, the final classifier of CoMBo is similar to the Bayes classifier and, as a conse-
quence, Equation 3.17 coupled with Theorem 5 gives a PAC-Bayesian bound on the
norm of the true confusion matrix for the final hypothesis of CoMBo (albeit, CoMBo
was not based on the PAC-Bayesian framework).

3. We refer the reader to the works by McAllester (1999a), Catoni (2007), Langford (2005) for more
details on the PAC-Bayesian theory and framework.
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Dataset # cls. # ex. distribution of classes Imb. ratio

New-Thyroid 3 215 150/35/30 5.00

Balance 3 625 49/288/288 5.88

Car 4 1728 1210/384/69/65 18.62

Connect 3 67557 44473/6449/16635 6.90

Nursery-s 4 12958 4320/328/4266/4044 13.17

Glass 6 214 70/76/17/13/9/29 8.44

E.coli 5 327 143/77/52/35/20 7.15

Yeast 10 1484 463/429/244/163/51/ 92.60

44/35/30/20/5

Satimage 6 6435 1533/703/1358/626/ 2.45

707/1508

Table 3.1 – Class distributions of considered UCI datasets (the last column reports the ratio between
the # of instances of the majority class and the # of instances of the minority class (imbalance ratio).)

3.4 Experimental results

3.4.1 Datasets and experimental setup

In order to compare CoMBo with other approaches, it was run on 8 imbalanced
multi-class classification datasets. They are all from the UCI Machine Learning Repos-
itory (Frank and Asuncion 2010). They exhibit various degrees of imbalance, as well
as various numbers of instances and attributes. Table 3.1 summarizes information
about these datasets.

For each dataset, we performed 10 runs of 5-fold cross-validation of CoMBo and
Adaboost.MM with a low-size decision tree as a base learner (W) and T = 200, and
we averaged the results. Two kinds of results are reported: advanced accuracy perfor-
mances are first compiled (MAUC, Gmean), then the behavior of CoMBo is compared
to AdaBoost.MM with a deeper insight on the norm of the confusion matrix.

3.4.2 Performance results

Usual performance measures of multi-class classification include MAUC (an ex-
tension of the AUC to multi-class problems, (Hand and Till 2001)), and G-mean (the
geometric mean of per-class recall values computed for all classes (Sun et al. 2006)).

Table 3.2 reports these measures for CoMBo, as well as results from two boosting-
based algorithms relying on resampling: AdaBoost.NC with oversampling (Wang and
Yao 2012), and SmoteBoost (Chawla et al. 2003). These algorithms were chosen for
comparison because they showed the best results on the considered datasets, as given
in (Wang and Yao 2012).

Looking at results in Table 3.2, CoMBo is quite promising w.r.t. current literature,
without any tuning nor trying to optimize the reported measures. Only the best re-
sults of AdaBoost.NC and SmoteBoost from Wang and Yao (2012) are reported. Except
for the dataset Satimage (the less imbalanced dataset), CoMBo challenges the other
boosting-based approaches. The advantage of preferring CoMBo over the reported
methods seems to be related to the imbalance ratio: the higher this ratio is, the more
CoMBo makes the difference, which is consistent with the aim CoMBo. It is worth
noticing that CoMBo does not need any prior initialization of the misclassification
cost matrix: it computes and adjusts the cost matrix along the learning stages, based
on the performances of the weak classifiers. In other words, CoMBo gets these good
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G-mean CoMBo AdaBoost.NC SmoteBoost

Car 0.967± 0.023 0.924± 0.024 0.944± 0.031
Balance 0.675± 0.088 0.321± 0.173 0.000± 0.000
New-Thyroid 0.914± 0.081 0.927± 0.056 0.940± 0.057
Nursery-s 1.000± 0.001 0.967± 0.006 0.996± 0.003
Ecoli 0.784± 0.066 0.790± 0.062 0.803± 0.059
Glass 0.431± 0.0.375 0.578± 0.249 0.561± 0.343
Satimage †0.825± 0.012 0.881± 0.009 0.898± 0.010
Yeast 0.107± 0.216 0.237± 0.270 0.140± 0.240

MAUC CoMBo AdaBoost.NC SmoteBoost

Car 0.993± 0.003 0.982± 0.005 0.997± 0.000

Balance 0.884± 0.032 0.704± 0.037 0.703± 0.027
New-Thyroid 0.996± 0.010 0.983± 0.013 0.988± 0.003
Nursery-s 1.000± 0.000 0.998± 0.000 0.999± 0.000
Ecoli 0.961± 0.015 0.957± 0.002 0.963± 0.004
Glass 0.947± 0.027 0.881± 0.009 0.925± 0.009
Satimage †0.976± 0.003 0.990± 0.000 0.992± 0.000
Yeast 0.861± 0.025 0.857± 0.004 0.847± 0.003

Table 3.2 – Comparison with algorithms addressing classification within imbalanced datasets. Means
and standard deviations are given over 10 runs of 5-fold cross-validations. Except for CoMBo, the

results are the best retrieved from Wang and Yao (2012), which analysed four algorithms. Results in
boldface indicate a significantly best measure of the algorithm over all the others, according to the
sudent T-test with a confidence of 95%; the † attached to the result on Satimage indicates that

CoMBo is significantly worse than all other reported methods.

results without any other parameters than the weak algorithm, and the number T of
rounds.

3.4.3 Improvements from Adaboost.MM

One may think that the good results of CoMBo are partly due to the fact that
it is based on the theory underlying Adaboost.MM. Therefore, it is worth exploring
the way CoMBo differs from Adaboost.MM in the processing of imbalanced datasets
through the norm of the confusion matrix. Results are presented Table 3.3: the con-
fusion matrix norms are reported, together with the accuracies, the MAUC and the
G-mean.

These results confirm the good results of CoMBo on imbalanced datasets as ev-
idenced by the low values of the norms. They illustrate the impact of minimizing
the norm of the confusion matrix. Let us note that the accuracy with CoMBo tends
to be a bit worse than the one of Adaboost.MM, although this was to be expected
since CoMBo does not tend to maximize the overall accuracy, but rather is aims to
achieve the same accuracy for each class. Meanwhile, as expected, the norm of the
confusion matrix is always smaller with CoMBo. The performances of the classifier
trained with CoMBo is smoothed throughout all the classes, whatever the number of
examples they feature in the dataset. That way, majority classes are not as favored as
they usually are in multi-class approaches.

On non-reported datasets, computed measures for both algorithms are very close.
On reported results, we observe that the lower the confusion matrix norm, the higher
the gain on MAUC and on G-mean. These results let us think that there might be no
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dataset CoMBo AdaMM CoMBo AdaMM
kCk kCk accuracy accuracy

Balance 0.460± 0.097 0.559± 0.112 0.856± 0.039 0.875± 0.032

Car 0.082± 0.064 0.116± 0.080 0.974± 0.009 0.977± 0.012

Connect 0.308± 0.015 0.670± 0.040 0.728± 0.015 0.805± 0.009

New-Thyroid 0.194± 0.158 0.186± 0.157 0.949± 0.033 0.952± 0.033

Nursery-s 0.002± 0.004 0.003± 0.006 1.000± 0.000 1.000± 0.001

Yeast 0.815± 0.150 1.101± 0.194 0.572± 0.025 0.577± 0.025

G-mean G-mean MAUC MAUC

Balance 0.675± 0.088 0.566± 0.190 0.884± 0.032 0.855± 0.039

Car 0.967± 0.023 0.954± 0.034 0.993± 0.003 0.988± 0.004

Connect 0.703± 0.013 0.497± 0.035 0.863± 0.008 0.852± 0.009

New-Thyroid 0.914± 0.081 0.915± 0.075 0.996± 0.010 0.996± 0.005

Nursery-s 1.000± 0.001 0.999± 0.002 1.000± 0.000 1.000± 0.000

Yeast 0.107± 0.216 0.000± 0.000 0.861± 0.025 0.847± 0.003

Table 3.3 – Adaboost.MM vs. CoMBo. In non-reported datasets, results of both algorithms are
equivalent). Means and standard deviations are given over 10 runs of 5-fold cross-validations. Results

in boldface indicate a significantly best measure according to the sudent T-test with a confidence of
95%.

gain using CoMBo instead of Adaboost.MM in other cases, but there is no loss either
(the computational times are the same).

0

@

0.000 0.147 0.068
0.146 0.000 0.169
0.056 0.203 0.000

1

A

0

@

0.000 0.011 0.055
0.656 0.000 0.179
0.246 0.048 0.000

1

A

CoMBo Adaboost.MM

Table 3.4 – Confusion matrices obtained with Adaboost.MM and CoMBo, on the dataset Connect.

Finally, Table 3.4 illustrates what actually occurs on the dataset Connect 4. Class
1 corresponds to the majority class, while class 2 and 3 are the minority ones. The
errors on minority classes 2 (83.5%) and 3 (29.4%) are high with Adaboost.MM which
promotes the majority class (only 6.6% of errors). These differences are reduced with
CoMBo: the error on the majority class reaches 20.2% while errors on minority classes
decrease respectively to 31.5% and 25.9%. However, the real error is still higher with
CoMBo: misclassified examples of the majority classes getting more numerous, it
directly impacts the overall error rate. Such a behavior of CoMBo points out that it
equally considers each class during the learning process, independently from any
tricky misclassification cost.

3.4.4 G-mean, MAUC and CoMBo

G-mean The results given in Table 3.3 show that the difference between the norm
of the confusion matrices obtained for CoMBo and AdaBoost.MM is related to the
differences of G-means: the bigger the difference of the norms, the better the per-
formances of CoMBo w.r.t. the G-mean. This is mainly due to the aforementioned
mentioned smoothing effect achieved from CoMBo on the confusion matrix. In Section

4. The dataset Connect was chosen for illustration because of readability (it only features 3 classes)
and because it is much imbalanced.
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3.1.2, when we introduced the confusion matrix and the operator norm, we argued
that in the binary case, the norm of the confusion matrix is equal to the largest value
between FPrate and FNrate and an iterative minimization process of the norm would
achieve a similar value for FPrate and FNrate. The generalization of the confusion ma-
trix’s norm to the multi-class case can be seen as a generalization of this fact: the
value of the norm depends on the highest values contained in the matrix. Likewise,
an iterative process minimizing the norm of the confusion matrix (which is the case
of CoMBo) would achieve lower values for all the entries of the confusion matrix. In
other words, CoMBo favors matrices that contain small values for all the entries, over
matrices that contain high values for some entries and close-to-zero values for the
others 5. If we calculate the recalls for the classes — which correspond to the diagonal
entries in the probabilistic confusion matrices —, then CoMBo achieves roughly the
same recall for each class.

In order to illustrate this, let us reconsider the example given in Table 3.4. First,
recall that the G-mean is defined as the geometrical mean of al the per-class recalls.
In this case, CoMBo achieves the following recalls for the three classes: 0.785 (class
1), 0.685 (class 2) and 0.741 (class 3). On the other hand, AdaBoost.MM achieves
these recalls: 0.934 (class 1), 0.166 (class 2) and 0.706 (class 3). As previously noted,
AdaBoost.MM is better than CoMBo for class 1, but is way worse for class 2. However,
contrary to AdaBoost.MM, CoMBo is more constant in its results over the classes,
since each class has roughly the same recall. A direct consequence of this is that the
G-mean for CoMBo is greater than AdaBoost.MM’s, which is weighed down from the
recall of class 2.

Although the link between the minimization of the confusion matrix norm and
that of G-mean seem immediate from this example, a formal proof is still lacking.

MAUC In the binary setting, the Area Under (the ROC) Curve (AUC) is computed
from the ranking of all the training example based of the scores they obtain for the
positive class. The examples that obtain the highest scores are ranked at the top, while
the lowest scores are ranked at the bottom. The highest value for AUC is obtained
when all the positive examples are on top of the negative examples. The multi-class
extension of AUC, MAUC, is based on the same principle. However, since there are
multiple classes, MAUC is computed from as many ranking as there are classes: one
ranking per class and the goal is to have on top the examples of the corresponding
class. The highest value for MAUC is obtained when, for each class, the examples of
the corresponding class are on the top.

In their paper, Mukherjee and Schapire (2011) show that among the most popular
multi-class boosting algorithm, the one that has the best weak learning condition in
their framework is AdaBoost.MR. Recall that AdaBoost.MR uses weak learners that
return a score for each class and the prediction is based on the ranking of the classes
w.r.t. the scores. The goal of AdaBoost.MR is to learn a (final) classifier that, for each
example, ranks its true class in the top position. It implies that their framework en-
courages methods that give the highest score to the true class, while at the same time
maximizing the difference between the true class and the others 6. This also applies
to CoMBo. In algorithm 4 (CoMBo), the final hypothesis is a weighted majority vote
of all the weak classifiers learnt during the training phase. Another way to look at

5. Usually, the higher values are in the lines corresponding to the minority classes, while the close-
to-zero ones correspond to the majority classes.

6. This last part is also related to the notion of margin in the multi-class setting and the fact that
Theorem 2 holds for most multi-class boosting methods.
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setting algorithm error V1 V2 V3 V4 V5

test (gold)
AdaBoost

# 40 43 107 104 82

% 26.3 28.3 70.4 68.4 53.9

CoMBo
# 46 42 111 116 92

% 30.3 27.6 73.0 76.3 60.5

test (ASR)
AdaBoost

# 65 55 107 104 82

% 42.7 36.2 70.4 68.4 53.9

CoMBo
# 70 62 111 116 92

% 46.1 40.8 73.0 76.3 60.5

Table 3.5 – Classification errors for CoMBo and AdaBoost on the five views of DECODA. Results in
boldface indicate when one algorithm is better than the other.

this hypothesis is that for a given example, a score is computed for each class and the
predicted class is the one with the highest score: if we rank the classes based on their
scores, the prediction is the class on the top. CoMBo achieves perfect accuracy if, for
all the examples, their true class in on the top of the ranking, that is, for a given class,
ranking the examples based on the scores for that class, would put the examples of
that class in the top positions. Since this is also true for the other classes, it implies
that in this case the MAUC attains its highest value. Therefore, at each CoMBo (and
AdaBoost.MM) chooses a classifier that allows the weighted combination (of all the
learnt classifiers) to be a step closer to the perfect ranking.

Even though this is by no means a formal proof of the link between CoMBo
(and AdaBoost.MM) and the minimization of the MAUC, we think that it provides a
fair explanation for the results observed in Table 3.2, where CoMBo achieves better
MAUC than the other methods in most cases. As for the results in Table 3.3, the
fact that CoMBo performs better than AdaBoost.MM (MAUC-wise) is linked to the
smoothing effect obtained from the minimization of the confusion matrix’s norm (as
discussed for the G-mean).

3.5 An imbalanced approach to DECODA

In this section, we tackle the imbalanced nature of the DECODA corpus, described
in Section 1.5 (page 22). As shown in Table 1.1, DECODA is obviously an imbalanced
dataset; some classes are more represented than the others (etfc, itnr versus aapl, vgc).
As such, we use it to test CoMBo and compare it to AdaBoost. Since both methods
are mono-view ones, we test both algorithms on each one of the views separately.
Table 3.5 resumes the results obtained for both the gold and ASR settings.

Firstly, the results given in Table 3.5 confirm that the views defined for DECODA
are of different strengths. As expected the two content based views (the first and
the second view) are clearly stronger than the other ones, and both AdaBoost and
CoMBo perform better on these views. Secondly, the results for the third, forth and
fifth views are the same for the gold setting and for the ASR one. Looking back at their
descriptions in Section 1.5.2, this was to be expected, since neither of them is really
affected from the ASR system. Indeed, the speakers’ turns (third view) are directly
computed from the audio signal, same as the parameters computed for the forth view;
the named entities of the fifth view are generally given to the ASR. Finally, comparing
the results of AdaBoost and CoMBo shows that AdaBoost outperforms CoMBo on
nearly all the cases. This also was to be expected, since CoMBo tends to have a smaller
accuracy compared to methods such as AdaBoost that directly minimize the risk.
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Setting CoMBo AdaB CoMBo AdaB CoMBo AdaB
MAUC MAUC G-mean G-mean kCk kCk

view 1 (gold) 0.901 0.912 0.618 0.0 0.501 0.730

view 2 (gold) 0.898 0.884 0.602 0.448 0.630 0.599

view 3 (gold) 0.548 0.529 0.0 0.0 1.357 1.556

view 4 (gold) 0.539 0.559 0.0 0.0 0.896 1.359

view 5 (gold) 0.789 0.784 0.355 0.0 0.832 1.141

view 1 (ASR) 0.839 0.855 0.476 0.0 0.684 0.780

view 2 (ASR) 0.828 0.804 0.507 0.217 0.621 0.829

view 3 (ASR) 0.548 0.529 0.0 0.0 1.357 1.556

view 4 (ASR) 0.539 0.559 0.0 0.0 0.896 1.359

view 5 (ASR) 0.789 0.784 0.355 0.0 0.832 1.141

Table 3.6 – The MAUC, G-mean and confusion matrix’s norms for AdaBoost and CoMBo on
DECODA. Results in boldface indicate when one algorithm is better than the other.

