
 

 

Thèse de doctorat 

Pour obtenir le grade de Docteur de l’Université de 

VALENCIENNES ET DU HAINAUT-CAMBRESIS 

Discipline, spécialité selon la liste des spécialités pour lesquelles l’Ecole Doctorale est accréditée :  

 Electronique 

Présentée et soutenue par Kais, HASSAN.  

Le 10/12/2012, à Villeneuve d’Ascq 

Ecole doctorale :  

Sciences Pour l’Ingénieur (SPI) 

Equipe de recherche, Laboratoire : 

Institut d’Electronique, de Micro-Electronique et de Nanotechnologie/Département d’Opto-Acousto-
Electronique (IEMN/DOAE) 
Institut Français des Sciences et Technologies des Transports, de l’Aménagement et des 
Réseaux/Laboratoire  
Electronique, Ondes et Signaux pour les Transports (IFSTTAR/LEOST) 
Le Laboratoire des Sciences et Techniques de l’Information, de la Communication et de la Connaissance 
(Lab-STICC). 

Contributions aux capacités de reconnaissance de l'environnement de la 
Radio Cognitive pour des applications mobiles à grande vitesse 

JURY 

Président du jury 

- Fijalkow, Inbar. Professeur des Universités. Ecole Nationale Supérieure de l’Electronique et de ses 
Applications (ENSEA), laboratoire ETIS, Cergy-Pontoise. 

Rapporteurs 

- Knopp, Raymond. Professeur des Universités. Eurocom, Sophia Antipolis. 
- Cances, Jean-Pierre. Professeur des Universités. Université de Limoges, laboratoire XLIM. 

Examinateurs

- Fijalkow, Inbar. Professeur des Universités. Ecole Nationale Supérieure de l’Electronique et de ses 
Applications (ENSEA), laboratoire ETIS, Cergy-Pontoise. 
- Ghannoun, Hassan. Chef de Projet Télécommunications, SNCF, Innovation & Recherche. Paris. 
 
Directeur de thèse 
- Berbineau, Marion. Directrice de Recherches, IFSTTAR LEOS. Villeneuve d’Ascq. 
Co-directeur de thèse : Radoi, Emanuel. Professeur des Universités. Université de Bretagne occidentale. 
Co-encadrant : Dayoub, Iyad. Maître de Conférences, HDR. Université de Valenciennes. 
Co-encadrant : Gautier, Roland. Maître de Conférences. Université de Bretagne occidentale, Lab-STICC. 
 





To my wife Lama, for her unconditional support and endless love,

To my family, who supported me in the hardest times,

To my beloved twins Wajd and Jana.





Acknowledgments

This dissertation represents three years of work with IFSTTAR, IEMN-DOAE, and Lab-STICC,

and because of that, there are a large number of people to thank.

Firstly, I am very grateful to my supervisors Marion Berbineau, Emanuel Radoi, Iyad Dayoub,

and Roland Gautier. Without their valuable guidance and constant encouragement this work

would not have been possible. Each have contributed in significant ways to my education,

either through my personal relationships or work experiences with them. Thank you all for your

enthusiasm, dedication, time, positive attitude, valuable comments and suggestions.

My special thanks to Iyad Dayoub, whose encouragement and support on research, personal, and

even financial levels, helped me through the most difficult times.

Also I thank the IFSTTAR, IEMN-DOAE, and Lab-STICC teams for receiving me as a Ph.D.

student. Their support and warmth helped me in keeping the motivation levels high. Thank you

all for both the technical and the non-technical discussions. Special thanks to my friends and

colleagues in IFSTTAR-LEOST with whom I spent the most of my time.

I would like to take this opportunity to thank my scholarship donors, IFSTTAR and “Nord-

Pas-de-Calais” region, for their financial support without which this research study would not

have been possible. I must also thank the project CISIT which a part of these funds was in its

framework.

Also, I would like to thank my reviewing committee members for accepting to dedicate their

time and effort to examine this work.

Finally, and most importantly, I would like to express gratitude to my wife for her continuous

support all the way to get here. Thanks to my family for being present through every step of

my life and helping me to become the person I am today.

iii





Title

Contributions to Cognitive Radio Awareness for High Mobility Applications

Abstract

An essential goal of railway operators is to increase safety, reduce operation and maintenance

costs, and increase attraction and profit by offering new services to passengers. These objectives

will be reached thanks to a huge increase of data fluxes exchanges between railways stakeholders

and infrastructures. Interoperability, spectral efficiency, optimization of radio resource usages,

and improvement of communications reliability are of significant interest for railway applications.

The Cognitive Radio (CR) research has been successfully applied to meet the communication

needs of the military as well as the public-safety sectors, which share many of the same needs as

railway. CRs have shown significant promise to answer all of the previously listed requirements.

One of the main capabilities of a CR device is to sense and finally become aware of its environ-

ment. Three major domains define the environment of the CR, namely, the user, policy, and radio

domains. This thesis highlights several contributions to radio environment awareness of a CR

device. More specifically, these contributions lie in the spectrum awareness and waveform aware-

ness functions of the CR. We designed these functions for the railways context, that is, a high

speed vehicular context, besides difficult electromagnetic environments resulting a heavy-tailed

impulsive noise.

An essential task in CR is to design a reliable spectrum sensing method that is able to detect the

signal in the target channel, i.e. make CR aware of the spectrum resources availability. Hence,

one of the main contributions of this thesis is an efficient blind non-parametric narrowband

spectrum sensing method. The problem of wideband sensing is also studied and a low complexity

fast solution is proposed in the thesis for this framework.

Cognitive radios are also expected to recognize different wireless networks and have capability to

communicate with them. Transmission parameters of communications systems must be detected

blindly if the system is not known to CR. Identifying some of the basic features of signal does

enhance the CR awareness capability, i.e. giving the CR a waveform awareness dimension. Our

contribution on this important CR related aspect is represented by two waveform identification

methods that are introduced for two study-cases, namely, the MIMO and SIMO MC-DS-CDMA

transmissions.

Last but not least, the special railways context implies some additional constraints on commu-

nications systems such as high mobility and heavy-tailed impulsive noise. These constraints are

deeply analyzed and taken into account in this thesis using advanced Doppler spectrum and

alpha stable models for the high mobility and impulsive noise respectively. A distribution fitting

procedure of measured noise acting on GSM-R antennas is also proposed. Moreover, the effect of

these special constraints on the addressed awareness functions, particularly the spectrum aware-

ness one, is also evaluated. Another important contribution of the thesis is a method specially

v



designed to improve the spectrum sensing in the context of high mobility. Two methods are

finally proposed to mitigate the effect of the heavy tails of impulsive noise, along with a new

method to exploit the spatial correlations of multiple-antennas receiver.

Keywords : Cognitive radio, spectrum sensing, waveform identification, high mobility, heavy-

tailed noise, multiple-antennas, multiple-input multiple-output systems.
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Titre

Contributions aux capacités de reconnaissance de l’environnement de la
radio cognitive pour des applications mobiles à grande vitesse.

Résumé

Les principaux objectifs des opérateurs ferroviaires visent à accroître la sécurité, réduire les

coûts d’exploitation et de maintenance et augmenter l’attractivité et les bénéfices du transport

ferroviaire en offrant de nouveaux services aux passagers. Ceci ne pourra être atteint que grâce

à la multiplication des échanges de données entre les différents acteurs du monde ferroviaire.

L’interopérabilité, l’efficacité spectrale, l’optimisation de l’usage des ressources radio et l’amé-

lioration de la fiabilité des communications sont des exigences fortes pour les applications de

télécommunication ferroviaires.

Les recherches dans le domaine de la radio cognitive ont vu le jour afin de répondre aux besoins

de communication de l’armée ainsi qu’aux besoins dans les secteurs de la sécurité publique. Ces

domaines partagent souvent les mêmes exigences que les chemins de fers. Ainsi, la radio cognitive

a montré un potentiel prometteur pour répondre aux besoins listés précédemment.

Une des principales fonctionnalités d’un dispositif de radio cognitive est de prendre conscience

de son environnement radioélectrique et de détecter les bandes disponibles. Trois principaux

éléments définissent l’environnement de la radio cognitive : l’utilisateur, les règles d’accès au

spectre radio et les domaines radio. Cette thèse met en avant plusieurs contributions relatives à

la reconnaissance de l’environnement radiofréquence et la détection de bandes libres. Plus spéci-

fiquement, ces contributions portent sur la reconnaissance par la radio cognitive de l’occupation

du spectre et de la modulation des signaux présents dans les bandes analysées. Ces fonctions

ont été conçues pour le contexte ferroviaire, c’est-à-dire la grande vitesse et un environnement

électromagnétique difficile en présence de bruit impulsif.

Une brique essentielle de la radio cognitive repose sur des techniques fiables d’analyse du spectre

capables de détecter un signal dans une bande donnée, c’est-à-dire permettre à la radio cognitive

de prendre conscience des ressources spectrales disponibles dans la bande analysée. Ainsi, une

des contributions principales de cette thèse consiste en une méthode aveugle non paramétrique

et bande étroite d’analyse du spectre. Le cas large bande a aussi été étudié et une solution rapide

et de faible complexité est aussi proposée dans ce contexte.

Les systèmes de radio cognitive doivent aussi être capables de reconnaître différents réseaux sans

fils déployés dans leur environnement et de communiquer avec ces réseaux. Les caractéristiques

de transmission de ces systèmes de communication doivent donc aussi être détectées de façon

aveugle si le système n’est pas connu de la radio cognitive. L’identification des quelques caracté-

ristiques clefs des signaux présents dans la bande analysée permet d’améliorer considérablement

les capacités cognitives de ces radios en leur permettant de prendre conscience des formes d’ondes

présentes dans l’environnement. Notre contribution sur ce point important de la radio cognitive
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a permis le développement de deux méthodes d’identification des formes d’ondes pour deux cas

d’études : les transmissions MC-DS-CDMA dans les cas MIMO et SIMO.

Enfin, le contexte particulier du ferroviaire impose des contraintes particulières aux systèmes de

communications telles que la grande vitesse et la présence de bruit impulsif. Dans ce travail nous

avons analysé ces contraintes et les avons prises en compte en considérant un modèle avancé de

spectre Doppler pour la grande vitesse et un modèle alpha stable pour le bruit impulsif. Nous

avons ainsi proposé une méthode d’identification de la distribution statistique du bruit reçu par

une antenne GSM-R validée sur des mesures réelles. En outre, les effets de ce bruit spécifique et

de la grande vitesse ont été évalués sur une de nos méthodes de sondage spectral. En particulier,

nous avons proposé une méthode conçue spécifiquement pour résister à la grande vitesse. Par

ailleurs, nous avons aussi développé deux méthodes permettant d’atténuer les effets du bruit

impulsif et une méthode qui exploite la corrélation spatiale d’un récepteur à antennes multiples

Mots Clef : Cognitive radio, sondage spectral, identification de forme d’ondes, grande vitesse

ferroviaire, bruit impulsive, antennes multiple, multiple-input multiple-output.
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Introduction

Context and Motivations

Increasing railway attraction, accessibility and productivity necessitate to increase safety, reduce

operation costs, and offer new services to passengers. To reach this goal the information ex-

change among railways stakeholders must be largely improved. These data fluxes must cover the

increasing demands of railway domain including safety-related applications, Internet access for

passengers and embedded real-time closed-circuit television (CCTV), etc. On the other hand,

the successive trials to answer the different railways demands results in the wide deployment of

a lot of wireless communication devices operating at different frequencies in the trains and along

infrastructures . There is no single technology that can replace all the other ones while still

supporting the multitude of usages and needs. Thus, the integration of all these heterogeneous

railway-dedicated radio services is unavoidable to improve global efficiency of railway system.

The cognitive radio (CR) concept was introduced by Mitola in 1999. The CR can be simply

defined by the awareness, adaptation, and cognition capabilities. Interoperability, spectral effi-

ciency, radio resources optimization, and improving communications reliability are all believed

to be of significant interest for railway applications. CRs have shown significant promise in each

of these areas. In addition, The CR research has been successfully applied to meet the com-

munication needs of the military as well as the public-safety sectors, which share many of the

same needs as railway. Despite more than a decade of research work, technical challenges, and

regulations challenges, the CR is still far from being applied in many domains. However, this

work is a step towards a CR based solution for railway applications.

One of the main capabilities of the CR is to sense and finally become aware of its environment.

Three major domains define the environment of the CR, namely, the user, policy, and radio

domains. This thesis contributes to radio domain awareness of CR. More specifically, these

contributions lie in the spectrum awareness and waveform awareness functions. An essential

task in CR is to design a reliable spectrum sensing method that is able to detect the presence

of a signal in the target channel, i.e. make CR aware of the spectrum resources availability.

Cognitive radios are expected to recognize different wireless networks and have capability to

communicate with them. Transmission parameters of communications systems must be detected
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blindly if the system is not known to CR. Identifying some of the basic features of signal does

enhance the radio domain awareness capability, i.e. giving the CR a waveform awareness aspect.

The specificity of the railways does not lie only in its passengers and operators needs (translated

into the user domain awareness) but also in its special radio environment. This special railways

context implies some additional constraints on communications systems such as high mobility

and heavy-tailed impulsive noise. These constraints are deeply analyzed and taken into account

in this thesis using advanced Doppler spectrum and α-stable models for the high mobility and

impulsive noise respectively.

Thesis Organization

This thesis is divided into five Chapters. The addressed problem is founded in Chapter 1. Then,

the second Chapter presents the system model. Thereafter, the waveform awareness functions

are introduced in Chapter 3, while, the spectrum awareness problem is studied in Chapter 4.

Finally, the spectrum sensing methods are developed to cope with the special environment of

railways in Chapter 5.

The first Chapter presents a state of the art of communication systems for railways and clari-

fies why the existing deployed wireless systems are not capable to answer the actual and future

demands of railway domain. Then, the CR concept is introduced through its definition, architec-

ture, possible applications, and existing standards. Thereafter, the important question on “how

can CR be beneficial for railways?” is answered. The possible challenges, that could face using

the CR as a solution for railway communication systems, are mentioned. Finally, this Chapter

clarifies more the focus of our thesis.

The specificity of the railway context is discussed in Chapter 2 by studying the special constraints

implied by the special railways environment nature, i.e. the high-speed of train, the particular

electromagnetic (EM) interferences, the diversity of environments crossed by train, etc. The high

mobility results in the Doppler effect, while the special EM environment results in a heavy-tailed

impulsive noise. Spatial correlation among the system’s antennas is a practical issue that could

influence its performance. These different aspect are deeply analyzed and modeled. Chapter 2

presents the system model, i.e. the transmitted signal model, the different effects of the wireless

channel on the transmitted signal, and the noise model.

CRs are expected to recognize different wireless networks and have capability to communicate

with them. That is, identifying some of the basic features of incoming signal does enhance the CR

waveform awareness capability. The transmission features identified by the CR device include: a

multi-carrier transmission identification, spectrum spreading detection, and modulation scheme

recognition. Chapter 3 introduce two waveform identification methods. The first is a mod-

ulation recognition algorithm for spatially-correlated multiple-input multiple-output (MIMO)

systems based on higher order statistics, while the second identifies the parameters of multi-

carrier direct spread spectrum transmissions based on the fluctuations of the autocorrelation

function estimator.
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The spectrum sensing is an essential function of any cognitive radio system. Chapter 4 firstly

presents a preliminary literature review of narrowband and wideband spectrum sensing tech-

niques. This Chapter introduces a new non-parametric narrowband blind spectrum sensing

method based on the predicted eigenvalue threshold. This method is simplified to reduce the

complexity without leading to any performance degradation. Also, we propose to combine a

non-parametric Welch periodogram spectral estimator with an optimization algorithm to better

estimate spectral components in the wideband case. The performance of this method is further

improved by employing multiple-antennas at the receiver.

The special constraints of railways environment were not taken into consideration when studying

the problem of narrowband spectrum sensing in Chapter 4. Three particular constraints, namely,

the time-varying wireless channel, the multiple-antennas spatial correlation, and the impulsive

heavy-tailed noise, get more attention in Chapter 5. A new weighted covariance value based

spectrum sensing method is proposed. This method exploits the properties of time-varying

channel to improve the performance. Also, a new method based on a weighting covariance

matrix, employed to better exploit the spatial correlation achieving higher sensing performance

levels, is introduced. Two new methods are introduced to mitigate the effect of heavy-tailed

impulsive noise. The first is based on filtering the received signal using the myriad concept,

while, the second is based on the covariation (not covariance) coefficient matrix of the received

signal.

Thesis Contributions

This thesis is a first step in a long road to design a CR based solution for railway applications. One

of the main capabilities of a CR is its awareness of its environment. This awareness cover several

domains. Here, we focus on the radio domain awareness translated into spectrum awareness and

waveform awareness. The main contributions of this thesis are summarized as follows:

❖ Measurements confirm the impulsive nature of noise encountered at receivers on-board

trains. The Gaussian noise assumption is not anymore valid to develop and evaluate

algorithms for CR device. A distribution fitting procedure of measured noise acting on

GSM-R antennas is proposed. It was found that the measured data is well modeled by the

symmetric α-stable distribution. This work is presented in Chapter 2.

❖ The first contribution of Chapter 3 is recognizing the used modulation scheme of an avail-

able radio service. A modulation recognition algorithm for spatially-correlated MIMO

systems based on higher order statistics is introduced. An artificial neural network trained

with resilient backpropagation learning algorithm is employed as classifier. To the best

of our knowledge, this research work is among the first ones that study the modulation

recognition for MIMO systems, and the first one that studies the spatially-correlated case.

❖ The second contribution of Chapter 3 is to better enhance the waveform awareness by the

knowledge of employment of multi-carrier or/and spectrum spread techniques. A blind
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identification method of multi-carrier direct spread spectrum signals based on the autocor-

relation estimator fluctuations is introduced. The described scheme leads to an efficient

estimation of symbols duration, cyclic-prefix duration, and subcarriers number. The pro-

posed method is insensitive to phase and frequency offsets. The multiple-antennas at the

receiver are used to improve the performance while keeping the detection duration constant.

❖ Chapter 4 focus is the spectrum sensing problem which is one of the essential functions of

any CR device. The spectrum sensing algorithms are classified into two main categories:

narrowband sensing and wideband sensing. The narrowband sensing is based on sequen-

tially or randomly checking the narrowband channels of the wide spectrum of interest. One

of the major contributions of our thesis is a new non-parametric narrowband blind spec-

trum sensing method based on the predicted eigenvalue threshold. The proposed method

gives good performance when compared with other existing methods.

❖ The entire band of interest is processed when employing the wideband sensing. Another

contribution of Chapter 4 is to propose the combination of a non-parametric improved

cooperative Welch periodogram spectral estimator with an optimization algorithm to better

estimate spectral components in the wideband case.

❖ Chapter 5 is dedicated for narrowband spectrum sensing for railway applications. Several

existing methods employs the covariance properties of the received signal. The time-varying

wireless channels, resulting from the high-speed of trains, affects the temporal covariance

properties. This could degrade the performance of the traditional narrowband spectrum

sensing methods. A new weighted covariance value based spectrum sensing method is pro-

posed to try to exploit the properties of time-varying channel to improve the performance.

This method constitutes a major contribution of this thesis.

❖ Another constraint to cope with is the practical spatial correlations observed on the

multiple-antennas of the receiver. The effect of these correlations on narrowband spec-

trum sensing methods was examined and it was found that these correlations do improve

the performance of some methods, e.g. the PET based method proposed in Chapter 4. An-

other important contribution of our thesis is to introduce new method based on a weighting

covariance matrix employed to better exploit the spatial correlation for higher sensing per-

formance levels. This method is introduced in Chapter 5.

❖ The works presented in Chapter 2 show that the noise acting at antennas aboard trains

has an impulsive nature and modeled by the symmetric α-stable distribution. The heavy

tails of impulsive noise will degrade the narrowband spectrum sensing performance, and

their effect must be mitigated. We contribute to this research area by introducing two new

sensing methods developed based on the symmetric α-stable distributed noise assumption.

The first method is based on filtering the received signal using the myriad concept, while,

the second one is based on the covariation coefficient matrix of the received signal.
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1.1 Introduction

An essential goal of railway operators is to increase safety, reduce operation and maintenance

costs, and increase attraction and profit by offering new services to passengers. This goal inter-

sects with the target of the European rail research advisory council (ERRAC) for 2020 to double

passenger traffic by rail. These objectives will be reached not only thanks to a huge increase of

system wide information exchanges between railway undertakings and infrastructure managers

but also thanks to an increase of information fluxes dedicated to passengers. Consequently,

nowadays, a lot of wireless communication devices operating at different frequencies are widely

deployed all around Europe (in the trains and along infrastructures) to answer the different rail-

ways demands. There is no single technology that is good and general enough to replace all the

other ones and to support the multitude of usages and needs. Thus, the integration of all these

heterogeneous railway-dedicated radio services is a technical key to improve global efficiency of

global railway system [1].

Interoperability, spectral efficiency, optimization of radio resource usages, and improvement of

communications reliability are of significant interest for railway applications. Cognitive radio

(CR) has shown significant promise to answer these railway requirements since the CR research

has been successfully applied to meet the communication needs of the military as well as the

public-safety sectors, which share many of the same needs as railway. Therefore, CR technologies

are able to offer solutions to railways, to ensure a continuity of communication services and

network access based on a global roaming across the heterogeneous wireless networks, providing

a continuous and always best service anywhere, anytime, anyhow [2,3].

This Chapter presents the state of the art of existing communications systems for railways

and the existing projects that address the problem of improving and integrating these systems.

Then, the concept and the architecture of CR is presented besides the existing CR standards and

possible applications. Thereafter, we analyze how CR could be applied to improve the overall

performance of railway communications system, i.e. what benefits could CR offer? and what

challenges to overcome before we can conduct CR for railways?. Finally, the focus of these thesis

works is highlighted.

1.2 Thesis Context

1.2.1 Wireless Communications for Railways

For a long time, transmissions between ground and trains were non-existent and the only infor-

mation available to the driver aboard train were provided by visual information signaling. More

recently, the transmission demands had augmented due to the increasing complexity of control

facilities/train control, the necessity to increase the capacity of existing lines and optimize their

management and operation. Nowadays, several wireless communication networks are widely de-

ployed along European railway lines, each of them is dedicated for a specific task in a specific

context. Therefore, the integration of all these heterogeneous wireless networks deployed for

railway systems is not only unavoidable but also a key to increase efficiency of global railway
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Table 1.1: Example of frequency allocations for railways around Paris [4].

31-32 MHz Voice

50-65 MHz TV semi-embedded

70-151 MHz Remote control

152-180 MHz Operation, construction, analog 3RP

414-429 MHz IRIS-safety radio

876.2-879.8 MHz Voice and data

921.2-924.8 MHz GSM-R, railway control systems

2.4 GHz and 5.8 GHz WiFi access

Table 1.2: Frequency bands and their usage for railway communications in USA [5].

39-50 MHz Data and train control

160.215-161.565 MHz Data and voice

220-222 MHz Positive train control (PTC)

450-460 MHz One-way and two-way end-of-train devices, data

Six channel pairs at 896/936 MHz Advanced train control system (ATCS), data

2.4 GHz WiFi access

system. Table 1.1 summarizes the main frequencies allocated for specific rail services (excluding

passenger service) in the Paris region [4]. Table 1.2, derived from [5], gives the frequency allo-

cations for railway in the USA. On the other hand, improving the quality of public transport

requires offering new services to customers which, in turn, results in an increasing transmission

demands. So today, transport operators rely increasingly on new technologies of information

and communication that allow them to modernize their image and make public transport more

attractive.

Several European and national railway-dedicated projects addressed developing communication

systems for operational and maintenance objectives. Table 1.3 lists some of the major projects,

most of them were based on existing technologies. Mobile radio for railways networks in Eu-

rope (MORANE) project aimed to develop new telecommunication standard for railway control

systems. This project successfully issued the global system for mobile communications-railway

(GSM-R) now being deployed in Europe. This system is based on standard GSM. In Europe, a

2 × 4MHz specific frequency bands (876-880 MHz for uplink, and 921-925 MHz for downlink)

are allocated for GSM-R operation. The deployment of this standard is optimized to meet the

performance constraints (i.e. key performance indicators) implied by the European train control

system (ETCS). This standard is expected, in the coming years, to evolve to LTE-R to face its

limitations, however, no specific frequency bands are yet allocated for this awaited standard.

Another project MODURBAN aimed to standardize a new control and command system for

urban guided transport. One of the recent FP7 European projects, InteGRail [6], has devel-

oped an intelligent communication framework, ICOM, to achieve, using middleware solutions,

integration of wireless communication technologies in the railway domain. This solution is a

first step toward system integration and interoperability but it will not avoid juxtaposition of

communication devices along the lines and on-board the trains at very high costs.
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Table 1.3: List of various projects of railway communication systems.

INTEGRAIL (2005-2008) Integration of railway systems through intelligent interfaces
and processes

MODURBAN (2005-2008) Design, develop and evaluate an innovative, open architecture
and its key interfaces (control systems, energy subsystems
access) to pave the way for the next generation of urban

transport guides

MODTRAIN (2004-2007) Specification of subsystems and interfaces for modular
architecture train

EUROMAIN (2002-2005) Specifying an European railways maintenance system based on
Internet technologies

TRAINCOM (2000-2004) Integration techniques for railway train-ground
communications links in order to develop new interoperable

applications

MORANE (1996-2000) Development of a uniform digital radio system for European
railroad traffic. A new version of GSM called GSM-R (a

platform for voice and data communications as well as for
traffic control) was introduced.

Several research works also addressed the problem of providing Internet connection for passengers.

Several projects rely on a set of wireless technologies instead of only one way to access the

Internet, thereafter, the gap-filler technique is employed where one technology is used to provide

the connectivity, and when this technology is no longer present, a second technology can be

instead used [7]. The authors in [8] consider either a connection via a terrestrial cellular network

(GSM, GPRS and UMTS), or the combination of WiFi access points and WiMAX. In [9], the

proposed solution is a combination of a land link and satellite link, while the bandwidth offered

to customers can be increased through access points to 802.11n WiFi [10].

1.2.2 Problematic, Demands, and Requirements

Any railway operator needs accurate and “real-time” train data (diagnostic, position, speed, etc)

in order to augment safety, decrease the number of accidents and facilitate the positive train

control (PTC). Better maintainability and availability of trains is a key challenge for all public

transport, and certainly improving data exchange between trains and the wayside will contribute

to this. Any increase in high data-rate exchange can not only improve functionality, but leads

to add new services. This will help railway operators to improve public transport efficiency and

quality of service (QoS), either with new and better services for passengers or secure solutions

for operators and maintainers. New solutions are proposed to overcome today’s limitations and

to develop efficient communication systems for railways. Any proposed communications solution

must guaranty availability, continuity of service, heterogeneous traffic classes, robustness and

QoS in the context of specific propagation environment and high mobility.

The three aspects that define users needs and railway systems requirements are: railways op-

eration, safety and security, and comfort. Then, the communications applications required in

the railway domain are, from services point of view, divided into two categories: safety-related
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services (mainly control and command besides some maintenance applications) and non-safety-

related services generally for non critical applications such as passenger information, internet

on-board trains. More details on these applications are found in [11]. Some of these applications

are listed below:

❖ Train control such as train location, all switchs positions, signaling and movement authority,

❖ Operational communications such as connecting the trains to their maintenance centers,

proactive maintenance, train diagnostics, crew connectivity and specific system informa-

tion,

❖ Dimensioning aspects such as number of trains in a geographical zone, number of passengers

in a train, percentage of passengers equipped with WiFi terminals in a train, percentage

of trip time, populations, users profiles, etc,

❖ High data-rate Internet access service for passengers (browsing, email, VPN, P2P, stream-

ing, live TV, etc.),

❖ Real time information for passengers,

❖ Embedded real-time closed-circuit television (CCTV).

Each one of the above mentioned applications has its own exigencies, when it comes to the

communication system, in terms of throughput, delay, availability, reliability, robustness, QoS.

However, only two of them require very high throughput: Internet access for passengers and

embedded real-time CCTV. On the other hand, some applications are exigent en terms of delay,

availability, robustness and reliability, e.g. train control applications.

In addition to the specific requirements of the above applications, the proposed communication

solutions must take into consideration the specific nature of the railway domain and its resulting

constraints which may degrade the global performance of communication systems. Considering

the mobility aspect, the design of communication systems for high-speed trains is more “exigent”

(fast fading, Doppler effects, fast handover mechanisms). Of course, it is easier to fulfill the

above mentioned requirements in a mobile device that is not moving at 300 km/h. Another

constraint is the electromagnetic (EM) interferences produced around the train resulting in a

heavy-tailed impulsive noise generally due, not only to the converters in the engine’s motors, but

also to bad contacts between the catenary and the pantograph that create electrical arcs at the

vicinity of the antennas [12]. Finally, we must take into consideration the varying nature of the

environments traversed by the train (rural areas, urban areas, tunnels, etc.).

Figure 1.1 explains the conceptual model that translate the information from user domain (pas-

sengers and operators) into some communication system exigencies. The proposed solution is

exigencies-driven based on the information coming from the radio domain.
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Figure 1.1: The conceptual model that translates information from user domain into communi-
cation system exigencies to be respected by the proposed solution.

1.3 Cognitive Radio

1.3.1 What is a CR?

Recently, the rapid growth in wireless communications has contributed to a huge demand on the

deployment of new wireless services. The radio electromagnetic spectrum is a limited physical

quantity, and only a certain part of it is suitable for radio communication. The traditional way of

governing this resource has been to administer licenses for portions of the spectrum, usually by

a national agency such as US federal communications commission (FCC). Almost all the usable

portions of the spectrum are allocated for licensed users. Available electromagnetic spectrum for

wireless transmission has become a highly valuable resource. However, recent research published

by the FCC [13] shows that the traditional static frequency allocation policy is not efficient and

results in poor spectrum utilization. In [14], a general survey of radio frequency bands (from

30MHz to 3 GHz) is provided. Figure 1.2 presents the average spectrum occupancy and highlights

how low could be the spectrum occupancy in many bands. The dramatic increase in the demand

for radio spectrum and the actual low spectral efficiency has spurred the development of a next

generation wireless technology referred to as cognitive radio (CR). An early work by Mitola

introducing the concept of CR is [15].

However, the revolution in processor technology in last decades allowed the design of more flexible

radio systems as a larger part of the necessary signal processing could be performed digitally. This

flexibility created a developing researching field which was named software defined radio (SDR).

The SDR technology brings flexibility, cost efficiency and the capability to drive communications

forward. A number of definitions can be found to describe SDR. The IEEE and the SDR forum

have defined SDR as: "Radio in which some or all of the physical layer functions are software

defined" [16]. The SDR is the technology that enables the CR.

The original definition of CR is wide, as it envisions the cognitive terminal as a SDR that is

aware of its environment and its capabilities to utilize all available environmental parameters.

According to [15], examples of parameters the CR can exploit are knowledge such as time, user

location, user preferences, knowledge of its own hardware and limitations, knowledge of the

network and knowledge of other users in the network. While there is no agreement on the formal

definition of CR until now, the concept has evolved recently to include various meanings in

several contexts. The definition proposed by FCC is widely adopted:

“Cognitive radio: A radio or system that senses its operational electromagnetic environment

and can dynamically and autonomously adjust its radio operating parameters to modify system
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Figure 1.2: Summary of spectrum band occupancy calculations [14].

operation, such as throughput, mitigate interference, facilitate interoperability, access secondary

market” [17].

There are several other definitions for CR in addition to the above one. However, three common

capabilities do exist among all these definitions are:

❖ Awareness: the CR must be aware of itself and its operating environment. This may

include that the CR is aware of the radio frequency (RF) environment, the rules that

govern its operation, its user’s needs, its own capabilities, priorities and authorities, its

geographic position, etc. There are three major domains that define the environment of

the CR, namely, user, policy, and radio domains. Generally, awareness concept is reflected

throughout these domains.

❖ Adaptation: this is the ability to adapt to the environment or user needs. For instance,

the CR can adjust its behaviour by changing its power, modulation, waveform strategy,

carrier, and signal bandwidth. This level of adaptation recalls the agility of the SDR.

❖ Cognition: it is the capability of understanding and learning from its environment, its

inner state, the impact of its actions, and past experiences. For instance, Haykin had

defined this capability as the intelligent of wireless communication system that uses the
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methodology of understanding-by-building to learn from its surrounding environment (i.e.,

outside world) [18].

These three basic concepts are the soul of the CR. This soul is interpreted in the cognition

loop shown in Figure 1.3. CRs are likely to make use of a goal driven observe-orient-decide-act

(OODA) loop for its functionality which breaks down the basic components of how anything

(here, a wireless CR device) can adapt to its environment. The cognition starts by observing

the operating environment of the wireless CR device. This observation, which makes the CR

more aware, could include metrics such as spectrum usage, available channels, identifying other

transmitters, classifying their waveforms. This observation process is driven by the operating

goals of the radio at a specific time. With this awareness and knowledge of the specific goals

of the user, the CR utilizes learning algorithms to make the best possible decision. Decision

making takes into consideration the history of the radio domain and past successful decisions.

Finally, the CR employs the reconfigurable nature of its SDR platform to change its configuration

parameters. This alters the CR inner state and enables it of reacting to perceived changes in its

wireless environment.

Figure 1.3: The Cognition Loop [5].

1.3.2 The CR Architecture

One of the proposed cognitive radio architectures is shown in Figure 1.4 [19]. This architecture

considers that the cognitive engine represents the intelligent part of the CR. The cognitive

engine performs the modeling, learning, and optimization processes necessary to reconfigure

the radio communication system, which appears as the simplified open systems interconnection

(OSI) stack. The cognitive engine accumulates information from the radio itself, and the three

major domains of the CR environment, i.e. the user domain, the radio domain, and the policy

domain. The user domain passes information relevant to the user’s application and needs to help

driving the cognitive engine’s optimization. The radio domain information consists of RF and

environmental data that could affect system performance such as propagation or interference

sources. The policy engine receives policy-related information from the policy domain. These
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Figure 1.4: Generic CR architecture [19].

information help the CR to avoid forbidden and illegal solutions and choose the best solution

from the ones that respect local regulations [19].

1.3.3 Existing CR Standards

The standardization issues have significant importance in the development of CR systems, since

it encourages companies to invest in this domain. Several standards are already published or still

in a draft status. The IEEE wireless regional area network (WRAN) standard, IEEE 802.22,

is one of the most rising standards. Its objective is using CR techniques to allow sharing of

geographically unused spectrum allocated to the television broadcast service, on a non-interfering

basis, to bring broadband access to hard-to-reach low-population-density areas typical of rural

environments [20]. This standard has the potential to be applied worldwide. IEEE 802.22

WRANs are designed to operate in the TV broadcast bands while ensuring that no harmful

interference is caused to the incumbent operation (i.e., digital TV and analog TV broadcasting)

and low-power licensed devices such as wireless microphones [20].

