Moments des fonctions thêta
| Auteur / Autrice : | Marc Munsch |
| Direction : | Stéphane Louboutin |
| Type : | Thèse de doctorat |
| Discipline(s) : | Mathématiques |
| Date : | Soutenance le 12/12/2013 |
| Etablissement(s) : | Aix-Marseille |
| Ecole(s) doctorale(s) : | École Doctorale Mathématiques et Informatique de Marseille (Marseille) |
| Jury : | Président / Présidente : Emmanuel Royer |
| Examinateurs / Examinatrices : Olivier Ramare, Joel Rivat, Gilles Lachaud | |
| Rapporteurs / Rapporteuses : Driss Essouabri, Matti Jutila |
Mots clés
Résumé
On s’intéresse dans cette thèse à l’étude des fonctions thêta intervenant dans la preuve de l’équation fonctionnelle des fonctions L de Dirichlet. En particulier, on adapte certains résultats obtenus dans le cadre des fonctions L au cas des fonctions thêta. S. Chowla a conjecturé que les fonctions L de Dirichlet associées à des caractères χ primitifs ne doivent pas s’annuler au point central de leur équation fonctionnelle. De façon analogue, il est conjecturé que les fonctions thêta ne s'annulent pas au point 1. Dans le but de prouver cette conjecture pour beaucoup de caractères, on étudie les moments de fonctions thêta dans plusieurs familles. On se focalise sur deux familles importantes. La première considérée est l’ensemble des caractères de Dirichlet modulo p où p est un nombre premier. On prouve des formules asymptotiques pour les moments d'ordre 2 et 4 en se ramenant à des problèmes de nature diophantienne. La seconde famille considérée est celle des caractères primitifs et quadratiques associés à des discriminants fondamentaux d inférieurs à une certaine borne fixée. On donne une formule asymptotique pour le premier moment et une majoration pour le moment d'ordre 2 en utilisant des techniques de transformée de Mellin ainsi que des estimations sur les sommes de caractères. Dans les deux cas, on en déduit des résultats de non-annulation des fonctions thêta. On propose également un algorithme qui, pour beaucoup de caractères, se révèle en pratique efficace pour prouver la non-annulation sur l'axe réel positif des fonctions thêta ce qui entraîne la non-annulation sur le même axe des fonctions L associées.