In order to observe the impact of CoMBo, let us have a look at Tables 3.6 and 3.7,
which give the MAUC, G-mean and confusion matrix’s norm, and the error rates for
each of the classes and for the classifiers learnt on the first view of DECODA. Ta-
ble 3.6 shows that the results for the MAUC for both methods are surprisingly close,
even though CoMBo has a lower accuracy than AdaBoost. On the other hand, CoMBo
outperforms AdaBoost on G-mean and on the norm of the confusion matrix, suggest-
ing that CoMBo recognizes better the minority classes than AdaBoost. This is further
confirmed in the results given in Table 3.7. Indeed, while AdaBoost performs better
for majority classes, such as timetable/traffic info, itinerary, CoMBo is more adapted for
minority classes, as phone call, horr (view 1) and vgc (view 2).

3.6 Conclusion for this chapter

3.6.1 Discussion

The framework proposed in this chapter raises several questions and perspectives,
some of which will be discussed in this section.

Some potential extensions consist in using the result obtained in Equation 3.7
in order to derive other cost sensitive algorithms. As briefly discussed in Section
3.2, the optimization term depends on the different loss functions defined over the
classes. The only restriction on these losses is that their value should be greater than
the one returned by the indicator function. This implies that it is possible to embed
various informations into the loss functions, as long as they respect this condition.
For instance, it is easy to include in the proposed method penalization terms defined
over two classes simply by replacing the loss functions considered in Section 3.2 with
`yi ,j(h, xi) = cyi ,j exp( fH(i, j)− fH(i, yi)), where cyi ,j is a penalization term given as a
prior or coming from a cost matrix.

It is interesting to notice that the result in Equation 3.7 regroups optimization
criterions used in most of the boosting-based methods for the imbalanced classes,
such as the ones by Ting (2000) and Sun et al. (2007). It also shows that these meth-
ods implicitly minimize the norm of the confusion matrix — which, as advocated in
this chapter, is a fair optimization criterion for the imbalanced classes problem —,
thus giving a better (theoretical) insight on why these methods are adapted for the
imbalanced problem.
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setting test (gold) test (ASR)
algorithm AdaBoost CoMBo AdaBoost CoMBo

error # % # % # % # %

view 1

aapl 12 80.0 5 33.3 14 93.3 11 73.3

etfc 3 7.3 9 21.9 13 31.7 15 36.6
horr 4 80.0 3 60.0 4 80.0 3 60.0

itnr 0 0.0 2 9.5 6 28.6 7 33.3
nvgo 7 31.8 6 27.3 12 54.5 10 45.5

objt 3 25.0 5 41.7 4 33.3 4 33.3
pv 0 0.0 1 10.0 3 30.0 3 30.0
vgc 5 45.5 5 45.5 5 45.5 8 72.7

other 6 40.0 10 66.7 4 26.7 9 60

total 40 26.3 46 30.3 65 42.7 70 46.1

view 2

aapl 10 66.7 8 53.3 12 80.0 10 66.7

etfc 3 7.3 5 12.2 3 7.3 12 29.3
horr 4 80.0 3 60.0 3 60.0 3 60.0
itnr 1 4.8 2 9.5 4 19.0 6 28.6

nvgo 6 27.3 7 31.8 7 31.8 9 40.9
objt 3 25.0 2 16.7 4 33.3 3 25.0

pv 3 30.0 3 30.0 4 40.0 6 60.0
vgc 6 54.5 6 54.5 9 81.8 7 63.6

other 7 46.7 6 40.0 7 46.7 6 40

total 43 28.3 42 27.6 55 36.2 62 40.8

Table 3.7 – Per class classification errors for CoMBo and AdaBoost on the first view of DECODA.
Results in boldface indicate when one algorithm is better than the other.

Motivated by the theoretical and experimental results — think of the difference
between the estimated error of the proposed method and AdaBoost.MM’s — other
works will be focussed on finding tighter bounds for the operator norm of the confu-
sion matrix. Depending on the singular values computed from the confusion matrix,
the bound given in Equation 3.7 can be quite loose. Finding a tighter bound would
then be a first step towards a more efficient method in minimizing both the risk and
the norm of the confusion matrix alike.

Continuing on the same line of thought, an important question that arises from
the proposed framework is the following: is it possible to obtain similar results for
other norms? Even though minimizing the various norms of the confusion matrix
may be the same thing due to the equivalence between the norms, the main difference
consists in whether it is possible to find an analytical expression of the norm. Some
of the considered norms can be the l1−norm, entry-wise norms or even more exotic
ones.

A second question that naturally comes to mind is if it is possible to consider
other definitions for the confusion matrix, such as loss-based matrices, where the
entries are replaced by loss functions. And more generally, it would be interesting
to see if there exists a relationship between the choice of the confusion matrix and
choice of the norm to be minimized.

Finally, based on the empirical results, we think that the norm of the confusion
matrix is quite an useful tool for measuring the performance of a model in the multi-
class and/or imbalanced classes setting, alongside classical measures such as MAUC,
G-mean, F-measure, etc.
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3.6.2 Conclusion

The contributions of this chapter are two-fold: firstly, we make use of the norm of
the confusion matrix as an error measure in order to derive a unifying bound for most
cost-sensitive approaches; secondly, using the bound as a starting point, we show step
by step how to obtain an extension of AdaBoost.MM for the imbalanced classes frame-
work. Due to the nature of the considered confusion matrix, we used an upper bound
of the matrix’s operator norm, namely the entry-wise l1-norm (Equation 3.6); as an
intermediate step the (squared) Frobenious norm was used (Equation 3.5). Empirical
results show that the proposed method compares favorably to other cost-based boost-
ing methods. These performances are both due to the inherited boosting framework
— which is more adapted to the multi-class problems than other frameworks — and
to the weighting scheme obtained from the choice of adapted loss functions in Sec-
tion 3.2. Although much work remains to be done, as discussed in Section 3.6.1, the
proposed method is, to the best of our knowledge, the first boosting based approach
that aims to actively minimize the norm of the confusion matrix, by including it in
the learning process.
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When introducing the notion of views in Section 1.3, we pointed out three different
types of views: strong, weak and imbalanced views. While the first two views are

related to the information in the input space, the third type of view is mainly related
to the information in the output space, and it englobes both the notion of weak view
(views that recognize only a few classes) and that of imbalanced classes (in a view,
some classes are more represented than the others). Chapter 2 introduced MuMBo,
a multi-view boosting method, designed to deal with the first two type of views by
installing and promoting the cooperation between the views. Chapter 3 introduced

71
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a novel framework for the imbalanced classes problem, which rely on the operator
norm of the confusion matrix of a given classifier.

In this chapter we tackle the imbalanced views problem by adding the notion
of cooperation between the views in the imbalanced framework of Chapter 3, thus
aiming to get the best of both worlds. We start by defining a multi-view classifier
in Section 4.2.1 which depends on per-class cooperation coefficients computed for
all the views. Next we make use of the framework of Chapter 3, that is, we use the
norm of the confusion matrix as an optimization criterion. This allows us to derive
several ensemble learning methods, mainly presented in Section 4.2.3, which rely
upon the aforementioned cooperation coefficients. In Section 4.3, we present a multi-
view version of CoMBo, dubbed µCoMBo, which deals with imbalanced views, and
its empirical performances on the Arrhythmia dataset are given in Section 4.4. The
performances of µCoMBo on the DECODA corpus are briefly described in Section
4.5.

Section 4.7 delves into the links between MuMBo (algorithm 3) and µCoMBo,
leading the way to the discussions, conclusions and future works proposed in Section
4.8.

4.1 Embedding view cooperation into the confusion matrix

The goal of multi-view methods is to exploit the information contained in different
views in order to improve the performances of the resulting classifier. In chapter 2,
we present an algorithm — namely MuMBo, Algorithm 3 — whose goal is to point
out the best examples for each view, that is, examples that are easier to recognize for
classifiers trained on that view. This selection was mainly based on the assumption
that, due to the different distributions on each view, some of the examples may be
outliers — data that are distant form the rest of the data — in one view but not in the
others. As such MuMBo uses only the information given by the views that are related
to the input space, without taking into consideration the classes of the examples.
However, in some applications, such as image and/or text categorization, it would
be interesting to take into account information relative to the output space. In this
chapter, we are mainly interested in two types of output space information:

— the first type regroups all the cases where a view is most appropriate for a
class due to the embedded information,

— the second type delves into cases where each view represents an imbalanced
classes problem.

In order to illustrate the first type of information, let us consider the following ex-
ample (figure 4.1): the goal is to classify the images in gorilla, polar bear and rabbit and
the considered views are the color histogram (figure 4.1a) and the shapes contained
in the images (figure 4.1b). Both of the views are by no means weak ones (see section
2.2 for the definition of weak view), however each is more appropriated for training
classifiers specialized in one class. Intuitively, the information contained in the first
view should be more appropriate for recognizing the gorilla class, since polar bears
and rabbits can be white, while gorillas are mainly black. It is safe to assume that the
easier to recognize in the second view are the examples of class rabbit (think of the
ears and the lack of donkey).

As an example for the second type, think of the cases where due to the lack of
information, some examples contain only the descriptions of a subset of views. For
example, in automatic medical diagnosis, the results of the different medical trials are
excellent candidates for views. However, sometimes due to the number of trials, for
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(a) The original images of gorilla, polar bear and
rabbit (the first view)

(b) The animals are separated from the background
(the second view)

Figure 4.1 – Examples of images form the classes gorilla, polar bear and rabbit taken from the Animal
with Attributes dataset Lampert et al. (2009).

some patients only a limited number of views are available. This implies that each
view may be optimal only for the detection of a small number of diseases.

In both examples, the information contained in one view may not be sufficient
for training a classifier that performs equally on the ensemble of classes. However
they both suggest that promoting some sort of cooperation between the (classifiers
learnt on the different) views may be a good strategy in order to overcome these
shortcomings. More precisely, for the first type of information, the idea is to install
some sort of cooperation between the views — à la MuMBo — so that each view
can deal with the most appropriate classes according to the informations it contains.
The second type of information boils down to the imbalanced classes problem, which
was mainly studied in chapter 3. Taking the best of both worlds in order to build
classifiers that perform better over the whole set of classes (output space) is the goal
of the methods presented in this chapter.

The intuition behind the proposed methods is to transpose the cooperation be-
tween the different views from the input space (MuMBo) to the output space, while
at the same time dealing with the imbalanced classes problem (CoMBo). The first
method, called Carako, is an ensemble learning method similar to the late fusion
approach, where one classifier is learnt for each view and the goal is to find the op-
timal combination of the classifiers. On the other hand, the second method, called
µCoMBo, uses a boosting process similar to MuMBo, where one distribution is main-
tained per view during the learning phase, and the final classifier is a combination
of all the weak classifiers. Both methods share a common base with CoMBo, that is,
tackling the imbalanced classes problem through the minimization of the operator
norm of the confusion matrix of the final classifier. This classifier is a generalization
of the final hypothesis given in algorithm 3 and algorithm 4, where different weights
depending on the predicted class is affected to the classifiers, instead of an unique
weight, independently from the prediction.
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4.2 Ensemble methods for cooperation-embedded confusion

matrix’s norm minimization

The goal of the methods presented in this section is to minimize the norm of
the confusion matrix where the classifier is learnt in a multi-view setting. The first
step consists in defining a multi-view classifier which takes into consideration the
classifiers learnt on each view. Next, proceeding in a similar fashion as in chapter 3,
we derive a bound on the norm of the confusion matrix. This bound is used as a base
for the first method. Next we replace the classifiers learnt on each view by boosted
classifiers, that is, classifiers learnt through a boosting process. This allows to derive
a boosting method, where at each iteration one weak classifier is learnt per view. In
the last part of this section, we prove the boosting properties of the second method.

4.2.1 A multi-view classifier and its optimization problem

The main motivation behind the methods presented in this chapter is to trans-
pose the cooperation between the views from the input space to the output space.
In MuMBo, the cooperation is promoted through the examples during the training
phase. On the contrary, within the output space, in this case the cooperation should
be carried by the classifiers/predictors. Intuitively, the most straightforward solution
is to enforce the cooperation during the building process of the classifier, so that it
can embed information from all the views. A viable solution is then to consider a
weighted majority classifier build from predictors learnt on the views. For example:

H(x) = argmaxc21···K
v

∑
j=1

b jI[hj(x) = c],

where H is the final classifier, v the number of views and hj, b j ≥ 0 are the classifier
learnt on view j and its weight.

Although this majority classifier takes into consideration the predictions of all
the views, it associates a unique weight to each classifier, independently from the
prediction and/or the ability of that view to recognize the right class. This is why we
propose to choose a more general from for the weighted majority, where a weight is
associated to each classifier and each class. More precisely:

H(x) = argmaxc21...K

v

∑
j=1

b j,cI[hj(x) = c]. (4.1)

Compared to the previous classifier, the weights affected to each classifier j de-
pend on the label c. As such, the number of weighting coefficient is vK instead of
simply v. Note that in order to obtain the previous classifier it suffices to replace, for
a given j and for all c, b j,c by b j.

This new definition implements quite well the idea behind the cooperation be-
tween the different views on a per-class basis. Indeed, the weight associated to a
classifier for a given class can be seen as the confidence that the classifier gets right
for the examples of that class. The higher the weight, the easier it should be for the
classifier to correctly recognize the examples of that class. If the goal is to find the
most appropriate view for each class, then for each c, only one of the b j,c needs to be
positive, let’s say equal to 1. That is, the sole condition we put on the classifier is the
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following:

8c 2 {1, . . . , K},
v

∑
j=1

b j,c = 1 and 8j 2 {1, . . . , v}, b j,c 2 {0, 1}. (4.2)

In Chapter 3, we showed that using the norm of the confusion matrix as an opti-
mization criterion leads to methods for the imbalanced classes setting. Since our goal
is to deal with imbalanced views (see Section 1.3.1 for the definition of imbalanced
views), we propose to use a similar procedure as in Chapter 3, in order to obtain a
multi-view method for the imbalanced setting. Recall that in Section 3.1.2 the true
and the empirical confusion matrices were defined as follows:

Definition 9 For a given classifier h and a training set S = {(xi, yi)}m
i=1, we define the true and empirical

confusion matrices of h by respectively C=(cl,k)1l,kK and CS =(ĉl,k)1l,kK such that for
all (l, k):

cl,k
de f
=

⇢

0 if l = k
P(x,y)⇠D(h(x) = k|y = l) otherwise.

ĉl,k
de f
=

8

<

:

0 if l = k
m

∑
i=1

1

ml
I(h(xi) = k)I(yi = l) otherwise,

This definition also applies for the multi-view classifier defined in Equation 4.1,
which brings us to the minimization problem. LetHj be the classifier space associated

to view j, 8j 2 {1, . . . , v}, then the goal is to find a classifier Ĥ as in Equation 4.1 that
verifies:

Ĥ = argmin
8j,hj2Hj ,8j,c,b j,c

kCk, s.t. 8c 2 {1, . . . , K},
v

∑
j=1

b j,c = 1,

where C is the confusion matrix associated to Ĥ, and k · k is the operator norm of the
matrix (see section 3.1.2). As in section 3.2, the direct minimization of the operator
norm of the confusion matrix is quite challenging and we choose to minimize an up-
per bound of the norm. In section 3.2, we argued that an upper bound of the operator
norm is the entry-wise l1-norm, which is also an upper bound of the (squared) entry-
wise l2-norm, also known as the Frobenius norm. Finally, the optimization problem
that we’ll be dealing with in this chapter is the following:

Ĥ = argmin
8j,hj2Hj ,8j,c,b j,c

kCk1, s.t.

8c 2 {1, . . . , K}, j 2 {1, . . . , v}, b j,c 2 {0, 1} and 8c 2 {1, . . . , K},
v

∑
j=1

b j,c = 1.

4.2.2 On why binary is simpler but not the best

Equation 4.2 sets a condition for the optimization problem: the values of the coef-
ficients should be either 0 or 1 (a binary choice). The interest of this choice is that it
associates one class to one view, thus the aim is to find for each class the view that
better recognizes it. This also implies that the confusion matrix of the classifier H is
made up of lines coming from the confusion matrices of the classifiers learnt of the
views. Despite these interesting properties and the fact that the coefficients are easy
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Figure 4.2 – A diagram connecting the views and the classes they recognize.

to interpret, unfortunately the binary values for the coefficients are not always the
good choice. In order to illustrate this, let us take the following example.