The IEEE P1900 standard committee was established as a result of the growing interest for

dynamic spectrum access networks. Its objective was to support the standards dealing with

next generation radio developments and dynamic spectrum management. The IEEE 1900 was

reorganized as standards coordinating committee 41 (SCC41), dynamic spectrum access networks

(DySPAN), on March 2007. The principal four working groups within SCC41 are [21]:

i) IEEE P1900.1 : IEEE standard definitions and concepts for dynamic spectrum access (DSA);

terminology relating to emerging wireless networks, system functionality, and spectrum manage-

ment amendment.

ii) IEEE P1900.2 : recommended practice for interference and coexistence analysis.
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Figure 1.5: Classification of cognitive radio applications [22].

iii) IEEE P1900.3 : recommended practice for testing and analysis to be used during regulatory

compliance evaluation of radio systems with DSA capability.

iv) IEEE P1900.4 : standard for architectural building blocks enabling network, device dis-

tributed decision making for optimized radio resource usage in heterogeneous wireless access

networks, amendment: architecture and interfaces for DSA networks in white space frequency

bands.

The CR research is very active also at national (France) and European level. For instance

SACRA, SENDORA, LOLA, SAMURAI, CROPOLIS, SYMPA, and QOSMOS are all national

projects which try to answer some of the CR challenges. E3 (end-to-end efficiency cognitive

wireless networks technologies) aims to transform current wireless system infrastructures into an

integrated, scalable and efficiently managed beyond 3rd generation cognitive system framework.

The main issue is to introduce the cognitive systems in the wireless world, while contributing to

the standardization of IEEE P1900.4. Also, CogEU (cognitive radio systems for efficient sharing

of TV white spaces in European context) project aims to build the transition to digital television

by developing cognitive radio systems which exploit the favorable propagation characteristics

of TV white spaces through introduction and promotion of spectrum trading in real time and

creating new frequencies in the upper band of the released spectrum.

1.3.4 CR Applications

Figure 1.5 represents a high level classification of possible CR applications [22]. This classifica-

tion is based on the relationship between each application and the “cognitive concept”. The first

group consists of CR applications contributing to the optimization of various wireless resources.

These resources include spectrum, power, network, hardware/software, etc. The second group

of applications address the improvement in communication quality, e.g. improving link reliabil-

ity. Interoperability is one of the most desirable features of CR. Interoperability allows two or

more communication systems to exchange information. The last category reflects CR applica-

tions concerning services and user needs in private, public, and military sectors. Some targeted

applications are: transmit traffic congestion information to the mobile in advance, maintain

communication in disaster situation, locate the rescued in the shortest time, and identify any
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abnormality in the patient physical condition [22]. In general, many of these applications across

groups can benefit from each other, and they can work together to improve wireless communi-

cations.

1.4 Cognitive Radio for Railways: Merits and Challenges

1.4.1 Can CR be Beneficial for Railways?

Increasing quality, reliability, and safety of railway systems while still increasing accessibility and

productivity, requires ever increasing information exchange between operator’s workstations, and

field devices widely distributed both by the track-side and on-board trains. Hence, improving

communication systems for railways is indispensable to modernize railway operations. Nowadays,

a lot of wireless communication systems operating at different frequencies are deployed to reply

the particular demands of railway operations. In fact, employing single universal system, among

existing systems, to replace all the other ones while still being able to support the multitude of

demands is not feasible. As a consequence, the integration of all these heterogeneous wireless

systems is therefore a key technical challenge to improve global efficiency of railway system. This

can be answered by promising CR technologies which are able to meet the requirements of future

wireless communication systems: interoperability, robustness, reliability, and spectral efficiency.

The first applications of CR are mainly focused in the military domain which share many of the

same needs as railways [5].

Based on the above presented concept, capabilities and possible applications of CR, it is obvious

that employing this emerging technology as a solution for railway operations has a significant

potential to be very beneficial. Firstly, CR technology may enhance interoperability between

wireless systems by sensing application needs, radio services protocols, and configuring the SDR

to better meet the traffic requirements carried over the wireless link [5]. Another profits of

CR based solution for railways include improving link performance by avoiding poor channels,

increasing data-rates on non-occupied channels, improving spectrum efficiency, and reacting to

interferences to provide more robust communications. Also, it is clear that a unique, interop-

erable, robust, reliable, and spectral-efficient CR based communication system brings back an

economical profit to railways operators thanks to lower deployment, maintenance, and opera-

tional costs.

None of the above approaches, presented above in section 1.2.1, had yet considered the problem

from the perspective of CR systems. In [5], the authors present an initiative in the US that

take into account research results in CR to develop a communications platform for railways

applications. The national “urbanisme des radio communications” (URC) project was one of

the first project in France and in Europe to raise the problem of the optimization of spectral

resources in the Paris region, taking into account the transport field and particularly the urban

guided systems [4].

Recently, the French national project cognitive radio for railway through dynamic and oppor-

tunistic spectrum reuse (CORRIDOR) project aims to design, develop and evaluate, in real
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high-speed railway conditions, innovative communication-interface CR-based solutions for vehi-

cles/infrastructures, taking into account three characteristic types of usages (control-command,

CCTV and Internet on-board) [23]. CORRIDOR is the first project dedicated to CR systems

for railway applications in France and Europe. Our research works were performed partially in

the framework of this project which is expected to propose a first proof of concept around 2015.

1.4.2 How do we Propose to Apply CR for Railways?

Developing CR based solution for railways covers several research fields that should be integrated

towards the global CR communications system. We had recognized three main research domains

[24]:

❖ “CR mobile terminal” (the communications device located aboard train) capable of rapidly

sensing the available radio opportunities, analyzing its actual situation (position, informa-

tion coming from user, radio and policy domain), to finally decide the optimal change to

do. Finally, the required configuration is applied to its agile radio platform.

❖ “Intelligent telecommunication infrastructure” capable of selecting the adequate spectrum

band, resulting from the trade-off between the QoS requirements and the spectrum char-

acteristics. It must cope with parameters such as needed data-rate, acceptable error rate,

delay bound and bandwidth, through spectrum rapid evolution (short time availability

intervals, and quickly moving channel) due to the high-speed train context.

❖ Mobility management and end-to-end QoS solutions in the presence of “CR mobile termi-

nal” and “intelligent telecommunication infrastructure”.

Intelligent CR mobile terminal can interact with its radio environment according to two possible

strategies:

❖ One of the promising possibilities to increase capacity of railway communication systems

is to use free frequency bands by dynamically accessing the spectrum without creating any

interference with other users. That is, the CR mobile terminal interacts with the intel-

ligent infrastructure to set up a communication link (frequency bands, waveform, power,

etc.) optimized according to user needs and available spectrum opportunities while avoid-

ing disturbing other communication systems operating in the neighborhood. The standard

employed for train/infrastructure communications is specially adapted to the railways en-

vironment and needs, and could be a special version of LTE which introduces the LTE-R

standard. Current regulations prevent to access dynamically to under-occupied bands. For

instance, FCC removed spectrum sensing requirement for TV white space dynamic access.

Despite this regulations obstacle, the design of solutions for dynamic spectrum allocation

and management is a very active field of research and developments today.

❖ The second strategy is based on connecting to existing available radio services. These radio

services could be dedicated for railway operations (control, data, voice, etc.). Connecting
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Figure 1.6: Proposed “CR mobile terminal” architecture dedicated for railways communication
system.

to these dedicated services enables interoperability. On the other hand, these services

could be specified for other applications and follow one of the known standards (e.g. GSM,

GPRS, UMTS, WiFi, WiMAX and LTE). Thus, the CR mobile terminal must have the

capability to identify the currently used radio service or communication standard, and to

reconfigure the modulator/demodulator accordingly in a software radio manner.

Due to the high-speed of trains (short duration of free channel availability or radio service exis-

tence) and actual regulations barriers, it could be very beneficial to combine the radio domain

awareness functions with geolocation database. The CR (more precisely the cognitive engine)

decisions are mainly based on geolocation database which provides adequate and reliable pro-

tection for licensed users based on the actual position of the train. Radio domain awareness

functions can help to reduce the risk of interference in some circumstances, to find the most

noise-free channel, and to enable updating the geolocation database. This strategy helps the CR

in anticipating and taking action in preparation for upcoming situations since the track of a train

is assumed to be known a priori. In some countries such as database does not exist, a preliminary

database could be created based on measurement taken on-board trains rolling around Europe

and a knowledge database that defines the train tracks, existing incumbent radio services and

their properties (bandwidth, location, waveform, power, etc.). The geolocation database of each

train is synchronized with central databases that collect the possible updates coming from all

trains (suggested by the CR radio domain awareness functions) before validating these updates to

be authenticated. Additional way to enhance CR prediction is to build a history database where
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the CR decisions are registered besides the success status of each decision. Historical activity

can assist CR based communications system to improve its deployment decision making. This

data can be further processed into information to be distributed all around railways network.

The variety of railways demands (low data-rate safety-related applications, embedded real-time

CCTV, and high data-rate Internet access,etc) and the variety of resources required to enable

the CR concept suggests that it is more feasible to embed more than one transceiver in the CR

device employed aboard the train. Based on the previous explanations, Figure 1.6 shows our

proposition of the “CR mobile terminal” architecture.

1.4.3 Challenges

There are many technical challenges for cognitive radio. These challenges include the areas of

spectrum management, security, policy, propagation, awareness, network management, geolo-

cation databases management, complexity, hardware requirements, CR architecture, etc. Ten

years of CR research provided some answers especially in the last four years which witnessed

an acceleration in the CR development. Also, the research community is actively focused on

exploiting the CR technologies in new domains, e.g. high-speed vehicular applications. However,

although SDR technology is fairly near term, CR may be farther off. More effective research

works, in the few coming years, must rush industry and regulators to overcome their doubts.

On the other hand, CR mobile terminal located on-board train must be able to cope with the

railways environment and constraints. That is, the high speed (which means fast varying wireless

channels), special EM environments (resulting in a heavy-tailed impulsive noise), and poor radio

coverage in rural areas. New fast and efficient radio awareness techniques should be imagined

in this special context. The opportunistic band allocation has to take into account the limited

duration of band availability due to train movement. Radio domain awareness must improve

the predictive aspect to allow the cognitive engine to optimize the band allocation scheduling.

Finally, CR mobile terminal must assure reliability and robustness whatever is the environment

encountered (tunnel, rural, urban, etc.).

1.5 Focus of the Thesis

One of the main capabilities of the CR is to sense and finally become aware of its environment.

Three major domains define the environment of the CR, namely, the user, policy, and radio

domains. In this Ph.D. work, we focus on designing some functions of the CR mobile terminal,

and particularly we contribute to radio environment awareness of CR. More specifically, these

contributions lie in the spectrum awareness and waveform awareness functions.

The proposed cognitive radio architecture is shown in Figure 1.6. Our Ph.D. works lie in the

block that translates the radio domain information to the other CR blocks, i.e. detecting and

estimating the radio frequency and environmental data that could affect system performance

such as communications or interference sources. These works are included in the observe task of

the cognition loop shown in Figure 1.3.
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On one hand, an essential task in CR is to design a reliable spectrum sensing method that is able

to detect the signal in the target channel, i.e. make CR aware of the spectrum resources avail-

ability. On the other hand, cognitive radios are expected to recognize different wireless networks

and have capability to communicate with them. Transmission parameters of communications

systems must be blindly detected if the system is not known to CR. Identifying some of the

basic features of incoming signal does enhance the CR awareness capability, i.e. giving the CR

a waveform awareness dimension.

Our thesis focus is sensing the spectrum to detect the used and unused spectrum bands. Also,

we concentrate on the identification of transmission technologies used by available radio services

through extracting several features from the received signal. These features include the modula-

tion scheme (QAM, PSK, etc..), and the modulation technique (CDMA, OFDM, etc. . . ). These

detected radio-domain information are fed into the operational CR platform as shown in Figure

1.6.

One way to better clarify the focus of our thesis is by presenting its main contributions, as

follows,

❖ As expected, observations and measurements confirm the impulsive nature of noise encoun-

tered on receivers aboard trains. The Gaussian noise assumption is not anymore valid to

develop and evaluate algorithms for CR device. A distribution fitting procedure of mea-

sured noise acting on GSM-R antennas is proposed. It is found that the measured data is

well modeled by the symmetric α-stable distribution.

❖ Recognizing the used modulation scheme of an available radio service does enhance the

waveform awareness of a CR device. We introduce a modulation recognition algorithm for

spatially-correlated multiple-input multiple-output (MIMO) systems based on higher order

statistics (HOS). To the best of our knowledge, this research work is among the first ones

that study the modulation recognition for MIMO systems, and the first one that addresses

the spatially-correlated ones.

❖ The waveform awareness can be better enhanced by detecting multi-carrier or/and spec-

trum spread techniques employment. A blind identification method of multi-carrier direct

spread spectrum transmission based on the autocorrelation estimator fluctuations is intro-

duced. The described scheme leads to an efficient estimation of symbol duration, cyclic-

prefix duration, and subcarriers number. The multiple-antennas at receiver are exploited

to enhance the performance while keeping the detection duration constant.

❖ Spectrum sensing is one of the essential functions of any CR device. The narrowband

sensing is based on sequentially or randomly checking the narrowband channels of the wide

spectrum of interest. One of the major contributions of our thesis is introducing a new non-

parametric narrowband blind spectrum sensing method based on the predicted eigenvalue

threshold.

❖ The entire band of interest is processed when employing the wideband sensing. Here, we

propose to combine a non-parametric improved cooperative Welch periodogram spectral
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estimator with an optimization algorithm to better estimate spectral components in the

wideband case.

❖ Several existing methods employs the covariance properties of the received signal. The time-

varying wireless channels affects the temporal covariance properties. This may degrade the

performance of the traditional narrowband spectrum sensing methods. A new weighted

covariance value based spectrum sensing method is proposed to try to exploit the properties

of time-varying channel to improve the performance. This method constitutes a major

contribution of this thesis.

❖ In practice, the multiple-antenna systems suffer from the spatial correlations. The effect

of these correlations on narrowband spectrum sensing methods is examined and it is found

that these correlations do improve the performance of some methods. Another important

contribution of our thesis is to introduce new method based on a weighting covariance

matrix employed to better exploit the spatial correlation for higher sensing performance

levels.

❖ The heavy tails of impulsive noise degrade the narrowband spectrum sensing performance,

and their effect must be mitigated. We contribute to this research area by introducing two

new sensing method developed based on the symmetric α-stable noise assumption. The

first method is based on filtering the received signal using the myriad concept, while, the

second one is based on the covariation coefficient matrix of the received signal.

In the following, the system model (channel, noise, signal) is presented in Chapter 2. Then, the

waveform awareness functions are studied in Chapter 3, while, Chapter 4 concentrates on the

spectrum sensing problem. Finally, the spectrum sensing is further analyzed and developed to

cope with the special constraints of the railway domain.
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2.1 Introduction

The railway domain, and particularly the high-speed trains context, is a special propagation

environment that adds new constraints on the wireless communication systems. These constraints

may degrade the performance of algorithms employed for wireless systems. This requires studying

these special constraints and developing these algorithms to take into consideration the special

railways environment nature.

The high-speed of trains results in the Doppler effect, also known as Doppler spectrum, which

produces frequency shifts that depend on the geometrical environment of the mobile. These

frequency shifts may affect the performance of wireless systems. This makes the problem of

developing accurate simulators of wireless channels, that include the mobility effect, an essential

key for evaluating and developing algorithms for wireless systems. This Chapter presents the

existing wireless channel simulators and especially the generalized exact Doppler spread based

one.

Also, the special EM environment causes the presence of a potential heavy-tailed impulsive

noise. Measurements confirm the impulsive nature of noise acting on antennas aboard trains.

This leads to the fact that employing the Gaussian noise model may result, in practice, non-

robust algorithms. The α-stable distributed processes was widely used to model the heavy-tailed

noise. The major contribution among the works presented in this Chapter is a distribution fitting

procedure of measured noise encountered on GSM-R antennas. This fitting procedure confirms

that the measured data is well modeled by the symmetric α-stable distribution.

Multiple-antenna systems are widely deployed to improve the transmission reliability in wireless

communications. Here, multiple-antennas receiver aboard trains is employed, not only for more

reliable performance, but also to improve the awareness functions of the CR radio devices. Spatial

correlation among the system’s antennas is a practical issue that could influence its performance.

Therefore, we also present the widely accepted exponential correlation model which is employed

in the following Chapters to evaluate the performance of different methods.

In the remainder of this Chapter, we will present the transmitted signal model along with the

general phenomena encountered in this specific environment including the different effects of the

mobile radio channel on the transmitted signal and the noise model.

2.2 Mobile Radio Channel Model

2.2.1 Characteristics of Mobile Radio Channels

The performance of any communication system is eventually affected by the medium which the

message signal passes through, referred to as communication channel. The random and severe be-

haviour of wireless propagation channels turns communication over such channels into a difficult

task and puts fundamental limitations on the performance of wireless communication systems.

Wireless channels may be distinguished by the propagation environment encountered. Many

propagation environments have been identified, such as rural, mountainous, urban, suburban,
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indoor, underwater or orbital environments, which differ in various ways. The transmission path

between the receiver and the transmitter can be altered from simple line-of-sight (LoS) to one

that is drastically obstructed by buildings, mountains, etc. Furthermore, the speed of the mobile

and the movement of the different objects in its environment also impact how rapidly the signal

level fades and the duration of these fades.

There are a lot of mechanisms that influence the electromagnetic radio wave propagation gen-

erally attributed to the interaction between waves and material such as reflection, refraction,

diffraction and scattering. The relative importance of these propagation mechanisms depends

on the particular propagation scenario. Radio propagation can be roughly described by three

phenomena: path loss variation with distance, shadowing, and multi-path fading. Among these

phenomena, only path-loss is a deterministic effect, and it plays an important role on larger time

scales, while shadowing and fading both have stochastic nature. Shadowing occurs due to the

varying terrain conditions in suburban areas and due to the obstacles, such as buildings, in urban

areas. Fading leads to significant attenuation changes within smaller time scales.

In other words, the mobile channel exhibits a time-varying behaviour in the received signal

energy, which is called fading. In the communications literature, most often we encounter two

types of fading definitions for the mobile radio channel:

❖ Large-scale fading usually is defined as the average signal power attenuation or path-loss

due to motion over large areas. This depends on the presence of obstacles in the signal path,

on the position of the mobile unit, and its distance from the transmitter. The statistics

of large-scale fading provide a way of computing an estimate of path-loss as a function

of distance. This is normally described in terms of a mean path-loss and a log-normally

distributed variation about the mean which is known as shadowing. Hence the term large-

scale fading corresponds to the combined effects of path-loss and shadowing loss.

❖ Small-scale fading refers to dramatic changes in signal amplitude and phase that can be

experienced as a result of small changes in the spatial separation between a receiver and

transmitter. Generally, small-scale fading is referred to as Rayleigh fading if the multiple

reflective paths are large in number and there is no LoS signal component, hence the

envelope of the received signal is statistically described by a Rayleigh probability density

function (PDF). However, if there is a dominant non-fading signal component present, such

as a LoS propagation path, the small scale fading envelope is described by a Rician PDF.

Other PDFs, employed to describe these fades, can be encountered in the literature.

2.2.2 Characterization in Time and Frequency

The most harmful effects on the received signal in a multi-path high-mobility environment are

the frequency offset (Doppler shift) of the carrier and the time delay of the envelope. This is

because these frequency shifted and delayed waves might interfere destructively so that they

cause severe attenuation. The time-variant impulse response of the multi-path channel can be
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expressed in the equivalent baseband by

h(t, ς) =

Nh(t)∑

i=1

hi(t)δ(ς − ςi) (2.1)

where Nh (t) is the number of propagation paths, that equals the number of local scatterers, at

time t and hi(t) stands for the complex weighting coefficient corresponding to the ith path with

delay ςi.

Due to the stochastic nature of mobile radio channels, they are generally classified by their

statistical properties. The autocorrelation function (ACF)

rh(τ, ς) = E {h(t, ς)h∗(t+ τ, ς)} (2.2)

This relationship can also be expressed in the frequency domain. The Fourier transformation of

rh(τ, ς) with respect to τ yields the scattering function

Sh(ν, ς) = F {rh(τ, ς)} (2.3)

The Doppler frequency ν originates from the motion of objects within the environment (which

might be the transmitter, the receiver or scatterers). Integrating over ς leads to the Doppler

power spectrum

Sh(ν) =

∫ ∞

0
Sh(ν, ς)dς (2.4)

describing the power distribution with respect to ν. The range over which Sh(ν) is almost

nonzero is called Doppler bandwidth Bd. The time span that channel roughly stays constant is

called the coherence time and given by

tc ≈
1

Bd
(2.5)

For tc ≫ T , the channel is slowly fading, for tc ≪ T , it changes remarkably during the processing

duration T (i.e. at some instants the signal is severely attenuated). In the latter case, the

channel is called time-selective. These two conditions are also named slow fading and fast fading,

respectively.

Let fd be the maximum Doppler frequency. Integrating Sh(ν, ς) over ν instead of ς delivers the

power delay spread

Sh(ς) =

∫ fd

−fd

Sh(ν, ς)dν (2.6)

that describes the power distribution with respect to ς. The delay spread is caused only by the

topology of the environment itself. Let the maximum delay be denoted ςmax. The coherence

bandwidth defined by

Bc =
1

ςmax
(2.7)

represents the bandwidth over which the channel is nearly constant.

For frequency-selective channels, B ≫ Bc holds, that is, the signal bandwidth B is much larger

than the coherence bandwidth and the channel behaves differently in different parts of the signal’s
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spectrum. In this case, ςmax is larger than the symbol duration so that successive symbols overlap,

resulting in linear channel distortions called inter-symbol interference (ISI). For B ≪ Bc, the

channel is frequency-non-selective, that is, its spectral density is constant within the considered

bandwidth.

Since the Doppler spread is a phenomenon in frequency, the overall effect on the received sig-

nal, which is the result of interfering multiple Doppler shifted signal copies, is a time selective

behaviour. The situation is exactly opposite for the delay spread. While the delay spread is a

phenomenon in time, the resulting effect on the received signal indicates a frequency selective

behaviour.

In the following part, the focus is on the statistics of a single channel coefficient. In the absence

of LoS connection, real and imaginary parts of tap coefficient h are statistically independent and

Gaussian distributed stochastic processes for a large number of propagation paths per tap. The

phase of h is uniformly distributed in [0, 2π] while the envelope r = |h| is Rayleigh distributed

p|h|(r) =





r
σ2
h

.e
− r2

2σ2
h , r ≥ 0

0, r < 0
(2.8)

In the presence of LoS between the transmitter and the receiver, the total power of the channel

coefficient is shared among a constant LoS and a Rayleigh fading component. The distribution

of channel envelope is no longer Rayleigh but Rician. However, by considering Rayleigh fading,

one is working with the worst possible scenario, since the Rician fading is less destructive and

the performance of the communication system is better.

2.2.3 Mobile Radio Channels : Doppler Effect

Let us consider the relative velocity between the transmitter and the receiver is v and the

transmitted signal arrives at the angle α. The signal’s carrier frequency fc suffers of the Doppler

frequency shift

ν =
v

c
fccos(α) = fdcos(α) (2.9)

where c = 3.108 is the speed of light and fd = v
cfc.

Let us consider the effect of the motion in the model presented in Equation (2.1). The complex

envelope is rewritten as [25]

h(t, ς) =

Nh∑

i=1

aie
jφie2πjνitδ(ς − ςi) (2.10)

The real-valued quantities ai, φi and νi represent the attenuation, the phase shift and the Doppler

shift corresponding to the ith path. Therefore relative motion introduces a frequency shift of the

carrier for each path. This Doppler shift is distributed between −fd and fd. In the case of

isotropic scattering (i.e. the arrival angle α is uniformly distributed in the interval [0, 2π]),

the Doppler power spectrum associated with each channel tap is given by the classical Jakes
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Figure 2.1: Characterization of mobile radio channels in time and frequency.

distribution

Sh(ν) =





σ2
h

πfd

√

1−
(

ν
fd

)2
, |ν| ≤ fd

0, |ν| > fd

(2.11)

where σ2h is the average power of the channel tap. This is well known U shaped spectrum shown

in Figure 2.1 , and it is often referred to as Jakes spectrum.

We can easily derive the autocorrelation function of the channel complex tap by taking the

inverse Fourier transform of the Doppler power spectrum given in Equation (2.11)

rh(τ) = σ2hJ0(2πfdτ) (2.12)

where the function J0(.) denotes the zero-order Bessel function of the first kind.

2.2.4 Mobile Radio Channels Models

2.2.4.1 Introduction

Mobile radio channel simulators are commonly used because they allow system tests and evalu-

ations which are less expensive and more reproducible than field trials. The prime requirement

of the simulation set-up is to capture the fading effects created by a radio channel. There are

several methods in the communications literature to simulate Rayleigh fading. These methods

are described in [25]. They can be based on either sum of sinusoids principle or filtering of the

white Gaussian noise.

When using the filter method, a white Gaussian noise (WGN) process w(t) is given to the input of

a linear time-invariant filter, whose transfer function is denoted by H(f). If w(t) ∽ N (0, 1), then

we obtain a zero-mean stochastic Gaussian random process h(t) at the filter output, where the

power spectral density Sh(f) of h(t) matches the squared absolute value of the transfer function,

i.e., Sh(f) = |H(f)|2. Hence, a colored Gaussian random process h(t) can be considered as
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the result of filtering WGN w(t). Then, filtering Gaussian noise through appropriately designed

filters, the channel Doppler power spectral density can be simulated, thereby capturing the

important first and second order fading statistics. Several implementation schemes of this filtering

approach exist in the literature [26].

The second approach considers that the complex channel envelope of multi-path fading channel

can be represented as a “sum-of-sinusoids” (SoS) model. Each sinusoid is characterized by certain

parameters (i.e., amplitude, Doppler frequency and phase). The motivation behind SoS-based

fading channel simulators is that when a sinusoidal carrier is transmitted and subjected to multi-

path fading, the received carrier can be modeled as a superposition of multiple possibly Doppler

shifted copies of the transmitted carrier received from different paths. Being a natural represen-

tation of the channel waveform, several SoS models have been presented in the past to simulate

wireless channels [25]. Rather than simulating the channel by directly applying the Clarke’s

reference model [27], specialized sum of sinusoids models are proposed to efficiently simulate the

channel by using a finite number of sinusoids. The philosophy of SoS modeling has been made

popular after the simplified version of Clarke’s model proposed by Jakes [28].

We have to generate multiple uncorrelated Rayleigh fading processes when multiple-antennas

receiver and multi-path channel is considered. It is well-known that a Rayleigh process is formed

by taking the absolute value of a zero-mean complex Gaussian random process. Ideally, these

different uncorrelated complex Gaussian random processes should satisfy the following criteria:

i) The inphase and quadrature components of each complex process are zero-mean independent

real Gaussian random processes with identical ACFs; ii) The cross-correlation function (CCF)

of any pair of complex Gaussian random processes must be zero. In this thesis, we focus on the

SoS based simulators. These simulators are efficient, less complex and easier to implement when

employed to generate multiple uncorrelated Rayleigh fading processes [25].

2.2.4.2 Sum of Sinusoids Models

The reference model of Clarke defines the channel complex gain under non-LoS, frequency flat

fading, and 2-D isotropic scattering assumptions as [27]

h(t) = lim
Np→∞

√
2

Np

Np∑

n=1

ej[2πfdtcos(αn)+θn] (2.13)

where Np denotes the number of propagation paths, θn ∽ U [−π, π) and αn ∽ U [−π, π) are,

respectively, the random phase and angle of arrival of the ith multi-path component. When

Np becomes large, R[h(t)] and I[h(t)] (the real and imaginary components, respectively) are

zero-mean, Gaussian and statistically independent. Due to the accurate statistical properties of

Clarke’s model, it has been widely used as a reference theoretical model for simulating fading

channels. However, an efficient implementation of a fading channel simulator requires using

a finite and preferably a small number of sinusoids. Hence, Jakes simplified this method by

exploiting the symmetry in the environment to reduce the number of sinusoids. Actually, the

Jakes’s model had been the simulation model for a long time. However, several studies have
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shown that the fading signals which are produced by classical Jakes simulator are not wide-sense

stationary [29]. Several improvements have subsequently been proposed in the literature to make

the SoS model wide-sense stationary.

SoS simulators can be classified either as “deterministic” or “stochastic” [25,30]. In deterministic

SoS simulators, all the waveform parameters are held fixed for the duration of the simulation.

Deterministic SoS-based models require a relatively large number N of sinusoids to achieve

accurate statistical properties [25]. Also, the statistical averaging or Monte Carlo simulation

results cannot be obtained since all the parameters in the model are fixed. One advantage of

the deterministic channel modeling approach is that the resulting simulation model is ergodic,

while stochastic methods result in non-ergodic fading simulator in most cases [25, 30]. By using

non-ergodic simulation models [31,32], one has to perform several simulation runs with different

sets of model parameters. However, the statistics of non-ergodic simulation models can be

improved by averaging over the obtained results. An ergodic stochastic SoS channel simulator

has constant gains and frequencies but random phases [30]. Several ergodic stochastic methods

for the generation of multiple uncorrelated Rayleigh fading processes with a SoS channel simulator

exist in the literature [33]. Unfortunately, the ACFs of the inphase and quadrature parts of the

designed complex waveforms are not close to the specified one.

2.2.4.3 Generalized Exact Doppler Spread Model

The usefulness of the method of exact Doppler spread (MEDS) [34] was revisited in [35]. It

was shown that all the main channel model requirements can be fulfilled, but unfortunately the

complexity of the resulting channel simulator increases almost exponentially with the increase

of the number of uncorrelated waveforms. This makes the original MEDS less efficient if the

number of waveforms is large. The authors in [36] introduced a generalized version of MEDS

(GMEDS). This generalized version can be interpreted as a class of parameter computation

methods, which includes many other well-known approaches as special cases. Two new special

cases were introduced in [36] to enable the efficient and accurate design of multiple uncorrelated

Rayleigh fading waveforms using ergodic stochastic concepts. These methods can fulfill all main

requirements imposed on the correlation properties of the resulting channel simulator. Also, the

computational complexity of the model parameters is low. This model is adopted in our thesis.

The K mutually uncorrelated Rayleigh fading waveforms

h(k) (t) = h
(k)
1 (t) + jh

(k)
2 (t) , k = 1, · · · ,K (2.14)

are generated using an SoS channel simulator

h
(k)
i (t) =

√
2

Ni

Ni∑

n=1

cos
(
2πf

(k)
i,n t+ θ

(k)
i,n

)
, i = 1, 2 (2.15)

whereNi denotes the number of sinusoids, f
(k)
i,n is called the discrete Doppler frequency, and θ

(k)
i,n is

the phase of the nth sinusoid of the inphase component h
(k)
1 (t) or quadrature component h

(k)
2 (t)

of the kth complex waveform h(k) (t). The phases θ
(k)
i,n are considered as outcomes of independent
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and identically distributed (i.i.d.) random variables, each having a uniform distribution over the

interval [0, 2π). The problem is to find proper values for the discrete Doppler frequencies f
(k)
i,n

in such a way that the above mentioned two conditions on the ACFs and the CCFs are fulfilled.

The discrete Doppler frequencies f
(k)
i,n , according to the GMEDS, are given by

f
(k)
i,n = fd cos

(
α
(k)
i,n

)

= fd cos

[
qπ

2Ni

(
n− 1

2

)
+ α

(k)
i,0

] (2.16)

where α
(k)
i,0 is called the angle of rotation that will be defined subsequently and q ∈ {0, 1, 2}.

Note that the quantity q mainly determines the range of values for the angles of arrival α
(k)
i,n .

According to the GMEDS1 (i.e. q = 1), the angle of rotation α
(k)
i,0 is defined as

α
(k)
i,0 = (−1)(i−1) π

4Ni
.

k

K + 2
, (2.17)

while the GMEDS2 (i.e. q = 2) defines α
(k)
i,0 as

α
(k)
i,0 =

π

4Ni
.
k − 1

K − 1
(2.18)

where i = 1, 2 and k = 1, · · · ,K.

It was shown that the GMEDS1 in general outperforms the GMEDS2 with respect to the error

function, which measures the accuracy of the channel simulator’s ACF of the complex generated

waveform [36].

This section presented the general characteristics of mobile radio channels and the Doppler effect

resulting from the high-speed of trains. The development and evaluation of communication

systems performance require using an accurate mobile radio channel simulator. We presented

the main existing simulators in the literature before focusing on the GMEDS simulator. This

ergodic effective simulator can reply all main requirements implied by the actual wireless channel

model. The GMEDS simulator is designed to generate multiple uncorrelated fading channels such

that the simulation model is as close as possible to the given reference model over a certain delay

interval.

2.3 Signal Model

2.3.1 Received Signal Representation

We assume that there are M ≥ 1 antennas at the CR mobile terminal aboard train, also called

the secondary user (SU), as shown in Figure 2.2. The SU receiver detects several primary sources

(PSs) where the PS is the signal of a licensed user, also called primary user (PU).

The continuous-time received signal at antenna i is xc,i(t) = s̃c,i(t) + wc,i(t) where s̃c,i(t) is the

superposition of the possible continuous-time primary sources signals including the effects of
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Figure 2.2: Multiple-antennas receiver at the secondary user (the moving train) in the presense
of P primary users (available radio services).

path-loss, multi-path fading and time dispersion, and wc,i(t) is the continuous-time noise, as

displayed in Figure 2.3. We sample the received signal at a sampling rate fs. Let Ts = 1/fs be

the sampling period. For notation simplicity, we define xi(n) , xc,i(nTs), s̃i(n) , s̃c,i(nTs) and

wi(n) , wc,i(nTs).

In the presence of P primary sources (PSj , 1 ≤ j ≤ P ), the sampled received signal at the ith

antenna is represented as

xi(n) =
P∑

j=1

Cj∑

k=0

hi,j(n, k)sj(n− k) + wi(n), n = 1, 2, · · · (2.19)

where sj(n) is the jth sampled primary source signal, Cj is the order of the channel between PSj

and each antenna, and hi,j(n, k) is the kth tap of the channel response between PSj and the ith

antenna at instant n. The M × 1 observation vector at the receiver is expressed as

x(n) =




h1,1(n) h1,2(n) · · · h1,P (n)

h2,1(n) h2,2(n) · · · h2,P (n)
...

...
...

...

hM,1(n) hM,2(n) · · · hM,P (n)



s(n) +w(n), n = 1, 2, · · · (2.20)

where s(n) = [s1(n), ..., s1(n− C1), . . . , sP (n), ..., sP (n− CP )]
T , andw(n) = [w1(n), ..., wM (n)]T

is the M × 1 received noise vector. The vector hi,j(n) = [hi,j(n, 0), ..., hi,j(n,Cj)] represents the

channel taps between PSj and the ith antenna.

Let us consider L consecutive samples and define the corresponding signal/noise vectors

xL(n) = [x1(n), ..., x1(n− L+ 1), ..., xM (n), ..., xM (n− L+ 1)]T

sL(n) = [sT1 (n), s
T
2 (n), ..., s

T
P (n)]

T

wL(n) = [w1(n), ..., w1(n− L+ 1), ..., wM (n), ..., wM (n− L+ 1)]T

(2.21)
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Figure 2.3: System Model.

where sTj (n) = [sj(n), sj(n− 1), ..., sj(n−Cj −L+1)] and L is called the smoothing factor. The

system is expressed in matrix form as

xL(n) = H (n) sL(n) +wL(n) (2.22)

where H is an ML× (C + PL) matrix and C =
∑P

j=1Cj .