Suppose that the number of classes for a given problem is five and the number
of views defined over the examples is three. Suppose also that the solution of the
learning problem associates view 1 with classes 1 and 3, view 2 with class 2 and view
3 with classes 4 and 5. As previously argued, this means that the views are respon-
sible for correctly detecting their corresponding classes. The connections between the
views and the classes are given in the diagram in figure 4.2. Now suppose that for
a given example and for whatever reasons, the classifier of view 1, h1, predicts class
2, the classifier of the second view, h2 predicts class 1 and h3 predicts class 2. Now,
computing the predictions as given in Equation 4.1, we obtain the following score for
all the classes:

class 1: b1,1I[h1(x) = 1] + b2,1I[h2(x) = 1] + b3,1I[h3(x) = 1]

= 1 · 0 + 0 · 1 + 0 · 1 = 0

class 2: b1,2I[h1(x) = 2] + b2,2I[h2(x) = 2] + b3,2I[h3(x) = 2]

= 0 · 1 + 1 · 0 + 0 · 0 = 0

class 3: b1,3I[h1(x) = 3] + b2,3I[h2(x) = 3] + b3,3I[h3(x) = 3]

= 1 · 0 + 0 · 0 + 0 · 0 = 0

class 4: b1,4I[h1(x) = 4] + b2,4I[h2(x) = 4] + b3,4I[h3(x) = 4]

= 0 · 0 + 0 · 0 + 1 · 0 = 0

class 5: b1,5I[h1(x) = 5] + b2,5I[h2(x) = 5] + b3,5I[h3(x) = 5]

= 0 · 0 + 0 · 0 + 1 · 0 = 0

So, each class obtains the same score, that is 0, which means that for this example,
the final classifier cannot decide.

This example shows that using binary values for the coefficients can be quite
tricky, since it can lead to situations where the final classifier is not able to output
a prediction. One way to bypass this, is to enforce the hypothesis on the views and
require each view to recognize perfectly well at least one class and one class to be
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recognized by at least one view. Obviously this condition is quite strong and difficult
to achieve for real-life problems. A more realistic solution is to consider continuous
values (between 0 and 1) for the coefficients, which can be seen as the confidence of a
view recognizing a class. This finally brings us to the true optimization problem for
this chapter:

Ĥ = argmin
8j,hj2Hj ,8j,c,b j,c

kCk1, s.t.

8c 2 {1, . . . , K}, j 2 {1, . . . , v}, b j,c 2 [0, 1] and 8c 2 {1, . . . , K},
v

∑
j=1

b j,c = 1. (4.3)

4.2.3 Ensemble methods based on class cooperation

As argued in section 3.2, instead of minimizing the norm of the true confusion
matrix — which depends on the unknown distribution D (see definition 9) —, we
choose to minimize the norm the empirical confusion matrix, which is a fair approxi-
mation (see Corollary 2 in Section 3.2). Using the same arguments as in Equation 3.7,
we have the following bound on the norm of the confusion matrix:

kCSk1 =
K

∑
l=1

∑
c 6=l

1

ml

m

∑
i=1

I(yi = l)I(H(i) = c)

=
m

∑
i=1

∑
c 6=yi

1

myi

I(H(i) = c) 
m

∑
i=1

∑
c 6=yi

1

myi

`yi ,c(h, xi). (4.4)

Recall that `l,k(h, x) defines the loss of h choosing class k over class l for the example
x, such that 8(x, y) 2 S and 1  l, k  K, 0  I(h(x) 6= y)  `l,k(h, x).

The classifier used in this chapter, defined in Equation 4.1, associates to an exam-
ple i the class c that obtains the highest score f(i, c), which are computed as follows:

8i 2 {1, · · · , m}, c 2 {1, · · · , K}, f(i, c) = ∑
j2 {1···v}

b j,cI[hj(i) = c].

It is easy to verify 1 that the loss exp(f(i, c) − f(i, yi)), defined for an example
(xi, yi) 2 S, satisfies the conditions put on the losses `yi ,c. Replacing these losses
in the bound given in Equation 4.4, we have:

kCSk1 
m

∑
i=1

∑
c 6=yi

1

myi

`yi ,c(h, xi)


m

∑
i=1

∑
c 6=yi

1

myi

exp(f(i, c)− f(i, yi))

=
m

∑
i=1

∑
c 6=yi

1

myi

exp
⇣ v

∑
j=1

b j,lI[hj(i) = l]−
v

∑
j=1

b j,kI[hj(i) = k]
⌘

=
m

∑
i=1

∑
c 6=yi

1

myi

exp
⇣ v

∑
j=1

h

b j,lI[hj(i) = l]− b j,yi
I[hj(i) = yi]

i⌘

(4.5)

The last expression gives rise to a first method for learning a multi-view classifier
(as defined in Equation 4.1) based on the cooperation between the different views.

1. An extensive explanation for the choice of the exponential loss and why it satisfies the conditions
is given in section 3.2.
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Algorithm 5: Carako version 1

Given :
S = {(xi, yi)}m

i=1 where xi 2 X1 ⇥ X2 ⇥ ...⇥ Xv, yi 2 {1, ..., K}

First method:
Compute b j,c, hj minimizing Equation 4.5, for 1  c  K, 1  j  v, w.r.t. the
conditions in Eq. 4.3

Second method:
Initialize :
For all 1  c  K, 1  j  v, b j,c = rand(0,1) (w.r.t. to Eq. 4.3)

while stopping criterion not met:

1. Learn h1, . . . , hv minimizing Equation 4.5 (with fixed b j,c)

2. Compute b j,c minimizing Eq. 4.5 using the classifiers from 1. w.r.t. the
conditions in Eq. 4.3

Output : H(·) = argmaxc2{1,··· ,K} ∑
v
j=1 b j,cI[hj(·) = c]

This formulation is quite similar to the most general formulation of Multiple Kernel
Learning (MKL) methods(Lanckriet et al. (2004)), where the kernels and the weighting
coefficients are leant at the same time. The differences being that in our case the
classifiers are not limited to kernels, the number of coefficients is bigger and we use
the exponential as a loss function.

Another possible approach for this method is to use a "two steps" procedure: start
by fixing some random values for the coefficients and use them to train classifiers
that minimize Equation 4.5; then use the predictions of the classifiers to compute
new values for the coefficients that that minimize 4.5. This two-steps procedure is to
be reiterated till a stopping criterion is met (for instance, the error on the training set
is zeroed or it does not change after few iterations, etc.). The pseudo code for both
methods is given in algorithm 5.

It is interesting to notice that the first method uses the cooperation between the
views both in the training phase of the classifiers and in the choice of the coefficients.
However, due to the expression of Equation 4.5, the classifiers need to be learnt at
the same time — which can make the learning procedure quite tedious — and it is
not quite clear what is the minimization goal for each classifier learnt on the views.
This is why we propose to simplify the expression of Equation 4.5 and to limit the
cooperation between the views only to the choice of the coefficients. In order to do
that, we will make use of the following theorem.

Proposition 2 Let a, b 2 R, so that a, b  1 and a + b  1, then the following inequality is true:

exp(a + b)  exp(a) + exp(b). (4.6)

Proof. In order to prove the result of the theorem, we consider two cases: when at
least one of a and b is negative, and when both a and b take values in [0, 1].
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(a) Arithmetic mean versus geometric mean,
a, b ≥ 0 (b) The graph of exp(a) + exp(1− a), a 2 [0, 1]

Figure 4.3 – The left figure shows the relation between the arithmetic and geometric mean, while the
right figure shows the exponential function.

case: a  0 and/or b  0 If at least one of a and b, then the inequality 4.6 holds,
since the exponential of a negative number is a positive number at most 1. Suppose
(without loss of generality) that a  0. Then we have:

exp(a + b) = exp(a) exp(b)  exp(b)  exp(a) + exp(b).

case: a, b 2]0, 1] The previous reasoning cannot be used in this case, since the expo-
nential of both a and b is bigger than 1. Instead, we will use the relation between the
arithmetic and geometric means. Recall that for two positive numbers x and y, the
arithmetic mean is defined as

x+y
2 and the geometric mean is equal to

p
xy, and the

geometric mean is smaller than the arithmetic one (a not-so-formal proof is given in
figure 4.3a):

p
xy  x + y

2
, xy  (x + y)2

4
.

Using this property of the means, we have:

exp(a + b) = exp(a) exp(b)  (exp(a) + exp(b))2

4

= (exp(a) + exp(b))
(exp(a) + exp(b))

4

 (exp(a) + exp(b))
(exp(a) + exp(1− a))

4
 exp(a) + exp(b)

The first inequality comes for the relation between the means; for the second inequal-
ity, we used the hypothesis that a + b is at most one (and exponential is an increasing
function). The last inequality comes from the fact that, for the interval [0, 1], the max-
imum value of the function f : x ! ex + e1−x is 1 + e. This function is also shown in
figure 4.3b.

The following theorem is a generalization of Proposition 2 for more than two
variables.

Theorem 6 Let n 2 N and a1, . . . , an  1, so that ∑
n
j=1 aj  1. Then the following inequality is true:

exp(
n

∑
j=1

aj) 
n

∑
j=1

exp(aj). (4.7)
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Algorithm 6: Carako version 2

Given :
S = {(xi, yi)}m

i=1 where xi 2 X1 ⇥ X2 ⇥ ...⇥ Xv, yi 2 {1, ..., K}

First method:
Compute b j,c, hj minimizing Equation 4.8, for 1  c  K, 1  j  v, w.r.t. the
conditions in Eq. 4.3

Second method:
Initialize :
For all 1  c  K, 1  j  v, b j,c = rand(0,1) (w.r.t. to Eq. 4.3)

while stopping criterion not met:

1. 8j 2 {1, . . . , v}, train hj minimizing the loss `(hj) (Eq. 4.9)

2. 8c 2 {1, . . . , K}, compute b j,c minimizing the loss `(c) (Eq. 4.10), w.r.t. the
conditions in Eq. 4.3

Output : H(·) = argmaxc2{1,··· ,K} ∑
v
j=1 b j,cI[hj(·) = c]

Proof. Suppose that (without loss of generality) the variables are sorted based on their
values, from the highest to the lowest, that is, we suppose that :

a1 ≥ a2 ≥ . . . ≥ an.

Using the result of Proposition 2 we have:

exp(a1 +
n

∑
j=2

aj)  exp(a1) + exp(
n

∑
j=2

aj).

The condition on the sorted variables is necessary since it ensures that the remain-
ing sum, ∑

n
j=2 aj, is smaller than 1, thus verifying the conditions in Proposition 2.

Reiterating over the remaining sum gives:

exp(a1 +
n

∑
j=2

aj)  exp(a1) + exp(
n

∑
j=2

aj)  exp(a1) + exp(a2) + exp(
n

∑
j=3

aj)

 . . . 
k

∑
j=1

exp(aj) + exp(
n

∑
j=k+1

aj)  . . . 
n

∑
j=1

exp(aj).

The first condition we set on the coefficients in the optimization problem in Equa-
tion 4.3 is that their values should be in [0, 1]. The second condition requires that,
for each class, the coefficients sum up to 1. Together, these conditions imply that the
inner sums in Equation 4.5 take their values in [−1, 1], same as each of their elements.
The consequence is that we can apply Theorem 6 to further simplify the expression
given in Equation 4.5.
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kCSk1 
m

∑
i=1

∑
c 6=yi

1

myi

`yi ,c(h, xi)


m

∑
i=1

∑
c 6=yi

1

myi

exp
⇣ v

∑
j=1

h

b j,lI[hj(i) = l]− b j,yi
I[hj(i) = yi]

i⌘


m

∑
i=1

∑
c 6=yi

1

myi

v

∑
j=1

exp
⇣

b j,lI[hj(i) = l]− b j,yi
I[hj(i) = yi]

⌘

=
v

∑
j=1

m

∑
i=1

∑
c 6=yi

1

myi

exp
⇣

b j,lI[hj(i) = l]− b j,yi
I[hj(i) = yi]

⌘

(4.8)

We have thus:

kCSk1 
v

∑
j=1

`(hj), (4.9)

where `(hj) =
m

∑
i=1

∑
c 6=yi

1
myi

exp
⇣

b j,lI[hj(i) = l] − b j,yi
I[hj(i) = yi]

⌘

, defines the loss

of the classifier hj — whose predictions are weighted by the coefficients b j,c, 8c 2
{1, . . . , K} — on the training set S. Minimizing the norm of the confusion matrix for
a multi-view classifier H, as defined in Equation 4.1, ends up finding the classifiers

and coefficients that minimize the loss
v

∑
j=1

`(hj). Moreover, for fixed values of the

coefficients, Equation 4.9 suggests that, for each view, it suffices to find the classifier
whose error `(·) is minimal, instead of finding the classifiers that minimize a loss
depending on their combination (which was the case in Equation 4.5).

Although the training procedure where all the coefficients and classifiers are
learnt at the same time is still a viable solution, the previous remark suggests that
the two-step procedure is better adapted for this case. The first step consists in find-
ing, for each view, the classifier whose error `(·) is minimal. The second step consists
in finding the coefficients that minimize the whole loss (Equation 4.8). It is interest-
ing to notice that due to the formulation of Equation 4.8, it is possible to learn the
coefficients of one class independently from the coefficients of the other classes. More
precisely, let S+

j denote the set of examples correctly classified by hj and S−j the set of

misclassified ones. The result in Equation 4.8 can be written as 2:

2. In Equation 4.10, due to the lack of space, e is used instead of exp is some Equations.
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kCSk1 
v

∑
j=1

m

∑
i=1

∑
l 6=yi

1

myi

exp
⇣

b j,lI[hj(i) = l]− b j,yi
I[hj(i) = yi]

⌘

=
v

∑
j=1

∑
i2S+

j

∑
l 6=yi

1

myi

e−b j,yi +
v

∑
j=1

∑
i2S−j

1

myi

⇣

∑
l 6=yi 6=hj(i)

[e0 + e
−b j,hj(i) ]

⌘

=
v

∑
j=1

∑
i2S+

j

K− 1

myi

e−b j,yi +
v

∑
j=1

∑
i2S−j

⇣K− 2

myi

+
1

myi

e
−b j,hj(i)

⌘

=
v

∑
j=1

K

∑
c=1

∑
i2S+

j

K− 1

myi

exp(−b j,c)I[yi = c]

+
v

∑
j=1

K

∑
c=1

∑
i2S−j

⇣K− 2

myi

+
1

myi

exp(b j,c)
⌘

I[hj(i) = c]

=
K

∑
c=1

v

∑
j=1

⇣

e−b j,c ∑
i2S+

j

K− 1

myi

I[yi = c] + eb j,c ∑
i2S−j

I[hj(i) = c]

myi

⌘

+
K

∑
c=1

v

∑
j=1

∑
i2S−j

K− 2

myi

I[hj(i) = c] (4.10)

The first equality is obtained by splitting the training sample in S+
j and S−j , for all

views j. In the third equality, we replace yi and hj(i) by a label c, which allows us to
regroup the non constant terms (that is, those depending on b j,c) in the last equation.

This last equation suggests that for a given class c, the coefficients b j,c, 8j 2
{1, . . . , v} should be the ones that minimize the per class loss `(c):

v

∑
j=1

⇣

e−b j,c ∑
i2S+

j

K− 1

myi

I[yi = c] + eb j,c ∑
i2S−j

I[hj(i) = c]

myi

⌘

(4.11)

The pseudo-codes for both methods (batch learning and two-steps) are given in
algorithm 6. The stopping criterion is the same as in algorithm 5, and as such it can be
related to the empirical loss of the classifier computed on the training set S, or the
drop of the loss in Equation 4.11, and so on.

Contrary to the methods given in algorithm 6, in this case, the cooperation be-
tween the views is only embedded in the cooperation coefficients b j,c. On the positive
side though, in the two-step method, the classifiers can be learnt in parallel, reducing
the training time for the algorithms.

4.3 Towards a boosting method

4.3.1 Deriving a(nother) boosting method from the confusion matrix norm mini-
mization

The two-step procedures in both algorithms 5 and 6 suggest that at each iteration
the learnt classifiers should minimize some training error weighted by some coop-
eration coefficients associated to the training examples. Particularly, in algorithm 6,
the learning procedure for each view consists in learning a classifier that minimizes a



4.3. Towards a boosting method 83

weighted training error, re-weighting the examples based on the performances of the
classifier and reiterating till a stopping criterion is met. Interestingly, the procedure is
fairly similar to iterative boosting methods presented in Section 1.2 (and the ones in
Chapter 2 and Chapter 3). This brings us to the next step, which consists in replacing
the classifiers hj in Equation 4.9 with boosted classifiers.