Defining the L× (Cj + L) matrix Hi,j , 1 ≤ j ≤ P, 1 ≤ i ≤M, as

Hi,j (n) =




hi,j(n) 0 · · · 0

0 hi,j(n− 1)
. . .

...
...

. . .
. . . 0

0 · · · 0 hi,j(n− L+ 1)



, (2.23)

H is expressed as

H (n) =




H1,1 (n) H1,2 (n) · · · H1,P (n)

H2,1 (n) H2,2 (n) · · · H2,P (n)
...

...
. . .

...

HM,1 (n) HM,2 (n) · · · HM,P (n)



. (2.24)

Let us assume w(n) is an additive white Gaussian noise (AWGN) vector with zero-mean and

variance σ2w. The covariance matrix of the received signal, set to as RL,x = E[xLx
H
L ], gives

RL,x = HRL,sH
H + σ2wIML (2.25)

where (.)H represents the Hermitian transpose and RL,s = E[sLs
H
L ] is assumed to be of full rank.

Let λ1 ≥ · · · ≥ λML denote the eigenvalues of RL,x. The received signal covariance matrix is

usually unknown. The sample covariance matrix is employed to overcome this difficulty, and is

given by

RL,x(N) =
1

N

N∑

k=1

xL(k)(xL(k))
H (2.26)

where N is the number of observed samples. The estimated eigenvalues are ℓ1, · · · , ℓML such as
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ℓ1 ≥ · · · ≥ ℓML.

The signal-to-noise-ratio (SNR) is defined as the ratio of the average received primary user’s

signal power to the average receiver noise power, that is

SNR =
E[ ‖x(n)−w(n)‖2]

E[ ‖w(n)‖2]
(2.27)

2.3.2 Multiple-antennas Spatial Correlation

Many propagation environments result in spatial correlation among antennas. Hence, spatial

correlation is a crucial factor for practical systems and its effect on their performance must

be evaluated. Several analytical models for multiple-antennas spatial correlations exist in the

literature. For instance, the Kronecker model [37] assumes that spatial receiver and transmitter

correlations are separable.

It can be shown that, under the above assumption, the Kronecker model is given by

H = R1/2
r HwR

1/2
t (2.28)

where Rt and Rr are the transmitter and the receiver correlation matrices. Hw is a channel gain

matrix whose the structure is identical to that defined in (2.20).

When Hw is a full rank gain matrix whose entries are i.i.d and follows a circularly symmetric

complex Gaussian distribution with zero-mean and unit variance, the Kronecker model is equiv-

alent to express the total correlation of the channel RH as the Kronecker product (⊗) of the

correlation matrices Rt and Rr, as

RH = Rt ⊗Rr (2.29)

The effect of transmit spatial correlation is neglected when:

❖ the primary sources are actually well separated antennas at some primary user.

❖ the primary sources are actually several uncorrelated primary users.

The correlation matrices Rt and Rr are represented by the exponential correlation model intro-

duced in [38]. This model defines the entries of a correlation matrix R as

[R]i,j =

{
ρj−i, i ≤ j

[R]∗j,i , i > j
, |ρ| < 1, (2.30)

where ρ is the complex correlation coefficient of neighboring (receive or transmit) branches. This

model may be not accurate for some real-world scenarios but this is a simple single-parameter

model which allows us to study the effect of correlation in an explicit way. However, this model is

physically reasonable in the sense that the correlation decreases with increasing distance between

antennas. The two matrices Rt and Rr are then, respectively, defined by the transmit correlation

coefficient ρt and the receive correlation coefficient ρr.
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2.3.3 Transmission Schemes

Several transmission techniques are employed in the existing communications systems. These

techniques were developed to achieve high data-rate multi-user robust communications. In the

following, some of these techniques are presented.

2.3.3.1 Orthogonal Frequency Division Multiplexing

Orthogonal frequency division multiplexing (OFDM) is a multi-carrier modulation technique

that can overcome many problems that arise from high data-rate communications, the biggest

of which is time dispersion. In OFDM, carrier frequencies are chosen in such a way that there

is no influence of other carriers when detecting the information in a particular carrier as long as

the orthogonality between the carriers is maintained. The data bearing symbol stream is split

into several lower rate streams and these streams are transmitted on different carriers. The ISI

is removed by cyclically extending the OFDM symbol. The length of the cyclic extension should

be at least as long as the maximum delay of the channel. OFDM is one of the key enabler

technologies for very high throughputs and robustness in the emerging standards that support

vehicular mobility (IEEE 802.11p, IEEE802.16e, IEEE 802.20, and LTE).

2.3.3.2 Code Division Multiple Access

Direct-sequence spread spectrum (DS-SS) is a transmission technique in which a pseudo-random

sequence or pseudo-noise (PN) code, independent of the information data, is employed as a

modulation waveform to spread the signal energy over a bandwidth much greater than the

information signal bandwidth. This results in many benefits, such as immunity to interference

and jamming and multi-user access.

DS-SS transmissions have been used in military context for secure communications for several

decades due to their low probability of intercept properties. During the last couple of decades,

spread spectrum technology was proposed for private and commercial use, especially the code

division multiple access (CDMA) transmissions. The receiver synchronizes to the code to recover

the data. The use of code independent of data and synchronous reception allows multiple users to

access the same frequency band at the same time. Direct-sequence CDMA (DS-CDMA) signals

are very widely used in multi-user wireless communication systems e.g. IS-95 and WCDMA. It

is also used in the GPS satellite navigation system.

2.3.3.3 Multi-Carrier Spread Spectrum (MC-SS)

The success of multi-carrier modulation and spread spectrum technique motivated many re-

searchers to investigate the advantages of possible combinations of both techniques, known as

multi-carrier spread spectrum (MC-SS) which benefits from the main advantages of both schemes.

Among all combination of both techniques, the so-called multi-carrier direct-sequence CDMA

(MC-DS-CDMA) is considered in this thesis as a case study for some proposed algorithms. The

MC-CDMA and OFDM cases can be easily inferred.
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2.4 Noise Model

The performance of any communications system does not depend on the channel characteristics

and the used transmission technique only, but also depends on the corrupting noise nature and

its statistical properties. The most widely employed noise model in the literature is the Gaussian

one. But, a wide variety of noise processes commonly found in wireless communications exhibit

non-Gaussian impulsive behaviour [39]. This type of behaviour arises in the special railways

environment. A brief study of some impulsive noise models is provided, followed by a statistical

distribution fitting of measured impulsive noise acting on GSM-R antennas.

2.4.1 The Gaussian Model

The Gaussian distribution has been the favorite noise model in communications and signal pro-

cessing literature. Despite the mathematical simplicity of this model, the ideal Gaussian model is

reasonable and can be justified by the central limit theorem. This theorem explains the Gaussian

nature of processes generated from superposition of many small and independent effects. This is

the case for example of thermal noise, which is generated as the superposition of a large number

of random independent interactions at the molecular level. In addition, the use of the Gaussian

assumption is also convenient since it often leads to closed-form solutions.

Although many important processes found in the communications are non-Gaussian, a large

amount of practical communications systems still live in the Gaussian world. A serious concern is

that, in general, a system designed under the Gaussian assumption will show drastic performance

degradations when the noise statistics depart to heaver-tailed models [39].

2.4.2 Heavy-tailed Impulsive Noise in Communications

The impulsive behaviour resulting from naturally occurring or man-made noise sources may

exhibit high amplitudes for small duration time intervals. Typical examples include atmospheric

radio noise (such as thunderstorms), telephone lines noise, office equipments, rotating machinery,

engine ignition, and multi-user interference in mobile communication systems. Transportation

systems often suffer of impulsive noise such as car ignitions, and the EM interferences in the

railway environment (e.g. the transient EM noise which is produced by the sliding contact

between the catenary and the pantograph).

Several distributions, with heaver than Gaussian tails, have been proposed as non-Gaussian

impulsive noise models. Well credited statistical-pysical models have been proposed by Middle-

ton [40]. The most employed among these models is the class A. This model assumes that the

impulsive noise is described by two PDFs: a Poisson distribution that models the number of

impulses occurring in a given time interval, and a Rayleigh distribution that models the impul-

sive envelope. A simplified distribution commonly used in the modeling of impulsive noise is

the Gaussian mixture or the contaminated Gaussian [39]. Other common physically motivated

models in the literature [39,41] are based on the Laplace distribution, K-distribution, generalized

Gaussian distribution, and generalized student-t distribution.
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However, α-stable random processes provide a suitable model for a wide range of non-Gaussian

heavy-tailed impulsive noise encountered in wireless communication channels [39, 41]. This can

be justified by the generalized central limit theorem considering that the noise results from a

large number of possibly impulsive effects.

Theorem 1 (generalized central limit theorem). The infinite sum of many i.i.d random variables,

not necessarily with finite variances, converges to a α-stable distribution.

In the same way as the Gaussian model, the generalized central limit theorem constitutes a strong

theoretical argument compelling the use of α-stable in practical problems. In addition, it was

shown in [42] that α-stable processes provide excellent fits to measured impulsive noise. Also,

recent work has experimentally verified that α-stable distribution provides an accurate model of

interference in laptop embedded transceivers [43]. α-stable processes share basic characteristics

with the Gaussian processes; i.e. they satisfy the stability property and the generalized central

limit theorem. Also, this heavy-tailed impulsive noise model is flexible and can be controlled by

few parameters.

A random variable w that follows the α-stable distribution have no closed-form of the PDF and

is rather described by its characteristic function,

Φw(t) = exp{ jδt − γ |t|α [ 1 + jβsign(t)κ(t, α) ] }, (2.31)

where

κ(t, α) =

{
tanπα

2 , α 6= 1
2
π log |t| , α = 1

, 0 < α ≤ 2, −1 ≤ β ≤ 1, 0 < γ.

Thus a stable distribution is totally determined by four parameters: (i) the characteristic expo-

nent, α, that controls the heaviness of the tails of the stable density and hence the impulsiveness

of the respective stable process (the smaller the α is, the heavier the tails are); (ii) the location

parameter, δ, that represents the mean when 1 < α ≤ 2 and the median when 0 < α ≤ 1; (iii)

the dispersion parameter, γ, that determines the spread of the distribution around its location

parameter δ; and (iv) the index of skewness, β, controls the symmetry of the distribution. A

random variable w with stable distribution of parameters α, β, γ, δ is noted as w ∽ Sα(β, γ, δ).

Although some practical noise processes might be better modeled by asymmetric distributions,

we will concentrate only on symmetric models since a large number of important noise and inter-

ference processes found in wireless communications are symmetric. When the stable distribution

is symmetric (β = 0), Equation (2.31) is reduced to

Φw(t) = exp{ jδt − γ|t|α }, (2.32)

such symmetric α-stable process is denoted SαS. Two well known special SαS distributions are

the Cauchy distribution (α = 1) and the Gaussian one (α = 2).

In the following subsection, we will study a distribution fitting of measured impulsive noise at

the output of GSM-R antennas fixed above a moving train.
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Figure 2.4: Definitions of the time characteristics of transient EM interferences acting on GSM-R
antennas.

2.4.3 Case Study : Electromagnetic Interferences Acting on GSM-R Anten-

nas

In the special railway domain, one important EM noise source that could interfere with the GSM-

R communications is the transient EM disturbance which is produced by the sliding contact

between the catenary and the pantograph. Indeed, the losses of contact between the catenary

and the pantograph produce transient signals which are conducted along the catenary and along

the power line of the train [12]. It induces transient emissions which cover wide frequency bands

and which are received by the GSM-R antennas. Measurement campaigns on board trains were

carried out in order to characterize these transient disturbances [12]. Experiments were carried

out using a digital oscilloscope with a 20 GHz sampling frequency. The cruising speed of the

train was about 160 km/h and the maximal speed was 200 km/h. For more details on the

measurement campaign configuration, refer to [12].

The authors in [12] have studied some time characteristics of the transient EM interferences

instead of studying the impulsive noise itself. The transient EM test signals were notably defined

in terms of maximal amplitude (A) and corresponding time interval (TI), rise time (RT) and

time duration (TD) as seen in Figure 2.4. It was found that the duration is lower than 20 ns and

a typical duration value is 5 ns. The maximal value of the rise time of the transients is 1 ns and

the most current value is 0.4 ns. It was noticed that the time interval between two successive

transients can significantly vary. Nevertheless, under certain operating conditions, a typical time

interval can be 25µs. Also, the permanent noise effect was dropped in [12].

2.4.3.1 Distribution Fitting Procedure

Figure 2.5 shows that the fitting of the measured data (the EM interferences) is performed

according to the following steps:

❖ For each measurement dataset, 2 × 106 noise samples were used to generate a sample

PDF. The empirical probability density of the measured data was estimated using kernel

smoothing density estimators.

❖ The distribution model of the measured data is assumed Middleton class A model, SαS

model or the Gaussian one. Based on the measured data, the parameters of the assumed

distribution are estimated.
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Measured Data

(EM) Interferences
Acting on GSM-

R Antennas
Estimated PDF

Parameters Esti-
mation of the as-

sumed distribution

Empirical PDF

kernel smoothing
density estimator KL divergence

The closest distribution
among Middleton Class
A, SαS and Gaussian

Figure 2.5: EM interferences measurements distribution fitting procedure.

❖ To compare the assumed distribution with the empirical one, the Kullback-Leibler (KL)

divergence is used to quantify the closeness of two PDFs.

Kernel density estimation is a non-parametric way of estimating the probability density

function of a random variable. Given a random sample x1, . . . , xN with a continuous, univariate

density f . The kernel density estimator is

f̂h(x) =
1

Nh

N∑

i=1

K

(
x− xi
h

)
, (2.33)

where K(.) is the kernel and h > 0 is a smoothing parameter called the bandwidth. The

bandwidth controls the smoothness or roughness of a density estimate. Kernel density estimates

are closely related to histograms, but the smoothness of the kernel density estimate is evident

compared to the discreteness of the histogram. Under mild conditions, the kernel estimate

converges in probability to the true density.

The Kullback-Leibler divergence, also known as the relative entropy, between two probabil-

ity density functions f, g,

DKL(f ‖ g) =
∫ ∞

−∞
f(x) log

(
f(x)

g(x)

)
dx, (2.34)

is commonly used in statistics as a measure of the difference between two probability distribu-

tions. The KL divergence is non-negative (≥ 0), not symmetric in f and g, and equals zero if

and only if there is an exact match of the two densities.

The last step in the fitting procedure is to introduce and evaluate the existing efficient estimation

methods of the α-stable distribution parameters.

2.4.3.2 Parameters Estimation of Stable Distributions

The parameters estimation of α-stable distributed processes encounters difficulties since there

are no closed form expressions for the PDF in most cases. Among many methods available in the

literature for this estimation problem, we will address three reference methods. In the following,

these methods are briefly introduced before examining their performances in order to choose the

best one among them.
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Let w1, w2, ..., wN be samples of independent random variables identically distributed according

to α-stable, i.e. w ∽ Sα(β, γ, δ).

Sample Quantile Method [44]. McCulloch provided estimators of all four stable parameters

(with the restriction α ≥ 0.6) [44]. Let us denote by wp the pth population quantile of Sα(β, γ, δ),
i.e. P[w < wp] = p. A quantile estimation is obtained from the p × 100% ordered sample

observation whether this value is present in the sample. Otherwise the estimator is obtained by

linear interpolation.

Then the following indexes are established

ϑα =
w0.95 − w0.05

w0.75 − w0.25
and ϑβ =

w0.95 + w0.05 − w0.5

w0.95 − w0.05
(2.35)

These two indexes don’t depend on δ and γ. Moreover they are respectively decreasing and

increasing function of α and β. From quantile estimates, we get index estimates (ϑα, ϑβ), then

by inversion, the corresponding estimates (α̂, β̂). This inversion is based on the tables provided

in [44] where a grid of (α̂, β̂) values are provided for given estimated index values.

Dispersion and location parameters, δ and γ, can be estimated in a similar way depending on

another two indexes, as follows

ϑγ =
w0.75 − w0.25

γ
and ϑδ =

δ + β̂γ tan πα̂
2 − w0.5

γ̂
(2.36)

where ϑγ is a quantity which depends neither on γ nor δ and is tabulated for a grid of values of

(α̂, β̂).

Fractional Lower Order Moment Method [45]. The fractional lower order moments

(FLOMs) are finite for certain parameter values of α-stable distributions [42]. The absolute

and signed fractional moments can be estimated, respectively, by the sample statistics

Ap =
1

N

N∑

i=1

|wi|p , Mp =
1

N

N∑

i=1

wp
i (2.37)

The sinc estimator for α, ratio estimator of β and FLOM γ estimator are based on the following

closed form expressions [45]. Estimating α is done by solving

sinc
(pπ
α

)
=

[
pπ

2

(
ApA−p
tan(pπ2 )

+MpM−p tan(
pπ

2
)

)]−1
. (2.38)

Given an estimate of α, the estimation of θ = arctan
(
β tan πα

2

)
is claculated by

Mp

Ap
=

tan(pθα̂ )

tan(pπ2 )
, (2.39)



43 2.4. Noise Model

given the θ estimate, β is estimated by: β̂ = tan(θ̂)

tan( α̂π
2
)
. The FLOM estimator of γ is given by

γ̂ =
∣∣∣cos

(
θ̂
)∣∣∣

[
Γ(1− p)
Γ(1− p

α̂)

cos(pπ2 )

cos(pθ̂α̂ )
Ap

]α̂/p

(2.40)

All these estimators assume a zero location value (δ = 0). The exponent p is chosen carefully to

keep the variance of each estimator finite. It equals 0, 0.2 and α̂/10 respectively for the α, β and

γ estimators. Note the α estimate is used to determine p value for γ estimator.

Empirical Characteristic Function (ECF) Method [46]. The ECF is defined by

Φ̂w(t) =
1

N

N∑

i=1

exp(jtwi) (2.41)

The law of large numbers establishes that Φ̂w(t) is a consistent estimator of Φw(t). This estima-

tion method is based on the following observations concerning the characteristic function. First,

we can easily derive

ln(− ln |Φw(t)|2) = ln(2γα) + α ln |t| (2.42)

Equation (2.42) depends only on α and γ and suggests that we can estimate these two parameters

by regressing y1 = ln(− ln |Φw(t)|2) on u1 = ln |t| in the model: y1,k = m + αu1,k + e1,k, where

u1,k is an appropriate set of real numbers, m = ln(2γα), and e1,k denotes an error term.

Calculating the real and imaginary parts of Φw(t) for α 6= 1 leads to

arctan

(
I [Φw(t)]

R [Φw(t)]

)
= δt+ βγα tan

πα

2
sign(t) |t|α (2.43)

Once α̂ and γ̂ have been obtained then estimates of δ and β can be calculated using Equation

(2.43) to write another regression model: y2,k = δu2,k + βγα tan πα
2 sign(u2,k) |u2,k|+ e2,k where

y2 = arctan
(

I[Φw(t)]
R[Φw(t)]

)
, u2,k are appropriate real numbers and e2,k denotes the error term.

Performance Comparison Here, we propose to evaluate the different estimation methods

based on two metrics: the normalized mean bias (NMB) and mean square error (MSE), which

are defined as follows

NMB(Pr) =
Pr − P̂r

Pr
and MSE(Pr) = E

[(
P̂r − Pr

)2
]

(2.44)

where Pr ∈ {α, β, γ, δ}, P̂r is the estimate of Pr, and (.) is the mean value. The first metric is

employed to measure the method’s mean performance while the MSE measures the consistency.

We generate a 1000 realizations of random stable variable for each set of parameters. The α-stable

generation algorithm is explained in Appendix A. The different parameters are estimated for each

realization, thereafter the NMB and MSE are calculated for each parameter. The simulations

results shown in Figure 2.6 reveals that the quantile method is not efficient when α < 0.6 (i.e.
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Figure 2.6: Performance comparison of different stable distribution parameters estimators for
different values of α (a) the NMB of α estimators. (b) the MSE of α estimators. (c) the NMB
of γ estimators. (d) the MSE of γ estimators.

the tails are very heavy). For α > 0.6 (i.e. moderately-high impulsive noise), the FLOM has the

lowest performance. The quantile method is a compromise between complexity and performance

for the online applications. While the ECF method is the more consistent one among the three

studied methods, it is more suitable for offline applications and it is adopted in our work.

2.4.3.3 Measured Data Fitting

The measured data is well centered around zero; i.e. its mean equals −1.8 × 10−4 ≃ 0. Figure

2.7 shows the empirical PDF of the normalized measured data. The assumption of symmetric

distribution can be easily visually justified. This fact can be confirmed by assuming stability

of the impulsive noise process and estimating the skewness parameter. The β estimate equals

2.64× 10−4 ≃ 0. The empirical distribution of the normalized measured data is compared with

the three estimated models, namely, Middleton class A model, SαS model and Gaussian model.

The distribution of the measured data and the three estimated models are shown in Figure

2.7. As seen from this Figure, both the class A model and the SαS model provide a better

approximation to the measured data distribution as compared to the Gaussian model. Table 2.1
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Table 2.1: The estimated parameters for each assumed model besides the KL divergence between
the estimated PDF and the empirical PDF.

Assumed Model Parameter Estimated Value KL Divergence

Gaussian
Mean ∼ 0

0.1032
Variance 1

Class A
Overlap Index 0.891

0.0368
Gaussian Factor 0.592

SαS
Location (δ) 3.95× 10−4 ≃ 0

0.0226Dispersion (γ) 0.419
Characteristic Exponent (α) 1.253

α

Figure 2.7: PDF of measured data

lists the estimated parameters and the corresponding KL divergence of the empirical PDF from

the estimated distributions. The KL divergence values reveal that the measured data is modeled

better by the SαS model followed by the Class A model. One value to focus on is the estimated

α which equals 1.253.

2.5 Conclusions

Developing algorithms, to be employed in the CR device, suitable for railway context necessitates

well modeling the special environment of this context. In this Chapter, we presented the charac-

teristics of the mobile radio channels in time and frequency, mainly the Doppler effect related to

the high mobility. The properties of the generalized exact Doppler spread model motivated us

to adopt it to simulate the dynamic radio channel. The topology along the railways results in a

spatial correlation at the multiple-antennas receiver. The correlation matrices of the Kronecker

model are set up using an exponential correlation model. In addition, the received signal at the

antennas on a moving train suffers of the EM noise interference. This implies that the tradi-

tional Gaussian noise model is not anymore valid in this context. The generalized central limit
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theorem justifies employing the α-stable processes for modeling the impulsive noise. One of the

contributions of our thesis works lies in the distribution fitting of the measured transient EM

noise acting on GSM-R antenna. We found that the measured data is well modeled by the SαS

distribution. Although it was very important to describe the constraints implied on the wireless

communications in the railway sector, we will not consider all these constraints when developing

the detection, estimation and sensing algorithms in Chapters 3 and 4. In Chapter 5, the problem

of spectrum sensing will be studied when all these constraints are taken into consideration.
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3.1 Introduction

With the rapid development of communications systems and the increasing demand of wireless

services, the natural limitation of spectral resources necessitates the wireless systems to evolve

towards more intelligent ones. Cognitive radio is the promising technique proposed by Mitola [47]

to increase the utilization efficiency of spectrum resource. The key issue in CR is to be aware of

its radio environment. Therefore, an essential task is to design reliable sensing methods which are

able to detect the presence of signal in the target channel as well as to recognize different signals.

CRs are expected to identify different wireless networks and have capability to communicate

with them. Transmission parameters of communications system must be detected blindly if the

system is not known to CR. That is, identifying some of the basic features of incoming signals does

enhance the CR waveform awareness capability. Moreover, the CR should have the capability to

blindly identify interference and try to mitigate its effects. Also, signal classification allows CR

to select a suitable demodulation process at the receiver and to establish a communication link.

Furthermore, identifying incoming signal parameters helps to conduct spectrum survey for radio

monitoring systems. It allows to detect undesired and illegal transmissions.

Hence, waveform identification or waveform awareness is very beneficial to CR devices. Within

this thesis, the transmission features identified by the CR device include: identification of a multi-

carrier transmission, spectrum spreading detection, and recognition of the modulation type of

the received signal. This Chapter introduces two important contributions of this thesis. The

first one is a modulation recognition algorithm for spatially-correlated multiple-input multiple-

output systems based on the higher order statistics. This research work is, to the best of our

knowledge, among the first ones that study the modulation recognition problem for MIMO

systems and the first that addresses the spatially-correlated case. Secondly, we introduce an

algorithm for parameters identification of MC-DS-CDMA transmissions based on the fluctuations

of the autocorrelation function. The identification performance of this algorithm is improved by

exploiting the multiple-antennas at the receiver aboard the train. A performance comparison

between this method and the one that uses directly the autocorrelation function is provided.

3.2 Modulation Scheme Recognition

3.2.1 Introduction

Automatic modulation recognition (AMR) has received international scientific attention for over

three decades now. It can be considered as an intermediate step between signal interception

and information recovery. Modulation recognition has its roots in military applications such

as: communication intelligence (COMINT), electronic support measures (ESM), and electronic

counter measures (ECM). Another group of applications that employs AMR can be found in the

communications systems as spectrum monitoring, interference identification, universal demodu-

lator. With the rapid growth of software defined radio systems, automatic digital modulation

recognition (ADMR) has gained more attention than ever. As the adaptive receiver in SDR can

communicate with different communications standards, the recognition of digital modulation
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scheme of a signal is to be optimized and can act as front-end to SDR systems. Also recent and

rapid developments in the CR technologies have given AMR more importance in civil applica-

tions, since the awareness of CR requires the recognition of the modulation scheme of desired

signal.

Dozens of modulation recognizers which automatically determine incoming modulation properties

have been proposed. Numerous approaches have tried to develop fast and accurate algorithms

for producing acceptable results in real world applications. Some of the published algorithms

are presented in this Chapter to provide a historical overview, and briefly describe the different

approaches so far attempted.

The ultimate goal is to build a practical robust and lightweight classifier which must be capable of

identifying almost all the different modulation schemes used in the telecommunications systems

and standards (2G/3G and 4G). The type and order of modulation should be recognized at

the same time and without a priori information of the received signal. The processing time

must be reduced to ensure the real-time operating conditions. The different studies of AMR

problem over the last decades had achieved a lot of advancement but we have never reached

the ultimate classifier. Some algorithms need a priori information of the signal (e.g. carrier

frequency, signal bandwidth, baud rate, offset timing, etc.), others need high value of SNR, some

classifiers are limited to small number of modulation schemes, others can not be used in the

real-time applications.

3.2.2 Preliminary Literature Review

Many AMR algorithms have been developed for single-input single-output (SISO) systems [48].

These algorithms are generally divided into two categories. The first category is based on

decision-theoretic approach while the second on pattern recognition. The decision-theoretic

approach is a probabilistic solution based on a priori knowledge of probability functions and

multiple hypotheses testing problem, with each hypothesis being the modulation scheme of the

received signal [48, 49]. The major drawback of this approach, besides its high complexity, is

the difficulties of forming the right hypothesis as well as careful analyses that are required to set

the correct threshold values. On the other hand, the pattern recognition approach is based on

extracting some basic characteristics of the received signal called features [50–53]. The second

approach is easier to implement and reaches a quasi-optimal performance if the proper features

set is chosen. However, choosing the right feature set is still an issue.

The pattern recognition approach is generally divided into two subsystems: the features extrac-

tion subsystem and the classifier subsystem. The feature extraction subsystem is responsible

of extracting prominent characteristics (the features) from the raw data. The recognition tech-

niques, which have been employed to extract the signal features necessary for digital modulation

recognition, include spectral based features set [50], higher order statistics [51], cyclostationarity

signatures [52], and wavelets transforms [53]. The second subsystem is responsible of classifying

the incoming signals based on the extracted features. It can be implemented in many ways,

e.g. K-nearest neighbourhood classifier (KNN), probabilistic neural network (PNN), support

vector machine (SVM) [48]. With their efficient performance in pattern recognition problems
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Figure 3.1: Block diagram of the pattern recognition based methods

(e.g., modulation classification), many studies have proposed the application of artificial neural

networks (ANNs) as classifiers [48, 50]. Figure 3.1 shows a general block diagram of a pattern

recognition system. First the signal is pre-processed to determine various signal parameters such

as carrier frequency, baud rate, carrier phase, SNR and timing offsets. Thereafter the features

are extracted before pattern recognition.

In [54], a modulation recognizer which uses several key features obtained from the instantaneous

amplitude, the instantaneous phase and the instantaneous frequency of the intercepted signal, is

introduced for the 2-ASK, 4-ASK, 2-PSK, 4-PSK, 2-FSK, and 4-FSK digital modulation schemes.

They proposed a single hidden layer ANN structure as a classifier. This network has a 4-node

input layer, a 25 node hidden layer and a 7 node output layer. Nevertheless a degradation of

performance at higher SNRs will appear when the ANN is trained on signals with lower SNR.

Hong and Ho studied the use of wavelet transform to distinguish QAM, PSK and FSK signals

[55]. Their approach is to use wavelet transform to extract the transient characteristics in a

digital modulation signal, and apply the distinct pattern in wavelet transform domain for simple

identification. When SNR is greater than 5 dB, the percentage of correct recognition is about

97% with 50 observation symbols.

In [56], Swami and Sadler proposed a simple yet very low complexity method, based on ele-

mentary fourth-order cumulants. This method was applied in a hierarchical manner to classify

various digital modulation schemes. Also classification thresholds were developed by deriving

the expressions for the variance of the estimates of the cumulants. Furthermore, the statistics

used by the classifier can be recursively updated. The robustness of this approach comes about

not only from the resistance of HOS to additive colored Gaussian noise, but also from a natural

robustness to constellation rotation and phase jitter.

The work proposed by Nandi and Azzouz [54] was extended in [50]. This study presented

the use of resilient backpropagation (RPROP) as a training algorithm for multi-layer ANN

recognizer, which improves the performance and epoch times by a large margin. On the other

hand, additional modulation schemes (e.g. 16-QAM, V29, V32, and 64-QAM) were included,

and an extra features set based on HOS of the signal is studied. Furthermore, Genetic algorithm

(GA) based feature selection is used to select the best feature subset from the combined statistical

and spectral features sets. RPROP ANN recognizer achieves about 99% recognition performance

on most SNR values with only six features selected using GA.

Three digital modulation recognition algorithms had been investigated and compared in [57].

These algorithms are meant to identify digital modulations of type M-QAM, 8-PSK and GMSK,

proposed by the ETSI-DPRS standard. The first algorithm is based on the observation of the
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amplitude histograms, while the second algorithm is based on the wavelet transform and the third

on the maximum-likelihood of the joint probability density of phase and amplitude. It was shown

that the constellation amplitude histogram based algorithm has a good performance for inter-

class modulation recognition, while the maximum-likelihood based classifier is more complex but

performs well for the full-class modulation recognition. On another hand, the algorithm based

on the wavelet transform has a high complexity but could perform better at lower SNR levels.

So far most of the work on modulation recognition did not address MIMO systems. For in-

stance, Choqueuse et. al [58] proposed two likelihood based modulation classifiers for uncorre-

lated MIMO systems. The first one, called average likelihood ratio test (ALRT), is optimal in

the Bayesian sense but requires a perfect channel state information (CSI). The second classifier,

called hybrid likelihood ratio test (HLRT), approximates the ALRT by replacing the channel

matrix with its estimate. The channel is estimated in two steps by using an independent com-

ponent analysis and a phase correction algorithm respectively. Simulations showed that the two

classifiers perform well, for example, perfectly recognizing 2-PSK, 4-PSK, 16-PSK and 16-QAM

modulations at a SNR of 5 dB.

The ideal AMR algorithm is suitable for real-time applications, requires no prior information of

the incoming signal, performs well in low SNR regime, through any channel model, and for large

set of modulation schemes. Even many studies had been proposed through the last decades,

the optimal AMR algorithm never achieved. Most of these studies assume an AWGN channels.

Some algorithms require some prior information, or demand high SNR to perform well, while

others are too complex to be employed in online applications such as modulation recognition for

CR. Here, we will try to satisfy some of the aspects of ideal algorithm. After presenting, our

work on modulation recognition based on wavelet transform [53], we propose a low-complexity

blind (i.e. requires no prior information) AMR algorithm for MIMO fading channels based on

HOS. The problem of modulation recognition for MIMO systems is rarely studied. Also, the

proposed method performs well for an acceptable SNR range and considers a large modulation

pool.

3.2.3 Automatic Modulation Recognition Using Wavelet Transform

In [53], we have employed the properties of the continuous wavelet transform (CWT) to extract

the necessary features for modulation recognition. The main reason for our choice is due to the

capability of this transform to locate, in time and frequency, the instantaneous characteristics of

a signal. In the same manner as Fourier transform can be defined as being a projection on the

basis of complex exponentials, the wavelet transform is introduced as projection of the signal on

the basis of scaled and time-shifted versions of the original wavelet (so-called mother wavelet)

in order to study its local characteristics. The importance of wavelet analysis is its scale-time

view of a signal which is different from the time-frequency view and leads to the multi-resolution

analysis (MRA).

The continuous wavelet transform of a received signal x(t) is defined as:

CWT (a, τ) =

∫ ∞

−∞
x(t)Ψ∗a,τ (t)dt (3.1)



Chapter 3. Waveform Awareness for Cognitive Radios 52

where a > 0 is the scale variable, τ ∈ R is the translation variable, and (.)∗ denotes complex

conjugate. This defines the so-called CWT , where CWT (a, τ) define the wavelet transform

coefficients. The Haar wavelet is chosen as the mother wavelet. The main purpose of the mother

wavelet is to provide a source function to generate Ψa,τ (t) , which are simply the translated and

scaled versions of the mother wavelet, known as baby wavelets, as follows

Ψa,τ (t) =
1√
a
Ψ(
t− τ
a

) (3.2)

The signal x(t) can be presented as

x(t) = x̃(t)ej(2πfct+θc) (3.3)

where fc is the carrier frequency, θc is the carrier initial phase, and x̃(t) is the baseband complex

envelope of the signal x(t) , defined by

x̃(t) =
√
Ex

N∑

i=1

Cie
j(2πfit+ϕi)pT (t− iTsym) (3.4)

with N being the number of observed symbols, Ex is the average transmitted energy, and pT (t)

is the pulse shaping function of duration Tsym. The ith symbol (that belongs to the modulation

constellation) is characterized by the complex amplitude Ci = Ai+ jBi, the frequency deviation

fi and the phase ϕi .

By extending the work of Hong and Ho [55], the magnitude of continuous wavelet transform is

given by:

|CWT (a, τ)| =
N∑

i=1

4 |Ci|
√
Ex

2π
√
a(fc + fi)

sin2[2π(fc + fi)
aTsym

4
] pT (τ − iTsym) (3.5)

In what follows, the continuous wavelet transform of the normalized signal will be taken into

consideration. The amplitude of the normalized signal is constant. From Equation (3.5), it is

clear that the signal normalization will only affect the wavelet transform of non-constant envelope

modulations (i.e., ASK and QAM), and will not affect wavelet transform of constant envelope

ones (i.e., FSK and PSK). In the following, we consider the magnitude of the wavelet transforms

for different modulation schemes.

The complex envelope of QAM signal is defined by Ci = Ai + jBi and fi = ϕi = 0. It is

clear from (3.5) that for a certain scale value, |CWT | is a multi-step function. Considering the

normalized QAM signal, the |CWT | is constant since the signal loses its amplitude information.

Let us consider the complex envelope of ASK signal (i.e. Ci = Ai and fi = ϕi = 0), it is clear

from (3.5) that for a certain scale, |CWT | of ASK signal is a multi-step function since |Ci| is a

variable. The magnitude of CWT of the normalized ASK signals is constant. When considering

the complex envelope of PSK signals (i.e. Ci = A and fi = 0), |CWT | is almost a constant

function for a certain scale value. Given its normalized signal, |CWT | is also constant. The

complex envelope of FSK signal is defined by Ci = A and ϕi = 0. The magnitude of CWT of

FSK signal is a multi-step function with fi being a variable. In the same manner, the |CWT | of
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the normalized FSK signal is also a multi-step function.

Previous discussions show that:

❖ The |CWT | of PSK signals is constant while |CWT | of ASK, FSK, and QAM signals is a

multi-step function.

❖ The |CWT | of the normalized ASK, PSK and QAM signals is constant while the |CWT |
of normalized FSK signals is a multi-step function.

❖ The statistical properties including the mean, the variance and higher order moments of

wavelet transforms are different from a modulation scheme to another. These statistical

properties also differ depending on the order of modulation, since the frequency, amplitude

and other signal properties may change depending on the modulation order.

According to the above observations, we propose a feature extraction procedure as follows. The

CWT can extract features from a digitally modulated signal. These features are collected by

examining the statistical properties of wavelet transforms of both the signal and its normalized

version. Our proposed classifier is a multi-layer feed-forward neural network. More details on

the classifier are found in a following subsection.

The proposed CWT based recognizer is studied over AWGN channels. This recognizer have

two main drawbacks: its high complexity and the rapid performance degradation in multi-path

channels. One among the advantages of this method lies in the fact that it treats the signal

in the RF or IF stages; i.e. it avoids the errors resulting from the carrier phase and frequency

offsets.

For more details on CWT based modulation recognition refer to our published work in [53]. In

what follows, we will concentrate on HOS based recognizers. The robustness of such recognizer

in the presence of multi-path channel, and carrier phase and frequency offsets makes it a powerful

tool.

3.2.4 Automatic Modulation Recognition Using Higher Order Statistics

One of the important aspects of modulation recognition is the selection of the proper identification

features. Previous works have shown that higher order cumulants (HOC) and higher order

moments (HOM) of the received signal are among the best candidates for signal recognition in

SISO systems [51,56]. Higher order moments of a signal x are defined by

Mkm(x) = E[xk−m(x∗)m] (3.6)

where k is the moment order. The cumulant of order k of the zero-mean signal x is defined by

Ckm(x) = Cum[ x, ..., x︸ ︷︷ ︸
(k−m) times

, x∗, ..., x∗︸ ︷︷ ︸
m times

]. (3.7)
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Also, the relation between moments and cumulants can be expressed as

Cum[x1, .., xn] =
∑

Φ

(c− 1)! (−1)c−1
∏

v∈Φ

E(
∏

i∈v

xi) (3.8)

where Φ runs through the list of all partitions of {1, ..., n}, v runs through the list of all blocks of

the partition Φ, and c is the number of elements in the partition Φ. For instance, the fourth-order

cumulant of zero-mean signals x, y, z and w is given by

Cum[x, y, z, w] = E(xyzw)− E(xy)E(zw)− E(xz)E(yw)− E(xw)E(yz). (3.9)

Based on (3.8), moments estimation leads to estimate the cumulants. That is given a signal x

with N samples, the moments are estimated as

M̂km(x) =
1

N

N∑

i=1

xk−m (i)x∗m (i) . (3.10)

We assume, without loss of generality, that the signal x is normalized to have a unity energy, i.e.

C21 = 1. This will remove any scale problems in the estimators. Practically the self-normalized

HOS are calculated as

M̃km(x) = M̂km(x)/M̂
k/2
21 (x), C̃km(x) = Ĉkm(x)/Ĉ

k/2
21 (x). (3.11)

Note that the complexity of (3.10) is of order N where estimating a moment of order k requires

only about N complex additions and k ×N complex multiplications. Based on (3.8), cumulant

calculation is of order N . Of course, the computational cost of the features calculation is of the

same order. Then, the features extraction process has a very low complexity O(N).

The hierarchical modulation recognition for SISO systems using HOS (up to four) was employed

in [56]. It was shown that the probability of correct modulation recognition is a function of SNR,

number of received symbols N and the considered modulation pool. The recognition performance

depends on the accuracy of HOS estimation. The authors in [56] showed that adding Gaussian

noise to the modulated signal will not affect the mean of the HOS estimators but will affect

the variance of these estimators which depends on the SNR and N . It is clear that increasing

N will decrease the variance and improves the overall performance. Anyway, simulations show

that about 500 symbols are sufficient to produce good estimates of HOS. The probability of

correct recognition was higher than 99% when the SNR is not lower than 5dB and 10dB when

considering, respectively, four and eight modulation pools. Theoretical values of some HOS

are given in Table B.1 (see Appendix B.1) to show how they can discriminate the different

modulation schemes of interest. These theoretical values are calculated by averaging HOS for

different digital modulation constellations under the constraints of unit variance symbols and

noise free case. The robustness of this approach comes about not only from the resistance of

HOS to additive impulsive non-Gaussian, but also from a natural robustness is in the presence

of carrier phase and frequency offsets.

Here, the employed set of features consists of a combination of HOM and HOC up to order six
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since simulations show that the statistics of order higher than six will not improve the probability

of correct recognition.

3.2.5 ANN Classifier

After extracting the proper features, the modulation recognition problem can be considered as

a pattern recognition problem. Knowing that ANN is one of the best solutions for pattern

recognition problems, many researchers have focused on ANNs to develop high performance

modulation classifiers [48, 50]. In this thesis, the proposed classifier is a multilayer feed-forward

ANN. The extracted features are the inputs of this trained ANN.

The neural network structure including the number of hidden layers, the number of nodes in

each layer and the transfer function of each node has been chosen through intensive simulations.

This structure is directly related to network training speed and recognition precision. Speeding

the learning process of the network and improving the recognition accuracy can be achieved

by normalizing the features set (fifteen extracted ones) and selecting the optimal subset for

the discrimination process. Here, a feature subset selection based on the principal component

analysis (PCA) is applied to select the best subset of the combined HOM and HOC features set.

First, the extracted set of features are normalized before subset selection to ensure that they

are of zero mean and unit variance. Then, the PCA technique constructs a low-dimensional

representation of the data (normalized features) that describes as much of the variance in that

data as possible. Here, only six orthogonal components (out of fifteen) are selected for both

ANN training and testing. After features subset selection, the training process is triggered. The

initiated ANN is trained using the RPROP introduced in [59]. Beside the fast convergence, one

of the main advantages of RPROP lies in the fact that no choice of parameters and initial values

is needed at all to obtain optimal or at least nearly optimal convergence times [59]. Also, RPROP

is known by its high performance on pattern recognition problems. After training, a test phase

is launched, and the classifier is evaluated through the probability of correct recognition.

Since the outputs of a layer in ANN are considered as linear combinations among the inputs

of this layer, then the computational cost of the classifier is related to the number of nodes at

each layer. Considering the static and predefined structure of ANN, and the small number of

nodes at each layer, the required number of operations to obtain the classifier output is fixed

and inexpensive.

3.2.6 Cooperative Automatic Modulation Recognition

In a CR network, an AMR algorithm could achieve higher recognition reliability by introducing

the concept of cooperation. It is possible for several users/receivers to cooperate by sending all

their data to a fusion center where they are jointly processed to make a final decision. In our

context (receiver employed on-board train), this could be applied in several scenarios: i) multiple-

antenna receiver, ii) several receivers distributed all around the train, and iii) the passengers

aboard train could be, in the future, considered as possible secondary users. The different
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antennas, receivers, and secondary users cooperating to improve the recognition performance are

called sensors.

The same transmitted signal is observed differently at each sensor due to the effect of propagation

distance, fading, and shadowing conditions. Cooperation overcomes the erroneous decision at

a single sensor caused by badly received signal. There are two approaches for cooperation:

data fusion and decision fusion. In the first approach the received signal on different sensors

(antenna/receivers), some of their prominent characteristics (features), or some measurements

that address the degree that the signal is close to any modulation scheme, are sent to the fusion

center. While the decision fusion means that only local decisions made at each sensor are sent

to the fusion center. We will assume that the transmission between each sensor and the fusion

center is error-free.

To better clarify how could the cooperation be applied to improve recognition reliability, we

present, in what follows, two fusion rules. The first one in the average Bayes fusion rule based

on estimating the post-probabilities that a certain sensor decides a certain modulation scheme

based on the observed signal. The recognized modulation scheme at the fusion center is the

one which is, in average, more probable. The second fusion rule is the voting rule which is a

decision fusion approach. This rule elects the modulation scheme which is more voted (decided)

at different sensors. This rule has several derivatives including the majority rule and the weighted

voting rule. These fusion rules can be applied to conduct cooperation regardless of the employed

recognition features and/or classifier.

Let the considered modulation pool be Θ = {θ1, θ2, · · · , θMc}, and cf , 1 ≤ cf ≤ Mc + 1 is the

index of the recognized modulation scheme. Final decision Mc + 1 means the trial is rejected.

The output of the ANN classifier at sensor k is the 1×Mc vector Ĉk, 1 ≤ k ≤ Nd. The distance

between this output Ĉk and each modulation scheme is measured as

dk,i =
∥∥∥Ĉk − Ci

∥∥∥ for 1 ≤ k ≤ Nd, 1 ≤ i ≤Mc (3.12)

where Ci is defined as Ci(l) =

{
1, l = i

0, 1 ≤ l ≤Mc , l 6= i
.

In the following we present the two fusion rules, i.e. the average Bayes rule and the voting rule.

3.2.6.1 Averaged Bayes Fusion Rule

The Bayes classifier is based on a set of post-probabilities

Pk(θj | x), 1 ≤ k ≤ Nd, 1 ≤ j ≤Mc, (3.13)

which is the probability that the sensor k recognizes the modulation scheme as θj when the

received signal x is observed, where Nd is the number of sensors. Theoretically, the Nd recognizers

are identical and these post-probabilities are independent of k. In practice, these values are not

known and their estimates are employed. This will lead to that dependence of the index k. Let

us assume that all modulation schemes are transmitted with the same probability, the fusion
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center applies the following simple approach

cf = max
j=1,...,Mc

1

Nd

Nd∑

k=1

Pk(θj | x), (3.14)

that is, the final average Bayes decision is based on estimating the post-probabilities Pk(θj | x).
We estimate these probabilities by turning the classifier at each sensor to a distance classifier,

either using the extracted features, or the ANN outputs. Here, the apparent post-probabilities

are calculated, based on the distances introduced in Equation (3.12), as

Pk(j) =

1
dk,j∑Mc

i=1
1

dk,i

(3.15)

3.2.6.2 The Voting Fusion Rule

The voting rule is a decision fusion approach. To decide locally at sensor k the following rule is

applied

ck = min
i=1,...,Mc

dk,i (3.16)

Let us define a binary characteristic function as

Tk(i) =

{
1, if ck = i

0, otherwise
for 1 ≤ k ≤ Nd, 1 ≤ i ≤Mc (3.17)

The characteristic function of the fusion classifier is expressed as TF (i) =
∑Nd

k=1 Tk(i), this reflects

how many times θi was recognized. The final decision is made by applying the following rule

cf =





j, if TF (j) = max
i=1,...,Mc

TF (i) ≥ η.Nd + T2

Mc + 1, otherwise
(3.18)

where 0 < η ≤ 1.

For T2 = 0, there are these special cases: i) K-out-of-Nd decision fusion rule (η = K
Nd

), i.e.

a certain modulation scheme is recognized when it is decided on K classifier among the Nd

classifiers, ii) logical OR (LO) (η = 1
Nd

), iii) logical AND (LA) (η = 1), and iv) the majority

(η = 0.5 + ǫ, and ǫ > 0 is arbitrary small). When decisions do not fit the fusion rule, the final

decision is rejected, e.g. when Nd = 3, the majority rule is applied, and there are three different

decisions, the trial is rejected.

Let T2 = max
i=1,...,Mc&i 6=j

TF (i) which represents the secondly most decided modulation scheme or

the implicit objections to the decision j. That is, taking a reliable final decision demands to be

largely chosen by the local sensors.

As mentioned above, the performance of HOS based recognizer at each sensor over AWGN chan-

nel is a function of SNR for a fixed observation duration when considering the same modulation

pool. The knowledge of SNR at each sensor is beneficial to improve the overall performance.
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This allows us to label sensor k with a certain degree of confidence wk. Then, the characteristic

function of the fusion classifier is redefined as

TF (i) =

Nd∑

k=1

wk.Tk(i) (3.19)

where
∑Nd

k=1wk = 1. The same rule in Equation (3.18) is applied for the final decision. Then,

sensor k send the decision ck besides its SNRk to the fusion center. The confidence degrees can

be simply defined as wk = SNRk
∑Nd

i=1 SNRi

, 1 ≤ k ≤ Nd. But this does not really reflect the real

performance of each classifier in respect of SNR. Let Pd,k(SNR) be the overall probability of

correct recognition at sensor k for a certain SNR value. Assume that Pd,k is known at the fusion

center and indexed by SNRs with a proper resolution. Then, we have

wk =
Pd,k(SNRk)∑Nd

i=1 Pd,i(SNRi)
(3.20)

In the above subsections, the following techniques were presented: how to employ HOS for

modulation recognition, what is the structure of the ANN used to classify the different modulation

schemes, and what fusion rules are applied to conduct cooperation among the receivers/antennas.

In what follows, these techniques are used to study the case of modulation recognition for MIMO

systems, i.e. the used features set is the HOS, the classifier is the above presented ANN, and the

fusion centre is based on the averaged Bayes fusion rule.

3.2.7 Case Study : Blind Digital Modulation Recognition for MIMO Systems

Nowadays, MIMO technology is considered one of the essential technologies for developing the

wireless systems. One essential step in the MIMO signal interception process is to blindly recog-

nize the modulation scheme of these signals. Contrary to [58], we propose a pattern recognition

approach to solve this recognition problem. Also, to the best of our knowledge, no work has

yet considered the problem of modulation recognition for spatially-correlated MIMO channels.

Moreover, we examine the effect of channel estimation error on our proposed modulation recog-

nition algorithm. In our approach, the features extraction subsystem is based on the HOC and

the HOM of the processed received signal.

3.2.7.1 MIMO Signal Model

A MIMO system with P transmit antennas and M receive antennas is considered (M > P ).

Under the assumption of a frequency flat and time invariant MIMO channel, the baseband

received symbol vector at the instant k is described as

x(k) = Hs(k) +w(k) (3.21)

where x(k) = [x1(k), ..., xM (k)]T is the M × 1 received signal vector without any time over-

sampling and optimum symbol timing, and with perfect carrier frequency and phase estimation,
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Figure 3.2: A block diagram of the proposed HOS based modulation recognition algorithm for
MIMO systems.

s(k) = [s1(k), ..., sP (k)]
T is the P × 1 vector representing the transmitted source signals, and

w(k) = [w1(k), ..., wM (k)]T is the M × 1 vector corresponding to the additive zero-mean white

circularly complex Gaussian noise with variance σ2w; i.e. w(k) ∽ CN (0, σ2wIM ), where IM is the

identity matrix of size M . H corresponds to the M × P matrix of the MIMO channel. These

source symbols s are i.i.d and mutually independent. The symbols are assumed to belong to

the same linear modulation scheme. We will assume, without loss of generality, that the source

constellations are normalized to have zero-mean and unit energy.

3.2.7.2 Channel Mixing Effect

Each stream of the received MIMO signal vector x is given by: xj =
∑P

i=1 hijsi + wj , where

hij is the complex channel impulse response between the ith transmit antenna and the jth re-

ceive antenna. The noise-free case is considered to separately study how the MIMO channel

affects the HOS based recognition. Since the transmitted symbols are i.i.d and mutually inde-

pendent then the self-normalized HOS are given by M̃km(xj) = λkm(j) M̃km(sc) and C̃km(xj) =

λkm(j) C̃km(sc), where

λkm(j) =

∑P
i=1 h

k−m
ij h∗ij

m

(
∑P

i=1 |hij |2)k/2
, (3.22)

and sc is an arbitrary stream of the P source ones. Then, the HOS of digitally modulated signals

for the ideal noise-free case (Table B.1) are multiplied by a random factor, λkm(j), for the jth

equalized stream in the MIMO system. It is clear that |λkm (j)| < 1, i.e. the channel mixing

drives the received signals to be more Gaussian. Recognizing the modulation scheme directly for

each one of the M received streams requires no CSI knowledge. However, the effect of channel

mixing corrupts the HOS and hence the recognition process which in turn degrades the overall

correct recognition percentage, requiring a higher SNR.

3.2.7.3 Proposed Modulation Recognition Algorithm

The block diagram of the proposed modulation recognition algorithms is shown in Figure 3.2.

After the RF pre-processing, the M received MIMO streams mixed by the MIMO channel are the

input of MIMO signal processor block which outputs Nd streams. The output of the MIMO signal

processor block is the signal vector y(k) = [y1(k), ..., yNd
(k)]T , where Nd = (P or M) depending

on the considered approach. One approach is to identify the modulation directly from the received
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symbols. This approach is called direct AMR (AMR-D). In this case Nd = P and y(k) = x(k).

The another one is to equalize the received streams before the recognition. If a perfect CSI

knowledge at the receiver side is assumed, the proposed algorithm is considered as semi-blind.

Conversely, this algorithm could be considered blind when the channel is estimated. In this case

Nd =M and y(k) = ŝ(k) where ŝ(k) is the estimated transmitted symbols vector. The features

are separately extracted for each one of the Nd output streams of the MIMO signal processor.

An ANN based classifier is employed to output Nd vectors. These vectors are combined for a

final decision.

As seen above, the performance results of HOS based modulation recognition, for SISO systems,

were given. Then the MIMO channel mixing effect was studied to show that it does degrade the

recognition performance. Two equalization algorithms are used, namely, the zero-forcing (ZF)

and the simplified constant modulus (SCMA) algorithms, to estimate the source streams. In

what follows, we present a performance analysis of our work, i.e. the performance of modulation

recognition for MIMO systems, when employing ZF or SCMA to equalize the MIMO channel, is

analyzed.

3.2.7.4 AMR for MIMO Systems Using Zero-Forcing

In the following, we employ the well-known ZF equalizer, this algorithm is denoted AMR-ZF.

We study the performance of the AMR-ZF algorithm when employed with or without perfect

CSI. Thereafter, the effect of spatial correlation on recognition performance is analyzed.

Zero-Forcing Equalizer This technique consists of applying an equalizing matrix B on the

received vector. This matrix B is defined by B = H† = (HHH)
−1
HH where (.)† denotes the

pseudo inverse operation. The transmitted symbols are estimated by

ŝ(k) = Bx(k)
def
= ZF(x) = s(k) + (HHH)

−1
HHw(k). (3.23)

Then the estimated vector ŝ(k) = [ŝ1(k), . . . , ŝP (k)]
T is used for features extraction. Here we

assume perfect CSI at the receiver side (semi-blind classifier). If it is not the case, channel

estimation has to be performed and the modulation is blindly recognized. First, we are interested

in investigating the impact of channel estimation error on the modulation recognition. Hence,

we model the estimated channel as

Ĥ = H+ σeΩ (3.24)

where the entries of Ω are i.i.d with zero-mean circularly symmetric complex Gaussian variables

with unity variance and σ2e represents the variance of the channel estimate error (i.e. how much

the channel estimation is erroneous).

Zero-Forcing Performance SNR = 10 log10(
σ2
s

σ2
w
) where σ2s is the average transmitted power.

The ZF equalizer estimates the P transmitted streams as given in (3.23). The post-processing
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SNR of the nth stream for the ZF equalizer is given by [60]

ηn =
η0

[(HHH)−1]n,n
= η0κn, 1 ≤ n ≤ P, (3.25)

where η0 = σ2
s

σ2
w

is the average normalised SNR at each receive antenna and σ2s is the average

transmitted power. Also, κn is a weighted chi-square distributed random variable with K =

2(M − P + 1) degrees of freedom when considering uncorrelated Rayleigh fading channel. Since

the distribution of κn is independent of the subscript n, we denote the effective post-processing

SNR by η. It was shown above that the recognition performance for each detected stream is an

increasing function of the effective SNR. The effect of the ZF equalizer on the overall performance

is represented by the statistical properties of η which is the actual SNR at the input of each

one among the P classifier branches. The cumulative distribution function (CDF), FK(x), of

η ∽ X 2(K) is a decreasing function of K, for any fixed x ≥ 0; i.e. P (η > x) increases when K

increases. The overall performance depends on K and improves when ∆ = M − P increases.

Then, the performance for single-input multiple-output (SIMO) system is always better than

that for MIMO systems having the same receiving antennas number.

Spatial Correlation Effect Based on the Kronecker correlation model presented in (2.28)

and the fact that Hw ∽ CN (0M×P , IM ⊗ IP ), we conclude that H ∽ CN (0M×P ,Rr⊗Rt) where

0N is the zero matrix of order N . We will consider the presence of only transmit correlation.

Since H is complex normally distributed matrix, then Z = HHH is complex Wishart matrix, i.e.

Z ∽ WP (M, 2Rt). Then, the post-processing SNR of the nth ZF equalized stream is a weighted

Chi-squared variable distributed as [60]

f(ηn) =
exp (− ηn

η0,n
)

η0,nΓ(M − P − 1)

(
ηn
η0,n

)(M−P )

, 1 ≤ n ≤ P, (3.26)

where Γ(.) denotes the Gamma function and η0,n = η0
λn,c

, i.e. λn,c is the effective SNR degradation

due to transmit correlation and it is equal to [R−1t ]n,n. The matrix inversion is given by λn,c =

[R−1t ]n,n =
det[Rn,n

t ]
det[Rt]

, where det(.) denotes the determinant of a matrix and det[Rn,n
t ] is the minor

of the matrix Rt. It is easy to show that

λn,c =

{
1/(1− |ρt|2), n = 1, P

(1 + |ρt|2)/(1− |ρt|2), n = 2, . . . , P − 1
(3.27)

It is clear that when the channel is highly correlated (|ρt| → 1), the effective SNR degradation

due to correlation is more important (λn,c →∞). We can see that the SNR degradation of the

first and last received streams is less than the remaining (P − 2) streams. The fact that the

performance improves when ∆ increases is also valid in the case of spatially-correlated MIMO

channels as it is clear in (3.26).

Channel Estimation Error Effect Here, we are interested in investigating the impact of

channel estimation error on the modulation recognition rather than the estimation process. An
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erroneous channel estimation is modeled in (3.24). Hence, the ZF equalizer output is given by

ŝ = B̂ (Hs+w) (3.28)

where B̂ = Ĥ
†
= (H + σeΩ)†. The estimated signal can be rewritten as ŝ = s + ŵ where ŵ is

given by

ŵ = H†w− σeH†Ω s− σeH†ΩH†w. (3.29)

It was shown in [61] that the post-processing SNR for each estimated stream, when considering

uncorrelated Rayleigh channel, is approximated by

ηn =
η0

(1 + σ2ePη0) [(H
HH)−1]n,n

=
η0κn
λe

, 1 ≤ n ≤ P, (3.30)

where λe = 1+σ2ePη0 is the SNR degradation owing to the imperfect CSI. This result is also valid

for spatially-correlated MIMO channels when the exponential correlation model is employed as

proven in Appendix B.2.

It is clear that the performance does not only depend on ∆ but is also a function of P and σe.

The reason for the dependence on P is that the inter-stream interference cannot be cancelled

perfectly in the presence of channel estimation error. For large SNR (η0 → ∞), the percentage

η0/λe → 1/σ2eP , which leads to an upper bound for the correct recognition percentage contrary

to the perfect CSI case.

3.2.7.5 AMR for MIMO Systems Using Simplified Constant Modulus Algorithm

The performance analysis of AMR-ZF shows that it suffers from a correct recognition upperbound

when it is employed blindly. The performance is improved by blindly separating the MIMO source

symbols using SCMA, before identifying the modulation. That is the transmitted symbols are

estimated instead of considering erroneous channel estimation. This blind algorithm is called

AMR-SCMA.

Simplified Constant Modulus Algorithm The SCMA is used to blindly recover the trans-

mitted symbols [62]. The SCMA objective is to find an M × P matrix B such as

z(k) = BHx(k)
def
= SCMA(x) = BHHs(k) + ŵ(k). (3.31)

The purpose is to find B such that z(k) = ŝ(k), but the transmitted symbols s are usually

determined up to a permutation and a scalar multiple, i.e. BHH = PΛ where Λ is a diagonal

matrix and P is a permutation matrix, that introduces the arbitrary phase and permutation. In

fact, the SCMA simplifies the constant modulus criterion by employing a single dimension, e.g.

the real part of the signal. The SCMA attempts to minimize the following cost function

{
JSCMA(B) =

∑P
i=1E

[(
R(zi (k))

2 −R
)2]

Subject to : BHB = IP
(3.32)
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where R =
E[R(s(k))4]
E[R(s(k))2]

is the dispersion constant and zi (k) is the ith output of the separation

filter. This criterion leads to a complexity reduction and ensures a non-arbitrary constellation

rotation of π/2 multiples for each data stream at the output of the equalizer. This justifies our

choice of such cost function among many others that exist in the literature. In fact, any multiple

π/2 rotation will not affect the statistical properties of the equalized symbols since each rotated

symbol still belongs to the same constellation. Note that the SCMA is implemented using the

stochastic gradient (SG) algorithm. The equalizer update equation is obtained by calculating

the gradient of JSCMA as follows

b̃i (k) = b̃i (k − 1)− µ (k) ei (k)x (k) , i ∈ {1, . . . , P}, (3.33)

where bi is the ith column of B, µ is the SG step size which is updated by the time averaging

adaptive step size (TAASS) mechanism [63], the error signal ei is given by

ei (k) =
(
R(zi (k))

2 −R
)
R (zi (k)) , i ∈ {1, . . . , P}, (3.34)

and x = FHx is the pre-whitened received signal. Here, the pre-whitening method proposed

in [64] is used. Also, Gram-Schmidt orthogonalization algorithm allows us to satisfy the orthog-

onalization constraint in Equation (3.32) at each iteration [65].

We assume that the number of transmitting antennas is known at the receiver which is not true

in blind scenarios. However, estimating the number of sources is well investigated in the litera-

ture. For instance, the authors in [66] reviewed and compared several source number detection

methods.

3.2.7.6 Results and Discussion

The proposed algorithm was verified and validated for various orders of linear digital modulation

types. In our simulations otherwise mentioned, we consider the following antenna configuration:

P = 2,M = 4. First, 50 realizations of testing MIMO signals with 2048 × P symbols for each

considered modulation scheme are generated. The source messages and the channel matrix are

randomly selected for each realization. These realizations are employed only for ANN training.

The combined HOM and HOC of the processed signals are calculated to form the features set.

Then, features normalization and subset selection is performed as a preparation of ANN training.

Extensive simulations show that the optimal ANN structure to be used for these algorithms is

a two hidden layers network (excluding the input and the output layers), where the first layer

consists of 10 nodes and the second of 15 nodes.

In what follows, we will consider two modulation pools in all our simulations,

Θ1 = { 2-PSK, 4-PSK, 8-PSK } and
Θ2 = { 2-PSK, 4-PSK, 8-PSK, 4-ASK, 8-ASK, 16-QAM, 64-QAM }.

Actually, Θ1 represents the intra-class modulation recognition (i.e. only identifying the order

of the modulation) and Θ2 represents the full-class modulation recognition (i.e. identifying the
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AMR-ZF /Θ1

AMR-ZF /Θ1/ |ρt|=|ρr|=0.5

AMR-ZF /Θ2

AMR-ZF /Θ2/ |ρt|=|ρr|=0.5

SNRmin

Figure 3.3: Probability of correct recognition versus SNR for AMR-ZF in the following cases (a)
Θ1 through spatially-uncorrelated channel (b) Θ1 with Kronecker model (|ρt| = |ρr| = 0.5) (c)
Θ2 through spatially-uncorrelated channel (d) Θ2 with Kronecker model (|ρt| = |ρr| = 0.5).

order and the type of the modulation at the same time). All results are based on 1000 Monte

Carlo trials for each modulation scheme i.e. 3000 Monte Carlo trials in total for Θ1 and 7000

Monte Carlo trials in total for Θ2. For each trial, P random testing streams of 2048 i.i.d symbols

are generated. Also, the channel matrix is randomly generated for each trial. For different

values of SNR, a white circularly complex Gaussian noise with variance σ2w is added such that

the SNR = 10 log10(
σ2
s

σ2
w
) where σ2s is the average transmitted power. The probability of correct

recognition is given in percentage and estimated by

Pc (SNR) =

∑
θi∈Θ1 (or ∈Θ2 )Nθi

Ntotal
× 100 (3.35)

where Ntotal (=3000 or 7000) is the total number of trials and Nθi being the number of trials

for which the modulation θi ∈ Θ1 ( or ∈ Θ2) is correctly recognized. We define the minimum

required SNR for close to optimal modulation recognition, SNRmin, by

Pc(∞)− Pc( SNR > SNRmin)

Pc(∞)
< ǫ, (3.36)

where normally, ǫ = 0.01 and Pc(∞) = 100%. In what follows, we present the performance

results of our proposed algorithm before introducing a performance comparison study.

AMR-ZF Performance Figure 3.3 shows the AMR-ZF performance in different scenarios.

The SNRmin for PSK intra-class and full-class correct recognition is, respectively, -2dB and 6dB.

In the presence of spatial correlation, the performance degrades where the SNRmin reaches 1dB

and 9dB, respectively, for PSK intra-class and full-class correct recognition when |ρt| = |ρr| = 0.5.

Also, the performance improves when the difference ∆ =M −P increases as it is clear in Figure

3.4. This result is expected since increasing ∆ will increase the effective post-processing SNR
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and improve the recognition performance.

The effect of channel estimation error on modulation recognition has been also examined and

the results are displayed in Figure 3.5. As noticed, the performance will drop rapidly for an

error variance σ2e ≥ 0.1. That is the erroneous channel estimation leads to a performance upper

bound contrary to the perfect CSI case as shown in Figure 3.5. This upper bound decreases as

σ2e increases. This upper bound problem is serious since even when the SNR is very large the

correct recognition performance will not exceed that upper bound. The proposed solution is to

use a blind source separation (BSS) technique to estimate the transmitted streams.

MIMO - P = 1&M = 4

MIMO - P = 2&M = 4

MIMO - P = 3&M = 4

MIMO - P = 4&M = 4

SISO - AWGN

Figure 3.4: Probability of correct recognition versus SNR for different MIMO antenna configu-
rations (AMR-ZF when considering Θ2 through spatially-uncorrelated channel).
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Figure 3.5: Probability of correct recognition versus SNR for different σ2e (channel estimation
error variance) values (AMR-ZF when considering Θ2 with Kronecker model, |ρt| = |ρr| = 0.5).
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AMR-SCMA /Θ1

AMR-SCMA /Θ1/ |ρt|=|ρr|=0.5

AMR-SCMA /Θ2

AMR-SCMA /Θ2/ |ρt|=|ρr|=0.5

Figure 3.6: Probability of correct recognition versus SNR for AMR-SCMA in the following cases
(a) Θ1 through spatially-uncorrelated channel (c) Θ1 with Kronecker model (|ρt| = |ρr| = 0.5)
(b) Θ2 through spatially-uncorrelated channel (c) Θ2 with Kronecker model (|ρt| = |ρr| = 0.5) .

|ρt|=|ρr|=0

|ρt|=|ρr|=0.3

|ρt|=|ρr|=0.5

|ρt|=|ρr|=0.7

|ρt|=|ρr|=0.9

Figure 3.7: AMR-ZF performance for Θ2 with Kronecker correlation model in the following
cases (a) |ρt| = |ρr| = 0 (b) |ρt| = |ρr| = 0.3 (c) |ρt| = |ρr| = 0.5 (d) |ρt| = |ρr| = 0.7 (e) and
|ρt| = |ρr| = 0.9.

AMR-SCMA Performance Among the different BSS algorithms available in the literature

we had chosen the SCMA. The performance of the blind AMR-SCMA algorithm has been exam-

ined and the results are displayed in Figure 3.6. As noticed, the SNRmin for PSK intra-class and

full-class correct recognition is, respectively, 5dB and 10dB. As shown, the presence of channel

correlation will degrade the performance and drive the SNRmin to 9dB and 13dB, respectively,

for PSK intra-class and full-class correct recognition when |ρt| = |ρr| = 0.5. Obviously, the blind

AMR-SCMA algorithm solves the performance upper bound problem caused by the erroneous
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Pc / PSK2

Pc / PSK4

Pc / PSK16

Pc / QAM16

Pf / PSK2

Pf / PSK4

Pf / PSK16

Pf / QAM16

Pc

Pf

Figure 3.8: AMR-SCMA performance for each modulation scheme with unknown spatially-
uncorrelated channel matrix for MIMO system using P = 2 and M = 4 antennas.

channel estimation when employing the ZF equalizer. But the blind AMR-SCMA requires a

higher SNR compared to the AMR-ZF employed when perfect CSI is assumed.

Channel Correlation Effect The performance of the AMR-ZF algorithm in the presence of

both transmit and receive correlations has been examined and the results are displayed in Figure

3.7. As noticed, the performance degrades when the correlation increases. The SNRmin of full-

class modulation recognition through spatially-uncorrelated MIMO channel is 6dB while SNRmin

is, respectively, 7dB and 9dB when |ρt| = |ρr| = 0.3 and |ρt| = |ρr| = 0.5 . Also, the SNRmin

of full-class modulation recognition is, respectively, 12dB and 15dB when |ρt| = |ρr| = 0.7 and

|ρt| = |ρr| = 0.9. It is clear that when |ρ| → 1, the performance degrades rapidly.

Recognition Performance for each Modulation Scheme The false recognition probability

Pf is the probability to recognize certain modulation scheme when it was not transmitted. Here,

we separately examine Pc and Pf for each modulation scheme instead of calculating the average

probability for all schemes. The modulation pool and simulations conditions are the same as

that used in [58] to evaluate the performance of the ALRT and HLRT algorithms. We consider

a spatially-uncorrelated MIMO system (with 2×4 antennas) and the following modulation pool:

2-PSK, 4-PSK,16-PSK and 16-QAM.

Simulations show that the AMR-ZF algorithm performs well when compared to the optimal

ALRT algorithm [58]. The AMR-SCMA algorithm is used when the channel matrix is unknown.