An iterative boosting method runs for T steps and its output hypothesis is com-
puted as follows:

h(·) = argmaxc2{1,...,K}
T

∑
t=1

atI[ht(·) = c],

where, at are positive real-valued coefficients that represent the importance given to
ht. When defining the multi-view classifier in Equation 4.1, we argued that each classi-
fier should be associated with an importance coefficient depending on the prediction.
Since our goal is to use boosted classifiers made up of weak classifiers 3, having a sin-
gle coefficient per class and view might not be a good strategy, since each of the weak
classifiers (learnt on one view) has different performances. This is why we propose
to associate to each classifier not only its importance coefficient, but also coefficients
depending on its actual prediction:

hj(·) = argmax
c2{1,...,K}

T

∑
t=1

at,jbt,j,cI[ht,j(·) = c], where bt,j,c 2 [0, 1]. (4.12)

In this case the coefficient associated to a view j for a class c is :

b j,c = (
T

∑
t=1

at,jbt,j,c)/
T

∑
t=1

at,j.

Keeping the condition that 8t 2 {1, . . . , T}, 8c 2 {1, . . . , K}, ∑
v
j=1 bt,j,c = 1 , ensures

that b j,c is always smaller than 1. The downside is that it does not guarantee that
8c 2 {1, . . . , K}, ∑

v
j=1 b j,c = 1, but rather that ∑

v
j=1 b j,c  1.

The classifier defined in Equation 4.12 is similar to the classifier defined in 4.1: for
a given example, it computes a score for every class. In particular for examples in the
training sample S = {(xi, yi)}m

i=1, these scores are computed as follows:

fT,j(i, c) =
T

∑
t=1

at,jbt,j,cI[ht,j(i) = c], for 1  j  v, 1  c  K, 1  i  m.

Armed with these score functions, we are now ready to tackle the last optimization

3. See Section 1.2 for the definition of weak classifier/learner.
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Algorithm 7: µCoMBo

Given

— S = {(x1, y1), ..., (xm, ym)} where xi 2 X1 ⇥ ...⇥ Xv, yi 2 {1, ..., K}
— T the number of iterations
— 8i 2 {1, . . . , m}, 8j 2 {1, . . . , v}, 8c 2 {1, . . . , K} f0,j(i, c) = 0, b0,j,c = 1/v and

D0,j(i, c) =

(

1
myi

if l 6= yi

−K−1
myi

if l = yi

for t = 1 to T do

8j: Get ht,j and at,j =
1
2 ln

1+dt,j

1−dt,j
, where dt =

−∑
m
i=1 Dt,j(i,ht,j(xi))

∑
m
i=1 ∑c 6=yi

Dt,j(i,c)

Compute bt,j,c, 8, j 2 {1, . . . , v}, c 2 {1, . . . , K} minimizing Eq. 4.13

Update cost matrices (for each j = 1, . . . , V):

Dt,j(i, c) =

8

>

<

>

:

1
myi

exp( ft,j(i, c)− ft,j(i, yi)) if c 6= yi

− 1
myi

K

∑
l=1;l 6=yi

exp( ft,j(i, l)− ft,j(i, yi)) if c = yi

where ft,j(i, c) =
t

∑
z=1

az,jbz,j,cI1[hz,j(i) = c]

end for

Output final hypothesis :

H(·) = argmax
c21,...,K

T

∑
t=1

v

∑
j=1

bt,j,cat,jI[ht,j(·) = c]

problem of this chapter. Continuing from where we left off in Equation 4.8, we have:

kCSk1 
v

∑
j=1

m

∑
i=1

∑
c 6=yi

1

myi

exp
⇣

b j,cI[hj(i) = c]− b j,yi
I[hj(i) = yi]

⌘


v

∑
j=1

m

∑
i=1

∑
c 6=yi

1

myi

exp
⇣

b j,cI[hj(i) = c]
⌘


v

∑
j=1

m

∑
i=1

∑
c 6=yi

1

myi

exp
⇣

I[hj(i) = c]
⌘


v

∑
j=1

m

∑
i=1

∑
c 6=yi

1

myi

exp
⇣

ln(2 + exp
h

fT,j(i, c)− fT,j(i, yi)
i

)
⌘

=
v

∑
j=1

m

∑
i=1

∑
c 6=yi

1

myi

exp
⇣

fT,j(i, c)− fT,j(i, yi)
⌘

+ 2vm(K− 1) (4.13)

The second inequality comes from the fact that b j,yi
is positive, while in the third

inequality we used the fact that b j,c is at most 1. For the forth inequality a particular
case of the logistic loss (defined in Equation 1.2). If hj predicts class c for example i
(I[hj(i) = c] = 1), then fT,j(i, c) ≥ fT,j(i, yi) and exp( fT,j(i, c)− fT,j(i, yi)) ≥ 1. Since
the difference between the score might be infinitely small, we use 2 in the logistic

loss, instead of 1 in the original definition, which ensures that ln(2 + exp
h

fT,j(i, c)−
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fT,j(i, yi)
i

) ≥ 1. In the case where hj predicts another class for i, other than c, then

ln(2 + exp
h

fT,j(i, c)− fT,j(i, yi)
i

) > 0, since exp(a) > 0, 8a 2 R.

We have thus:

kCSk1 
v

∑
j=1

`(hj) + 2vm(K− 1), (4.14)

where `(hj) =
m

∑
i=1

∑
c 6=yi

1
myi

exp
⇣

fT,j(i, c) − fT,j(i, yi)
⌘

, defines the loss of the combina-

tions of all the classifiers learnt on view j. Equation 4.13 suggests that for each view
and at each iteration, a classifier that minimizes the loss `(hj) should be learnt. It is
interesting to notice that the loss `(hj) is quite similar to the loss of CoMBo, as given
in section 3.2 (page 58) except for the coefficients bt,j,c. In other words, it means that
a CoMBo-like process should take place in each view. It follows that a cost matrix
should be maintained for each view and the classifier (and its importance coefficient)
should be computed in a similar way as in CoMBo; in particular the weak classifier at
each iteration should verify the weak learning condition (given in Equation 1.5, page
9) for the cost matrix associated to the view.

Similarly to the two-steps procedures in algorithms 5 and 6, the algorithm derived
from the minimization of the loss in Equation 4.13 uses a two step procedure at each
iteration: first a classifier is learnt for each view and the importance coefficient is
computed as in algorithm 7, and second, the cooperation coefficients are computed so
that they minimize the loss. The pseudo-code of the new method is given in algorithm
7. Due to the boosting nature of the method, the stopping criterion used is the number
of iterations.

4.3.2 On the theoretical properties of µCoMBo

In this section we show that the general loss given in Equation 4.13 is driven down
at each iteration, provided that each of the classifiers learnt on the views satisfies the
weak learning condition (Equation 1.5) and the importance coefficients a are chosen
as given in algorithm 7. Interestingly enough, Equation 4.14 suggests that the whole
loss in made up of the losses calculated on each of the views, thus showing that
each of the per view losses decreases with each iteration w.r.t. the weak classifiers
is sufficient. Theorem 7 proves that the per view loss does indeed decrease after
each iteration. This result and its proof are similar to the ones given for MuMBo in
Theorem 1 (page 35) and CoMBo in Lemma 2 (page 60).

Theorem 7 For a given view j 2 {1, . . . , v}, suppose the cost matrix Dt,j is chosen as in the algorithm 7,
and the returned classifier ht,j satisfies the edge condition for the baseline Udt,j

and cost matrix

Dt,j, i.e. Dt,j · 1ht,j
 Dt,j ·Udt,j

, where 1h is the matrix defined as 1h(i, l) = I[h(i) = l].
Then choosing a weight at,j > 0 for ht,j, allows

`t(hj)  kt,j`t−1(hj),

to hold, with:

kt,j = 1− 1

2
(eat,j − e−at,j)dt,j +

1

2

(

eat,j + e−at,j − 2)

Proof. We give here a sketch of the proof in the same fashion as Lemma 2 (page 60),
since most of the computation are similar to the ones given in Theorem 1 (page 35).
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First, in order to simplify the reading of this proof, we define the two following
losses:

Lt,j =
m

∑
i=1

∑
l 6=yi

Dt,j(i, l) =
m

∑
i=1

∑
l 6=yi

1

myi

exp( ft,j(i, l)− ft,j(i, yi)) and

Lt,j(i) = ∑
l 6=yi

Dt,j(i, l) = ∑
l 6=yi

1

myi

exp( ft,j(i, l)− ft,j(i, yi)).

The only hypothesis we made was that the weak classifiers ht should verify the weak
learning condition (Equation 1.5 in page 9), that is:

Dt,j · 1ht,j
 Dt,j ·Udt,j

, (4.15)

with dt,j being the edge of ht,j on Dt,j.
Let S+ (resp. S−) be the set of examples of S correctly classified (resp. misclassi-

fied) by ht,j. The left and right side of Equation 4.15 can be written as follows, using
the definitions of Dt,j, 1ht,j

and Udt,j
:

Dt,j · 1ht,j
= −∑

i2S+

Lt−1,j(i) + ∑
i2S−

1

myi

exp
(

ft−1,j(i, ht,j(i))− ft−1,j(i, yi)
)

= −A
t,j
+ + A

t,j
−

Dt,j ·Udt,j
= −dt,j

m

∑
i=1

Lt−1,j(i) = −dt,jLt−1,j

Injecting these two costs in 4.15, we have :

A
t,j
+ − A

t,j
− ≥ dt,jLt−1,j. (4.16)

Computing the drop of the loss after choosing ht and at, we have:

Lt−1,j − Lt,j = ∑
i2S+

Lt−1,j(i)(1− e−at,j) + ∑
i2S−

1

myi

exp(∆ ft−1,j(i, ht,j, yi))(1− eat,j)

= (1− e−at,j)A
t,j
+ − (eat,j − 1)A

t,j
−

=

✓

eat,j − e−at,j

2

◆

(A
t,j
+ − A

t,j
− )−

✓

eat,j + e−at,j − 2

2

◆

(A
t,j
+ + A

t,j
− )

where ∆ ft−1,j(i, ht,j, yi)) = ft−1,j(i, ht(i))− ft−1,j(i, yi).

The result in 4.16 gives a lower bound for A
t,j
+ − A

t,j
− , while A

t,j
+ + A

t,j
− is upper-

bounded by Lt−1,j. Hence,

Lt−1,j − Lt,j = ∑
i2S+

Lt−1,j(i)(1− e−at,j)

≥ (
eat,j − e−at,j

2
)dt,jLt−1,j − (

eat,j + e−at,j − 2

2
)Lt−1,j.

Therefore, the result of the theorem:

Lt,j 
✓

1− eat,j − e−at,j

2
dt,j +

eat,j + e−at,j − 2

2

◆

Lt−1,j

=

✓

(1− dt,j)

2
eat,j +

(1 + dt,j)

2
e−at,j

◆

Lt−1,j.
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The result given in Theorem 7 shows that choosing a classifier that satisfies the
weak learning condition ensures that the loss on the views decreases. It also implies
that choosing the importance coefficient as given in algorithm 7, the loss for a view
j is simply

p

1− dt,j. That is, at each iteration, after the first step which consists in
choosing a classifier per view, the whole drop in loss is:

v

∑
j=1

`t(hj) 
v

∑
j=1

q

1− dt,j`t−1(hj), (4.17)

where `t(hj) =
m

∑
i=1

∑
c 6=yi

1

myi

exp
⇣

ft,j(i, c)− ft,j(i, yi)
⌘

.

As long as the classifiers learnt on the views achieve positive edges on their corre-
sponding cost matrices, the whole loss is guaranteed to decrease.

Note that in the right side of Equation 4.17, the loss `t−1(hj) depends on the score
functions defined as:

ft,j(i, c) =
t−1

∑
z=1

az,jbz,j,cI[hz,j(i) = c] + at,jbt,j,cI[ht,j(i) = c],

since the classifiers are learnt before the cooperation coefficients b, that is, we simply
suppose that all these coefficients are equal to 1. Obviously the final loss, after the
second step of iteration t, is much bigger given that all the b take their values in [0, 1]
and at most one of the bt,j,c is at 1 for a given class c. However, since these coeffi-
cients are computed as a solution to an optimization problem, finding an analytical
expression for the actual drop after iteration t is quite challenging.

4.4 Experimental results

In this section we present the experimental results for the methods proposed in
this chapter, and more precisely the methods proposed in algorithm 6, Carako, and
algorithm 7, µCoMBo. The dataset used in the experiments is a subset of the Animal
with Attributes database proposed in Lampert et al. (2009). Originally Animal with
Attributes is made up of 30475 images of 50 animals classes. We chose it because it
embeds the two problems addressed in this chapter:

1. it is highly imbalanced: some classes are way more represented than others,

2. it comes with six pre-extracted feature representations (thus, views) for each
image.

The first part of this section gives a short description of the considered dataset and
the protocol used for the experimental setup. Next we present the empirical results,
while discussing the observed performances.

4.4.1 Description of the corpus and experimental setup

Gorillas, lions and beavers The aim of the methods presented in this chapter is to
deal with imbalanced multi-view datasets: each view is suited for recognizing few
classes, and the training sample is (highly) imbalanced. Animal with Attributes is an
excellent case study for such datasets, since it comes with an imbalanced classes
problem and with several views embedding different type of information. In order to
accentuate the imbalanced nature of Animal with Attributes, we propose to consider a
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Figure 4.4 – Examples of the six selected classes of Animal with Attributes.

subset of the original dataset, by retaining only a few classes and views. As such, we
choose six classes as follows:

— one from the minority classes (class beaver),
— one from the majority classes (class deer),
— and four other intermediate ones (classes buffalo, gorilla, lion and polar bear).

Some examples of the chosen classes are given in Figure 4.4.
Concerning the views, only four from the original six views are selected, based

both on the nature of information contained therein (local versus global) and the
possibility of the view to recognize all the classes or some of them. More precisely,
the considered views are:

— Color Histogram features (2688 attributes),
— Local Self-Similarity features (2000 attributes),
— PyramidHOG (PHOG) (252 attributes),
— Scale-Invariant Feature Transform features (2000 attributes).

As briefly argued in the introductory example in page 2, the color histogram contains
global information of the images while the other are made up of rather local informa-
tion. At the same time, the first view is more adapted for gorilla and polar bear (since
they are black and white respectively), while the third view is more adapted for deer
since their shapes are easier to recognize than those of the other animals.

Table 4.1 sums up the training corpus made up of all the examples of the six
classes. We report the number of classes (# cls), the number of examples (# ex), the
total number of attributes of all the views (# attars), the class distribution and the
imbalance ration (Imb. ratio), that is the ratio of the number of majority examples
deer and minority ones beaver.

# cls # ex # attrs # classes distribution Imb. ratio
beaver/buffalo/deer/

gorilla/lion/polar bear

total 6 3915 6940 184/559/1072/802/483/815 5.83

train 6 2740 6940 130/408/744/553/338/567 5.72

test 6 1175 6940 54/151/328/249/145/248 6.07

Table 4.1 – Description of the (smaller) Animal with Attributes dataset Lampert et al. (2009).

Experimental setup The evaluation procedure consists is a simple train-test: the
examples are randomly split into a training sample and a testing one. The training
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Algorithm Acc. beaver buffalo deer gorilla lion p.bear

AdaBoost.MM (early) 37.5% 0.0 % 0.0% 82.9% 61.8% 0.0% 6.0%

AdaBoost.MM (late) 48.2% 0.0 % 0.0% 91.8% 34.9% 0.0% 71.8%

CoMBo (early) 41.4% 37.0% 19.9% 31.1% 58.2% 39.3% 53.6%

CoMBo (late) 12.9% 0.0 % 100.0% 0.0 % 0.0% 0.0 % 0.0%

Carako 48.4% 3.7% 28.4% 67.7% 52.6% 11.0% 62.5%

MuMBo 56.0% 0.0% 19.9% 76.5% 73.9% 8.3% 73.0%

µCoMBo 56.4% 44.4% 35.1% 45.7% 67.5% 51.0% 78.2%

Table 4.2 – Overall and per class accuracy for all the methods. Results in boldface indicate when one
algorithm is better than the others.

sample contains 70% of the examples, while 30% are used for testing. Seven ensemble
methods are tested, divided in:

— early fusion : AdaBoost.MM and CoMBo (Algorithm 4) on the concatenation
of all the views,

— late fusion : AdaBoost.MM, CoMBo and Carako (Algorithm 6)
— multi-view methods : MuMBo (Algorithm 3) and µCoMBo (Algorithm 7).

For the boosting-based methods, we used 1-level decision trees (stumps) as weak
learners and they were run for 100 iterations, while for Carako, the depth of the trees
was limited to 10.

We report here results obtained for the Accuracy, MAUC, G-mean and confusion
matrix norm of all the methods.

4.4.2 Performance results

Accuracy Table 4.2 gives the accuracy on the testing sample for the seven methods:
both the overall accuracy and the per-class one are reported. On the overall accuracy,
the better performing methods are MuMBo and µCoMBo. This is an encouraging
result since it means that adding the cooperation between the views, either in the
input or output space, leads to better results. The same is valid for Carako also,
since it performs better than the fusion methods, albeit it is comparable to late fusion
AdaBoost.MM.