It is clear in Figure 3.8 that, when SNR is relatively low, 2-PSK scheme has higher Pc and Pf

relative to 16-PSK scheme which is the worst recognized and the less false identified. Also as

seen, the performance of AMR-SCMA is good in comparison with the HLRT algorithm [58]. The

major drawbacks of the methods in [58] are the high computational complexity and its need of

perfect knowledge of the noise variance at the receiver side.
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AMR-ZF

AMR-SCMA

AMR-D

AMR-ZF, σ2

e
= 0.04

AMR-ZF, σ2

e
= 0.1

Figure 3.9: Performance comparison among different algorithms for Θ2 with Kronecker model
(|ρt| = |ρr| = 0.5).

Performance Comparison Finally, a comparison study among the proposed modulation

recognition algorithms is introduced. The results are displayed in Figure 3.9. As noticed, the

AMR-ZF algorithm offers the best performance when perfect CSI is assumed. However, the

proposed AMR-ZF algorithm is sensitive to channel estimation errors. Note that the presence

of erroneous channel estimation causes a rapid performance degradation when the error vari-

ance σ2e ≥ 0.1. Also, this erroneous estimation leads to an upper bound of the probability of

correct recognition contrary to the perfect CSI case; i.e. SNR tends to infinity but the proba-

bility of correct recognition does not approach 100%. To solve this problem the totally blind

AMR-SCMA algorithm was proposed. This algorithm solved the upper bound problem with-

out any CSI knowledge. However, the AMR-SCMA requires higher SNR to achieve the same

performance as the AMR-ZF employed when perfect CSI is assumed. In fact the SNRmin is,

respectively, 9dB and 13dB when using AMR-ZF and AMR-SCMA algorithms for full-class cor-

rect recognition through MIMO channels when |ρt| = |ρr| = 0.5. The AMR-D algorithm has

the lower complexity but offers a low performance compared to the remaining two algorithms.

Simulation results show a gain in SNRmin of about 4dB when comparing the performance for

SISO and uncorrelated SIMO systems (M = 4) (see Figure 3.4).

3.2.7.7 Conclusions

We introduced three new algorithms for digital modulation recognition aimed for correlated

MIMO systems based on HOS as features extraction subsystem and a neural network trained

with resilient backpropagation learning algorithm as classifier subsystem. The less complex

AMR-D algorithm extracted the features directly from the received MIMO signal and it is a

good choice when the transmitted power is very high. The AMR-ZF employs a zero-forcing

equalizer before the features extraction process and it is the best algorithm when perfect CSI

knowledge is assumed. The AMR-SCMA algorithm blindly separates the symbols and offers the

best performance when no CSI knowledge is assumed. The proposed algorithms are examined
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through correlated MIMO channels and they are shown to be capable of identifying different

linear digital modulation schemes with high accuracy.

3.3 Modulation Technique Identification

OFDM, MIMO, and spectrum spreading are among the essential modulation techniques used

in telecommunication systems developed over last decades. In this section, we will focus on the

blind identification of signals employing these techniques. The existing identification methods of

OFDM and spread spectrum signals are presented. Thereafter, we introduce a method based on

the autocorrelation function (more precisely, on the fluctuations of its estimator) to identify the

SIMO multi-carrier spread spectrum signals.

3.3.1 Preliminary Literature Review

Spectrum Spreading Identification Direct-sequence spread spectrum signals have been ini-

tially used in a military context for secure communications due to their well-known low prob-

ability of interception properties. During the last couple of decades, DS-SS technique has also

been adopted by many civilian applications. For example, it is widely used in multi-user wireless

communication systems e.g. IS-95 and WCDMA. It is also used in the GPS satellite navigation

system.

The problem of blind identification and parameters estimation of spread spectrum signals was

addressed in the literature. Some existing methods require some prior knowledge about users

parameters such as signature waveform, the spreading code of the user to be detected, or chip

rate [67]. These parameters may be unknown in a realistic blind context. DS-SS signals are

similar to noise and they are often transmitted below the noise level. A detection method of a

DS-SS communication has been proposed in [68]. Although the autocorrelation of a DS-SS signal

is the same as the autocorrelation of a noise, the fluctuations of autocorrelation estimators are

higher when a DS-SS signal is hidden in the noise [68]. This blind detection method is capable

of estimating the symbol period of the DS-SS signal. In [69], a new blind method which can

estimate the spreading sequence is proposed. This method is based on eigen analysis techniques.

The sequence can be reconstructed from the two first eigenvectors of the signal correlation ma-

trix, and other useful information, such as desynchronization time, can be extracted from the

eigenvalues. This effective synchronization scheme based on maximizing the squared Frobenius

norm of correlation matrix is extended to multi-user DS-SS case [70].

An algorithm for blind synchronization and despreading for asynchronous multi-user DS-CDMA

systems is proposed in [71]. This algorithm is another multi-user extension of the algorithm

proposed in [69] where single-user case was only considered. This method is based on a sig-

nal correlation matrix deflation technique in which the spreading codes and timing offsets are

estimated one at a time. Then, their effect on the signal correlation matrix is iteratively re-

moved. This way, a significant improvement over the method in [70] can be obtained since the

performance of the proposed method is nearly independent of the relative timing offsets between
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users. This improvement in [71] over the method in [70], comes at the expense of the increase

in computing time with both the number of users and the correlation matrix size. Moreover,

in [71], the number of interfering users is assumed to be known at the receiver.

A robust and efficient algorithm, with no prior knowledge needed, is proposed in [72]. The

algorithm exploits the fluctuations of correlation estimator and the analysis of the signal corre-

lation matrix to estimate the timing offsets (i.e., the synchronization process) and the number

of interfering users in an iterative way, thereby improving existing methods so that sources with

nearly equal timing offsets can be estimated. Thereafter, spreading codes are recovered using

linear algebra techniques applied to the estimated eigenvectors of the correlation matrix. This

method efficiency, even at a low SNRs through fading multi-path channel, was demonstrated

in [72]. This low-complexity algorithm can be used for interference cancellation, as well as, in

non-cooperative applications such as waveform awareness for CR.

OFDM Signals Identification The OFDM has received great interest for wireless broadband

multimedia applications over the last decade. More recently, this technique emerges in the spe-

cific railway context. The main advantages of this technique are its flexibility and its robustness

against the frequency selective fading channels. Several OFDM signals identification approaches

was introduced in the literature. For instance, a method based on the statistical properties of in-

coming signal was proposed to discriminate between single-carrier and multi-carrier modulations

propagating through AWGN channels, and to estimate their parameters [73] . This algorithm

do not perform well through more realistic channels.

The cyclic-prefixed OFDM (CP-OFDM) signals are designed by prefixing the OFDM symbol

with a copy of its last part. The cyclic-prefix (CP) serves as a guard interval to eliminate

the inter-symbol interference from the previous symbol, and to mitigate the multi-path channel

effect. Several papers proposed exploiting the autocorrelation [74] and cyclic-autocorrelation [75]

features of CP-OFDM signals. These features are mainly due to the repetition of a part of the

signal. These techniques are used to extract some parameters of OFDM signals propagating

through frequency-selective channels and affected by carrier phase, time and frequency offsets

[76]. These parameters include the power, oversampling factor, useful time interval, CP duration,

and number of subcarriers.

A blind parameter estimation technique based on the power autocorrelation feature, applied to

identify zero-padding time guard interval OFDM signals (ZP-OFDM), is proposed in [76]. The

ZP-OFDM signals exhibit neither autocorrelation nor cyclic-autocorrelation properties since ze-

ros are appended at the end of each OFDM symbol (instead of the CP). Therefore, the auto-

correlation and cyclic-autocorrelation based techniques do not work. Hence, the authors in [76]

proposed to employ the so-called power autocorrelation and given by

Rp (τ) =
1

T

∫ T

0
|x(t)|2|x(t− τ)|2dt, (3.37)

for a signal x (t) observed for period T . This technique leads to an efficient estimation of the

symbol duration and zero-padding duration in frequency-selective channels, and is insensitive to

receiver phase and frequency offsets.
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Figure 3.10: SIMO MC-DS-CDMA modulator scheme.

Nevertheless, these approaches fail when either the CP duration is small or the channel impulse

response is almost as large as the CP. Therefore four new methods were proposed in [77] to

estimate the parameters of OFDM modulated signal (especially the subcarrier spacing). Three

of these methods need a prior synchronization step, while the fourth one doesn’t require any

synchronization. The methods relying on (i) the normalized kurtosis, (ii) the maximum-likelihood

principle, (iii) the matched filter, do need a synchronization step. Note that this extra step

increases the computational load. The fourth method exploit the second-order cyclostationarity

property. The authors in [77] used these methods to blindly distinguish various OFDM based

systems (e.g., WiFi, WiMAX,3 GPP/LTE, DVB-T) from each others.

The fast and efficient blind detection scheme based on the analysis of autocorrelation estimator

fluctuations, previously applied in [68], is extended to the case of multi-carrier direct spread

spectrum systems [78,79]. In what follows, we introduce an identification method applied to the

case of SIMO multi-carrier DS-CDMA signals.

3.3.2 Case Study : Blind SIMO MC-DS-CDMA Identification

3.3.2.1 System Model and Assumptions

Let us consider a SIMO MC-DS-CDMA system with M receiving antenna and Ms subcarriers.

Let an,m,m = 0, · · · ,Ms − 1 be the complex transmitted symbol over the mth subcarrier, fm,

for a duration Tu = MsTsym, where Tsym is the symbol period before demultiplexing. The

transmitted symbol an,m is first multiplied by a spreading code c = [c0, · · · , cLc−1] of length Lc

where cℓ stands for the ℓth sequence chip, and then sent over the mth subcarrier, as illustrated

on Figure 3.10. The chip duration is Tchip = Tu

Lc
. The complex transmitted signal, s(t), can be

expressed as

s(t) =
∞∑

n=−∞

Ms−1∑

m=0

an,mψ(t− nTu) exp (2πjfmt) (3.38)

where ψ(t) =
∑Lc−1

ℓ=0 cℓpT (t− lTchip) and pT (t) is the impulse response of the transmitter pulse

shaping filter. The complex corrupted received signal at the ith antenna, denoted xi(t), is given
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by

xi(t) =
∞∑

n=−∞

Ms−1∑

m=0

an,mg(t− nTu) exp (2πjfmt) + wi(t) (3.39)

where the following assumptions hold

• an,m are assumed to be i.i.d, centered, and of variance σ2a. The SNR (in dB) is negative

(signal hidden in the noise).

• wi(t) is the AWGN noise at the ith antenna. Without loss of generality, the noise power at

different antenna is assumed to be σ2w. Also, wi(t) is assumed to be independent of signals

and noise components at other antennas.

• fm = fc +
m

MsTsym
= fc +

m
Tu

, fc stands for the central frequency. The required bandwidth

is approximately W = Ms

Tu
.

• Assuming an i.i.d Rayleigh block fading (i.e. the channel remains constant during the

observation duration) multi-path channel of Nh taps between the transmitter and the ith

receiving antenna, which fading gains, hi,j , j = 0, . . . , Nh−1, have an unitary second-order

moment. Also, τj is the jth tap delay.

• g(t) = ∑Nh−1
j=0 hi,j

∑Lc−1
ℓ=0 cℓpT (t− lTchip − τj) stands for the global filter which represents

the convolution product between transmitter shaping filter, spreading sequence waveform,

and multi-path channel impulse response.

Furthermore, let us set to as TCP the CP duration: Tcp = ∆TTu, i.e., the CP is a fraction of

the useful multi-carrier symbol duration, Tu, such as 0 ≤ ∆T < 1. In order to avoid the ISI,

TCP should be greater than the longest channel delay, i.e. max
j=0,...,Nh−1

(τj) ≤ Tcp. Hence, the

total multi-carrier symbol is defined during TMC = Tu+Tcp = (1+∆T )Tu. Therefore, Equation

(3.39) can be rewritten, taking into account the CP duration, as follows

xi(t) =
∞∑

n=−∞

Ms−1∑

m=0

an,mgMC(t− nTMC) exp (2πjfmt) + wi(t) (3.40)

where gMC (t) is the global filter, and it is composed of the initial filter g (t) prefixed by its last

Tcp duration. Also, the SIMO ZP-MC-DS-CDMA signals can be easily derived from Equation

(3.39) by adding a zero guard interval at the end of each multi-carrier symbol.

3.3.2.2 Proposed Blind Identification Method

Successive investigations of the contributions of noise and noise-free signal through the analysis of

the second-order moment of the autocorrelation estimator computed from many windows is the

key of detecting the signal and estimating its parameters. This method is compared to another

one based on the correlation property between the useful part and the CP of a multi-carrier

symbol.
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Fluctuations of Autocorrelation Estimators First, a measurement of autocorrelation es-

timator fluctuations is introduced. Assume the total observed duration T is divided into K

segments of duration TK = T
K . The kth segment of the received corrupted signal at the ith

antenna, xi(t), is given by

xi,k(t) = xi [t+ kTk] 0 ≤ t ≤ Tk, 0 ≤ k ≤ K − 1 (3.41)

Then, within each window k, an estimation of the received signal autocorrelation function R̂i,k

is computed as

R̂i,k(τ) =
1

TK

∫ TK

0
xi,k(t)x

∗
i,k(t− τ)dt (3.42)

Hence, the second-order moment of the estimated autocorrelation function, R̂i, can be expressed

as

Φi(τ) = Ê
{
|R̂i(τ)|2

}
=

1

K

K−1∑

k=0

|R̂i,k(τ)|2 (3.43)

where Ê(·) is the estimated expectation of (·). That is, Φi(τ) is a measurement of the fluctuations

of R̂i(τ) since it can be easily shown that Ê
{
|R̂i(τ)|

}
≃ 0. Since symbols are assumed to be

independent from the noise, Equation (3.43) can be rewritten as

Φi(τ) ≃ Φs
i (τ) + Φw

i (τ) (3.44)

where the fluctuations Φs
i (τ) and Φw

i (τ) are, respectively, due to noise-free signals and the noise.

In the sequel, we investigate both signal and noise contributions to the autocorrelation estimator

fluctuations.

Analysis of the Noise Contribution to Fluctuations Firstly, let us consider the additive noise

alone, i.e. there is no signal hidden in the noise. The fluctuations due to only the additive noise

are uniformly distributed over all values of τ . Let us characterize the global noise fluctuations

Φw
i by their mean MΦw

i
and standard deviation σΦw

i
as described hereinafter. Let us assume the

frequency response of the receiver filter, PR(f), is flat in [−BW /2, +BW /2] and zero outside. In

practice BW is larger than the signal bandwidth W . The fluctuations mean is computed as

MΦw
i
= E

{
|R̂w

i (τ)|2
}
=

1

TK

∫ BW /2

−BW /2

(
N0

2

)2

|PR(f)|2df =

(
N0

2

)2 BW

TK
(3.45)

where N0 is the power spectrum density (PSD) of the noise. Also, the fluctuations variance is

given as

σ2Φw
i
= var

{
Ê

[
|R̂w

i (τ)|2
]}

=
1

K2

K−1∑

k=0

var
{
|R̂w

i,k(τ)|2
}
=

1

K
var

{
|R̂w

i (τ)|2
}

=
1

K

{
E

[
|R̂w

i (τ)|4
]
−M2

Φw
i

} (3.46)

The statistical behaviour of R̂w
i (τ) is close to a Gaussian since it is the average of a large number

of random variables. Furthermore, except for small values of τ , its average value is null. Hence
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E
[
|R̂w

i (τ)|4
]
≃ 3M2

Φw
i
. Therefore, we get




MΦw

i
= E

{
|R̂w

i (τ)|2
}
= σ4

w

BWTK
(a)

σΦw
i
=

√
2
KMΦw

i
=
√
2K σ4

w

BWT (b)
(3.47)

Analysis of the Noise-free Signal Contribution Focusing only on the noise-free signal shows that,

on average, high amplitudes of the fluctuations Φs
i occur at multiple of TMC and lower ones occur

at multiple of Tcp. Let us also set to as MCP
Φs

i
their mean value at multiple of TMC . By using

(3.40) into (3.42), we have

R̂s
i,k(TMC) = 1

TK

∑∞
n1=−∞

∑∞
n2=−∞

∑Ms−1
m1=0

∑Ms−1
m2=0 an1,m1a

∗
n2,m2

∫ TK

0 gMC(t− n1TMC)

g∗MC [t− (n2 + 1)TMC ] exp [2πj(fm1 − fm2)t] dt

(3.48)

Since the global filter gMC(t) is time limited, the above Equation is simplified to

R̂s
i,k(TMC) =

1

TK

∞∑

n=−∞

Ms−1∑

m1=0

Ms−1∑

m2=0

an,m1a
∗
n−1,m2

∫ TK

0
exp {2πj(fm1 − fm2)t} |gMC(t− nTMC)|2dt

(3.49)

Since symbols an,m are assumed independent and centered, we get E
{
R̂s

i,k(TMC)
}
= 0 and

MCP
Φs

i
= Ê

{
|R̂s

i (TMC)|2
}
=

1

T 2
K

Msσ
4
a

∞∑

n=−∞

(∫ TK

0
|gMC(t− nTMC)|2dt

)2

(3.50)

Let us set σ2g,i =
1

TMC

∫ TMC

0 |gMC(t)|2dt. The mean MCP
Φs

i
can be rewritten by

MCP
Φs

i
=

1

T 2
K

Msσ
4
a

TK
TMC

(
TMCσ

2
g,i

)2

=MsK
(1 + ∆T )Tu

T
σ4aσ

4
g,i

(3.51)

Furthermore, we assume the spreading code c is normalized, and the transmitter pulse shaping

filter pT (t) is rectangular. The variance σ2g,i is calculated by

σ2g,i =

Nh−1∑

j=0

|hi,j |2
1

TMC

∫ TMC

0

(
Lc−1∑

ℓ=0

|cℓpT (t− lTchip)|2
)
dt

=

Nh−1∑

j=0

|hi,j |2
(3.52)

Discussion Expression (3.47) shows that the noise contribution is uniformly distributed over all

values of τ . Moreover, it also clarifies that its contribution can be lowered by increasing the

window duration TK . One way to do that is to increase the total observed duration T while
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keeping the number of windows K constant. From Equation (3.51), we can see that an increase

in the channel gain and/or the transmitted power improves the signal identification. Multi-path

channel gains act as a multiplicative factor in the fluctuations curve. At constant transmit power,

the lower the transmit data rate is, the higher fluctuations average amplitude is at multiple of

TMC .

Thus, the fluctuations curve highlights high equispaced peaks which average spacing corresponds

to the symbol period TMC , and also low equispaced peaks which average spacing with the high

fluctuations peaks in their vicinity corresponds to an estimation of the CP duration. The anal-

ysis of Φi leads to a low-complexity efficient estimation method. Also, the proposed scheme is

insensitive to phase and frequency offsets since only the square of the estimate of the correlation

function is computed. From (3.47) and (3.51), a theoretical detection threshold is defined as:

λCP
Φs

i
=MΦw

i
+ ζ ·σΦw

i
. The ζ value is chosen ≃ 3 such as the false alarm probability < 1%. Also,

the fluctuations resulting from ZP-MC-DS-CDMA highlights high equispaced amplitude peaks,

which average spacing allows the symbol period determination.

Autocorrelation Based Detection The autocorrelation function exhibits peaks resulting

from the fact that the CP is a repetition of a part of the signal, as depicted in Figure 3.11. The

estimated autocorrelation function is calculated by

|R̂i(τ)| =
{
σ2aσ

2
g + σ2w, τ = 0

σ2aσ
2
g
TCP

TMC
τ = Tu

, (3.53)

that is, the useful symbol duration Tu can be estimated by finding the distance between the

highest peaks of the autocorrelation function. As the autocorrelation has non-zero terms only

for the part that falls into the CP duration, power ratio of the guard time to the symbol duration

can be used to find the CP length. However, SNR knowledge is required for a precise estimation.

Figure 3.11: Autocorrelation of the CP multi-carrier signal.
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Another CP duration estimation method exploits the cyclostationarity of the received multi-

carrier signal [76]. The cyclic-autocorrelation function (CAF) is estimated as

R̂i,ν(τ) =
1

T

∫ T

0
xi(t)x

∗
i (t− τ)e−2jπνtdt (3.54)

Using the estimated useful symbol duration T̂u, the total symbol duration TMC can be determined

by using peak detection on R̂i,ν(T̂u). That is, our purpose is to determine the distance of

two maximum peaks in ν domain, which is equal to the reciprocal of TMC . It was proposed

in [76] to employ the cycle frequency searching scheme to determine the two maximum peaks in

the CAF pattern. After estimating TMC , we can easily obtain the length of guard interval as

T̂CP = T̂MC − T̂u.

Multiple-antenna Blind Identification Method Cooperation can also improve the MC-

DS-CDMA signal identification. Let us assume a multiple-antennas receiver, or even more several

multiple-antenna receivers located at both sides of the train, i.e. M receiving antenna in total.

Improving signal identification is achieved by combining different information coming from all

antennas at the fusion center. This combination could be done by two different approaches.

The first one is the decision fusion where the signal is separately identified at each antenna.

The individual decisions of the presence of MC-DS-CDMA signal and the estimated parameters

are then sent to the fusion center to be combined for final decision. A literature review of

existing decision fusion methods is presented in subsection 3.2.6. The final decision indicates

the detection of MC-DS-CDMA signal when the majority of antennas identifies this signal.

Also, the signal parameters coming from the M detectors are averaged after identifying and

removing the outliers. The second approach is the data fusion. It is obvious that the detection

performance improves when the number of considered segments K increases. This number could

be increased by combining the received signals on all antennas at the fusion center. The total

number of windows is
∑M

i=1Ki where Ki is the number of considered windows on the ith antenna.

Also, Equation (3.51) clarifies that channel gains affect the signal contribution in autocorrelation

estimator fluctuations. That is, when the received signal at certain antenna is strongly faded, it

is less probable to be detected. Therefore, the cooperation is more powerful when the different

antennas/receivers suffer from different fading conditions.

3.3.2.3 Results and Discussion

Simulations have been carried out considering a QPSK-MC-DS-CDMA modulation, and the

following parameters were set: the chip duration Tchip = 1
fchip

where fchip = 200 MHz, Lc=127

(complex Gold sequence), and the number of analysis windows is K = 300. The number of

subcarriers is 64 with 1/4 guard interval, i.e. 16 subcarriers are allocated for the CP or ZP. The

used channel model is the COST207RAx6 corresponding to rural area and a channel order of

6 [80].

Figure 3.12 illustrates the detector output of MC-DS-CDMA signal with 1/4 CP guard interval

for SNR = −3 dB. This result is in accordance with theoretical developments. This Figure shows
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µ

Φ θ

Figure 3.12: Autocorrelation estimator fluctuations of MC-DS-CDMA signal with 1/4 cyclic
prefix guard interval, SNR = -3 dB.

Figure 3.13: Autocorrelation estimator fluctuations of MC-DS-CDMA signal with 1/4 zero-
padding guard interval, SNR = -3 dB.

high peaks regularly spaced in the autocorrelation estimator fluctuations, which average spacing

is TMC . Each high peak is surrounded with two low amplitude peaks, each one between them is

separated from its corresponding high amplitude peak by a duration of Tcp. Using the average

spacing between these peaks, we obtain T̂MC ≃ 845.9 ns, while the CP duration is estimated

by T̂cp ≃ 211.45 ns. Hence, T̂u = T̂MC − T̂cp = 634.45 ns and ∆̂T ≃ 1
4 . This result is very

close to the real useful symbol duration value Tu = Tchip.Lc = 635 ns. The actual CP duration

equals ∆T .Tu = 1
3Tu = 211.667 ns. The total number of subcarriers can be estimated as T̂MC .Ŵ

where Ŵ is an estimation of the signal bandwidth. The problem of estimating the bandwidth

will be studied in Chapter 4. An improved Welch periodogram based method is introduced. The

bandwidth is estimated by 74.5 MHz, then, The total number of subcarriers ≃ 63, which is very

close to the real number of subcarriers.
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Figure 3.14: The detection probability of the MC-DS-CDMA signals for different SNRs as a
function of the number of analysis windows.

Performance Comparison of Tu Estimation Methods

SNR (dB)

N
R
M
S
E

Autocorrelation Based Method

The Proposed Method

Figure 3.15: Performance comparison between the Tu estimation method based on the autocor-
relation function and the proposed one (based on the autocorrelation estimator fluctuations).
The normalized root mean square error of two estimators as a function of SNR under fading
channels.

Furthermore, estimating the chip duration, the spreading code length, and the code itself require

a synchronization process. A comprehensive study of synchronization methods can be found

in [72]. Similar results are found in the case of ZP-MC-DS-CDMA transmission when using the

same parameters. As expected, Figure 3.13 shows high amplitude equispaced fluctuations peaks,

which average spacing gives the estimate of the symbol period T̂MC ≃ 846 ns. As suggested

in [76], Tzp can be estimated using the power autocorrelation feature.
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The performance in terms of probability of detection was examined for different SNR values,

i.e. the SNR averaged at all antennas. The autocorrelation estimator fluctuations method

is able to detect the MC-DS-CDMA signals even at low SNRs, as illustrated in Figure 3.14.

Moreover, it also shows that the probability of detection can be strongly improved by increasing

the number of analysis windows. Nevertheless, the computation cost can be very prohibitive.

Also, Figure 3.14 shows that employing data fusion approach to combine the information coming

from multiple-antennas (M = 4), while keeping the observation duration constant, does improve

the performance.

A performance comparison between the useful time interval, Tu, estimators is given in Figure

3.15. This Figure depicts the normalized root mean-squared-error (NRMSE) of Tu estimation,

through multi-path fading channels, using the autocorrelation function based method and the

proposed autocorrelation estimator fluctuations based one. As it can be seen from this Figure, the

proposed algorithm gives a good estimate of Tu in the low SNR regime. As the autocorrelation

estimator is more sensitive to noise, and the autocorrelation estimator fluctuations achieve a good

gain in SNRs at its output (see [68] for more details), the proposed method is more efficient, in

terms of NRMSE, than that of the autocorrelation based one.

3.4 Conclusions

This Chapter focused on how to enhance the waveform awareness of a cognitive radio device by

identifying several features of the received signal, for instance, recognizing the used modulation

scheme. After a literature review, we propose a modulation recognition algorithm for MIMO

systems based on HOS as features extraction subsystem and an ANN trained with resilient

backpropagation learning algorithm as classifier subsystem. This method represents the first

contribution introduced in this Chapter. To the best of our knowledge, our work is among the first

ones that study the modulation recognition for MIMO systems, and the first one that addresses

the spatially-correlated case. Three algorithms were introduced and studied, namely, the AMR-

D, the AMR-ZF, and the AMR-SCMA algorithms. The proposed algorithms are examined

through correlated MIMO channels and had shown to be capable of identifying different linear

digital modulation schemes with high accuracy.

The CR waveform awareness could be further improved by detecting whether the signal is a

spread spectrum one, or whether it is a multi-carrier one. We proposed a blind identification

method for MC-DS-CDMA signals which forms the second contribution included in this Chap-

ter. The autocorrelation estimator fluctuations were employed to identify the signal parameters.

The described scheme leads to an efficient estimation of symbols duration, CP duration, and

subcarriers number. The proposed method is insensitive to phase and frequency offsets. Simula-

tions results confirm theoretical developments. The multiple-antennas at receiver are exploited

to enhance the performance while keeping the detection duration constant. The performance of

the proposed method was also compared to that of the method that directly employs the auto-

correlation function. In the next Chapter, we will focus on another key capability of cognitive

radio: the spectrum awareness based on spectrum sensing concept.
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4.1 Introduction

As already mentioned in Chapter 1, the spectrum sensing is an essential function of any cognitive

radio system. This Chapter explains firstly the concept of spectrum sensing and highlights its

importance. Spectrum sensing algorithms are divided into two main categories, namely, the

narrowband spectrum sensing (NSS) and the wideband spectrum sensing (WSS). A preliminary

literature review of each category is presented.

Thereafter, a new non-parametric narrowband blind spectrum sensing method based on the

predicted eigenvalue threshold (PET) is introduced. This method is simplified to reduce the

complexity without leading to any performance degradation. This constitutes one major contri-

bution of our thesis. Also, we propose to combine a non-parametric Welch periodogram spectral

estimator with an optimization algorithm to better estimate spectral components in the wide-

band case. The performance of this method is further improved by employing multiple-antennas

at the receiver. This improved Welch periodogram method presents another contribution of this

thesis.

The algorithms presented and proposed in this Chapter are mainly studied under the classical

assumptions, i.e., a block flat fading frequency-non-selective channel in the presence of additive

white Gaussian noise.

4.2 Spectrum Sensing for Cognitive Radio

4.2.1 Spectrum Sensing Concept

Here, we focus on the spectrum sensing as derived from the CR definition given in section 1.3, i.e.

to monitor the activity in the radio spectrum and to identify the unoccupied frequency bands,

also called white spaces. Sensing the spectrum and dynamically accessing the white spaces will

significantly improve the spectrum utilization efficiency. In order for a CR to dynamically utilize

available spectrum, it must be able to quickly and robustly determine which parts of the relevant

spectrum are available or not.

A CR device must be able to give a general picture of the available medium over the entire radio

spectrum of interest. All further processing and decision making performed by the communicat-

ing device is based on the results from the initial sensing. It is obvious that spectrum sensing

is extremely important for a CR device to perform satisfactorily. Hence spectrum sensing is

a cornerstone of CR. The most common scenario is the case of an unlicensed secondary user

seeking to utilize idle parts of the spectrum when transmission from the licensed primary users

is absent. In order to avoid interference with primary users, robust spectrum sensing should be

performed.

Optimally, the spectrum sensing provides a full map of the spectrum occupancy on the wideband

of interest [fmin, fmax] at each sensing interval τsi, as depicted in Figure 4.1. Actually, it is very

complicated to perform that while still respecting the constraints mentioned above. Practically,

the frequency support of a signal resides within several continuous intervals in a wide spectrum
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Figure 4.1: The general picture of the radio spectrum given each sensing interval τsi. This Figure
illustrates the opportunities in time and frequency.

Figure 4.2: The wideband of interest in the form of multi-bands. The jth wideband is character-
ized by its band-edge frequencies fl,j , fu,j , and it can be divided into several narrowbands.

but vanishes elsewhere. Each wideband consists of a number of narrowband transmissions as

shown in Figure 4.2. The jth wideband, [fl,j , fu,j ], of width Bj is divided into several subbands.

4.2.2 Sensing Methods Classification

Spectrum sensing can be classified into two categories, namely, NSS and WSS. In NSS, the entire

bandwidth is modeled as a train of consecutive narrowband channels and sensing is done channel-

by-channel. In order to implement this, an RF front-end with a tunable narrow bandpass filter

is needed. To detect free channels in a given wideband of interest, spectrum sensing is performed

over individual narrowband channels either sequentially or at random until a free channel is

found. The disadvantage of NSS approach is the latency in finding a free band, since the local

oscillator needs to be locked at a new frequency for every channel search.

In wideband sensing, the entire band of interest is processed at once to find a free channel. In

practice, WSS systems are difficult to design, due to either high implementation complexity or

high financial/energy costs.

Sensing methods are also classified, via the coherence criterion, into two categories: coherent

and non-coherent sensing. In coherent sensing, the primary signal can be coherently detected by

comparing the received signal or the extracted signal characteristics with a prior knowledge of

primary signals. In non-coherent sensing, no prior knowledge is required. The sensing methods

classification beside some examples are shown in Figure 4.3 [81].
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Figure 4.3: Spectrum sensing methods classification [81].

4.2.3 Cooperative Sensing

However, sensing performance in practice is often compromised with noise uncertainty, fad-

ing, and shadowing issues. Cooperation is proposed in the literature as a solution to miti-

gate the impact of these factors. The concept of cooperative sensing is to use multiple sensors

(users/receivers) distributed in different locations and combine their measurements to one final

decision. This is in essence a way of getting diversity gains.

While cooperation benefits such as improved sensing performance and relaxed sensitivity require-

ment can be obtained, cooperative sensing can result in cooperation overhead. This overhead

refers to any extra sensing duration, delay, energy, and any performance degradation caused by

cooperative sensing [81].

Generally speaking, there are two schemes to combine the observations of different sensors: data

fusion and decision fusion. If each sensor sends its observed data to a specific sensor, which

jointly processes the collected data and makes a final decision, this cooperation scheme is called

data fusion. On the other hand, if multiple sensors process their observed data independently

and send their decisions to a specific sensor, which then makes a common decision, it is called

decision fusion.

Cooperative spectrum sensing is most effective when collaborating sensors observe independent

fading or shadowing. It is found that it is more advantageous to have the same amount of users

collaborating over a large area than over a small area [81]. Cooperation among CR users or

receivers can be used to build a cooperative sensing network.

In the case of CR for railways, the cooperation can be possibly done among several receivers

placed in the front, the end, and the two sides of the train. To increase the advantages of this

cooperation, the positions of these receivers must be chosen to provide independent fading or

shadowing. Another possibility to envisage is to employ the existing mobile users aboard train.
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4.3 Narrowband Spectrum Sensing

4.3.1 Introduction

First, a bandpass filtering is applied to select the narrowband (a central frequency and band-

width) of interest. There are two hypotheses,

H0, absence of PU signals, and H1, at least one PU signal is present. (4.1)

and two decisions (hard decision),

δ0, no PU is present, and δ1, a PU is present. (4.2)

In a binary hypothesis test there are two types of errors that can be made. Let Pm = P(δ0|H1) be

the missdetection probability. The missed detection leads to harmful interference with existing

PUs and hence degrades the performance of both the primary system and the secondary one. The

probability of false alarm is defined as Pf = P(δ1|H0). In fact, false alarms lead to overlooking

spectral opportunities and hence inefficient usage of the spectrum.

In general, a cognitive radio system should satisfy constraints on both Pf and Pm. A trade-off

between these two probabilities has to be done knowing that protecting the PU is privileged

to finding a free band. However, the probability of error (Pf + Pm) decreases as the number

of observed signal samples increases. Hence, both constraints may be satisfied by selecting the

number of samples to be large enough. But, large number of samples leads to a sensing period

overhead. While selecting a sensing method, some tradeoffs among accuracy, complexity and

sensing duration should be considered.

Furthermore, sensing methods should provide adequate performance at very low SNRs. For

instance, the upcoming CR based standard IEEE 802.22, which is a high speed WRAN standard,

requires the detector to sense a primary user at -116 dBm, usually equivalent to a SNR of -22

dB [82]. The required detection time for all three signal types (analog TV, digital TV and

wireless microphones) is 2 seconds. The required sensing sensitivity is the power level at which

the missdetection probability is less than 0.1, while the probability of false alarm is 0.1. Table

4.1 summarizes the required sensing receiver sensitivity for the three licensed signals types.

Many current spectrum sensing algorithms do not meet these requirements. Hence, there is a

motivation to investigate why existing techniques do not provide satisfactory performance, and to

propose new approaches to find a solution to this problem with a focus on the railway constraints

(high speed and possible EM interferences).