Concerning the per-class accuracies, as expected, both CoMBo (early fusion) and
its multi-view formulation µCoMBo exhibit similar properties: they tend to "neglect"
the majority classes, while focusing on the minority ones. This is even more evident
for µCoMBo, which achieves more than 35% of accuracy for all the classes; although
is achieves a mere 45.7% for deer. Symmetrically, both AdaBoost.MM (both early and
late fusion) and MuMBo (which can be seen as a multi-view formulation of Ad-
aBoost.MM) favor the majority classes over the minority ones. Interestingly, Carako’s
behavior is closer to MuMBo’s than to µCoMBo’s. This is mainly due to the use of
Carako as a simple late fusion method with a hint of imbalanced learning.

Last but not least, the late fusion of CoMBo fares pretty badly on all the cases

Algorithm Measure view 1 view 2 view 3 view 4

AdaBoost.MM
MAUC 0.710 0.650 0.607 0.657

G-mean 0.0 0.0 0.0 0.0

CoMBo
MAUC 0.759 0.727 0.685 0.719

G-mean 0.412 0.348 0.326 0.325

Table 4.3 – MAUC and G-mean for AdaBoost.MM and CoMBo on each of the views.
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(except for an excellent 100% accuracy on buffalo). We suppose that this is due to the
fact that on each view CoMBo tries to promote the minority classes, hence resulting
in classifiers with low confidence in their predictions. The combination of all the
classifiers makes it quite possible for noisy/incorrect predictions to take the upper
hand on the correct predictions. This intuition is further confirmed by the results
in Table 4.3, where CoMBo performs better than AdaBoost in all the views (both in
MAUC and G-mean), while its combination, the late fusion version of CoMBo, fails
miserably.

MAUC, G-mean and confusion Since we are dealing with an imbalanced dataset,
more relevant measures than the accuracy must be studied. In table 4.4, we present the
results of the seven algorithms for three relevant measures of performance: MAUC,
G-mean and the norm of the confusion matrix (proposed in Chapter 3). The empirical

Algorithm MAUC G-mean kCk
AdaBoost (early) 0.689 0.0 1.464

AdaBoost (late) 0.748 0.0 1.573

CoMBo (early) 0.750 0.376 0.647

CoMBo (late) 0.695 0.0 2.236

Carako 0.689 0.252 0.960

MuMBo 0.778 0.0 0.946

µCoMBo 0.821 0.518 0.51

Table 4.4 – MAUC, G-mean and norm of the confusion matrix for the seven methods on Animal with
Attributes. Results in boldface indicate when one algorithm is better than the others.

results strongly suggest that µCoMBo is more adapted for the problem at hand than
the other methods. This is encouraging since µCombo was primarily designed for
dealing with imbalanced multi-view datasets: the results in Table 4.4 acknowledge
that microCombo actually fulfills our expectations.

Similarly to the results in Table 4.2, the performances of the various methods
on the G-mean imply that CoMBo, µCoMBo and Carako, all promote some sort of
smoothing process among the classes, thus a better equity among them. Once again
AdaBoost.MM and MuMBo have poor G-mean since they fail to recognize beaver.

It is interesting to notice that even though Carako performs better than MuMBo
G-mean wise, they have pretty much the same norm for the confusion matrix. We
suppose that this is related to the per-class accuracies (Table 4.2), where both methods
recognize well (resp. poorly) the same classes.

4.5 An imbalanced multi-view approach to DECODA

Sections 2.5 and 3.5 presented the results on DECODA, while tackling the multi-
view and imbalanced aspect respectively. In this section, we regroup both aspects of
the corpus and give the results for the various methods presented in this thesis. As
table 3.5 (page 67) suggests, the views defined for the call classification task on the
DECODA corpus are of different strength. The goal is to study whether multi-view
methods can improve the performances of the strongest views (first and second view)
through the use of the other views. We test six different methods:

1. MuMBo as presented in algorithm 3,

2. early fusion CoMBo (all the views merged together),
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Algorithm error test(gold) test(ASR)

MuMBo
# 31 38

% 20.4 25.0

CoMBo (early)
# 34 43

% 22.4 28.3

CoMBo (late)
# 30 38

% 19.7 25.0

µCoMBo
# 30 41

% 19.7 27.0

AdaBoost (early)
# 36 49

% 23.7 32.2

AdaBoost (late)
# 34 45

% 22.4 29.6

Table 4.5 – Reported results for the six multi-view methods tested on the DECODA corpus.

3. late fusion CoMBo (fusion of the decisions take separately on each view),

4. µCoMBo (the simplified version given in section 4.6),

5. early fusion AdaBoost (all the views merged together),

6. late fusion AdaBoost (fusion of the decisions take separately on each view).

The considered weak learners for all the learners are simple decision stumps. It is
interesting to notice that, due to the choice of the weak learners, the six methods can
be divided into two groups: the view selection methods and the views combination
one. The former group includes MuMBo, early CoMBo and early AdaBoost, since
at each iteration they select one stump, thus they select the view associated to the
stump. µCoMBo, late CoMBo and late AdaBoost, which constitute the latter group,
learn one stump per view and add all these classifiers to the final one. The algorithms
are run for 5000 iterations and the reported results are those of the best runs. Table
4.5 summarizes the different results.

Comparing the results in Table 4.5 with the results given in Table 3.5 (page 67), it is
obvious that employing multiple views in the learning process, either through multi-
view methods or fusion (both early and late) ones, gives better performances than
considering the views separately. For instance, in the gold setting, AdaBoost’s error
drops form 40 examples misclassified in the first view, to 34 examples for the late
fusion case. This gain in performances is even more obvious for CoMBo, which passes
from 42 misclassified examples in the second view, to 30 errors for the late fusion.
Interestingly enough, AdaBoost and CoMBo switch places when passing form the
per-view case to the fusion one. In the former case AdaBoost outperforms CoMBo in
nearly all the settings, while in the latter case CoMBo is overall better than AdaBoost.
The reason for this phenomenon is that the various views recognize differently the
semantic categories (classes) and CoMBo takes advantage of the combination of all the
views in order to select the most appropriate features. Table 4.6 shows that AdaBoost
relies on the second view, for the major views, and the forth view, for the minor ones.
On the other hand, CoMBo choses the first view as the most informative major view,
and the fifth view for the minor ones. However, both methods tend to avoid the third
view, since it is not that informative.

In the gold setting, nearly all the methods are equivalent, albeit MuMBo, µCoMBo
and late CoMBo do perform better. However, in the ASR setting, the differences be-
tween the various methods are quite glaring. Among the view selection methods,
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algorithm view 1 view 2 view 3 view 4 view 5

AdaBoost (early) 42.0% 46.5% 0% 6.3% 5.2%

CoMBo (early) 47.7% 42.3 % 0% 4.5 % 5.5 %

MuMBo 40.0% 44.7% 1.1% 9.0% 5.2%

Table 4.6 – Selection rate for each view, for AdaBoost (early), CoMBo (early) and MuMBo.

MuMBo is the one that achieves the better performances, even more so when com-
pared to early AdaBoost. This is particularly encouraging as our main motivation for
using MuMBo was to be able to spread the classification weights more equally on the
different views in order to be more robust when one view fails, as this is the case in
the ASR setting where the main lexical views are affected by the high WER of the
ASR transcriptions. Table 4.6 confirms that MuMBo chooses the minor view more
frequently than the other two methods.

In the view combination group, the best method is late CoMBo, whose error is
the same as MuMBo, while µCoMBo achieves a slightly bigger error. Once again, Ad-
aBoost achieves the worst score. Even though late CoMBo and (simplified) µCoMBo
may seem as two different algorithms and/or approaches, one may notice that late
fusion CoMBo is an even more simplified version of µCoMBo: the cooperation co-
efficients for all the views and all the classes are put to 1. This explains the same
performances in the gold setting and the comparable ones in the ASR one.

Finally, Table 4.7 gives the performances of the six methods for MAUC, G-mean
and the norm of the confusion matrix. The overall better performing method is the
late fusion version of CoMBo, since it does better than the others in 5 cases out of
6. However, whatever the case, the difference with other methods is not significant.
For the MAUC, MuMBo and the late version of AdaBoost achieve nearly the same
results as late CoMBo, both for the gold and ASR setting. For the G-mean and matrix’s
nom, late CoMBo is rivaled by early CoMBo and µCoMBo in the gold setting, and by
MuMBo in the ASR one. It is interesting to notice that the results of Table 4.7 confirm
our intuition on the link between the G-mean and the norm of the confusion matrix in
Section 3.4.4 (page 65). Indeed, a small G-mean implies a high norm for the confusion
matrix and vice versa.

The results in this section suggest that the choice of the learning method should
depend on the error measure. For instance, if we’re interested only on (minimizing)
the empirical error, then based on Table 4.5, the best choice would be MuMBo. On the
other hand, if we are interested in other measure, then Table 4.7 suggests that other
methods should be considered, such as the late fusion version of CoMBo. However,
due to the limited number of samples, further studies are needed in order to assert
these preliminary conclusions.

Algorithm test (gold) test (ASR)
MAUC G-mean kCk MAUC G-mean kCk

MuMBo 0.948 0.0 0.992 0.904 0.558 0.693

CoMBo (early) 0.931 0.704 0.584 0.824 0.263 1.1546

CoMBo (late) 0.940 0.747 0.493 0.910 0.596 0.589

µCoMBo 0.894 0.526 0.537 0.866 0.373 0.705

AdaBoost (early) 0.930 0.498 0.595 0.886 0.303 0.738

AdaBoost (late) 0.942 0.0 0.829 0.904 0.0 1.125

Table 4.7 – MAUC, G-mean and norm of the confusion matrix for the various methods on
DECODA. Results in boldface indicate when one algorithm is better than the others.
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4.6 A simplified version of µCoMBo

At each iteration, µCoMBo uses a two steps procedure: first the best classifiers
are learnt for all the views and then the cooperation coefficients are learnt through
an optimization process. While the first part is closely related to the weak learning
algorithms used for each view, the second one can be quite time consuming since it
depends on the number of classes and views. In order to bypass this drawback, we
propose a two-steps process:

— for each coefficient, computing the value that minimizes the loss in equation
4.13,

— for each class, normalizing the coefficients.
The second step ensures that some sort of cooperation is maintained.

Once the classifiers are learnt at the first step of each iteration t, the examples can
be divided in two groups, for each view: let S+

j denote the set of examples correctly

classified by the weak classifier ht,j learnt on view j at iteration t, and S−j the set of

examples misclassified by ht,j. Continuing from where we left off in equation 4.13, we
have 4:
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4. For convenience sake, the last term will be only recall in the first equation and omitted in the
others, since it’s a constant.
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Let us define the following quantities before continuing:
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Equation 4.18 can be rewritten as:
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Since the coefficients bt,j,l are independent one from the other, then, for a given
view j and a class l, equation 4.19 suggests that the value of the coefficient bt,j,l

should computed as the solution of the following equation (which is simply the par-
tial derivative of the right-handed side of equation 4.19 w.r.t. bt,j,l):

−at,j exp(−at,jbt,j,l)A + at,j exp(at,jbt,j,l)B = 0. (4.20)

Thus, we have:

at,j exp(−at,jbt,j,l)A = at,j exp(at,jbt,j,l)B

exp(−at,jbt,j,l)A = exp(at,jbt,j,l)B

−at,jbt,j,l + ln A = at,jbt,j,l + ln B

2at,jbt,j,l = ln A− ln B

bt,j,l =
1

2at,j
ln

A

B
(4.21)

Equation 4.21 implies that the value of bt,j,l depends on the ratio between the exam-
ples of class l correctly classified by the classifier ht,j and the misclassified ones. This
rate may be smaller than 1, giving thus a negative value for bt,j,l . In order to avoid
this case, we propose to chose bt,j,l as follows:

bt,j,l = max{0,
1

2at,j
ln

A

B
}

The last step consists in normalizing the values for these coefficients:

bt,j,l  
bt,j,l

∑
v
j=1 bt,j,l

As such, these new coefficients correspond to some sort of confidence associated to
the classifiers: the closer they are to zero, the less the classifier recognizes the class.
This allows to keep a bare minimum of communication and/or cooperation between
the views.
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4.7 Where MuMBo meets µCoMBo

In section 2.6, we proposed to extend MuMBo by generalizing both the choice of
the cooperation coefficients and the choice of the unique classifier. For the coefficients
we proposed to choose real values in [0, 1], while for the unique classifier an inter-
esting choice was to consider a linear combination of all the per view classifiers. The
reader might notice that both choices are similar to those used for µCoMBo, albeit
the cooperation coefficients don’t play the same role. In this section, we take a closer
look to how these choices impact the loss computed for MuMBo.

Recall that the loss of MuMBo at iteration t is given by the following expression
(see Theorem 1, page 35):
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and the unique classifier at each iteration was computed as :
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The definition of the unique classifier in equation 4.22 suggests that if an exam-
ple’s class is predicted as l, then at least one of the weak classifiers does the same.
Hence, we have:
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where ∆p,j(i) = ap,jdp,j(i)I[hp(i) = l]− ap,jdp,j(i)I[hp(i) = yi].
In boosting procedures, the classifier obtained at each iteration needs only to per-

form better than random. That is, we can suppose that, without loss of generality, the
coefficients ap and ap,j are at most 1. Also, in section 2.6, we proposed to choose the
cooperation coefficients dp,j(i) in [0, 1]. Injecting these in equation 4.23, we have :
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Equation 4.24 suggests that minimizing the loss for each view, minimizes at the same
time the total loss depending on the unique classifiers, since exp(2T) is a constant.
Interestingly, this was also the case for µCoMBo, which implies that for both algo-
rithms a similar process takes place: the loss is minimized by first choosing classifiers
that verify the weak learning condition 1.5, and then selecting appropriate coopera-
tion coefficients. This is further confirmed by the fact that the optimization criterions
depending on the classifiers learnt on the views (given in equations 4.13 and 4.24) are
similar for both algorithms:
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Even though the motivations for the two methods were different, the resulting opti-
mization problems are similar. This brings us to one of the most important results in
this thesis:

In boosting based methods, modeling the cooperation between the various views
by adding cooperation coefficients, results in a two step learning process for each
iteration, first learning weak classifiers for all the views and then computing the
values for the coefficients.

4.8 Conclusion for this chapter

4.8.1 Discussion

As discussed in section 3.6, a key point of the framework presented in Chapter
3 and Chapter 4 is the construction of the confusion matrix and of the norm. Con-
cerning the former case, in definition 9 the confusion matrix was based on the simple
identity function, that is, the 0-1 loss. The downside of this choice is that it does not
take advantage of the particular form of the multi-view classifier defined in equation
4.1. Indeed, the indicator function is only applied to the output of the final classi-
fier, independently from the predictions of the classifiers learnt of the views. This
opens up several research problems and future prospects related to the choice and
construction of the confusion matrix. For instance, it would be interesting to consider
replacing each entry of the confusion matrix by a loss function depending on the two
classes, similar to the ones used in equation 3.7. The loss functions could then embed
prior informations on how each of the classes are recognized by the various views.

The choice of the norm for the confusion is also an interesting topic for further
works. Both in Chapter 3 and Chapter 4, we gave only one possible choice for the
norm of the confusion matrix and the methods that result from it. The norm of the
confusion matrix defines the optimization problem, the bounds that can be computed,
and as a consequence the methods that can be derived. Future works on matrices
norms could follow:

1. finding tighter bounds for the various norms and/or defining norms that can be
computed analytically for a given matrix (in the spirit of the works by Ralaivola
(2012)),

2. establishing a relation between the choice of the confusion matrix, coupled with
its norm, and the cooperation between the views.
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A common shortcoming for the methods presented in this chapter, is that the co-
operation coefficients should be computed as a solution of an optimization problem.
Although it might not be a problem for small datasets, in the prospect of ever growing
available data, it can become quite a limitation to the use of µCoMBo (or even Carako)
on practical examples. Further research will be focused on developing methods, or
pinpointing cases, where the coefficients can be computed effectively (for instance, as
in the simplified version of µCoMBo in section 4.6).

The methods presented in this chapter are mainly based on the supervised set-
ting, and as pointed in section 1.3, the notion of cooperation between the views is
also encountered in other frameworks, such as semi-supervised learning (Blum and
Mitchell (1998)), active learning (Muslea and Knoblock (2006)), and so on. It would be
intriguing to export the confusion matrices based framework on these settings, which
could lead to new methods, or alternative explanation for existing ones.

Last but not least, in recent years, several works on the confusion matrix as an
error measure have been proposed. In Morvant et al. (2012) we propose a bound on
the norm of the confusion matrix for the Gibbs classifier (described in Section 3.3,
page 62) in a PAC-Bayesian setting. Extending the definition of the Gibbs classifier
to the multi-view setting would allow to obtain similar results for the PAC-Bayesian
setting; and generalizing these results for the majority vote classifier would give way
to developing novel multi-view methods based on the PAC-Bayes setting.

4.8.2 Conclusion

The main contribution in this chapter was the extension of the multi-class im-
balance framework presented in Chapter 3 to the multi-view case, while embedding
the notion of cooperation between the views introduced in Chapter 2. The latter was
mainly introduced in the construction of the multi-view classifier in equation 4.1,
which consisted of a weighted combination of the various classifiers learnt on the
views. The former allowed us to derive several multi-view methods by applying the
same procedure as in Chapter 3: first we defined the confusion matrix, then we used
its norm in an optimization problem. The first methods based on this setting (given
in Algorithm 5 and Algorithm 6) are ensemble methods whose goal is to find the
optimal combinations for the various classifiers. Their strength resides in the fact
that they can deal with classifiers outputted from different supervised methods. The
last method proposed in this chapter, called µCoMBo and described in Algorithm
7, is a particular case of the other methods were the classifiers are learnt through a
boosting procedure and it can be seen as a multi-view version of CoMBo (Algorithm
4). In section 4.8.1, we provided some leads on potential future research that can be
based on the works presented in this chapter. Finally, as a secondarily contribution
for the chapter, but a crucial one for this thesis, section 4.7 established a link between
MuMBo and µCoMBo, resulting in the observation that forcing the cooperation be-
tween the views in a multi-view boosting process results in manipulating cooperation
coefficients during the training phase.
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There and back again

The aim of the works presented in this thesis is to develop and study methods
that make use of uneven views. These works were mainly motivated by the simple
observation that even though they describe the same data, some views contain infor-
mation related to only one part of the instance space. In this concluding chapter we
briefly summarize the main contributions presented in this thesis, which allows us
to re-examine the discussion lead in the introductory chapter and, at the same time,
outline the solutions proposed to address the questions posed therein.

Our first contribution in Chapter 1, is to formalize the concept of uneven views
and for that purpose, we defined three notions on uneven views: strong views, weak
views and imbalanced views. These notions are linked to the concepts of strong and
weak learnability for the PAC setting, and the imbalanced classes problem. Compared
to other view definitions in the literature, such as the notion of homogeneity employed
by Janodet et al. (2009), the proposed notions are mainly based on the performances
of the classifiers, similarly to the notion of sufficiency employed by Blum and Mitchell
(1998). Building upon these notions, the methods proposed in this thesis are divided
into two groups: methods that rely on strong/weak views and methods based on
imbalanced views.

In Chapter 2, we introduce MuMBo (algorithm 3) a multi-view boosting method
designed to make use of both strong and weak views. The key idea behind MuMBo
is to install some sort of cooperation between the views so that each example could
be processed by the most appropriate view. Compared to the literature, where multi-
view boosting methods rely on one distribution, our approach maintains as many
distributions as there are views, so that each view keeps its specificities. As the pur-
pose of our approach was to have a general notion of cooperation, we show in Section
2.6 that the values of the cooperation coefficients of MuMBo could be either binary or
continuous, thus defining MuMBo not as a simple algorithm, but as a whole family of
algorithms. Although it was proved to be theoretically sound, the general version of
MuMBo opened up several research problems related to the choice of the cooperation
coefficients.

Before tackling the imbalanced views problem, we made a not so confusing stop.
Chapter 3 delves on a well-known problem in the machine learning community: the
imbalanced classes learning. Despite the number of methods that have been devel-
oped for this problem, to the best of our knowledge, the common goal for these
methods is still unclear. Our main contribution for Chapter 3 is to propose a frame-
work which gives a common base for all such methods. The starting point for the
framework is the confusion matrix, or rather, the norm of the confusion matrix, and
the principal result is an upper bound of the said norm. A supplementary contribu-
tion for this chapter is also CoMBo (algorithm 4), a boosting algorithm designed to
actively minimize the norm of the confusion matrix. Among others, this work gives
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a whole new perspective on a well-known problem, thus giving rise to several re-
search problems, related both to the choice of the confusion matrix and its associated
norm. An important question raised in Chapter 3 concernes the link between these
two quantities. Indeed, finding a link between the choice of the confusion matrix
and the considered norm would pave the way for novel algorithms for dealing with
imbalanced classes.

Armed with the theoretical framework in Chapter 3, Chapter 4 applies the cooper-
ation idea used in Chapter 2, to the imbalanced multi-view learning framework; that
is, the views considered in this setting fall in the third category of the views defined
in Chapter 1. The main contribution in this chapter consists in a series of algorithms
based on the cooperation between the views. Contrary to MuMBo, the methods of
Chapter 4 use the cooperation in order to find for each class the most appropriate
view(s). In order to apply the framework of Chapter 3, we define the multi-view clas-
sifier as a general case of the weighted majority vote. The derivation procedure for
the algorithms followed the same path as for CoMBo: bounding the norm of the con-
fusion matrix for the multi-view classifier. The most interesting result for Chapter 4 is
the multi-view boosting algorithm, called µCoMBo (algorithm 7), which eventually is
similar to MuMBo (aside from the fact that the cooperation coefficients were defined
for the classes rather than for the examples). Research problems raised by the works
for that chapter are similar to the ones for Chapter 3, concerning the confusion matrix
and its norm. In particular, defining a confusion matrix and a matrix norm that take
advantage of the multi-view nature of the data would lay the foundations for novel
multi-view methods.

Taken together, the methods presented in Chapter 2 and Chapter 4 provide a full
set of tools that can deal with uneven views: MuMBo deals with weak and strong
views, while µCoMBo is more adapted to imbalanced ones. One of the more signifi-
cant results to emerge from this study is that promoting the cooperation between the
views (either in the input space for the strong/weak views, or in the output space
for the imbalanced ones) in a boosting process comes down to learning some coop-
eration coefficients at each iteration of the learning process. In general, therefore, it
seems that promoting the cooperation between the views is equivalent to a two-steps pro-
cedure for each iteration: first the weak classifiers are learnt and then the cooperation
coefficient are computed based on some optimization criterion. While this results is
not new in itself for it has been used in different procedures, the fact of using it as a
mean to simulate and promote the cooperation between the views is, in our opinion,
a novelty of the works presented in this thesis. It is also interesting to notice that both
methods, MuMBo and µCoMBo are applicable even in the case when, for certain ex-
amples, some of the views are missing. Indeed, it suffices to zero the weight of those
examples in the distributions corresponding to the missing views.

Finally, throughout this thesis, the speech category classification problem is used
as a testing ground for all the proposed methods, especially the multi-view ones. For
that purpose, five views of various strengths were defined for representing a dia-
log between two humans.The empirical results show that the (multi-view) methods
proposed in this thesis performed better than classical ones, especially in the noisy
dataset. Research problems raised by the empirical results are both theoretical and
empirical, such as testing the methods on larger datasets in order to prove the resis-
tance to attribute noise of the methods, and establish a link between multi-view with
cooperation and robustness against noise.
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Valinor ahoy

The works proposed in this thesis have addressed the principal question posed
in the introduction, that of being able to learn performing classifiers when the con-
sidered views contain different information. However the methods proposed here
are only one little step towards the active use of the cooperation between the views
during the training procedure. As such, they open up research problems related to
the theoretical aspect of multi-view learning and the practical use of these methods.
Some of the possible directions that can be explored are presented in the conclu-
sions of each chapter. Here we build on those conclusions and discuss more general
prospects.

One of the main contributions of this thesis is to show that adding the cooperation
in a boosting process comes down to adding cooperation coefficients in the cost func-
tions. A limitation of the theoretical properties proved for both MuMBo and µCoMBo,
is that the bounds do not depend on these coefficients, that is, the role of the cooper-
ation coefficients is marginalized. Further research should be focused on the study of
the effects that these coefficients have on the theoretical properties and how they in-
fluence the training procedure and the generalization properties of the methods. This
research should also include how the coefficients are to be computed, since obtaining
them as a solution to an optimization problem can be quite consuming on resources.
For instance, it would be interesting to find a link between the strength of a view (that
is, strong view, weak view or imbalanced view) and the analytical expression of the
coefficients.

Nowadays, due to the great number of available data sources, the problem of
learning from big data dictates the new trends for machine learning. Social media,
such as Twitter, Facebook, Youtube, to name a few, offer an interesting setting for
developing multi-view methods. Indeed, the users’ profiles on these sites are made
of images, videos, texts/messages, personal infos, and so on, each defining one or
multiple views. Although MuMBo and µCoMBo do not make any assumption on the
maximum number of views they can deal with, they might be time consuming when
dealing with big data and big views (much like other classical methods in machine
learning). It would be thus interesting to study and/or develop methods dealing with
big data while at the same time using the cooperation between the views.

Dealing with multiple views can be quite tricky, especially when the number of
view is quite high. Some of the views might contain redundant information, others
might be way too noisy to be usable and so on and so forth. In Section 1.5, we show
that the views defined for the DECODA project are of different strengths, but each
contains useful information. The views were chosen so that each could bring some
information that the others couldn’t. Further research and experimentations in this
direction (that of the choice of the views) would be of great help in understanding the
role that each view has in the learning process and how to select the most appropriate
views. These researches could be based on the recent works proposed by Kadri et al.
(2013), where we used the covariance kernel as a similarity measure between two
views.

When deriving the optimization problems for CoMBo and µCoMBo, we used an
upper-bound on the norm of the confusion matrix. As discussed in the concluding
sections for Chapters 3 and 4, further research should be focused on finding better
definitions for the confusion matrix and the norm, much like in the case of the works
proposed by Ralaivola (2012), where the norm of the confusion matrix can be directly
computed, instead of using a bound. Defining such matrices and norms could also
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be a solution for the big data problem, since the optimization problem might come in
the form of view and/or data selection.

Throughout this thesis we show that multi-view methods usually come in the
form of ensemble methods, where the resulting hypothesis is a combination of mul-
tiple classifiers. Kuncheva and Whitaker (2003) advocate that the performances of
ensemble learning methods are linked to the diversity of the classifiers: the classifiers
need to be diverse in order to perform better. In Chapter 2 we argue that the per-
formances of MuMBo might imply that indirectly MuMBo encourages the diversity
of the final ensemble of classifiers. It would be interesting to prove a formal relation
between the multi-view methods presented in this thesis and the diversity of the final
ensemble of classifiers. For doing that, it might be necessary to extend the notion
of diversity for the multi-view setting; notion that can be based of the previously
mentioned similarity between views. Defining such a notion would open the path
to methods that select the classifiers (and views) that maximize the diversity of the
ensemble, thus hopefully improving the computational time and resources needed
for these methods.
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A.1 Introduction

The PAC-Bayesian framework, first introduced in McAllester (1999a), is an im-
portant field of research in learning theory. It borrows ideas from the philosophy of
Bayesian inference and mix them with techniques used in statistical approaches of
learning. Given a family of classifiers F , the ingredients of a PAC-Bayesian bound
are a prior distribution P over F , a learning sample S and a posterior distribution Q

over F . Distribution P conveys some prior belief on what are the best classifiers from
F (prior any access to S); the classifiers expected to be the most performant for the
classification task at hand therefore have the largest weights under P. The posterior
distribution Q is learned/adjusted using the information provided by the training
set S. The essence of PAC-Bayesian results is to bound the risk of the stochastic Gibbs
classifier associated with Q Catoni (2004) —in order to predict the label of an exam-
ple x, this predictor first draws a classifier f from F according to Q and then returns
f (x).

When specialized to appropriate function space F and relevant families of prior
and posterior distributions, PAC-Bayes bounds can be used to characterize the error
of different existing classification methods. An example deals with the risk of meth-
ods based upon the idea of the majority vote. We may notice that if Q is the posterior
distribution, the error of the Q-weighted majority vote classifier (which makes a pre-
diction for x according to ∑ f f (x)Q( f )) is bounded by twice the error of the Gibbs
classifier. If the classifiers from F the Q puts a lot of weight on are good enough, the
bound on the risk of the Gibbs classifier can therefore be an informative bound for
the Q-weighted majority vote. Langford and Shawe-Taylor (2002) give a PAC-Bayes
bound for Support Vector Machine (SVM), which depends on the margin of the exam-
ples. In their study, both the prior and posterior distribution are normal distributions,
with different means and variances. Empirical results show that this bound is a good
estimator of the risk of SVMs Langford (2005).

PAC-Bayes bounds can also be used to derive new supervised learning algorithms.
For example, Lacasse et al. (2007) have introduced an elegant bound on the risk of
the majority vote, which holds for any space F . This bound is used to derive an
algorithm, namely MinCq Laviolette et al. (2011), which achieves empirical results on
par with state-of-the-art methods. Some other important results are given in Catoni
(2007), Seegerr (2002), McAllester (1999b) and Langford et al. (2001).

In this paper, we address the multi-class classification problem. Some related
works are therefore multi-class formulations for the SVMs, such as the frameworks of
Weston and Watkins (1998), Lee et al. (2004) and Crammer and Singer (2002). As ma-
jority vote methods, we can also cite multi-class adaptations of the boosting method
called AdaBoost Freund and Schapire (1996), such as the framework given in Mukher-
jee and Schapire (2011), the AdaBoost.MH/AdaBoost.MR algorithms Schapire and
Singer (1999) and the SAMME algorithm Zhu et al. (2009).

The originality of our work is that we consider the confusion matrix of the Gibbs
classifier as an error measure. We believe that in the multi-class framework, it is more
relevant to consider the confusion matrix as the error measure than the mere mis-
classification error, which corresponds to the probability for some classifier h to err
for its prediction on x. The information as to what is the probability for an instance
of class p to be classified into class q (with p 6= q) by some predictor is indeed
crucial in some applications (think of the difference between false-negative and false-
positive predictions in a diagnosis automated system). To the best of our knowledge,
we are the first to propose a generalization bound on the confusion matrix in the
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PAC-Bayesian framework. The result that we propose heavily relies on a matrix con-
centration inequality for sums of random matrices introduced by Tropp (2011). One
may anticipate that generalization bounds for the confusion matrix may also be ob-
tained in other framework than the PAC-Bayesian framework (e.g. uniform stability,
online learning).

The rest of this paper is organized as follows. Sec. A.2 introduces the setting of
multi-class learning and some of the basic notation used throughout the paper. Sec.
A.3 briefly recalls the folk PAC-Bayes bound as introduced in McAllester (2003). In
Sec. A.4, we present the main contribution of this paper, our PAC-Bayes bound on the
confusion matrix, followed by its proof in Sec. A.5. We discuss some future works in
Sec. A.6.

A.2 Setting and Notations

This section presents the general setting that we consider and the different tools
that we will make use of.

A.2.1 General Problem Setting

We consider classification tasks over the input space X ✓R
d of dimension d. The

output space is denoted by Y = {1, . . . , Q}, where Q is the number of classes. The
learning sample is denoted by S = {(xi, yi)}m

i=1 where each example is drawn i.i.d.
from a fixed —but unknown— probability distribution D defined over X ⇥ Y. Dm

denotes the distribution of a m-sample. F ✓ R
X is a family of classifiers f : X ! Y.

P and Q are respectively the prior and the posterior distributions over F . Given the
prior distribution P and the training set S, the learning process consists in finding
the posterior distribution Q leading to a good generalization.

Since we make use of the prior distribution P on F , a PAC-Bayes generalization
bound depends on the Kullback-Leibler divergence (KL-divergence):

KL(QkP) = E f⇠Q log
Q( f )

P( f )
. (A.1)

The function sign(x) is equal to +1 if x ≥ 0 and −1 otherwise. The indicator
function I(x) is equal to 1 if x is true and 0 otherwise.

A.2.2 Conventions and Basics on Matrices

Throughout the paper we consider only real-valued square matrices C of order Q
(the number of classes). tC is the transpose of the matrix C, IdQ denotes the identity
matrix of size Q and 0 is the zero matrix.

The results given in this paper are based on a concentration inequality of Tropp
(2011) for a sum of random self-adjoint matrices. In the case when a matrix is not
self-adjoint and is real-valued, we use the dilation of such a matrix, given in Paulsen
(2002), which is defined as follows:

S(C)
de f
=

✓

0 C
tC 0

◆

. (A.2)

The symbol k · k corresponds to the operator norm also called the spectral norm: it
returns the largest singular value of its argument, which is defined by

kCk = max{lmax(C),−lmin(C)}, (A.3)
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where lmax and lmin are respectively the algebraic maximum and minimum singular
value of C. Note that the dilation preserves spectral information, so we have:

lmax

(

S(C)
)

= kS(C)k = kCk. (A.4)

Since k · k is a regular norm, the following equality obviously holds:

8a 2 R, kaCk = |a|kCk. (A.5)

Given the matrices C and D both made of nonnegative elements and such that 0 
C  D (element-wise), we have:

0  C  D) kCk  kDk. (A.6)

A.2.3 Tools used in the proofs

The work presented in this paper relies on the results given in Theorems 8, 9 and
10.