4.3.2 Traditional Spectrum Sensing

Matched-filter Matched-filtering (MF) is known as the optimal method for detection of pri-

mary users when the transmitted signal is known as it maximizes the received SNR [83]. The

main advantage of matched-filtering is the short time to achieve a certain level of false alarms

or detection performance [84] as compared to other methods.



Chapter 4. Spectrum Sensing for Cognitive Radio 86

Table 4.1: Spectrum sensing requirements in IEEE 802.22
Parameter Value for Wireless Microphones Value for TV Broadcasting

Channel Detection Time ≤2 sec ≤2 sec
Sensing Sensitivity -107 dBm (over 200KHz) -116 dBm (over 6MHz)

Required sensing SNR -12 dB -21 dB

Probability of Detection 90% 90%

Probability of False Alarm 10% 10%

However, matched-filtering requires the perfect knowledge of some primary users signals features.

Moreover, since CR needs receivers for all signal types, the implementation complexity of sensing

unit is impractically large.

Energy Detection Energy detector (ED) based approach, also known as radiometry, is the

most common spectrum sensing method because of its low computational and implementation

complexities [84]. In addition, it is more generic as receivers do not need any knowledge on the

PU signal. The signal is sensed by comparing the output of the energy detector with a threshold

which depends on the noise floor. On the other hand, ED is very sensitive to noise uncertainty,

and does not work for spread spectrum signals.

Cyclostationary Feature Detection Cyclostationary feature detection (CFD) is a method

for detecting the PUs by exploiting the cyclostationary features in the modulated signals. Cyclo-

stationarity based detectors have the potential to distinguish among the primary users, secondary

users, and interference exhibiting cyclostationarity at different cyclic frequencies, in low SNR en-

vironments.

The cyclic spectral density (CSD) function of a received signal x can be calculated as [85]

Sx(f, ν) =
∞∑

τ=−∞

Rx,ν(τ) exp(−j2πfτ) , (4.3)

where ν is the cyclic frequency and the cyclic-autocorrelation function, Rx,ν(τ), is given by the

Equation (3.54).

The CSD function outputs peak values when the cyclic frequency is equal to the fundamental

frequencies of transmitted signal. This method has several advantages such as: CFD is more

robust to changing noise level than energy detection, and cyclostationarity detectors can work

in lower SNR compared to EDs.

The main drawbacks of this method are: it requires prior knowledge on the PU’s signal, if the

SU does not have the knowledge of the cyclic frequencies giving the peak values of CSD, it

needs to compute CSD for all possible cyclic frequencies and find the peak value. Therefore

the implementation cost extremely increases [83]. Also, cyclostationarity based detection is very

sensitive to synchronization errors, such as carrier frequency and sampling clock frequency offsets

[86]. Table 4.2 lists advantages and drawbacks of the different traditional sensing techniques.
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Table 4.2: Comparison among some properties, advantages and drawbacks of the different tra-
ditional spectrum sensing techniques

Advantages Drawbacks Required N
(∗)

ED
- Non-coherent blind detection - Very sensitive to noise variations O(SNR)−2 [84]
- Simplicity and low complexity - Does not work for CDMA

MF

- Optimum method for detection - Prior information about PU’s signal O(SNR)−1 [84]
- Short sensing duration - Implementation complexity

- Large power consumption

CFD

- Higher performance than ED - Known cyclic frequencies Function of SNR and

⇒ unless very high complexity cyclic frequencies

- Vulnerable to synchronization errors
(∗)Required N is defined by the number of samples needed to reach a certain level of Pm and Pf .

4.3.3 Multiple-antenna Spectrum Sensing

Multiple-antenna systems have been widely deployed to improve the transmission reliability in

wireless communications. In a cognitive radio network, multiple-antenna SUs are beneficial not

only for a reliable communications but also to improve the performance of spectrum sensing.

Indeed, multiple-antennas at the receiver can cooperate to achieve higher sensing reliability.

Therefore, in this thesis, we assume a multiple-antenna system model. In addition to being

spatially correlated, the received signal samples are usually correlated in time due to several

reasons [83]: the received signal is oversampled, the propagation channel is time-dispersive or

the transmitted signal is correlated in time. Then, we can combine space and time correlations to

improve the detection. That is why the smoothing factor was introduced in Equation (2.21). In

the following, the different existing multiple-antenna spectrum sensing techniques are described.

Note that the signal model, used for NSS throughout this section, was presented in

subsection 2.3.1.

The Likelihood Ratio Test It is the optimal solution since the Neyman-Pearson (NP) the-

orem states that, for a given probability of false alarm, the test statistic that maximizes the

probability of detection is the likelihood ratio test (LRT) defined as MLRT = P (x|H1)
P (x|H0)

. Such a

likelihood ratio test decides δ1 when TLRT exceeds a threshold λLRT, and δ0 otherwise. The

major difficulty in using the LRT is its requirements on the knowledge of the exact distributions

of the signal and the noise as well as the channels, which is practically difficult to acquire.

If we assume that the noise and signal samples are both Gaussian distributed, the LRT becomes

the estimator-correlator (EC) detector [83] for which the test statistic is given by

TEC =
N∑

k=1

xT (k)Rs(Rs + σ2wIM )−1x(k)
δ1
≷
δ0

λEC (4.4)

where w(k) ∼ N (0, σ2wIM ) and s(k) ∼ N (0,Rs) (see Equation (2.20)); i.e. Rs = E[s sH]. From

Equation (4.4), we see that Rs(Rs + σ2wIM )−1x(k) is actually the minimum-mean-squared-error

(MMSE) estimation of the source signal s(k). Thus, MEC can be seen as the correlation of the
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observed signal x(k) with the MMSE estimation of s(k). The EC detector needs to know the

source signal covariance matrix Rs and noise power σ2w.

Energy Detector The EC detector needs the knowledge of Rs which is unrealistic. Thus, if

we further assume that Rs = σ2sIM , the EC detector is reduced to the energy detector for which

the test statistic is given as follows:

TED =

N∑

k=1

xT (k)x(k)
δ1
≷
δ0

λED (4.5)

Note that for the multiple-antenna case, TED is actually the energy summation of signals from

all antennas, which is a straightforward cooperative sensing scheme [83].

Let ηw be the noise uncertainty factor. The noise power estimation error (in dB) is assumed

to be uniformly distributed in the interval [−B,B] [84] (i.e. B = sup {10 log(ηw)}). The ED

is denoted "ED-U(B dB)". The ED suffers of noise sensibility and its performance degrades

when the noise uncertainty increases. Furthermore, it was shown in [84] that robust sensing is

impossible for energy detector if SNR is lower than a certain threshold. This threshold is denoted

SNRwall and given, in dB, by

SNRwall = 10 log

(
ηB −

1

ηB

)
(4.6)

where ηB = 10B/10.

The authors in [87] shown that the magnitude of the noise uncertainty without considering

interference is at least B = 1 dB. So we see that for this noise uncertainty, the SNR wall is

−3.3 dB. As a consequence, it is impossible for the ED to sense the presence of a primary user

signal if its power is 3.3 dB less than that of the noise.

Generalized Likelihood Ratio Test In most practical scenarios, it is impossible to know the

likelihood functions exactly, because of the existence of uncertainty about one or more parameters

in these functions. The assumptions on the noise and signal simplify LRT to ED and EC

detectors. The ED suffers of noise uncertainty while the EC detector is not blind.

The generalized likelihood ratio test (GLRT) is one efficient method [88, 89] to solve the above

problem. For this method, the maximum likelihood estimation of the unknown parameters under

Hi (i = 1, 2) is first obtained as Θ̂i = argmax
Θi

P (x|Hi,Θi), where Θi is the set of unknown

parameters under Hi. Then, the GLRT statistic is formed as

TGLRT =
P (x|Θ̂0,H1)

P (x|Θ̂1,H0)

δ1
≷
δ0

λGLRT (4.7)

In [88], the primary user signal is modeled as colored Gaussian with unknown covariance matrix.

A GLRT procedure is applied to the problem. The resulting detector computes the arithmetic to

geometric mean (AGM) of the eigenvalues of a sample covariance matrix and compares it with
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a threshold

TAGM =

1
M

M∑
i=1

ℓi

(
M∏
i=1

ℓi

)1/M

δ1
≷
δ0

λAGM, (4.8)

where ℓ1 ≥ · · · ≥ ℓM are the eigenvalues of the sample covariance matrix. The AGM is a

sphericity test. In [89, 90], the authors derive the GLRT detector when channel gains, and PU

and noise powers are unknown under the form given below

TGLRT =
ℓ1

M∑
i=1

ℓi

δ1
≷
δ0

λGLRT . (4.9)

Optimally Combined Energy Detection The multiple-antenna techniques are employed

to exploit the spatial correlations of multiple received signals. The maximum ratio combining

(MRC), the equal gain combining (EGC) and the selection combining (SC) techniques are applied

to better sense the spectrum [83]. These methods are ED based and suffers of the noise uncer-

tainty. The authors in [91] proposed an optimal combining energy detection (OCED) method.

The idea behind OCED is to find a linear combining transformation such that the resultant

signal has the largest SNR. The signals from all antennas are combined with a matrix C such

as z(k) = CTx(k), k = 1, 2, ..., N. The test is defined as TOCED = 1
N

N∑
k=1

‖z(k)‖2. It is obvious

that the SNR after combining is [91]

η(C) =
E

[∥∥CT [x(k)−w(k)]
∥∥2

]

E
[
‖CTw(k)‖2

] =
tr(CTRsC)

σ2w tr(CTC)
,

where tr(.) is the trace of the matrix argument. Hence, the optimal combining matrix should

maximize the value of function η(C). Let v1 be the corresponding eigenvector to λmax the

maximum eigenvalue of Rs. It can be proved that the optimal combining matrix degrades to

the vector v1 [91]. Therefore, TOCED = λmax

σ2
w

. This test statistic is optimal in terms of SNR.

The OCED needs the knowledge of the noise power and the maximum eigenvalue of Rs, which

is usually unknown.

Eigenvalue and Covariance Based Sensing The structure of the covariance matrix at the

receiver is not the same in the absence/presence of primary signals. From Equation (2.25), if

no signal is present, the off-diagonal elements of RL,x are all zeros. If there is at least one

signal, RL,s is not a diagonal matrix. Hence, some of the off-diagonal elements of RL,x should be

nonzero. This property could be exploited for spectrum sensing either directly (using the entries

of the sample covariance matrix RL,x(N) ) or indirectly (using the eigenvalues of RL,x(N)).

Let rn,m denotes the (n,m)th element of the sample covariance matrix RL,x(N). Two covariance

based sensing methods were proposed in [92]: the covariance absolute value (CAV), and the
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covariance Frobenius norm (CFN) detection . The test statistics of these methods are given by

TCAV =

ML∑
n=1

ML∑
m=1

|rn,m|
ML∑
m=1

|rm,m|

δ1
≷
δ0

λCAV, TCFN =

ML∑
n=1

ML∑
m=1

|rn,m|2

ML∑
m=1

|rm,m|2
δ1
≷
δ0

λCFN (4.10)

The authors in [93] introduced two eigenvalue based sensing methods, namely, the maximum-

minimum eigenvalue (MME) detection algorithm and energy with minimum eigenvalue (EME)

detection algorithm as

TEME =

1
MLN

N∑
k=1

xTL(k)xL(k)

ℓML

δ1
≷
δ0

λEME, TMME =
ℓ1
ℓML

δ1
≷
δ0

λMME (4.11)

Each test statistic is compared to a threshold to decide the presence of a primary signal.

Blind Spectrum Sensing by Information Theoretic Criteria This technique is an ap-

proach originally introduced to estimate the number of source signals [94]. Then, the information

theoretic criteria (ITC) method can be directly applied to conduct spectrum sensing, as proposed

in [95]. The basic idea is when the primary user is absent, the estimated number of source signals

via ITC should be zero. Hence, by comparing the estimated number of source signals with zero,

the presence of the primary user can be detected. The estimated number of source signals is

determined by

k̂ITC = arg min
k=0,...,q−1

ITC(k) = arg min
k=0,...,q−1

− log




q∏
i=k+1

ℓ
1/q−k

i

1
q−k

q∑
i=k+1

ℓi




N(q−k)

+ b(k) (4.12)

where b(k) is a penalty function and q = ML. The well-known criteria, Akaike information

criterion (AIC) and minimum description length (MDL) criterion, are defined by b(k) = k(2q−k)
and b(k) =

[
1
2k(2q − k) + 1

2

]
logN , respectively [94]. This method produces the exact number of

sources while it is sufficient to check if this number is larger than zero or not. In [95], the authors

propose a simplified ITC (SITC) algorithm to conduct the spectrum sensing. This algorithm

is based on the fact that if there is one value k̂ (> 0) that minimizes the ITC metric, then

ITC(0) > ITC(1) with high probability. Then, the decision metric is

ITC(0)
δ1
≷
δ0

ITC(1)

In SITC algorithm, only two criterion values (k = 0, 1) should be computed and compared. It

can significantly reduce the computational complexity while having almost no performance loss.

Analysis and Motivations The above methods can be summarized as follows:
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1. the likelihood test (LRT), its simplified versions (ED and EC), and its generalized ones

(AGM and GLRT),

2. the methods based on combining the received signals from all the antennas (EGC, MRC,

and OCED),

3. the methods based on the sample covariance matrix structure (CAV and CFN) or its

eigenvalues structure (EME and MME),

4. the methods derived from the sources number estimation ones (ITC).

Some of these methods are not blind (LRT, EC and OCED) or sensitive to noise power variations

(ED, EGC and MRC). Several existing methods need no information on the transmitted signal

and the channel. Also, these methods do not need noise power estimation and overcome the

sensibility to noise uncertainty. Some among these methods give a less detection performance

when compared to the rest (EME, ITC, CAV, and CFN). Among the remaining methods (GLRT,

AGM and MME) the GLRT detector gives the best detection performance in the low SNR region.

But, the GLRT was derived in the presence of only one primary user signal. The objective of

our work is to find another fast and blind method that outperforms these methods in the low

SNR region and remains valid in a more general scenario.

In what follows, we introduce a non-parametric blind spectrum sensing method based on the PET

originally introduced in [96]. This method was employed to detect the number of communications

sources. Here, the PET method is applied for spectrum sensing, since it is a special case of

source number detection problem. Thereafter, we will simplify the PET method to reduce the

complexity with no performance loss. This simplified PET (SPET) method represents one of the

major contributions of this thesis.

4.3.4 Predicted Eigenvalues Threshold

4.3.4.1 Mathematical Preliminaries

The rank of the part of the covariance matrix that represents the signal (i.e., HRL,sH
H) is

C+PL. Hence, the lowest eigenvalue of RL,x is equal to σ2w and its multiplicity order is equal to

(M − P )L−C [97]. By applying the eigenvalue decomposition, the matrix RL,x has a diagonal

form,

UHRL,xU = diag(ϑ1, · · · , ϑC+PL, 0, · · · , 0) + σ2wIML (4.13)

in the basis U, where ϑ1 ≥ ϑ2 · · · ≥ ϑC+PL > 0. Obviously, λk = ϑk + σ2w for 1 ≤ k ≤ C + PL.

This result requires that the matrix H is overdetermined, i.e., L > C
M−P . For simplicity, we

define q =ML for the rest of the Chapter.

Theorem 2. Suppose NRL,x(N) has the complex Wishart distribution Wq(N,RL,x), and the

eigenvalues of RL,x(N) and RL,x are ℓ1 ≥ · · · ≥ ℓq and λ1 ≥ · · · ≥ λk = · · · = λq = λ

respectively. The limiting distribution of ℓavk , the average of the lowest q − k eigenvalue, as

N →∞, is

(N(q − k))(1/2)(ℓavk − λ)/λ dist−−→ N (0, 1). (4.14)
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In the absence of signal, the matrix NRL,x(N) follows a Wishart complex distribution, i.e.

NRL,x(N) ∽ Wq(N,RL,x). Based on that, the authors in [96] proposed an upper bound for

each eigenvalue of the noise subspace. The upper threshold of ℓk is predicted as

ℓupk =

[
(mk + 1)

1 + t[N(mk + 1)]1/2

1− t(N.mk)−1/2
−mk

]

︸ ︷︷ ︸
ηk(t)

1

q − k

q∑

i=k+1

ℓi

︸ ︷︷ ︸
ℓav
k

(4.15)

where ℓavk is the average of the mk (= q − k) lowest eigenvalues, ηk(t) is the prediction factor and

t is a two-direction threshold that represents the confidence interval of the averaged eigenvalue.

The eigenvalue ℓk is considered in the noise subspace when it satisfies the following condition

ℓk ≤ ℓupk . (4.16)

Figure 4.4 shows the adaptive PET model of the sample covariance matrix eigenvalues. It is clear

that the noise subspace dimension is (M − P )L, while each PU is represented by L eigenvalues

(PL in total). Each signal eigenvalue exceeds its own predicted threshold.

Figure 4.4: The eigenvalues of the sample covariance matrix and the adaptive PET model at
N = 1000, P = 2, M = 4 and L = 10.

Remark on the noise-only covariance matrix

Under the assumption that the noise samples are i.i.d, the covariance matrix is given by σ2wIML

in the absence of PUs. This is usually true if no narrowband filtering is applied at the receiver.

However, if it is the case, the noise samples may be correlated. To solve this problem, a pre-

whitening technique is applied on the noise samples to transform the covariance matrix to a

diagonal one [92]. The used pre-whitening technique is presented in Appendix C.2.
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4.3.4.2 Predicted Eigenvalues Threshold Based Spectrum Sensing

The PET method is employed for detecting the communications sources number. It is based

on (4.16) and consists in adaptively modeling the noise eigenvalues increase to determine the

dimension of the noise subspace, and hence, the signal subspace dimension. Actually, the PET

model is controlled by a single parameter t. Spectrum sensing problem is a special case of the

sources number detection one. In the absence of PUs, the estimated number of source signals

should be zero. The original PET (OPET) method, as described above, can be applied directly

to conduct spectrum sensing. Based on that, the two hypotheses in (4.1) are reformulated as,

H0 : k̂ = 0, ℓk ≤ ℓupk , k = 1, 2, · · · , q − 1

H1 : k̂ ≥ 1, k̂ = arg max
k=1,··· ,q−1

ℓk > ℓupk .
(4.17)

In the presence of P primary users, the dimension of signal subspace is PL+
∑P

j=1Cj (i.e., the

contribution of PUj is equivalent to L+ Cj eigenvalues). The idea is to detect at least one PU

under H1. Since Cj is unknown and difficult to be estimated, the presence of PUs is reflected by

at least L signal eigenvalues.

It is clear from (4.13) that when a certain eigenvalue λk̂ belongs to the signal subspace, then

λ1, · · · , λk̂ are all signal eigenvalues. This leads to the fact that when ℓ1 is noise eigenvalue then

H0 is detected, i.e., there is no PU signal when every eigenvalue does not exceed its own predicted

threshold. Also, H1 is detected when ℓL corresponds to signals. Therefore, the spectrum sensing

problem as defined in (4.1) is modified to

H0 : ℓ1/ℓ
av
1 ≤ η1(t),

H1,0 : ℓ1/ℓ
av
1 > η1(t),

H1,1 : ℓL/ℓ
av
L > ηL(t).

(4.18)

where ℓavk is defined in (4.15). The H1,0 hypothesis indicates the presence of a weak PU’s signal,

while H1,1 is the sensing state for the presence of relatively non-weak signal. This method is

called the modified PET (MPET).

This extra information is either sent to the media access control (MAC) layer of the CR to be

employed for the adaptive joint scheduling of spectrum sensing and data transmission, or sent to

the fusion center when multiple sensors are cooperating for a final decision by combining their

spectrum sensing results.

Furthermore, this extra information could be provided more precisely through a confidence metric

which is a measure of the confidence that the spectrum sensor has in the signal presence decision.

The confidence metric is obtained as,

confidence metric =
kc
L
, 0 ≤ kc ≤ L (4.19)

where kc is the index of the lowest eigenvalue, among the first L of the decreasingly ordered

eigenvalues, that does exceed its predicted threshold. A confidence metric varies between a min-
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imum of zero indicating no confidence in the signal presence and one indicating total confidence

in the signal presence [82].

4.3.4.3 Simplified Predicted Eigenvalues Threshold Method

The above discussion indicates that the PET method could be simplified to employ only the

largest eigenvalue of the sample covariance matrix. Indeed, when ℓ1 corresponds to noise, we

are confident that all eigenvalues belong to the noise subspace. On the other hand, if ℓ1 is a

signal eigenvalue, the PU detection must not be missed even though all the other eigenvalues

corresponds to noise. This is due to the privilege of protecting PUs over spectrum utilization

efficiency. Then, the PET method is simplified to test the largest eigenvalue against its own

predicted threshold. Hence, the sensing problem can be expressed as ℓ1/ℓ
av
1

δ1
≷
δ0

η1(t), and is

altered to

TSPET =
ℓ1

1
q

∑q
i=1 ℓi

δ1
≷
δ0

λSPET (4.20)

This decision statistic was found in [89,90] based on GLRT for a single source through memoryless

channel. Our work extends this decision statistic to a more general scenario. The outline of the

proposed SPET method is described by the Algorithm 4.1.

Algorithme 4.1 SPET sensing method.

1. Compute RL,x(N), the sample covariance matrix of received signals, as defined in (2.26).

2. Obtain the ML eigenvalues of RL,x(N) such as ℓ1 ≥ · · · ≥ ℓML.

3. Calculate the decision statistic TSPET introduced in (4.20).

4. Decide the presence of PU’s signal when TSPET > λSPET, otherwise, the absence of signals
is stated, where λSPET is chosen to achieve a certain level of false alarm probability.

4.3.4.4 Performance Analysis and Discussion

The performance of OPET method is controlled by t. The two-direction threshold t is chosen to

satisfy a certain level of the false alarm probability Pf . For more details on the expressions of

Pm and Pf of OPET refer to [96]. Here, we will focus on performance analysis of SPET.

Probability of False Alarm New results in random matrix theory (RMT) revealed that ℓ1

converges in distribution to a Tracy-Widom distribution of order β (β=1, 2 for real or complex

observations, respectively) when RL,x(N) follows a Wishart distribution of order N [98]. The

authors in [90] established that these results imply that asymptotically TSPET also follows a

Tracy-Widom distribution.

Theorem 3. Let RL,x(N) follows a Wishart distribution with parameters N, q and TSPET be the

ratio of largest eigenvalue to the average trace. Then, as N, q →∞, with cN = q
N → c ≥ 0, the
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following holds

P

[
TSPET − µN,q

σN,q
< λSPET

]
≈ Fβ(λSPET)−

1

βqN

(
µN,q

σN,q

)2

F
′′

β (λSPET) (4.21)

where the centering and scaling constants are

µN,q = (1 +
√
cN )2 , σN,q = N−

2
3 (1 +

√
cN )

(
1 +

1√
cN

)1/3

, (4.22)

and Fβ(.) is the cumulative distribution function of the Tracy-Widom law of order β, while F
′′

β

denotes the second derivative of Fβ.

In [99], it was established that this approximation is accurate for finite value of N and q, even

when N ≫ q. Hence, the probability of false alarm is given by

Pf = P [TSPET > λSPET|H0] = 1− Fβ

(
λSPET − µN,q

σN,q

)
+

1

βqN

(
µN,q

σN,q

)2

F
′′

β

(
λSPET − µN,q

σN,q

)

(4.23)

Now for a given Pf , the threshold λSPET is obtained based on (4.23). Obviously, the decision

threshold is independent of the noise power and the channel gains, and depends only on N , M ,

L and Pf .

Missdetection Probability The sample covariance matrix is no longer a Wishart matrix

in the presence of a signal. Here, we try to approximate the missdetection probability in the

presence of single strong source, i.e., the signal subspace contains an eigenvalue of multiplicity L.

Under this assumption, it is clear that 1
q

∑q
i=1 ℓi ≃ 1

q

[
Lℓ1 +

∑q
i=L+1 ℓi

]
and the missdetection

probability is given by

Pm = P [TSPET < λSPET|H1] = 1− P

[
ℓ1
σ2w

>
(q − L)λSPET

q − LλSPET
ξ

]
(4.24)

where ξ =

1
q−L

q
∑

i=L+1
ℓi

σ2
w

is asymptotically approximated to unity [89]. Also the largest eigenvalue

has a limiting Gaussian distribution as follows [100]

ℓ1
dist−−→ N

(
λ1 +

(q − L)λ1σ2w
N(λ1 − σ2w)

,
λ21
N

)
, (4.25)

which implies that ℓ1
σ2
w

dist−−→ N
(
µn, σ

2
n

)
, where µn = (1 +Mρ)

(
1 + L(M−1)

MNρ

)
, σ2n = (1+Mρ)2

N and

ρ is the instantaneous received SNR. Hence, Pm is approximated as

Pm = 1−Q

( √
N

1 +Mρ

M − 1

M
λSPET −

√
N − L(M − 1)

Mρ
√
N

)
(4.26)

The average missdetection probability is computed by averaging over the distribution of ρ. Cal-

culations of the missdetection probability are more detailed in Appendix C.1.
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Figure 4.5: (a) Missdetection probability versus SNR for OPET and SPET methods compared
with the asymptotic results at different values of the number of the observed samples when
M = 4, L = 1 and P = 1. (b) SPET missdetection probability versus SNR for different numbers
of antennas when N = 5000, L = 1 and P = 2.

4.3.4.5 Numerical Results and Discussion

Here, we present some simulations results to demonstrate the effectiveness of the proposed sensing

methods. These methods are evaluated through the missdetection probability at a false alarm

probability of Pf = 0.1. All results are based on 1000 Monte Carlo trials for each method. For

each realization, the binary phase-shift keying modulated PU signals are randomly generated.

Also, the random channel taps follow a Gaussian distribution. For different values of SNR, a

random additive white Gaussian noise is added.

Figure 4.5(a) compares the sensing performance of OPET and SPET with the asymptotic results

in (4.23) and (4.26). These simulations are done for different values of N . Based on simulations,

the two-direction threshold t is chosen 1.108 to achieve a false alarm probability of 0.1. It is clear

that the SPET method simplifies the original one to reduce the complexity without leading to

any performance loss. Also, the simulations reveal that the asymptotic results provides a good

approximation of the SPET sensing performance. Comparing the missdetection probability for

different values of N shows that the performance improves when the number of the observed

samples at the receiver is larger.

Furthermore, Figure 4.5(b) shows that as the degree of freedom M increases, the missdetection

probability decreases, while the false alarm probability is still under certain level, without sac-

rificing any other metrics such as sensing duration or secondary user throughput. On the other

hand, increasing M does increase the computational complexity of the SPET method.

The performance of MPET method is illustrated in Figure 4.6. This performance is evaluated

by the detection probability of weak signals and that of relatively non-weak signals, set to as

Pd,0 = P(H1,0 is decided|H1) and Pd,1 = P(H1,1 is decided|H1) respectively. This Figure depicts

the detection probability and the false alarm probability of MPET, SPET methods. Obviously,
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Figure 4.6: The MPET sensing performance (under H1,0 andH1,1) compared with SPET method
when N = 10000, M = 4, P = 2, L = 1 and C1 = C2 = 6. Also, the introduced confidence
metric, based on PET, is displayed.

the detection probability of a weak signal is identical to that of SPET which is well confirmed by

simulation results. On the other hand, the presence of relatively non-weak signal is stated with

a detection probability of 0.9 when the SNR is about −10 dB. Also, it is clear that the proposed

confidence metric converges to Pd,1 when the SNR is relatively not-very-low (> −10 dB). For

lower values of SNR, we are a little confident of the PU presence but the statement that its signal

is relatively non-weak can not be declared.

A performance comparison among several sensing methods is provided in Figure 4.7. The

optimal, but not blind, OCED method [91] outperforms the ED as it maximizes the SNR. The

ED suffers of noise uncertainty. It is clear that the performance significantly degrades when

B = 1dB; i.e. for ED-U(1 dB). Among the different blind methods the SPET one has the best

performance followed by the AGM method [88]. The MME detection [93] is a bit less effective

than the AGM detector but outperforms the CAV detector [92]. The CAV detection is directly

based on the entries of the sample covariance matrix. Therefore, this method has a smaller

complexity but it is less representative of the signals. Even though the ITC based methods [95]

offer a low false alarm probability, they are not as efficient as the other blind methods.

4.3.5 Conclusions

The PET method, originally used for number of communications sources detection, is employed

for multiple-antenna spectrum sensing. This method is simplified to significantly reduce the

computational complexity without any performance loss compared with the original PET. The

detection performance is well predicted by the asymptotic analysis which is based on new results

in random matrix theory. The SPET test statistic generalizes that of the GLRT [89] to a more

general scenario. The blind non-parametric SPET detector outperforms the other blind detectors

existing in the literature.
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Figure 4.7: Missdetection probability versus SNR for several sensing methods when N = 10000,
M = 4, P = 2, C1 = C2 = 6 and L = 1.

4.4 Wideband Spectrum Sensing

The traditional way for detecting holes in a wideband spectrum is subband-by-subband scanning

using NSS techniques, while in WSS, the entire band of interest is processed at once to determine

the occupied portions of the spectrum.

4.4.1 Preliminary Literature Review

Several existing WSS approaches in the literature are discussed. This includes: i) wavelet detec-

tion [101], ii) spectral estimation based detection [102,103], and iii) compressed sensing [104,105].

Thereafter, we propose an improved Welch periodogram based WSS by introducing a second re-

fined estimation of the spectral properties, and by employing multiple-antennas to reduce com-

plexity and sampling rates. This improved method is another important contribution of our

thesis.

4.4.1.1 Wavelet Based Sensing

In [101], a wavelet approach for efficient WSS was developed. As a powerful mathematical

tool for analyzing singularities and edges, the wavelet transform is employed to detect spectrum

singularities such as band edges. Hence, this method is also called edge detection.

The signal spectrum over a wide frequency band contains several occupied subbands (see Figure

4.2), where the PSD is smooth within each subband Bk and exhibits irregularities on the border

of two adjacent subbands. Once the edges, which correspond to transitions from an occupied

band to an empty band or vice versa, are detected, the powers within bands between two edges

are estimated. Then, the problem is reduced to the estimation of the edge frequencies of each
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Figure 4.8: Block diagram of the wavelet based WSS technique (also known as the edge detector)
[101].

subband. Discontinuities in the frequency domain (i.e. the boundaries of each subband) are

given by the extrema of the first derivative and/or by the zero crossings values of the second

derivative of the wavelet transform. Figure 4.8 illustrates the block diagram of this technique.

However, this method demands sampling the signal at Nyquist rate (fNyq) which results in energy

expensive analog-to-digital converters (ADCs). Practically, the PSD is smoother and does not

exhibit exactly sharp discontinuities along the frequency axis. This will make the use of wavelet

transform more difficult.

4.4.1.2 Spectral Estimation Based Detection

Various spectral estimation approaches can be found in the literature. While non-parametric

methods usually estimate the PSD directly from the signal and require less computational com-

plexity, the parametric ones produce better results when the available data records of the signal

are relatively short. The simplest non-parametric method is the periodogram and its different

versions.

A more advanced non-parametric method is the multitaper spectrum estimation (MTSE) [103].

In MTSE, the PSD is estimated by averaging over output of several filters or tapers. The tapers

are orthogonal to each other and are centered on central frequency fc. These filters are a Slepian

base vectors. The remarkable property of Slepian sequences is that their Fourier transforms

have the maximal energy concentration in the bandwidth 2W (centered on fc) under a finite

sample-size constraint. After MTSE, by analyzing this feature, CR users can identify whether

there is spectrum opportunity or not. This method is efficient for small sample spaces, but it is

regarded as a computationally intensive procedure.

Filter bank based spectrum estimation (FBSE) is done by introducing only one prototype filter

for each band, and is proposed for cognitive radio networks in [102]. The wideband spectrum

is considered as the output of a bank of prototype filters (with different shifted central frequen-

cies). Based on the filters outputs, spectrum occupancy can be obtained to identify the spectrum

opportunities. For the comparison, MTSE is better for small sample spaces whereas FBSE is

better for large number of samples [102]. Furthermore, MTSE approach increases the computa-

tional complexity and hence might not be suitable for CR systems in which the wideband has

to be quickly sensed. However, the implementation of the filter bank approach requires a large

number of RF components for sensing a wideband spectrum. The spectral estimation methods

propose solutions to accelerate the spectrum scanning while still demand a high sampling rate

(i.e. ≥ Nyquist sampling rate).
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Figure 4.9: Block diagram of the wavelet based WSS technique combined with compressive
sensing [104].

4.4.1.3 Compressive Sensing

Compressive sensing (CS) technique is based on acquiring the signals through a few non-adaptive

linear measurements at a rate lower than fNyq . Thereafter, the signal spectrum is reconstructed

efficiently from this incomplete set of measurements [106]. It is possible to reconstruct an arbi-

trary signal from an incomplete set of linear measurements when it is constrained to be sparse

in some basis (the sparsifying basis), i.e., the signal only have a few non-zero coordinates in this

basis. Let us consider that the frequency representation of the signal is sparse (i.e. assuming that

majority of the subbands are unoccupied). Then, the signal can be sampled at a sub-Nyquist rate

while its spectrum can be reconstructed with a high probability. The reconstructed spectrum is

called sparsogram.

Let the wideband received signal, xc(t), be sampled at the rate fs. A sampled signal vector x of

length N is obtained. The signal is represented in the frequency domain by xf which is obtained

using the discrete Fourier transform (DFT) by

xf = Fx (4.27)

where F is the discrete Fourier matrix. The samples vector is compressed into a vector of lower

dimension d < N as follows

y = Φx (4.28)

where Φ is the d × N measurement matrix, i.e. N − d samples are skipped. Based on the

compressive sensing theory [106], the sparsogram can be recovered from the d samples by solving

the l1-norm optimization problem

x̂f = argmin ‖xf‖1 , subject to y = ΦF−1xf (4.29)

The idea behind CS is to combine both the signal acquisition and the compression process by

directly sensing the essential part of the signal using fewer linear measurements. The assumptions

made in [101] for wavelet edge detection are relaxed for building a practical sensing algorithm.

The method proposed in [101] is extended in [104] by assuming that the signal spectrum is sparse,

and employing sub-Nyquist sampling (via non-uniform sampling or random sampling) to obtain

coarse spectrum knowledge in an efficient way; see Figure 4.9.

To practically realize the CS by sub-Nyquist rate sampling the analog-to-information convertors

(AICs) were proposed. In [107] the AIC is based on random sampling system that can be

implemented in practical hardware, before applying an efficient information recovery algorithm
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to compute the sparsogram. The proposed implementation of this random AIC uses a parallel

bank of low-rate ADCs that have equal shifts between their starting conversion points. This

creates a shift in the samples that are produced from each of the parallel ADCs. The switching

mechanism among their outputs is then pseudo-randomly controlled. The implementation of this

random analog-to-digital converter (RADC) system is shown in Figure 4.10. This can be viewed

as a random selection compression matrix.

Figure 4.10: The implementation of the random analog-to-digital converter (RADC) system
[107].

In [108] AICs were realized by pseudo-random demodulation. Here, the signals were initially

spread with a high-rate pseudo-random discrete-time sequence called the chipping sequence.