Theorem 8 (Concentration Inequality for Random Matrices Tropp (2011)) Consider a finite sequence {Mi}
of independant, random, self-adjoint matrices with dimension Q, and let {Ai} be a sequence of
fixed self-adjoint matrices. Assume that each random matrix satisfies EMi = 0 and M2

i 4 A2
i

almost surely. Then, for all e ≥ 0,

P

(

lmax

⇣

∑
i

Mi

⌘

≥ e

)

 Q. exp

✓−e2

8s2

◆

,

where s2 de f
= k∑i A2

i k and 4 refers to the semidefinite order on self-adjoint matrices.

Theorem 9 (Markov’s inequality) Let Z be a random variable and z ≥ 0, then:

P (|Z| ≥ z)  E(|Z|)
z

.

Theorem 10 (Jensen’s inequality) Let X be an integrable real-valued random variable and g(·) be a convex
function, then:

f (E[Z])  E[g(Z)].

A.3 The Usual PAC-Bayes Theorem

In this section, we recall the main PAC-Bayesian bound in binary classification
case as presented in McAllester (2003), Seegerr (2002), Langford (2005). The set of
labels we consider is Y = {−1, 1} (with Q = 2) and, for each classifier f 2 F , the
predicted label of x2X is given by sign( f (x)). The true risk R( f ) and the empirical
error RS( f ) of f are defined as:

R( f )
de f
= E(x,y)⇠DI( f (x 6= y)),

RS( f )
de f
=

1

m

m

∑
i=1

I( f (xi 6= yi)).
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The learner’s aim is to choose a posterior distribution Q on F such that the risk of the
Q-weighted majority vote (also called the Bayes classifier) BQ is as small as possible.
BQ is defined by:

BQ(x) = sign
⇥

E f⇠Q f (x)
⇤

.

The true risk R(BQ) and the empirical error RS(BQ) of the Bayes classifier are defined
as the probability that it commits an error on an example:

R(BQ)
de f
= P(x,y)⇠D (BQ(x) 6= y) . (A.7)

However, the PAC-Bayes approach does not directly bound the risk of BQ. Instead, it
bounds the risk of the stochastic Gibbs classifier GQ which predicts the label of x 2 X
by first drawing f according to Q and then returning f (x). The true risk R(GQ) and
the empirical error RS(GQ) of GQ are therefore:

R(GQ) = E f⇠QR( f ) ; RS(GQ) = E f⇠QRS( f ). (A.8)

Note that in this setting, we have R(BQ)  2R(GQ).
We present the PAC-Bayes theorem which gives a bound on the error of the

stochastic Gibbs classifier.

Theorem 11 For any D, any F , any P of support F , any d 2 (0, 1], we have,

PS⇠Dm

 

8Q on F , kl
(

RS(GQ), R(GQ)
)



1

m



KL(QkP) + ln
x(m)

d

]

!

≥1− d,

where kl(a, b)
de f
= a ln a

b + (1− a) ln 1−a
1−b ,

and x
de f
= ∑

m
i=0 (

m
i )(i/m)i(1− i/m)m−i.

We now provide a novel PAC-Bayes bound in the context of multi-class classifica-
tion by considering the confusion matrix as an error measure.

A.4 Multiclass PAC-Bayes Bound

A.4.1 Definitions and Setting

As said earlier, we focus on multi-class classification. The output space is Y =
{1, . . . , Q}, with Q > 2. We only consider learning algorithms acting on learning
sample S= {(xi, yi)}m

i=1 where each example is drawn i.i.d according to D, such that
|S| ≥ Q and myj

≥ 1 for every class yj 2 Y, where myj
is the number of examples of

real class yj. In the context of multi-class classification, an error measure can be a
performance tool called confusion matrix. We consider the classical definition of the
confusion matrix based on conditional probabilities: it is inherent (and desirable) to
minimize the effects of unbalanced classes. Concretely, for a given classifier f 2F and

a sample S={(xi, yi)}m
i=1⇠Dm, the empirical confusion matrix D

f
S =(d̂pq)1p,qQ of f is

defined as follows:

8(p, q), d̂pq
de f
=

m

∑
i=1

1

myi

I( f (xi) = q)I(yi = p).
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The true confusion matrix D f = (dpq)1p,qQ of f over D corresponds to:

8(p, q), dpq
de f
= Ex|y=pI

(

f (x) = q
)

= P(x,y)⇠D( f (x) = q|y = p).

If f correctly classifies every example of the sample S, then all the elements of
the confusion matrix are 0, except for the diagonal ones which correspond to the
correctly classified examples. Hence the more there are non-zero elements in a con-
fusion matrix outside the diagonal, the more the classifier is prone to err. Recall that
in a learning process the objective is to learn a classifier f 2F with a low true error
(i.e. with good generalization guarantees), we are thus only interested in the errors of
f . Our objective is then to find f leading to a confusion matrix with the more zero el-
ements outside the diagonal. Since the diagonal gives the conditional probabilities of
’correct’ predictions, we propose to consider a different kind of confusion matrix by
discarding the diagonal values. Then the only non-zero elements of the new confusion
matrix correspond to the examples that are misclassified by f . For all f 2F we define

the empirical and true confusion matrices of f by respectively C
f
S =(ĉpq)1p,qQ and

C f =(cpq)1p,qQ such that for all (p, q):

ĉpq
de f
=

⇢

0 if q = p

d̂pq otherwise,
(A.9)

cpq
de f
=

⇢

0 if q = p
dpq =P(x,y)⇠D( f (x) = q|y = p) otherwise.

(A.10)

Note that if f correctly classifies every example of a given sample S, then the empir-

ical confusion matrix C
f
S is equal to 0. Similarly, if f is a perfect classifier over the

distribution D, then the true confusion matrix is equal to 0. Therefore a relevant task
is to minimize the size of the confusion matrix, thus having a confusion matrix as
close to 0 as possible.

A.4.2 Main Result: Confusion PAC-Bayes Bound for the Gibbs Classifier

Our main result is a PAC-Bayes generalization bound over the Gibbs classifier GQ

in this particular context, where the empirical and true error measures are respec-
tively given by the confusion matrices from (A.9) and (A.10). In this case, we can
define the true and the empirical confusion matrices of GQ respectively by:

CGQ = E f⇠QES⇠Dm
C

f
S ; CGQ

S = E f⇠QC
f
S.

Given f ⇠Q and a sample S⇠Dm, our objective is to bound the difference between

CGQ and CGQ

S , the true and empirical errors of the Gibbs classifier. Remark that the
error rate P( f (x) 6= y) of a classifier f might be directly computed as the 1-norm of
tC f p, where p is the vector of prior probabilities. However, in our case, concentration
inequalities are only available for the operator norm. Since we have kuk1

p
Qkuk2

for any Q-dimensional vector u, we have that P( f (x) 6= y)pQkC f kop. Thus trying

to minimize the operator norm of C f is a relevant strategy to control the risk. Here
is our main result, a bound on the operator norm of the difference between CGQ and

CGQ

S .
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Theorem 12 Let X✓R
d be the input space, Y = {1, . . . , Q} the output space, D a distribution over X⇥Y

(with Dm the distribution of a m-sample) and F a family of classifiers from X to Y. Then for
every prior distribution P over F and any d 2 (0, 1], we have:

PS⇠Dm

(

8Q on F , kCGQ

S − CGQk 
s

8Q

m− − 8Q

h

KL(Q||P) + ln
⇣m−

4d

⌘i

)

≥1− d,

where m− = miny=1,...,Q my is the minimal number of examples from S which belong to the
same class.

Proof. Deferred to Section A.5.

Note that, for all y 2 Y, we need the following hypothesis: my > 8, which is not
too strong a limitation.

Finally, we rewrite Theorem 12 in order to provide a bound on the size kCGQk.

Corollary 3 We consider the hypothesis of the Theorem 12. We have:

PS⇠Dm

(

8Q on F , kCGQk  kCGQ

S k+
s

8Q

m−−8Q

h

KL(Q||P) + ln
⇣m−

4d

⌘i

)

≥1− d.

Proof. By application of the reverse triangle inequality |kAk − kBk|  kA − Bk to
Theorem 12.

Both Theorem 12 and Corollary 3 yield a bound on the estimation (through the
operator norm) of the true confusion matrix of the Gibbs classifier over the posterior
distribution Q, though this is more explicit in the corollary. Let the number of classes
Q be a constant, then the true risk is upper-bounded by the empirical risk of the
Gibbs classifier and a term depending on the number of training examples, especially
on the value m− which corresponds to the minimal quantity of examples that belong
to the same class. This means that the larger m−, the closer the empirical confusion
matrix of the Gibbs classifier is to its true matrix.

A.4.3 Upper Bound on the Risk of the Majority Vote Classifier

We recall that the Bayes classifier BQ is well known as majority vote classifier
under a given posterior distribution Q. In the multiclass setting, BQ is such that for
any example it returns the majority class under the measure Q and we define it as:

BQ(x) = argmaxc2Y

h

E f2QI( f (x) = c)
i

. (A.11)

We define the conditional Gibbs risk R(GQ, p, q) and Bayes risk R(GQ, p, q) as

R(GQ, p, q) = Ex⇠D|y=p
E f⇠QI( f (x) = q), (A.12)

R(BQ, p, q) = Ex⇠D|y=p
I
(

argmaxc2Y g(c, q)
)

. (A.13)
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where
g(c, q) =

h

E f2QI( f (x) = c) = q
i

The former is the (p, q) entry of CGQ (if p 6= q) and the latter is the (p, q) entry of
CBQ .

Proposition 3 Let Q ≥ 2 be the number of classes. Then R(BQ, p, q) and R(GQ, p, q) are related by the
following inequality :

8(q, p), R(BQ, p, q)  QR(GQ, p, q). (A.14)

Proof. Consider a labeled pair (x, y). Let us introduce the notation gq(x) for q 2 Y
such that:

gq(x) = E f⇠QI( f (x) = q) = ∑
f : f (x)=q

Q(q).

Obviously,

∑
q2Y

gq(x) = 1.

Recall that the conditional Gibbs risk R(GQ, p, q) and Bayes risk R(GQ, p, q) are de-
fined as:

R(GQ, p, q) = Ex⇠D|y=p
E f⇠QI( f (x) = q) = Ex⇠D|y=p

gq(x), (A.12)

R(BQ, p, q) = Ex⇠D|y=p
I(argmaxc2Y gc(x) = q) (A.13)

The former is the (p, q) entry of CGQ (if p 6= q) and the latter is the (p, q) entry of
CBQ .

For q 6= y to be predicted by the majority vote classifier, it is necessary and suffi-
cient that

gq(x) ≥ gc(x), 8c 2 Y, c 6= q.

This might be equivalently rewritten as:

I(argmaxc gc(x) = q) = I(^c,c 6=q gq(x) ≥ gc(x)) (A.15)

(note that the expectation of the left-hand side which respect to D|y=p is R(BQ, p, q)
—cf. (A.13)). Now remark that:

I(^c,c 6=q gq(x) ≥ gc(x)) = 1, gq(x)− gc(x), 8c 2 Y, c 6= q

) ∑
c2Y,c 6=q

(gq(x)− gc(x)) ≥ 0

, ∑
c2Y,c 6=q

gq(x)− ∑
c2Y,c 6=q

gc(x) ≥ 0

, (Q− 1)gq(x)− (1− gq(x)) ≥ 0

, gq(x) ≥
1

Q
.

where we have used ∑c2Y gc(x) = 1 in the next to last line. This means that:

I(^c,c 6=q gq(x) ≥ gc(x)) = 1) I

✓

gq(x) ≥
1

Q

◆

= 1,
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Figure A.1 – Plot of g 7! qI (g ≥ q) , for q = 0.25 (red) and q = 0.5 (green). Observe that
g ≥ qI (g ≥ q), 8q 2 [0, 1].

from which we get:

I(^c,c 6=q gq(x) ≥ gc(x))  I

✓

gq(x) ≥
1

Q

◆

,

that is, by virtue of (A.15):

I (argmaxc gc(x) = q)  I

✓

gq(x) ≥
1

Q

◆

.

We then may use that g ≥ qI (g ≥ 1/Q) , 8g 2 [0, 1], q 2 [0, 1], as illustrated on
Figure A.1, to obtain

1

Q
I

✓

gq(x) ≥
1

Q

◆

 gq(x), I

✓

gq(x) ≥
1

Q

◆

 Qgq(x),

and, combining with the previous inequality:

I (argmaxc gc(x) = q)  Qgq(x).

Taking the expectation of both sides with respect to x ⇠ D|y=p, we get:

R(BQ, p, q)  QR(GQ, p, q).

This proposition implies the following result on the confusion matrices associated
to BQ and GQ.

Corollary 4 Let Q ≥ 2 be the number of class. Then CBQ and CGQ are related by the following inequality:

kCBQk  QkCGQk. (A.16)

Proof. From the definitions of R(GQ, p, q) (A.12) and R(BQ, p, q) (A.13), we directly
obtain from Proposition 3:

CBQ  QCGQ . (A.17)

We dilate CBQ and QCGQ , then (A.17) is rewritten as:

S(CBQ)  S(QCGQ).
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Since all component of a confusion matrix are positive, we have 0  S(CBQ) 
S(QCGQ). We can thus apply the property (A.6). We obtain:

lmax(S(CBQ))  lmax(S(QCGQ)). (A.18)

Then, with property (A.4), (A.18) is rewritten as:

kCBQk  kQCGQk.

Finally, by application of (A.5):

kCBQk  QkCGQk.

A.5 Proof of Theorem 12

This section gives the formal proof of Theorem 12. We first introduce a concen-
tration inequality for a sum of random square matrices. This allows us to deduce the
PAC-Bayes generalization bound for confusion matrices by following the same “three
step process” as the one given in McAllester (2003), Seegerr (2002), Langford (2005)
for the classic PAC-Bayesian bound.

A.5.1 Concentration Inequality for the Confusion Matrix

The main result of our work is based on the following corollary of a result on the
concentration inequality for a sum of self-adjoint matrices given by Tropp (2011) (see
Theorem 8 in Appendix) – this theorem generalizes Hoeffding’s inequality to the case
self-adjoint random matrices. The purpose of the following corollary is to restate the
Theorem 8 so that it carries over to matrices that are not self-adjoint. It is central to us
to have such a result as the matrices we are dealing with, namely confusion matrices,
are rarely symmetric.

Corollary 5 Consider a finite sequence {Mi} of independent, random, square matrices of order Q, and let
{ai} be a sequence of fixed scalars. Assume that each random matrix satisfies EiMi = 0 and

kMik ai almost surely.. Then, with s2de f
=∑i a2

i , we have,

8e ≥ 0, P

(

k∑
i

Mik ≥ e

)

 2.Q. exp

✓−e2

8s2

◆

. (A.19)

Proof. We want to verify the hypothesis given in Theorem 8 in order to apply it.
Let {Mi} be a finite sequence of independent, random, square matrices of order Q
such that EiMi = 0 and let {ai} be a sequence of fixed scalars such that kMik  ai.
We consider the sequence {S(Mi)} of random self-adjoint matrices with dimension
2Q. By the definition of the dilation, we obtain EiS(Mi)=0.
From Equation (A.4), the dilation preserves the spectral information. Thus, on the one
hand, we have:

k∑
i

Mik = lmax

✓

S
⇣

∑
i

Mi

⌘

◆

= lmax

⇣

∑
i

S(Mi)
⌘

.



A.5. Proof of Theorem 12 113

On the other hand, we have:

kMik = kS(Mi)k = lmax

(

S(Mi)
)

 ai.

To assure the hypothesis S(Mi)
2 4 A2

i , we need to find a suitable sequence of fixed
self-adjoint matrices {Ai} of dimension 2Q (where 4 refers to the semidefinite order
on self-adjoint matrices). Indeed, it suffices to construct a diagonal matrix defined as

lmax

(

S(Mi)
)

Id2Q for ensuring S(Mi)
2 4

(

lmax

(

S(Mi)
)

Id2Q

)2
. More precisely, since

for every i we have lmax

(

S(Mi)
)

 ai, we fix Ai as a diagonal matrix with ai on the

diagonal, i.e. Ai
de f
= aiId2Q, with k∑i A2

i k = ∑i a2
i = s2. Finally, we can invoke Theorem

8 to obtain the concentration inequality (A.19).