This random sequence takes values of ±1 with equal probability. The chipping sequence should

randomly alternate at or above the Nyquist rate. The output of the pseudo-random sequence

generator, pc(t), is employed to demodulate a continuous-time input xc(t) by a mixer. Then,

a low-pass anti-aliasing filter is applied by accumulating the sum of the demodulated signal for

1/fs seconds. The filtered signal is sampled at a relatively low sub-Nyquist rate of fs. The block

diagram of this method is shown in Figure 4.11. The overall action of the random demodulator

is described in matrix form (i.e. via Φ) [108]. The sampling rate is proportional to the number of

non-zero tones. The main drawback of the random demodulator is that it can easily be influenced

by design imperfections or model mismatches [109].

The compression rate is denoted rc and given by sub-Nyquist rate (fs)

Nyquist rate (fNyq)
.

Figure 4.11: Block diagram of the pseudo-random demodulator [108].
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Figure 4.12: The block diagram of non-parametric Welch periodogram estimator combined with
an optimization method to refine the spectral components

4.4.2 Improved Welch Periodogram Based Detection

4.4.2.1 Welch Periodogram Based Detection

The Welch method was introduced to reduce the variance of the periodogram. We have proposed

in [79] to employ the non-parametric Welch periodogram spectral estimator combined with an

optimization method to refine the spectral components. The block diagram of the proposed

method is shown in Figure 4.12. Thereafter, a cooperative scheme is introduced to relax the high

sampling rates constraint.

Assume the sensing duration τsd is divided into K non-overlapping segments of duration TK =
τsd
K , i.e. the sampled corrupted received sequence is given as x = [xT0 , · · · ,xTK−1]T . The kth

segment, represented by the NK × 1 vector xk, is given by

xk(n) = rK(n)x [n+ kNk] 0 ≤ n ≤ Nk − 1, 0 ≤ k ≤ K − 1 (4.30)

where rK is a window of width Tk, the samples number per window is Nk =
⌊
τsd
K .fs

⌋
and⌊.⌋

denotes the floor function. Let xf,k = DFT(xk) be the Fourier transform in the kth segment.

The non-overlapping Welch periodogram Sx gives an estimate of the received signal PSD by

Sx(n) =
1

K

K−1∑

k=0

|xf,k(n)|2. (4.31)

The band edge frequencies are detected by comparing the PSD with a predetermined threshold

λWelch as shown in Figure 4.13. Under hypothesis H0 (i.e. xk is just noise), the Fourier spectrum

follows a complex Gaussian distribution when the noise is assumed to be AWGN, i.e. xf,k(k) ∼
CN (0, σ2NINk

) when xk(k) ∼ CN (0, σ2wINk
), where σ2N = Nk

σ2
w

2 . This is due to the fact that the

noise samples are i.i.d, the DFT is a linear transform and the window is considered rectangular.

Then, the averaged periodogram is a weighted Chi-square distributed random variable with 2K
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Figure 4.13: The detailed procedure of optimazation method for refined spectral componets
estimation.

degrees of freedom. The false alarm probability is given by

Pf = P(Sx(n) > λWelch|H0) =
Γ
(
K, KλWelch

NKσ2
w

)

Γ (K)
(4.32)

where Γ(.) denotes the Gamma function, and Γ(., .) is the upper incomplete gamma function.

The proof of Equation (4.32) comes directly from the CDF of the chi-square distribution. The

noise power is unknown and must be estimated. Here, the estimation method is based on the

PET. An estimate of the covariance matrix of the received sequence is computed as

Rx(K) =
1

K

K−1∑

k=0

xkx
H
k (4.33)

Then, applying the PET method proposed in [96] in Equation (4.33), the noise power estimate

σ̂2w is given by the average of the lowest eigenvalues (the noise eigenvalues). Thereafter, a power

threshold λWelch is calculated based on Equation (4.32), the targeted Pf and the noise power

estimate σ̂2w. Then, using λWelch in Equation (4.31), the estimated band-edge frequencies (f̂l,j

and f̂u,j) are those which average power are above the threshold while scanning the PSD estimate

Sx.

Thereafter, signals within each occupied subband of interest are separately processed to identify
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their spectral characteristics (carrier frequency and bandwidth) as shown in Figure 4.13. In each

detected subband B̂j , the set of frequencies is denoted F j and assumed to be of length Nj . The

PSD cumulative sum is computed and set to as: S̃x,j . We propose the following successive steps

to allow fine spectral components estimation. The central frequency fc,j in each occupied band

is traditionally given by
f̂l,j+f̂u,j

2 . Here, it is refined to be fc,j = F j(nc,j), where nc,j is obtained

by solving the following optimization problem

nc,j = argmin
1≤n≤Nj

[δc,j (n)] = argmin
1≤n≤Nj

{∣∣∣∣∣S̃x,j(n)−
S̃x,j(Nj)

2

∣∣∣∣∣

}
, (4.34)

i.e. the central frequency is the one that equally divides the total power in the studied subband.

This optimization problem is explained in Figure 4.13. Moreover, the band-edge estimation

B̂j can be improved by finding the set of frequencies containing 95% of the signal energy and

centered around the frequency fc,j . Then, the refined bandwidth defined as B̃j = F j(nc,j +

nb,j)−F j(nc,j − nb,j) is estimated by solving the following optimization problem

nb,j = argmin
nw

{Ex,j > 0.95 · S̃x,j(Nj)} (4.35)

where the signal power in the refined band is calculated as follows: Ex,j = S̃x,j(nc,j + nw) −
S̃x,j(nc,j − nw) and 1 ≤ nw ≤ min(Nj − nc,j + 1, nc,j).

The probability of detection can be strongly improved by increasing the number of analysis

windows and/or the sensing duration. Nevertheless, the computation cost can be very prohibitive.

Therefore, a compromise must be made between both expected performance and computational

cost. The non-parametric Welch periodogram based sensing gives good performances but requires

high sampling rates which results in large complexity and high power consumption.

4.4.2.2 Multiple-antenna Welch Periodogram Based Detection

Cooperation can also improve the WSS performance. Let us assume a multiple-antennas receiver

or even more several multiple-antennas receivers located at both sides of the train (this makes the

cooperation more powerful), i.e. M receiving antenna in total. Improving sensing is achieved by

combining different information coming from all antennas at the fusion center. This combination

could be done by three different approaches.

Decision Fusion One way to improve the performance is to detect the occupied bands using

the received signal at each antenna separately, these information are then sent to the fusion

center to be combined for final decision. A literature review of existing decision fusion methods

is presented in subsection 3.2.6. Here, the employed method tries to find the intersection among

the subbands detected on the majority of antennas.

Data Fusion The performance of WSS based on Welch periodogram improves when the

number of considered segments K increases. This number could be increased without decreasing
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the window width or leading to sensing duration overhead by combining the received signals

on all antennas at the fusion center. The total number of windows is
∑M

i=1Ki where Ki is the

number of considered windows on the ith antenna.

Compressive Sensing The two above approaches still require a high sampling rate even

though they lead to a better performance. This makes the Welch periodogram based WSS

impractical for large wideband. The compressive sensing is employed to overcome this difficulty

and to enable detecting the occupied bands with lower sampling rate. The required compression

rate to achieve certain sensing performance depends on the compression method and the spectrum

occupancy. However, the performance improves when the compression rate increases.

Multiple-antennas at the receiver are beneficial to either increase the compression rate, or to

reach the required rc with lower-rate ADCs. The compression ratio at the fusion center is given

by
∑M

i=1 fs,i
fNyq

where fs,i is the sub-Nyquist sampling rate at the ith antenna.

We propose to employ multiple-antennas for compressive sensing in several ways

❖ Perform a compressive sensing and spectrum reconstruction locally. Thereafter, the spec-

trum decisions are either taken locally, and then are sent to the fusion center for combining,

or taken at the fusion center after combining all the reconstructed spectrum versions coming

from different antennas.

❖ Combining the sub-Nyquist sampled signals collected from all antennas at the fusion center.

This can be employed to reconstruct a more accurate spectrum estimation, or to reduce the

sampling rates. One of the compressive sensing that can be applied to realize this method

is the RADC.

Here, the received signal at each antenna is sampled at a sub-Nyquist rate equal to
fNyq

M . The

sampled signals are transmitted to the fusion center without any additional requirements (re-

ceivers at all antennas are connected to the fusion center with wires). Then, the total compression

rate is 100% which leads to avoid the NP-hard optimization problem needed for spectrum recon-

struction. That is, the spectrum is calculated directly from the collected samples.

The received signal at the ith antenna sampled as

xi(n) =

{
x( n

fNyq
), n = mM + ti

0, otherwise
(4.36)

where ti
fNyq

is the offset of the ith ADC. Without loss of generality, we choose ti = i.

Here, we improved the Welch periodogram based sensing by introducing the refined spectral char-

acteristics optimization. This method is extended to exploit the multiple-antennas at receivers

to achieve better performance.
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4.4.2.3 Simulation Results

The studied wideband of width 5 GHz includesNB = 6 occupied subband of different bandwidths

and at different central frequencies. The bandwidth varies in the range of Bj = 5 ∽ 50 MHz.

The total observation time is τsd = 7.5 µs divided into K = 25 segments. To sense a band of

5 GHz width, a Nyquist sampling rate of 10 GSPS is required; i.e. the length of each segment

is Nk = 3000 while the total number of samples is 75000. The detection threshold is chosen to

achieve a false alarm probability of 0.1.

Figure 4.14 shows that the proposed improved welch based method provides good estimate of

the spectral characteristics of the received signal. This Figure shows the Welch periodogram

compared to the predetermined threshold for SNR = −5 dB. The refined central frequency and

band-edges are optimized as explained in Equations (4.34) and (4.35).

This optimization method shows high accuracy for an acceptable range of SNR (> −5 dB, when

τsd = 7.5 µs,K = 25, and Pf = 0.1). Comparing the estimated spectral characteristics with the

generated ones shows that the normalized mean bias of the central frequency estimator ≃ 5×10−4
while the NMB of the edges estimator is ≃ 10−2.

Moreover, Figure 4.15 shows that the missdetection probability Pm can be improved by increasing

the number of analysis segments. However, achieving a good performance (Pm ≤ 0.1) for very

low SNRs (SNR = −12 dB) requires a large number of segments (K = 75). Nevertheless, the

computation cost can be very prohibitive. For a small number of segments (K = 25), the sensing

performance is poor and needs to be enhanced while keeping the complexity and the sampling

rates sufficiently low. The cooperation concept was introduced to solve this problem.

Figure 4.14: The detection of six occupied subbands of different bandwidth values at different
central frequencies (total duration is 7.5 µs, K = 25, Pf = 0.1, and SNR = −5 dB). This Figure
shows the filtered periodogram with the estimated threshold.
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Figure 4.15: The missdetection probability versus SNR for Welch based algorithm at different
number of segments (K = 25, 50, and 75) when NB = 6, τsd = 7.5 µs, and Pf = 0.1.

Figure 4.16: The missdetection probability versus SNR for different information combining ap-
proaches when K = 25, NB = 6, τsd = 7.5 µs and Pf = 0.1.

Figure 4.16 shows a performance comparison among different multiple-antenna Welch peri-

odogram based WSS approaches. This result is obtained when 6 receivers located all around

the train are employed, each receiver has 4 antennas, i.e. the total number of antennas is

M = 24. The fading conditions moderately varies from receiver to receiver, and also from

subband to subband. For different values of SNR, a white circularly complex Gaussian noise

is added. It is clear that cooperation among several antennas does improve the sensing per-

formance. Collecting the samples obtained at Nyquist rate from all antennas dramatically in-

creases K (up to 25× 24 = 600) without any sensing duration overhead are window width re-
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duction. This results in an effective improvement in sensing performance. Nevertheless, this

approach has a huge complexity (total number of samples collected at the fusion center is

75000 × 24 = 1, 800, 000 samples) and requires high sampling rate. The performance of the

decision fusion approach is better when compared to that of the single antenna case. However,

this approach does not reduce computational complexity and still requires high sampling rates.

The proposed sub-Nyquist sampling approach does slightly improve the performance (in com-

parison to the single antenna case) while considerably reducing the the sampling rate at each

antenna to fs,i =
fNyq

M = 416.66 MSPS. The slight performance improvement is due to the coop-

eration among different receivers suffering from different levels of fading. In fact, this approach

is a combination of sub-Nyquist sampling and data fusion.

4.4.3 Discussion

The classical Welch periodogram based WSS suffers from prohibitive complexity and high sam-

pling rate (≥ fNyq). Also, this method does not perform well for very low SNRs. Decision fusion

approach improves performance but still has the same drawbacks. Data fusion approach, or in-

creasing the sensing duration, strongly improves the performance at the cost of huge increase in

the complexity. One solution to decrease the sampling rate is the joint use of multiple-antennas

and sub-Nyquist sampling. One drawback of this approach is the sampling time offsets errors.

This problem could be extremely complicated to solve in a cognitive radio network, conversely,

synchronization requirements can be easily fulfilled in our context (different receivers distributed

all around the train). Our approach has a compression ratio of 100%, i.e. its computational

complexity is the same as in the case of a single antenna. To reduce this complexity a lower

compression ratio is needed. But, reducing the compression ratio traditionally demands solving

a complex l1-norm optimization problem. One of our under-development research works is how

to estimate the PSD directly from the sub-Nyquist sampled signals when the compression ratio

is lower (∼ 50%), this will decrease more the sampling rates. Obviously, designing the Welch

periodogram based wideband detector is a compromise among several parameters: the sens-

ing duration, the sampling rates, the computational complexity and the targeted performance

(Pm and Pf ).

All existing WSS methods suffer from performance degradation in the low SNR regime. Fur-

thermore, the receiver sensitivity is an essential parameter in spectrum sensing. The NSS is

still more reliable than the wideband one. This is due to the fact that the receiver sensitivity

is lower when the receiver bandwidth is larger as the noise power increases with the bandwidth.

Increasing the receiver sensitivity with wideband detection is a real challenge.

4.5 Conclusions

Cognitive radio should be flexible to adaptively operate over a wide range of frequencies. The

occupied bands consist of several continuous narrowband intervals over a wide spectrum. Spec-

trum sensing is divided into two categories: narrowband sensing and wideband sensing. The

NSS is based on dividing the wide spectrum of interest into consecutive subbands (narrowband
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channels). These subbands are sequentially or randomly checked to decide their occupancy until

a free band is found. Contrary to the wideband sensing where the entire band of interest is

processed. This Chapter has presented a preliminary literature review of these two categories.

It is clear that the WSS is still in its early stages, while the NSS problem is well studied in

the literature. We have also proposed a narrowband sensing method based on the predicted

eigenvalue threshold. Our blind non-parametric method gives good performance when compared

with other existing blind methods. The main drawback of the NSS is the latency in finding a

free band which leads to sensing duration overhead. This overhead increases when the spectrum

occupancy is higher. To overcome this problem the wideband sensing was motivated. High power

consumption, high sampling rates and computational complexity are the drawbacks that make

the WSS impractical. An improved cooperative Welch periodogram based sensing was also pro-

posed in this Chapter. This method is a compromise between reducing complexity and sampling

rates (compression rate 100%), i.e. using sub-Nyquist sampling while still avoiding the NP-hard

problem of spectrum reconstruction. Furthermore, note that improving the WSS performance

requires more antennas than that required in the NSS. In fact, wideband sensing is a hot subject

and still demands a lot of research. One of our perspectives is to develop the proposed WSS

method to work with lower compression rates without the need of spectrum recovery. This will

relax the constraints on ADCs and reduce the complexity and consequently cut down energy

cost.

Chapter 2 introduced the system model and the constraints related to the special railways en-

vironment. However, these constraints were not taken into consideration when studying the

problem of spectrum sensing in this Chapter. The next Chapter studies the NSS problem taking

into account these constraints.
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5.1 Introduction

Three particular railways environment constraints had got more attention, namely, the time-

varying wireless channel, the multiple-antenna spatial correlation, and the impulsive heavy-tailed

noise. In this Chapter new methods are introduced either to exploit these constraints or to

mitigate their effect. The time-varying wireless channels affect the time correlation properties.

This could degrade the performance of the traditional narrowband spectrum sensing methods

presented in Chapter 4. A new weighted covariance value based spectrum sensing method is

proposed to try to exploit the properties of time-varying channel to improve the performance.

The practical multiple-antenna systems always suffer from spatial correlations. The effect of the

presence of spatial correlations on NSS methods is examined. It is found that the performance of

some methods do improve when these correlations are larger. A new method based on a weighting

covariance matrix, employed to better exploit the spatial correlation to achieve higher sensing

performance levels, is introduced. This method represents another important contribution of our

thesis. As seen in Chapter 2, the special EM environment around the train results in an impulsive

noise with heavy tails. It was also shown that the SαS distributed processes are fitted to model

the noise behaviour. The heavy tails of impulsive noise will degrade the NSS performance. Two

new methods are introduced to mitigate their effect. The first is based on filtering the received

signal using the myriad concept, while, the second is based on the covariation (not covariance)

coefficient matrix of the received signal. These two algorithms are the last contribution provided

by our thesis.

5.2 Weighted Covariance Value Based Spectrum Sensing for Time-

Varying Channels

To the best of our knowledge, no work has yet considered the problem of spectrum sensing for

time-varying channels. In what follows, we will try to exploit the temporal correlations of the

time-varying channel taps to improve the sensing performance. The proposed approach employs

the weighted covariance matrix.

5.2.1 System Model

The following assumptions hold in this section. A secondary user possessing M antennas is

sensing the presence of P primary users. The source signals sp, 1 ≤ p ≤ P are assumed to be

centered and i.i.d. The received signal at the ith antenna is given by

xi(n) =

P∑

p=1

Cp∑

k=0

hi,p(n, k)sp(n− k) + wi(n), n = 1, 2, · · · (5.1)

where wi(n) is the AWGN with zero-mean and variance σ2w , Cp is the order of the channel

between the pth primary source (PSp) and each antenna, and hi,p(n, k) is the nth sample of the
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kth tap of the time-varying channel response between PSp and the ith antenna. The channel taps

satisfy the following criteria,

❖ Antennas are spatially-uncorrelated, i.e. E
{
hi1,p(n, k)h

∗
i2,q

(m, l)
}
= 0, for i1 6= i2,

❖ The channel between PSp and the ith antenna is uncorrelated with the channel between

PSq and the same antenna, i.e. E
{
hi,p(n, k)h

∗
i,q(m, l)

}
= 0, for p 6= q,

❖ The inter-tap correlation is insignificant, i.e. E
{
hi,p(n, k)h

∗
i,p(m, l)

}
= 0, for k 6= l,

❖ The complex envelop|hi,p(n, k)| is Rayleigh distributed,

❖ Adopting isotropic scattering Jakes reference model, we have

rh(m) , E
{
hi,p(n, k)h

∗
i,p(n−m, k)

}
= σ2hJ0(2πfdmTs), (5.2)

where fd is the maximum Doppler frequency, σ2h is the average power of the channel tap,

and J0(.) is the zero-order Bessel function of the first kind.

❖ The inphase and quadrature components of hi,p(n, k) are zero-mean independent real Gaus-

sian random processes with identical autocorrelation functions. Let hRi,p(n, k), h
I
i,p(n, k) ,

respectively, be the real and imaginary parts of hi,p(n, k), then

E
{
hRi,p(n, k)h

R
i,p(m, k)

}
= E

{
hIi,p(n, k)h

I
i,p(m, k)

}
=

σ2
h

2 J0 {2πfd (n−m)Ts}
E

{
hRi,p(n, k)h

I
i,p(m, k)

}
= E

{
hRi,p(n, k)h

I
i,p(m, k)

}
= 0

.

5.2.2 The Proposed Method

In the absence of antenna spatial correlation, we focus on the time correlation to enhance spec-

trum sensing performance. In the first time, let us examine the signal received on one antenna

only. The obtained result can be easily generalized for all antennas. Let us denote the L × 1

smoothed observation vector at the ith antenna by xL,i(k) = [xi(k), ..., xi(k − L + 1)]T . The

sample covariance matrix is employed to estimate the unknown covariance matrix, and is given,

for N observed samples, by

RL,i(N) =
1

N

N∑

k=1

xL,i(k)x
H
L,i(k)

=




Ri (1, 1) Ri (1, 2) · · · Ri (1, L)

Ri (2, 1) Ri (2, 2) · · · Ri (2, L)
...

...
. . .

...

Ri (L, 1) Ri (L, 2) . . . Ri (L,L)




(5.3)

where Ri (n,m) = 1
N

∑N
k=1 xi(k−n+1)x∗i (k−m+1), 1 ≤ n,m ≤ L. In what follows, the index “i ”

is omitted, since the statistical properties of sources and channel are identical and independent of

the receiving antenna. This omission will be also justified by the obtained results. The existing
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covariance-based spectrum sensing methods consider that all the entries of this matrix have the

same contribution in its test statistic. However, it is a good idea to employ a weighted sample

covariance matrix when the temporal correlation structure is known. The weighted sample

covariance matrix can be introduced as an entrywise product of the covariance matrix RL(N)

and the weights matrix T, and is represented by

RL,T (N) = T ◦RL(N) =




t1,1R (1, 1) t1,2R (1, 2) · · · t1,LR (1, L)

t2,1R (2, 1) t2,2R (2, 2) · · · t2,LR (2, L)
...

...
. . .

...

tL,1R (L, 1) tL,2R (L, 2) · · · tL,LR (L,L)




(5.4)

The weights ti,j = [T]i,j are optimized based on the prior knowledge of the time correlation

structure to improve sensing performance. In fact the channel temporal variations are faster when

the maximum Doppler frequency is larger. The statistical properties of temporal correlation lags

are known when the train speed and the central frequency of the sensed subband are known,

which is usually the case. We can easily show that E [R (n,m)] is real and E [R (n,m)] =

E [R (m,n)] , 1 ≤ l ≤ L . Also, RL(N) is Hermitian, hence, we assume, without loss of generality,

tn,n = t0, 1 ≤ n ≤ L and tn,m = tn,m, 1 ≤ n,m ≤ L.

The weighted covariance value based method for time-varying (WCV-T) channels has the fol-

lowing test statistics

TWCV-T =

∑L
n=1

∑L
m=1,m 6=n tn,mR (n,m)

∑L
n=1 tn,nR (n, n)

δ1
≷
δ0

λWCV-T (5.5)

The matrix RL(N) has nearly zero off-diagonal entries when there is no PU’s signal. Contrary,

in the presence of, at least, one PU, it has some non-zero off-diagonal entries. Then, if there

is no signal, TWCV-T ≃ 0. When, at least, one PU’s signal is detected TWCV-T > 0 . In what

follows, the index “WCV-T” could be omitted for simplicity.

5.2.3 Performance Analysis

Let ∆ be defined as

∆WCV-T =

L∑

n=1

L∑

m=1,m 6=n

tn,mR (n,m)− λWCV-T

L∑

n=1

tn,nR (n, n) (5.6)

Then, Pm = P [∆ < 0|H1] and Pf = P [∆ > 0|H0]. Finding the optimal T is achieved by solving

the following optimization problem,

{
Minimize: Pm (T)

Subject to : Pf (T) ≤ ξ
(5.7)

where ξ is the targeted level of Pf . This objective requires to study the statistical properties of ∆,

which in turn needs the statistical properties of R (n,m). In fact, we assume that the temporal

correlation coefficients R (n,m) , 1 ≤ n,m ≤ L are jointly Gaussian. This approximation can be
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justified, for a large N , by the central limit theorem and will be confirmed by the performance

of the proposed method.

Under Hη for η = 0, 1, we can easily demonstrate, based on the above assumptions, that

r (n,m) = E [xi (n)x
∗
i (m)] is obtained as

r (n,m) = η (P + C)σ2s︸ ︷︷ ︸
,Ps

rh (n−m) + σ2wδ(n−m) (5.8)

where rh(n) is defined in Equation (5.2). It is clear that r (n,m) depends on the difference

(n−m) and is denoted r (n−m).

The sample time autocorrelation mean is calculated as E [R (n,m)] = r (n−m). Also, the

covariance, c (n,m, d, q) , Cov [R (n,m) , R∗ (d, q)] 1 ≤ n,m, d, q ≤ L, is determined by,

c (n,m, d, q) = Cov





1

N

N∑

k1=1

xi (k1 − n+ 1)x∗i (k1 −m+ 1) ,
1

N

N∑

k2=1

xi (k2 − d+ 1)x∗i (k2 − q + 1)





=
1

N2

N∑

k1=1

N∑

k2=1

{ r (k1 − k2 + q − n) r (k2 − k1 +m− d)

+ r (k1 − k2 + d− n) r (k2 − k1 +m− q) }
(5.9)

The statistical properties of △ are given by its mean and its variance, such as

E (∆) =

L∑

n=1

L∑

m=1,m 6=n

tn,mr (n−m)− λLt0r (0) , (5.10)

and the variance is calculated by

Var (∆) =
L∑

n=1

L∑

m=1,m 6=n

L∑

d=1

L∑

q=1,q 6=d

tn,mtd,qc (n,m, d, q)

− 2λ
L∑

n=1

L∑

m=1,m 6=n

L∑

d=1

tn,mtd,dc (n,m, d, d) + λ2
L∑

n=1

L∑

m=1

tn,ntm,mc (n, n,m,m)

(5.11)

Let us, respectively, denote m∆,i = E [∆|Hi] and σ2∆,i = Var [∆|Hi]. Then the missdetection

probability and the false alarm probability are, respectively, calculated by

Pm = 1−Q
(
−m∆,1

σ∆,1

)
and Pf = Q

(
−m∆,0

σ∆,0

)
(5.12)

Under H0, we have r (n−m) = σ2wδ(n−m). Hence, E [R (n,m)] = σ2wδ(n−m) and

c (n,m, d, q) =
σ4w
N
{δ [n−m+ q − d] + δ [n−m+ d− q]} (5.13)



Chapter 5. Narrowband Spectrum Sensing For Railways 116

Hence, m∆,0 = −λLt0r (0) and

σ2∆,0 =
2σ4w
N


L2t20λ

2 +

L∑

n=1

L∑

m=1,m 6=n

dmax∑

d=dmin

tn,mtd,d−n+m


 (5.14)

where dmin = max (1 + n−m, 1) and dmax = min (L+ n−m,L).

Let us denote Λ2
t = 1

L2

∑L
n=1

∑L
m=1,m 6=n

∑dmax

d=dmin
t̃n,mt̃d,d−n+m where t̃n,m =

tn,m

t0
. Then, Equa-

tion (5.14) is reformulated as,

σ2∆,0 =
2σ4w
N

L2t20
[
λ2 + Λ2

t

]
(5.15)

The false alarm probability is calculated as,

Pf = Q




λWCV-T

√
N
2√

λ2WCV-T + Λ2
t


 (5.16)

Now for a given false alarm level ξ, the threshold λ is obtained based on (5.16), as follows

λWCV-T (ξ) =
Λt.Q

−1 (ξ)√
N
2 − [Q−1 (ξ)]2

(5.17)

Obviously, the decision threshold is independent of the noise power and the channel gains, and

depends only on the weights, L,N , M and ξ.

It is clear from Equation (5.16) that fixing the false alarm probability to a certain level requires

that Λ2
t remains constant (while choosing the proper threshold). Also, note that missdetection

probability, given in Equation (5.12), decreases when
m∆,1

σ∆,1
increases. Hence, the optimization

problem in (5.7) is reformulated as

{
Maximize: J =

m∆,1

σ∆,1

Subject to : Λ2
t = Λ2

t,0

(5.18)

where Λt,0 is an arbitrary constant.

The real objective is to maximize the performance in the low SNR regime. The optimal covariance

matrix entries are calculated in Appendix D.2 and are given by

tn,m =
Lrh (n−m)

L− |n−m| , 1 ≤ n,m ≤ L. (5.19)

The above analysis justifies the previous omission of the antenna index ”i” and enables the

generalization of the obtained results to other antennas.

Let us consider the received signal on all antennas as xL(k) =
[
xTL,1(k), . . . ,x

T
L,M (k)

]T
. In the
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Table 5.1: Maximum Doppler frequency (Hz) as a function of some values of the train speed
(Km/h) when the central frequency is 2.5GHz and 921MHz (the last value corresponds to the
GSM-R standard).

50 Km/h 100 Km/h 200 Km/h 300 Km/h

fc = 921MHz 43 85 171 256

fc = 2.5GHz 116 232 463 695

absence of any spatial correlation, the sample covariance matrix is represented by,

RL(N) =
1

N

N∑

k=1

xL(k)x
H
L (k)

=




RL,1(N) 0L · · · 0L

0L RL,2(N) · · · 0L
...

...
. . .

...

0L 0L . . . RL,M (N)




(5.20)

We can directly conclude that the performance based on the test statistic,

TWCV-T =

∑ML
n=1

∑ML
m=1,m 6=n tn,mR (n,m)

∑ML
n=1 tn,nR (n, n)

, (5.21)

can be maximized by weighting RL(N) as,

RL,T (N) =




T ◦RL,1(N) 0L · · · 0L

0L T ◦RL,2(N) · · · 0L
...

...
. . .

...

0L 0L . . . T ◦RL,M (N)




(5.22)

where T is defined in Equation (5.19).

5.2.4 Numerical Results and Discussions

In this subsection, we present numerical results for weighted covariance value based spectrum

sensing over time-varying channels. Throughout this subsection, we assume Pf = 0.1, the PU

signals are random binary phase-shift keying modulated. The random AWGN is added such that

SNR = E[ ‖x(n)−w(n)‖2]

E[ ‖w(n)‖2]
. The Rayleigh channel taps respect the assumptions made in 5.2.1.

The uncorrelated (C + P ) complex channel taps are generated using generalized exact Doppler

spread model (GMEDS1) method presented in 2.2.4. This method is designed such that the

ACF, r̃
(k)
h (τ), of the simulation model must be as close as possible to the ACF, rh (τ), of a given

reference model over a certain domain [0, τmax] . Studies have shown that for the GMEDS1, the

quantity τmax is given by τmax = Ni/(2fd) where Ni is the number of summed sinusoids [36]. At

the price of increased simulations complexity, the GMEDS1 enables an excellent fitting to both

the quadrature ACFs and the ACF of the complex waveform over larger domain of interest, i.e.
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Figure 5.1: (a) The ACF, rh (τ), of the complex waveform of the reference model in comparison

with the corresponding ACF, r̃
(k)
h (τ), of the simulation model designed using the GMEDS1.

(b) Simulated uncorrelated Rayleigh fading waveforms (
∣∣h(k)

∣∣ , k = 1, 2, 3) using the GMEDS1

(fd = 100Hz,Ni = 20).

τmax ր⇒ Ni ր⇒ simulation complexity ր. The performance of most mobile communication

systems is only sensitive to errors of the ACF if the time lag is small, meaning τfd ≤ 0.3 [25].

Here, the value of τmax is proportional to the smoothing factor L. Hence, larger L does require

increasing Ni and results in longer simulation times. Figure 5.1(a) depicts the ACF, rh (τ),

of the complex waveform of the reference model in comparison with the corresponding ACF,

r̃
(k)
h (τ), of the simulation model designed by using the GMEDS1 for Ni = 20. The simulated

ACF, r̃
(k)
h (τ), represents an excellent fitting to the reference model when τ ∈ [0, Ni/(2fd)] or,

equivalently, τfd ∈ [0, 10]. Also, Figure 5.1(b) illustrates a simulation of the temporal behaviour

of the resulting uncorrelated fading envelopes for K = 3. This Figure shows that the complex

envelope could be attenuated to a level that is lower than −10 dB for short duration. In fact the

rate of variations in channel gains increases as the maximum Doppler frequency increases.

The performance of detection algorithms are usually evaluated for the values of the normalized

frequency Doppler fdTsym where Tsym is the symbol duration. Here, Tsym is fixed and the perfor-

mance of sensing algorithms is examined as a function of SNR for different fd values. Knowing

that each fd value corresponds to a certain speed value depending on the carrier frequency. Ta-

ble 5.2.4 shows the maximum Doppler frequency values for different train speed values and two

carrier frequencies 921MHz (corresponding to the GSM-R standard) and 2.5GHz.

Figure 5.2 illustrates the missdetection probability of SPET method as a function of SNR for

different fd values. It is clear that best performance is that of fd = 0Hz (i.e. channel is

constant during the observation duration) as the channel provides the maximum correlation

level. The performance degrades as maximum Doppler frequency increases since increasing fd

does attenuate the correlation level as seen in Figure 5.1(a). The rate of attenuation is larger

when fd increases which explains the sensing performance degradation. For instance, a detection

probability of 0.9 is reached for SNR = −15 dB when the train is not moving, while a SNR larger

than −8 dB is required to reach the same level of detection when fd = 500Hz.
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Figure 5.2: The probability of missdetection versus SNR for SPET method at different maximum
Doppler frequency (fd) values when N = 10000, P = 2,M = 4, ρr = 0 and L = 20.

SNR (dB)

M
is
sd
et
ec
ti
on

P
ro
b
ab

il
it
y

Probability of False Alarm = 0.1

fd=50
fd=100
fd=200
fd=300
fd=500

Figure 5.3: The probability of missdetection versus SNR for WCV-T method at different maxi-
mum Doppler frequency (fd) values when N = 10000, P = 2,M = 4, ρr = 0 and L = 20.

The performance of WCV-T method is examined as a function of SNR for different maximum

Doppler frequency values and the results are depicted in Figure 5.3. It is clear that the pro-

posed method does improve the performance when compared to the SPET one. The average

improvement is represented by a SNR gain of about 3 dB for a level of missdetection probability

of 0.1. Also, this Figure shows that the performance of this method degrades when the train

moves faster, i.e. for larger fd values. The WCV-T method requires an SNR level of −11 dB

to reach a detection probability of 0.9 for a fast train (fd = 500Hz), while this level of SNR is

approximately −17 dB when the train is moving slowly (fd = 50Hz).
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Figure 5.4: The probability of missdetection versus SNR for WCV-T method at different smooth-
ing factor (L) values when N = 10000, P = 2,M = 4, ρr = 0 and fd = 200. Also, the missdetec-
tion probability versus L at a fixed SNR = −14 dB.

In Figure 5.4, the missdetection probability versus SNR for WCV-T method at different smooth-

ing factor values (L = 5, 10, 15, 20 and 25) is shown. As can be seen from this Figure, increasing

the smoothing factor up to 20 does improve the detection performance. On the other hand, the

missdetection probability is almost constant when L > 20. For a SNR value of −14 dB, the

missdetection probability varies from ∼ 0.5 to ∼ 0.13 as L goes from 5 to 20, but does not vary

a lot for L values larger than 20. In fact, the computational complexity of the proposed method

increases when L is larger. Hence, the smoothing factor is chosen relatively low as a compromise

between decreasing complexity and performance degradation.