In order to make use of this corollary, we rewrite confusion matrices as sums of
example-based confusion matrices. That is, for each example (xi, yi) 2 S, we define

its empirical confusion matrix by C
f
i = (ĉpq(i))1p,qQ as follows:

8p, q, ĉpq(i)
de f
=

8

<

:

0 if q = p
1

myi

I( f (x) = q)I(yi = p) otherwise.

where myi
is the number of examples of class yi 2 Y belonging to S. Given an ex-

ample (xi, yi) 2 S, the example-based confusion matrix contains at most one non
zero-element when f misclassifies (xi, yi). In the same way, when f correctly classifies
(xi, yi) then the example-based confusion matrix is equal to 0. Concretely, for every

sample S = {(xi, yi)}m
i=1 and every f 2 F , our error measure is then C

f
S = ∑

m
i=1 C

f
i . It

naturally appears that we penalize only when f errs.

We further introduce the random square matrices C0 fi :

C0 fi = C
f
i −ES⇠Dm

C
f
i , (A.20)

which verify EiC
0 f
i = 0.

We have yet to find a suitable ai for a given C0 fi . Let lmaxi
be the maximum singular

value of C0 fi . It is easy to verify that lmaxi
 1

myi
. Thus, for all i we fix ai equal to 1

myi
.

Finally, with the introduced notations, Corollary 5 leads to the following concen-
tration inequality:

P

(

k
m

∑
i=1

C0 fi k ≥ e

)

 2.Q. exp

✓−e2

8s2

◆

. (A.21)

This inequality (A.21) allows us to demonstrate our Theorem 12 by following the
process of McAllester (2003), Seegerr (2002), Langford (2005).

A.5.2 “Three Step Proof” Of Our Bound

First, thanks to concentration inequality (A.21), we prove the following lemma.

Lemma 3 Let Q be the size of C
f
S and C0 fi = C

f
i −ES⇠Dm

C
f
i defined as in (A.20). Then the following bound

holds for any d 2 (0, 1]:

PS⇠Dm

(

E f⇠P

"

exp

 

1− 8s2

8s2
k

m

∑
i=1

C0 fi k2

!#

 2Q

8s2d

)

≥ 1− d
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Proof. For readability reasons, we note C0 fS = ∑
m
i=1 C0 fi . If Z is a real valued random

variable so that P (Z ≥ z)  k exp(−n.g(z)) with g(z) non-negative, non-decreasing
and k a constant, then P (exp ((n− 1)g(Z)) ≥ n)  min(1, kn−n/(n−1)). We apply this
to the concentration inequality (A.21). Choosing g(z) = z2 (non-negative), z = e,
n = 1

8s2 and k = 2Q, we obtain the following result:

P

⇢

exp

✓

1− 8s2

8s2
kC0 fSk

◆

≥n

}

min
(

1, 2Qn−1/(1−8s2)
)

.

Note that exp
⇣

1−8s2

8s2 kC0 fSk
⌘

is always non-negative. Hence it allows us to compute

its expectation as:

E

"

exp
⇣1− 8s2

8s2
kC0 fSk

⌘

#

=
Z ∞

0
P

⇢

exp
⇣1− 8s2

(8s2)
kC0 fSk

⌘

≥ n

}

dn

 2Q +
Z ∞

1
2Qn−1/(1−8s2)dn

= 2Q− 2Q
1− 8s2

8s2

h

n−8s2/(1−8s2)
i∞

1

= 2Q + 2Q
1− 8s2

8s2

=
2Q

8s2
.

For a given classifier f 2 F , we have:

ES⇠Dm



exp

✓

1− 8s2

8s2
kC0 fSk

◆]

 2Q

8s2
(A.22)

Then, if P is a probability distribution over F , Equation (A.22) implies that:

ES⇠Dm



E f⇠P exp

✓

1− 8s2

8s2
kC0 fSk

◆]

 2Q

8s2
(A.23)

Using Markov’s inequality 1, we obtain the result of the lemma.

The second step to prove Theorem 12 is to use the shift given in McAllester (2003).
We recall this result in the following lemma.

Lemma 4 (Donsker-Varadhan inequality Donsker and Varadhan (1975)) Given the Kullback-Leibler diver-
gence 2 KL(QkP) between two distributions P and Q and let g(·) be a function, we have:

Ea⇠Q

h

g(b)
i

 KL(QkP) + ln Ex⇠P

h

exp(g(b))
i

.

Proof. See McAllester (2003).

1. see Theorem 9 in Appendix.
2. The KL-divergence is defined in Equation (A.1).
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Recall that C0 fS = ∑
m
i=1 C0 fi . With g(b) = 1−8s2

8s2 b2 and b = kC0 fSk, Lemma 4 implies:

E f⇠Q

"

1− 8s2

8s2
kC0 fSk2

#

KL(QkP)+ln E f⇠P

"

exp

✓

1− 8s2

8s2
kC0 fSk2

◆

#

. (A.24)

The last step that completes the proof of Theorem 12 consists in applying the
result we obtained in Lemma 3 to Equation (A.24). Then, we have:

E f⇠Q



1− 8s2

8s2
kC0 fSk2

]

 KL(QkP) + ln
2Q

8s2d
. (A.25)

Since g(·) is clearly convex, we apply Jensen’s inequality 3 to (A.25). Then, with
probability at least 1− d over S, and for every distribution Q on F , we have:

⇣

E f⇠QkC0 fSk
⌘2
 8s2

1−8s2

✓

KL(QkP)+ln
2Q

8s2d

◆

. (A.26)

Since C0 fS = ∑
m
i=1

h

C
f
i −ES⇠Dm

C
f
i

i

, then the bound (A.26) is quite similar to the one

given in Theorem 12.
We present in the next section, the calculations leading to our PAC-Bayesian gen-

eralization bound.

A.5.3 Simplification

We first compute the variance parameter s2 = ∑
m
i=1 a2

i . For that purpose, in Section
A.5.1 we showed that for each i 2 {1, . . . , m}, we can choose ai =

1
myi

, where yi is the

class of the i-th example and myi
is the number of examples of class yi. Thus we have:

s2 =
m

∑
i=1

1

m2
yi

=
Q

∑
y=1

∑
i:yi=y

1

m2
y

=
Q

∑
y=1

1

my
.

For sake of simplification of Equation (A.26) and since the term on the right side of
this equation is an increasing function with respect to s2, we propose to upper-bound
s2:

s2 =
Q

∑
y=1

1

my
 Q

miny=1,...,Q my
. (A.27)

Let m−
de f
= miny=1,...,Q my, then using Equation (A.27), we obtain the following bound

from Equation (A.26):

⇣

E f⇠Q[kC0 fSk]
⌘2
 8Q

m− − 8Q

⇣

KL(QkP) + ln
m−
4d

⌘

.

Then:

E f⇠Q[kC0 fSk] 
s

8Q

m− − 8Q

⇣

KL(QkP) + ln
m−
4d

⌘

. (A.28)

3. see Theorem 10 in Appendix.
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It remains to replace C0 fS = ∑
m
i=1

h

C
f
i −ES⇠Dm

C
f
i

i

. Recall that CGQ =

E f⇠QES⇠Dm
C

f
S and CGQ

S =E f⇠QC
f
S, we obtain:

E f⇠Q[kC0 fSk] = E f⇠Q

"

k
m

∑
i=1

h

C
f
i −ES⇠Dm

C
f
i

i

k
#

= E f⇠Q

"

k
m

∑
i=1

h

C
f
i

i

−
m

∑
i=1

h

ES⇠Dm
C

f
i

i

k
#

= E f⇠Q

"

kC f
S −ES⇠Dm

"

m

∑
i=1

C
f
i

#

k
#

= E f⇠Q
h

kC f
S −ES⇠Dm

C
f
Sk
i

≥ kE f⇠Q
h

C
f
S −ES⇠Dm

C
f
S

i

k

= kE f⇠QC
f
S −E f⇠QES⇠Dm

C
f
Sk

= kCGQ

S − CGQk. (A.29)

By substituting the left part of the inequality (A.28) with the term (A.29), we find
the bound of our Theorem 12.

A.6 Discussion and Future Work

This work gives rise to many interesting questions, among which the following
ones.

Some perspectives will be focused on instantiating our bound given in Theorem
12 for specific multi-class frameworks, such as multi-class SVM Weston and Watkins
(1998), Crammer and Singer (2002), Lee et al. (2004) and multi-class boosting (Ad-
aBoost.MH/AdaBoost.MR Schapire and Singer (1999), SAMME Zhu et al. (2009), Ad-
aBoost.MM Mukherjee and Schapire (2011)). Taking advantage of our theorem while
using the confusion matrices, may allow us to derive new generalization bounds for
these methods.

Additionally, we are interested in seeing how effective learning methods may
be derived from the risk bound we propose. For instance, in the binary PAC-Bayes
setting, the algorithm MinCq proposed by Laviolette et al. (2011) minimizes a bound
depending on the first two moments of the margin of the Q-weighted majority vote.
From our Theorem 12 and with a similar study, we would like to design a new multi-
class learning algorithm and observe how sound such an algorithm could be. This
would probably require the derivation of a Cantelli-Tchebycheff deviation inequality
in the matrix case.

Besides, it might be very interesting to see how the noncommutative/matrix con-
centration inequalities provided by Tropp (2011) might be of some use for other kinds
of learning problem such as multi-label classification, label ranking problems or struc-
tured prediction issues.

Finally, the question of extending the present work to the analysis of algorithms
learning (possibly infinite-dimensional) operators as Abernethy et al. (2009) is also
very exciting.



A.7. Conclusion 117

A.7 Conclusion

In this paper, we propose a new PAC-Bayesian generalization bound that applies
in the multi-class classification setting. The originality of our contribution is that we
consider the confusion matrix as an error measure. Coupled with the use of the op-
erator norm on matrices, we are capable of providing generalization bound on the
‘size’ of confusion matrix (with the idea that the smaller the norm of the confusion
matrix of the learned classifier, the better it is for the classification task at hand). The
derivation of our result takes advantage of the concentration inequality proposed by
Tropp (2011) for the sum of random self-adjoint matrices, that we directly adapt to
square matrices which are not self-adjoint.

The main results are presented in Theorem 12 and Corollary 3. The bound in
Theorem 12 is given on the difference between the true risk of the Gibbs classifier
and its empirical error. While the one given in Corollary 3 upper-bounds the risk of
the Gibbs classifier by its empirical error.

An interesting point is that our bound depends on the minimal quantity m− of
training examples belonging to the same class, for a given number of classes. If this
value increases, i.e. if we have a lot of training examples, then the empirical confusion
matrix of the Gibbs classifier tends to be close to its true confusion matrix. A point
worth noting is that the bound varies as O(1/

p
m−), which is a typical rate in bounds

not using second-order information.
The present work gives rise to a few algorithmic and theoretical questions that we

have discussed in the previous section.
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Titre Méthodes ensemblistes pour des problèmes de classification multi-vues et multi-classes avec déséquilibres

Résumé De nos jours, dans plusieurs domaines, tels que la bio-informatique ou le multimédia, les données peuvent être
représentées par plusieurs ensembles d’attributs, appelés des vues. Ainsi, en multimédia, une vidéo peut être représenté par
sa bande son ou les images qui la composent. Bien que représentant les mêmes objets, chaque vue est plus ou moins adaptée
à une tâche d’apprentissage donnée. Par exemple, dans le cas de la classification des vidéos musicales selon leurs genres, la
vue son est plus adaptée que la vue image. Pour une tâche de classification donnée, nous distinguons deux types de vues :
les vues fortes sont celles adaptées à la tâche, les vues faibles sont adaptées à une (petite) partie de la tâche ; en classification
multi-classes, chaque vue peut s’avérer forte pour reconnaître une classe, et faible pour reconnaître d’autres classes : une
telle vue est dite déséquilibrée. Les travaux présentés dans cette thèse s’inscrivent dans le cadre de l’apprentissage supervisé
et ont pour but de traiter les questions d’apprentissage multi-vue dans le cas des vues fortes, faibles et déséquilibrées. La
première contribution de cette thèse est un algorithme d’apprentissage multi-vues théoriquement fondé sur le cadre de
boosting multi-classes utilisé par AdaBoost.MM. Le but de cet algorithme est d’améliorer les performances des classifieurs
appris sur les vues fortes en utilisant des informations contenues dans les vues faibles. Comparé aux méthodes existantes,
la nouveauté de notre approche demeure dans l’utilisation de la coopération entre les vues afin de trouver la vue la
plus adaptée pour chaque exemple. La seconde partie de cette thèse concerne la mise en place d’un cadre général pour
les méthodes d’apprentissage de classes déséquilibrées (certaines classes sont plus représentées que les autres). Ce cadre
consiste à utiliser la norme de la matrice de confusion comme mesure d’erreur pour un classifieur donné. Dans ce cadre,
nous proposons une extension de AdaBoost.MM permettant de prendre en compte des classes déséquilibrées. Dans la
troisième partie, nous traitons le problème des vues déséquilibrées en combinant notre approche des classes déséquilibrées
et la coopération entre les vues mise en place pour appréhender la classification multi-vues. Contrairement à la coopération
de la première méthode, utilisée pour trouver la meilleure vue pour chaque exemple, dans ce cas, la coopération permet
de trouver la meilleure vue pour chaque classe. Autrement dit, la coopération passe de l’espace d’entrée à celui de sortie.
Cela nous permet de dériver différentes méthodes d’apprentissage permettant de combiner plusieurs classifieurs appris sur
les vues. Parmi ces méthodes, nous proposons une méthode de boosting proche de la première méthode. Afin de tester les
méthodes sur des données réelles, nous nous intéressons au problème de classification d’appels téléphoniques, qui a fait
l’objet du projet ANR DECODA. Ainsi chaque partie traite différentes facettes du problème. La première partie présente
le problème en tant que problème multi-vues (sacs de mots et de concepts, prosodie, mesures de l’interaction entre les
locuteurs, etc.): est-ce que la séparation des vues, traitées par coopération, améliore les performances d’une fusion précoce
de toutes ces vues? Dans la seconde partie, nous considérons le problème des classes déséquilibrées (par exemple, il y a
beaucoup plus d’appels concernant les itinéraires que les procès verbaux). La troisième partie regroupe les aspects multi-vues
et les déséquilibres entre classes.

Mots-clés apprentissage automatique, apprentissage supervisé, apprentissage multi-vues, vues déséquilibrées, méth-
odes ensemblistes, boosting, coopération entre vues, matrices de confusion, classes déséquilibrées

Title Tackling the uneven views problem with cooperation based ensemble learning methods

Abstract Nowadays, in many fields, such as bioinformatics or multimedia, data may be described using different sets
of features, also called views. For instance, in multimedia, a video may be represented by the audio or the images contained
therein. Even though they represent the same object, each view is more or less adapted for a given task. For example, if the
goal is to classify musical videos by genre, then the audio view is more adapted than the image one. For a given classification
task, we distinguish two types of views: strong views, which are suited for the task, and weak views suited for a (small)
part of the task; in multi-class learning, a view can be strong with respect to some (few) classes and weak for the rest of the
classes: these are imbalanced views. The works presented in this thesis fall in the supervised learning setting and their aim
is to address the problem of multi-view learning under strong, weak and imbalanced views, regrouped under the notion
of uneven views. The first contribution of this thesis is a multi-view learning algorithm based on the same framework as
AdaBoost.MM. The goal of this algorithm is to improve the performances of the classifiers learnt only on the strong views,
through the use of information contained in the weaker views. Compared to existing methods, the novelty of our approach
resides in promoting the cooperation between the views, so that each example can be processed by the most appropriate
view. The second part of this thesis proposes a unifying framework for imbalanced classes supervised methods (some of
the classes are more represented than others). The novelty of this framework consists in using the norm of the confusion
matrix (for a given classifier) as an error measure. Based on this framework, we proposed an extension of AdaBoost.MM
allowing to take into consideration the imbalance between classes. In the third part of this thesis, we tackle the uneven views
problem through the combination of the imbalanced classes framework and the between-views cooperation used to take
advantage of the multiple views. Contrary to the cooperation in the first part, used to find the most suitable view for each
example, in this case, the cooperation is employed to find the most suitable view(s) for each class. That is, the cooperation
is transposed from the input space to the output one, allowing to deriver several ensemble based learning method for
combining classifier coming from the various views. Amidst these method, we propose a boosting algorithm similar to the
one introduced in the first part. In order to test the proposed methods on real-world data, we consider the task of phone
calls classifications, which constitutes the subject of the ANR DECODA project. Each part of this thesis deals with different
aspects of the problem. In the first part, we deal with the multi-view aspect of dialogs (bag of words, prosody, interaction
between speakers, etc.), in order to address the question of wether installing some cooperation between the views, leads to
better performance than early fusion methods. The imbalance classes aspect of the data is the main focus of the second part
(for instance, there are more phone calls for itineraries than there are for fines). The third part regroups the multi-view and
imbalanced classes facets.

Keywords machine learning, supervised learning, multi-view learning, uneven views, ensemble methods, boosting,
between-views cooperation, confusion matrix, imbalanced classes
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