5.3 Spectrum Sensing with Spatially-Correlated Multiple-Antennas

5.3.1 Preliminary Literature Review

Currently, the multiple-antenna techniques are widely used in wireless communications owing

to their promise of high data rate and high effectiveness. In CR, using multiple antennas for

spectrum sensing is one possible approach to improve detection reliability by exploiting the

spatial diversity. The energy detector (ED) [84] is a simple and popular detector for spectrum

sensing that gives high performance when the noise variance is known. Another methods that

investigates the covariance matrix structure (or its eigenvalues analysis) were used for spectrum

sensing when the noise variance is unknown. For instance, we mention the CAV method [92], the

MME detector [93], the AGM detector [88], and the proposed SPET method. These detectors

were derived and examined for spatially-uncorrelated antennas and may be not appropriate for

the correlated case. However, for most practical propagation environments, the antennas are

spatially-correlated. Thus, it is worthy to evaluate these methods for the correlated multiple



121 5.3. Spectrum Sensing with Spatially-Correlated Multiple-Antennas

antennas scenario.

However, for the correlated multiple antennas scenario, the sensing performance of an ED was

shown to degrade greatly [110]. The authors analyzed the sensing performance of energy detectors

in CR networks when multiple antennas are correlated. It is verified that the sensing performance

of the energy detector is degraded when the antennas are spatially-correlated and the performance

degradation is proportional to the antennas correlation. In fact, the emergence of the PU’s signal

changes not only the detected energy, but also the correlation structure of the received signal.

Can spatial correlation help? this was the question asked and answered in [111]. The authors

studied the GLRT detector performance with spatially-correlated multiple antennas. It was

verified that the sensing performance of the GLRT detector does improve with the antenna

correlation.

A weighted ED and correlated-GLRT (C-GLRT) detector are proposed for spectrum sensing

assisted with correlated multiple antennas in [112]. Compared with the ED and eigenvalue-

based detectors, the detection performance of the weighted ED and C-GLRT algorithms does

improve. It was seen that the sensing performance of the weighted ED is better than that of

the ED under the correlated antennas scenario, while these performances are the same under

the independent antennas scenario. In fact, when the antennas are independent, the weighted

ED becomes the ED. Also, the C-GLRT detector is more appropriate for correlated multiple

antennas assisted spectrum sensing than that of the eigenvalue-based detectors.

The covariance matrix of the received signal was exploited in [113]. The authors define a test

statistic as the ratio of the sum of the off-diagonal terms to the sum of the diagonal terms in

correlation matrix. The exact sensing performance and the corresponding threshold were de-

rived in closed form in a simple case, i.e. the SU employs two antennas to sense one PU’s

signal. In [114], the authors analyzes the performance of energy detection based spectrum sens-

ing in a CR possessing multiple correlated antennas when the channel from the PU to the CR

is Nakagami-m faded. The detection probability of the CR by employing square law combining

(SLC) was derived by using the MGF-based approach. Again, it was found that antenna cor-

relation degrades the energy detection performance of the CR. In [115], the spectrum sensing

is conducted using an estimate of the cross-correlation among the signals received at different

spatially-correlated antenna elements, the authors proposed a blind detection method, which

assumes no prior knowledge of the signaling scheme used by the PU, the noise power, or the

channel path coefficients.

5.3.2 Predicted Eigenvalues Threshold Sensing Performance with Spatially-

Correlated Multiple-Antennas

The following assumptions hold in this section. A secondary user possessing M antenna is sensing

the presence of P primary users. The received signal at the ith antenna is given by

xi(n) =
P∑

p=1

Cp∑

k=0

hi,p(k)sp(n− k) + wi(n), n = 1, 2, · · · (5.23)
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where Cp is the order of the channel between the pth primary source (PSp) and each antenna, and

hi,p(k) is the kth tap of the channel response between PSp and the ith antenna. The taps of the

block-fading channel are assumed to be uncorrelated and constant during the observation time.

We assume that the source signals sp, 1 ≤ p ≤ P are centered and i.i.d. The M × 1 observation

vector at the receiver is expressed in matrix form as:

x(n) = Hs(n) +w(n) (5.24)

where w(n) = [w1(n), ..., wM (n)]T is the M × 1 additive white Gaussian noise vector with zero-

mean and variance σ2w.

Due to its simplicity and good agreement when describing the spatial correlation, the exponential

correlation model is generally used to describe the spatial correlation among multiple antennas.

This model was introduced in section 2.3.2.

The channel matrix H can be rewritten as

H = R
1/2
r Hw (5.25)

where Rr is the receiver correlation matrices and Hw is a channel gain matrix whose entries are

i.i.d and follows a circularly symmetric complex Gaussian distribution with zero-mean and unit

variance. The exponential correlation model defines the receive correlation matrix Rr with its

entries given by

[Rr]i,j =

{
ρj−ir , i ≤ j

[Rr]
∗
j,i , i > j

, 1 ≤ i, j ≤M, |ρr| < 1, (5.26)

where ρr is the receive correlation coefficient between two adjacent antennas.

The covariance matrix of the received signal, set to as Rx = E[xxH ], gives

Rx = HRsH
H + σ2wIM = R

1/2
r HwRsH

H
w︸ ︷︷ ︸
(
R

1/2
r

)H
+ σ2wIM (5.27)

where Rs = E[ssH ] is assumed to be of full rank.

The sample covariance matrix is employed to estimate the unknown covariance matrix, and is

given, for N observed samples, by

Rx(N) =
1

N

N∑

k=1

x(k)xH(k) (5.28)

In Chapter 4, we proposed a non-parametric multiple-antennas assisted spectrum sensing method

based on the predicted eigenvalue threshold. Thereafter, a simplified PET sensing method, which

needs to compare only the largest eigenvalue to its threshold, was introduced. The test statistics

of the proposed SPET method is represented by

TSPET =
ℓ1

1
q

∑q
i=1 ℓi

δ1
≷
δ0

λSPET, (5.29)
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The eigenvalues of Rr are approximated as [116]

λr,i =
1− |ρr|2

1 + 2 |ρr|ψr,i + |ρr|2
, 1 ≤ i ≤M (5.30)

where ψr,i are roots of the following Equation

sin (M + 1)ψ − 2 |ρr| sinMψ + |ρr|2 sin (M − 1)ψ

sinψ
(5.31)

It can be shown that λr,1, the largest eigenvalue of matrix Rr, verifies λr,1 → tr(Rr) when |ρr| →
1. Also, the following holds

∑M
i=1 λr,i = tr(Rr) =M , i.e. when lim

|ρr|→1
λr,i = 0 for 2 ≤ k ≤M .

When the multiple-antennas are more correlated, the received power is accumulated in a virtual

channel associated with the largest eigenvalue of the covariance matrix. Hence, the diversity

effect decreases leading to a capacity loss when using the traditional maximum ratio combiner.

On the other hand, any increase in the spatial correlation improves any detection approach based

on the largest eigenvalue, e.g. the SPET method. The expected value of the largest eigenvalue of

the covariance matrix increases when the channel is more spatially correlated, while the sum of

the eigenvalues of this matrix remain almost constant. That is, the test statistic TSPET increases

when ρr is larger. On the other hand, the decision threshold is chosen under H0, and is found

to be independent of the noise power and the channel gains, i.e. this threshold does not change

when the level of spatial correlation changes. Obviously, the SPET performance improves when

the antennas are more correlated.

Nevertheless, this improvement is limited. In the high SNR region, the missdetection probability

is already low and can not be much improved. The largest eigenvalue can be formed as λ1 =

ϑ1+σ
2
w, where ϑ1 is the largest eigenvalue of the covariance matrix due to noise-free signal. Hence,

the improvement resulting from increasing the spatial correlation is reflected in ϑ1. Then, the

increase of λ1 is limited when the SNR is very low, i.e. the noise power level is high compared

to ϑ1. Also, this performance improvement is attested by an increase of the confidence metric.

In fact, this improvement is not due to a method development and results from the presence of

spatial correlation. In the following, we will propose a method that tries to exploit the spatial

correlation structure in a way that the performance is more improved when the correlation level

is higher.

Let us consider xi the observed signal vector at the ith antenna, i.e. xi = [xi(1), xi(1), . . . , xi(N)].

The sample covariance matrix of the received signal defined in Equation (5.28) can be reformu-

lated as

Rx(N) =




R1,1 R1,2 · · · R1,M

R2,1 R2,2 · · · R2,M

...
...

. . .
...

RM,1 RM,2 · · · RM,M




(5.32)

where Ri,j is the estimated spatial cross-correlation between the observed signal at the ith antenna
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and that on the jth antenna, and is given as

Ri,j =
1

N

N∑

k=1

xi(k)x
∗
j (k) =

1

N
xix

H
j . (5.33)

The previous methods that exploit the covariance matrix (directly or via the eigenvalue analysis)

for spectrum sensing gives all the entries of this matrix the same weight. On the other hand,

it could be more beneficial to employ a weighted sample covariance matrix when the spatial

correlation coefficient is not negligible. The weighted sample covariance matrix can be introduced

as an entrywise product of the covariance matrix Rx(N) and the weights matrix S, and is

represented by Rx,s(N) = S ◦ Rx(N). The weights si,j = [S]i,j are chosen to improve the

sensing performance. The test statistics of the proposed weighted covariance value method for

spatially-correlated (WCV-S) multiple-antennas, is defined by

TWCV-S =

∑M
i=1

∑M
j=1,j 6=i si,jRi,j

∑M
i=1 si,iRi,i

δ1
≷
δ0

λWCV-S, (5.34)

In fact the spatial cross-correlation between the signals received at two antennas is larger when

these antennas are closer. Hence, this cross-correlation must be more involved in PU’s signals

sensing, i.e. the cross-correlation Ri,j must be more weighted when the antennas are closer.

Based on this analysis, we propose the following weighting matrix,

si,j =

{
1 + ρ

|i−j|
r , i 6= j

1, otherwise
, 1 ≤ i, j ≤M. (5.35)

The proposed WCV-S method outperforms the SPET one in the presence of moderately spatially-

correlated antennas.

Yet the weighting matrix of WCV-S method has to be optimized. This optimization problem

is one of our research perspectives. Also, we assume that the spatial correlation coefficient

ρr is known at the SU receiver or can be estimated. It can be easily proven that the above

analysis is still valid when using smoothing factor L > 1. The proposed method is evaluated

and its performance is compared with that of other methods that employ the standard sampled

covariance matrix.

5.3.2.1 Simulations Results and Discussion

Here, we present some simulations results to demonstrate the effectiveness of the proposed sensing

methods. These methods are evaluated through the probability of missdetection at a false alarm

probability of 0.1. All results are based on 1000 Monte Carlo trials for each method. For each

realization, binary phase-shift keying modulated PU signals have been considered. Also, the

channel is block-fading whose taps follow a Rayleigh distribution. The spatial correlation is

modeled via the exponential correlation model. For different values of SNR, a random additive

white Gaussian noise is added.
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Figure 5.5: (a) The eigenvalues of the receive correlation matrix for M = 4. (b) The expected
value of the test statistic TSPET, for different values of ρr and M , when the sample covariance
matrix is calculated for noise-free signals.

Figure 5.5(a) illustrates the eigenvalues of the receive correlation matrix for M = 4. We note

that the first eigenvalue tends to tr(Rr) =M as the correlation coefficient goes to 1. This reflects

a tendency to accumulate the received power in the first eigenvalue. Also, simulations reveals

that the sum of Rr eigenvalues always equals to M .

Figure 5.5(b) depicts the expected value of the test statistic TSPET, for different values of ρr and

M , when the sample covariance matrix is calculated for noise-free signals. This Figure confirm

the above analysis, i.e. TSPET increases when the correlation coefficient increases. This increment

is more significant when the SU has more receiving antennas.

The impact of the spatial correlation on SPET performance is evaluated and the results are

depicted in Figure 5.6. The detection performance improves when the antennas are spatially

correlated and becomes ever more improved as the correlation increases. Obviously, the eigen-

values of the spatial correlation matrixRr strengthen the largest eigenvalue of the signal subspace

and reflect time accumulation of SNR. This reinforce the contribution of signals eigenvalues in

TSPET compared to the noise eigenvalues and decrease the probability of missdetection. Note

an SNR gain of 3 dB when the channel is heavily spatially-correlated. Also, the false alarm

probability is not affected by the spatial correlation since it is not reflected in the covariance

matrix when there is no signal.

Giving a more important contribution to the cross-correlation components corresponding to the

closer antennas leads us to the proposed WCV-S method. This method is evaluated in the

presence of moderately spatial correlation coefficient values (ρr ≥ 0.4). The simulations results

are depicted in Figure 5.7. The same as the SPET method, increasing the spatial correlation

coefficient improves the sensing performance. On the other hand, the WCV-S method provides,

in average, an SNR gain of about 2 dB for the missdetection level of 0.1 when compared to the

SPET one.
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Figure 5.6: The probability of missdetection versus SNR for SPET method at different receive
spatial correlation coefficient (ρr) values when N = 10000, P = 2,M = 4, and L = 1.
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Figure 5.7: The probability of missdetection versus SNR for WCV-S method at different receive
spatial correlation coefficient (ρr) values when N = 10000, P = 2,M = 4, and L = 1.

5.4 Spectrum Sensing in the Presence of Impulsive Noise

The impulsive nature of the noise processes is commonly found in wireless communications.

Transportation systems often suffer of impulsive noise such as car ignitions, and the transient

EM noise which is produced by the sliding contact between the catenary and the pantograph.

The later non-Gaussian heavy-tailed impulsive noise was demonstrated to be characterized by

SαS random processes.
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The algorithms developed for wireless communication systems under the favorite assumption of

Gaussian noise exhibit performance degradation in the presence of non-Gaussian heavy-tailed

impulsive noise. Spectrum sensing algorithms are not an exception, the question is, how much

their performance is affected by heavy noise tails? However, we will propose two sensing methods.

The first one is based on myriad filtering and tries to mitigate the effect of the heavy-tailed noise

before sensing, while the second method is based on the covariation absolute value and tries to

exploit the noise properties.

5.4.1 Preliminary Literature Review

Some spectrum sensing algorithms are developed to address the problem of spectrum sensing un-

der impulsive noise circumstances [117–120]. In [118], a robust non-parametric cyclic correlation

estimator based on the multivariate (spatial) sign function is proposed. However, this method

requires prior information about the PU. A class of spectrum-sensing schemes for CR with re-

ceive diversity was proposed in [117]. The authors employ the GLRT in the detectors at each

antenna branch and exploit a nonlinear diversity-combining strategy. Closed-form expressions of

the GLRT was introduced under Gaussian, Cauchy and contaminated Gaussian environments,

while calculating the GLRT in the SαS case requires numerical simulations. In [119], a subopti-

mal lp-norm primary signal detector in the presence of non-Gaussian noise was proposed. This

method provides tunable parameters that allow the detector to adapt to the underlying type of

noise. This analysis is valid for arbitrary lp-norm metric parameters and all types of circularly

symmetric noise with finite moments, e.g. AWGN, Gaussian mixture noise, Middleton’s class

A noise, generalized Gaussian noise, and co–channel interference. The only major exception

is α-stable noise. The decision statistic of the proposed detector also requires the knowledge

of the power of the fading channel gains. In [120], the authors consider the application of the

non-parametric polarity-coincidence-array detectors to sense the primary signal in the presence

of non-Gaussian (heavy-tailed) noise when a SU is equipped with multiple antennas. However,

this research paper considers the generalized Gaussian noise and Gaussian mixture noise only.

On the other hand, several impulsive noise mitigation methods exist in the literature [43]. The

maximum a posteriori (MAP) detector was used in [121] with the SαS noise assumption. The

SαS random variable does not have a closed form PDF. This complicates the design of the

MAP detector. The PDF is approximated to overcome this difficulty. A well-behaved and

computationally tractable approximation was proposed in [121]. Hole punching is a nonlinear

filter that emulates the functionality of a hard limiter by setting a received sample to zero when

it exceeds some threshold [122]. The advantage of hole punching is the significantly reduced

computational complexity. It can be used as a nonlinear filter preceding the sensing algorithm.

In [123], the simplified Cauchy-based lp-norm filter was presented. This filter operates in a

wide range of impulsive noise due to the proper adjustment of p exponent of the lp-norm. The

authors applied their filter to suppress an impulsive noise in testing chirp signal and in power

line communications environment.

The myriad filter is a robust filter which is very useful in suppressing impulsive noise [124]. It

represents a wide class of maximum likelihood type estimators, i.e. the M-estimator. These
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estimators were developed in the theory of robust statistics. The selection myriad filtering

achieves a good balance between the complexity and the performance for SαS noise mitigation

[43]. In the following, we present some of the beneficial properties of α-stable processes.

5.4.2 Basic Properties of SαS Distribution

The SαS random variables are assumed centered at the origin. They have no closed-form of the

PDf and are rather described by the characteristic function given by

Φw(t) = exp (−γ |t|α) . (5.36)

Two well known special SαS distributions are the Cauchy distribution (α = 1) and the Gaussian

one (α = 2). An important difference between the Gaussian and the other distributions of the

SαS family is that only moments of order less than α exist for the non-Gaussian SαS family

members. The fractional lower order moments of a SαS random variable are given by Zolotarev’s

theorem.

Theorem 4 (Zolotarev’s Theorem). Let w ∽ Sα(β, γ, δ). Then,

E (|w|p) =
{
Cα (p) γ

p/α, for 0 < p < α

∞, for p ≥ α
, (5.37)

where Cα (p) =
2p+1Γ( p+1

2 )Γ(−p

α )
α
√
πΓ(−p

2 )
is a function of α and p.

One important observation we can make from this theorem is that other than the Gaussian case,

α-stable random variable do not have finite variance; and for α ≤ 1, even the absolute mean,

E (|w|), is not finite, i.e. covariances do not exist on the space of SαS random variables. Instead

a quantity called covariation plays an analogous role, for statistical signal processing problems

involving SαS processes, to the role played by covariance in the case of second order processes.

For jointly SαS random variables X and Y with 1 < α ≤ 2, the covariation of X with Y is

defined by

[X,Y ]α ,
∫

S
x y〈α−1〉dΓ (S) (5.38)

where S is the unit circle, dΓ (S) is the spectral measure of the SαS random vector (X,Y ), and

the notation “ .〈.〉” denotes the following operation

y〈α〉 =

{
|y|α sign (y) , for y ∈ R

|y|α−1 y∗, for y ∈ C
. (5.39)

The covariation coefficient of X with Y is described by

λX,Y ,
[X,Y ]α
[Y, Y ]α

(5.40)

Contrary to the covariance, the covariation is not symmetric other than for α = 2, i.e. [X,Y ]α 6=
[Y,X]α , 1 < α < 2. These definitions has practical use since covariation is expressed as a function
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of FLOMs as explained in the following theorem.

Theorem 5. Let X and Y be jointly SαS with 1 < α ≤ 2. Suppose that the dispersion of Y is

γy. Then

[Y, Y ]α = γy, (5.41)

λX,Y =
E

(
XY 〈p−1〉

)

E (|Y |p) , 1 ≤ p < α, (5.42)

[X,Y ]α =
E

(
XY 〈p−1〉

)

E (|Y |p) γy, 1 ≤ p < α. (5.43)

The covariation has the following properties:

❖ If X1, X2 and Y are jointly SαS, then

[aX1 + bX2, Y ]α = a [X1, Y ]α + b [X2, Y ]α , ∀ (a, b) ,

❖ If Y1 and Y2 are independent and X,Y1 and Y2 are jointly SαS, then

[aX, bY1 + cY2]α = ab〈α−1〉 [X,Y1]α + ac〈α−1〉 [X,Y2]α , ∀ (a, b, c) ,

❖ If X and Y are independent SαS, then [X,Y ]α = 0.

Let x = [X1, . . . , XM ] ,y = [Y1, . . . , YM ] be M × 1 vectors whose entries are jointly SαS, then

the covariation matrix of x with y,Γx,y = [x,y]α, is defined by [Γx,y]i,j , [Xi, Yj ]α. Also, the

covariation of x is formed as Γx = [x,x]α.

Quick review of traditional spectrum sensing techniques reveals that they employ second and

higher order moments. These techniques cannot be applied in impulsive noise environments

modeled under the α-stable law, since these processes do not possess finite pth order moments

for p ≥ α. Instead properties of FLOMs and covariations should be used.

5.4.3 System Model

The following assumptions hold in this section. A SU possessing M antenna is sensing the

presence of P PUs. The source signals sj , 1 ≤ j ≤ P are assumed to be centered and i.i.d. The

received signal at the ith antenna is given by

xi(n) = s̃i(n) + wi(n) =
P∑

j=1

hi,jsj(n) + wi(n), n = 1, 2, · · · (5.44)

where wi(n) is additive noise, and hi,j is block-fading channel response between PSj and the ith

antenna.

The M × 1 observation vector at the receiver is expressed as,

x(n) = Hs(n) +w(n) (5.45)
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where H is the M × P matrix of the block-fading channel. Also, w(n) = [w1(n), ..., wM (n)]T is

the M×1 additive centered SαS distributed noise vector. The noise components are assumed to

have the same characteristic exponent α. Also, the noise samples are assumed i.i.d, independent

from received signals, and has covariation matrix Γw = γwIM .

5.4.4 α-Stable Noise Mitigation

Myriad filters provide a flexible filtering framework with high statistical efficiency in bell-shaped

impulsive distributions encountered in practice like the SαS distribution. Myriad filters present

important optimality properties along the α-stable family [124]. Myriad filtering is the M-

estimator of Cauchy distribution (α = 1), and its associated cost function is given by,

ϕ(x) = log
(
k2 + x2

)
, (5.46)

where the free-tunable parameter k is called the linearity parameter of the myriad and controls

the impulse-resistance, i.e. the outlier rejection capability. The maximum likelihood estimator

of location associated with this cost function is called the sample myriad. Let us consider a set

of samples {x (i)}Nw

i=1, the sample myriad of order k > 0 is calculated by,

β̂k = myriad { k;x(1), x(2), . . . , x(Nw) }

= argmin
β

Nw∑

i=1

log
{
k2 + [x(i)− β]2

}

= argmin
β

Nw∏

i=1

{
k2 + [x(i)− β]2

}
(5.47)

The linearity parameter determines the behaviour of the myriad filter: an infinite value of k

makes the myriad filter a linear estimator, as the value of k decreases this estimator becomes more

resilient to the presence of impulsive noise and finally converts into the so-called mode-myriad

when k tends to zero. The selection myriad filter is based on the properties of mode-myriad.

The selection property means that the output of the filter does always belong to M, the set of

most repeated values in the input window, and is introduced by,

β̂0 = mod-myriad {x(1), x(2), . . . , x(Nw) }

, arg min
xj∈M

Nw∏

i=1,i 6=j

|x(i)− x(j)|
(5.48)

The myriad filter is used as a non-linear filter to mitigate the heavy tails effects. This filter

is defined as a sliding window filter whose output is the sample myriad of the elements in the

window. The filtered signal xf can be interpreted as an estimate of location based on signal

samples,

xf (n) = myriad {k;x(n−N1), . . . , x(n+N2)} , 1 ≤ n ≤ N (5.49)
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Figure 5.8: Block diagram of the myriad filtering based spectrum sensing.

where N is the number of observed samples of signal x, and N1, N2 are chosen such as N1+N2 =

Nw − 1.

Figure 5.8 shows the block diagram of the myriad filtering (MyrF) based spectrum sensing. The

traditional spectrum sensing methods, presented in Chapter 4, are employed to conduct the

spectrum sensing. Here, we will apply the SPET method on the filtered signal to sense the

spectrum. Its performance is examined for different impulsive noise parameters.

5.4.5 Generalized Covariation Coefficient Absolute Value Based Spectrum

Sensing

We assume that the primary signals are independent SαS random processes with zero locations

such that [sk(n), sl(n)]α = γs,kδ (k − l). The covariation of xi(n) with xj(n) is calculated by,

[xi(n), xj(n)]α = [s̃i(n) + wi(n), s̃j(n) + wj(n)]α

= [s̃i(n), s̃j(n)]α + [s̃i(n), wj(n)]α + [wi(n), s̃j(n)]α + [wi(n), wj(n)]α

(5.50)

By the independence assumption of signal and noise components, we have [s̃i(n), wj(n)]α =

[wi(n), s̃j(n)]α = 0. Also, by using (5.44) and covariation properties, it holds that,

[s̃i(n), s̃j(n)]α =

[
P∑

k=1

hi,ksk(n), s̃j(n)

]

α

=

P∑

k=1

hi,k [sk(n), s̃j(n)]α

=
P∑

k=1

hi,k

[
sk(n),

P∑

l=1

hj,lsl(n)

]

α

=

P∑

k=1

hi,k

P∑

l=1

h
〈α−1〉
j,l [sk(n), sl(n)]α

(5.51)

Finally, we have [wi(n), wj(n)]α = γwδ (i− j). This can be easily justified by the above noise

assumptions. Hence, the covariation of xi(n) with xj(n) is calculated by,

[xi(n), xj(n)]α =
P∑

k=1

hi,kh
〈α−1〉
j,k γs,k + γwδ (i− j) , 1 ≤ i, j ≤M (5.52)
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Hence,

λxi(n),xj(n) =

∑P
k=1 hi,kh

〈α−1〉
j,k γs,k + γwδ (i− j)

∑P
k=1 |hj,k|α γs,k + γw

, 1 ≤ i, j ≤M (5.53)

The covariation matrix of the observation vector is given, in matrix form, by the following

expression,

Γx = HΓsH
〈α−1〉 + γwIM (5.54)

where Γs = diag (γs,1, . . . , γs,P ) and
[
H〈α−1〉

]
i,j

= [H]
〈α−1〉
j,i , 1 ≤ i ≤ P, 1 ≤ j ≤ M . The

covariation coefficient matrix Λx is defined by [Λx]i,j = λxi(n),xj(n).

Hence, some traditional covariance matrix based signal processing methods could be extended to

the covariation matrices. For instance, the authors in [125] proposed a robust covariation-based

multiple signal classification (ROC-MUSIC) method to estimate the direction of arrival. Several

estimators for the covariation coefficient exist in the literature. Therefore, in the following, we

focus on the covariation coefficient matrix to conduct spectrum sensing.

Let X,Y be two random variables, the generalized covariation coefficient (GCC) function of X

with Y is defined by,

λα,p(X,Y ) =
E

(
XY 〈p−1〉

)

E (|Y |p) , 0 < p < α, (5.55)

Obviously, λα,p(X,Y ) is identical to the covariation coefficient when X,Y are jointly SαS. We

have λα,p [xi(n), xj(n)] = γwδ (i− j) when no PU is present. On the other hand, under H1,

λα,p [xi(n), xj(n)] exists, when E (|sj (n)|p) , 0 < p < α, 1 ≤ j ≤ P does exist. This assumption

is realistic and relax the constraints on the source signals.

In fact, the GCC is unknown at the receiver and has to be estimated. The sample GCC is

introduced to overcome this difficulty, and is obtained by,

λ̂α,p (i, j) =

∑N
k=1 xi (k) [xj(k)]

〈p−1〉

∑N
k=1 |xj(k)|p

(5.56)

This estimator has the same form of the modified FLOM (MFLOM) estimator for jointly SαS

random variables [125].

Ideally, under H0, the GCC matrix is a diagonal, while some off-diagonal entries are not zeros

under H1. This property is exploited to introduce the generalized covariation coefficient absolute

value (CCAV) based spectrum sensing. The proposed test statistic is calculated by,

TCCAV (p) =

M∑
i=1

M∑
j=1

∣∣∣λ̂α,p (i, j)
∣∣∣

M∑
i=1

∣∣∣λ̂α,p (i, i)
∣∣∣

δ1
≷
δ0

λCCAV (p) (5.57)

In fact this non-parametric sensing method requires a rough estimation of α.
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5.4.6 Performance Evaluation

In this subsection we evaluate the performance of the two proposed methods, namely, the gen-

eralized CCAV and the myriad filtering based spectrum sensing methods. These methods are

evaluated through the probability of missdetection at a false alarm probability of 0.1. In order to

determine the threshold for this given Pf , the decision statistic is calculated for 106 independent

random trials under H0, i.e. when there is no signal. We sort the decision statistic values in

descending order to choose the detection threshold such as Pf × 106 samples of the generated

statistic values are above the chosen threshold.

All results are based on 1000 Monte Carlo trials for each method. For each realization, the

channel is block-fading whose taps follow a Rayleigh distribution. Also, the P primary signals

are binary phase-shift keying modulated ones. A random additive i.i.d SαS noise vector is added.

The second order moment is widely accepted as a measure of signal strength which defines the

popular SNR measure. This distortion measure is not valid in the presence of α-stable noise,

since this noise processes do not have finite second order statistics. In our simulations, we employ

the generalized SNR (GSNR). The GSNR is calculated by the ratio of the average received signal

power and average dispersion of the stable noise [42], such that,

GSNR (dB) = 10 log10

E
[
‖x(n)−w(n)‖2

]

Mγ
. (5.58)

We had shown that the measured EM interferences acting on GSM-R Antennas can be fitted to

SαS random variable with α = 1.253. This value is adopted throughout our simulations.

The performance of MyrF based spectrum sensing is a reflection of the performance of the

myriad filter itself. That is, for a chosen multiple-antenna spectrum sensing (e.g. the SPET

method), the performance already degrades in low SNR regime under Gaussian noise conditions.

This degradation could be extended in the presence of impulsive noise, when the filter fails to

properly remove the heavy tails.

The performance of myriad filtering is examined by chirp signals employed as the same deter-

ministic component corrupted with SαS distributed heavy-tailed noise. The performance is

evaluated by the root mean square error (RMSE) between the deterministic part of the signal

and the filtered signal. Figure 5.9(c) show an example of filtered chirp signal, while Figure 5.9(a)

and Figure 5.9(b) shows the original and corrupted signals. Also, It is clear, from Figure 5.9(d),

that in the very low SNR region (i.e. GSNR < −10 dB), the myriad filter performance does

degrade dramatically.

Figure 5.10 illustrates the missdetection probability of the MyrF based spectrum sensing as a

function of GSNR for different values of 1 < α < 2. The filter output is sensed using the SPET

detector to decide the PU signals presence/absence. The performance of MyrF based method,

in one way or another, reflects the performance of myriad filter itself shown in Figure 5.9(d). In

average, the sensing performance degrades rapidly for SNR values lower than certain level which

is around −10 dB. On the other hand, it is clear that this performance depends on α where the

missdetection probability is lower for higher α values, i.e. heavier tails more affect the sensing
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Figure 5.9: Myriad filtering of chirp signal corrupted with SαS distributed heavy-tailed noise
for α = 1.253 and GSNR = 2 dB (a) original signal (b) noisy signal (c) filtered signal. Also, the
RMSE as a function of the GSNR is given for α = 1.253 (d).
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Figure 5.10: Missdetection probability of MyrF based spectrum sensing versus GSNR for different
α values when N = 10000, L = 1,M = 4 and P = 1.
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performance even when filtered. Yet this influence can be considered reasonable when comparing

to other methods. To reach a detection probability value of 0.9, an extra GSNR, about 4 dB, is

required when α varies from 1.8 to 1.253.

The performance of generalized CCAV method depends on the p value employed to obtain its test

statistic, i.e. the p value used in Equation (5.57) to estimate the covariation coefficients. In other

words, the generalized CCAV performance depends on the performance of the MFLOM estimator

for SαS processes. This covariation coefficient estimator was deeply studied in [125]. Figure 5.11

shows that this estimator is very robust for the values of p in the range [1/2, α/2] , 1 < α < 2.

p

R
M
S
E

MFLOS Performance
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Figure 5.11: Root minimum square error of the MFLOM estimator of the covariation coefficient
as a function of the parameter p.
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Figure 5.12: Generalized CCAV missdetection probability versus GSNR for different α values
when N = 10000, L = 1,M = 4 and P = 1.
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The best p value is the one that minimize the root minimum square error of the MFLOM

estimator. This value belongs to the previous range but more close to α/2. For instance, the best

p is about 0.57, 0.61, and 0.7 when α equals, respectively, 1.2, 1.3, and 1.6. Hence, the chosen p

value is 0.6 when α = 1.253.

The performance of generalized CCAV method is shown Figure 5.12 where the missdetection

probability is depicted as a function of GSNR for different α values. It is clear that the perfor-

mance degradation is larger for lower α values and that the amount of degradation is consider-

able. For instance, the probability of detection is larger than 0.9 even for very low GSNR value

of −17 dB when α = 1.8, while reaching the same level of detection probability is not possible

when GSNR < −2 dB for α = 1.253. On the other hand, this method provides better perfor-

mance when compared to MyrF based method under moderately heavy-tailed noise conditions

(i.e. α > 1.5). The generalized CCAV is preferred in this α region not only due to the previous

reason but also due to its lower complexity. In the other α region (i.e. 1 < α < 1.5), the MyrF

based method gives better performance and is preferred. The dramatic degradation of general-

ized CCAV for 1 < α < 1.5 is caused by the lower performance of the MFLOM estimator in this

region. One way to enhance its sensing performance is to improve the estimator performance.

5.5 Conclusions

This Chapter contents are based on studying the problem of spectrum sensing in the special

context of railways, i.e. to cope with: the time-varying nature of wireless channel resulting from

high speed of train, the presence of multiple-antenna spatial correlation, and the heavy tails of

the impulsive noise modeled with SαS distribution.

First, it was found that the time-varying channel degrades the performance of the NSS methods

presented in Chapter 4. Therefore, a new NSS method based on the weighted covariance matrix

is introduced. The weighting matrix is optimized to improve the sensing performance in the low

SNR regime. The proposed weighted covariance value for time-varying channels method provides

an average SNR gain of 3 dB when the train is moving.

Also, the effect of the spatial correlations on NSS methods was examined. It was found that these

correlations do improve the sensing performance of some methods, e.g. the SPET method. An-

other weighting matrix was proposed to better exploit the spatial correlation to achieve higher de-

tection levels. The proposed weighted covariance value for spatially-correlated multiple-antenna

systems method provides an average SNR gain of 2 dB when antennas are moderately correlated.

Finally, it was found that the presence of heavy-tailed impulsive noise degrades the performance

of NSS methods developed based on the Gaussian noise assumption. Two method were proposed

to mitigate the effect of the heavy noise tails when the SαS distributed noise is assumed. The

first method is based on the myriad filtering while the second one tries to exploit the covariation

properties of the SαS distributed noise. The first method was found to be more efficient when

the noise tails are heavier.







General Conclusions and Future Works

Both railway operators and European rail research advisory council target increasing passenger

traffic by rail. This objective is infeasible without developing the communication systems for

railways such as the information fluxes can reply the demands of operations and safety-related

applications (control, command, and maintenance), and that of the various application neces-

sary to guarantee the attraction of rails (passenger information, Internet on-board trains). The

integration of the various existing railway-dedicated communication systems represents a key

technical challenge for railways in the context of interoperability and efficiency.

The next generation wireless technology referred to as cogintive radio emerged originally to im-

prove the radio spectrum utilization efficiency. CR based solution for railways has the potential

for providing significant benefits, including interoperability, improved spectral efficiency, opti-

mization of radio resource usages, lower deployment and operational costs, and improvement of

communications reliability. This thesis is a step towards that solution.

In the following, the most important topics discussed in each Chapter are summarized, and the

main conclusions and contributions of this thesis are highlighted. Thereafter, we present a list

of possible near future work and perspectives that could lead to the continuation of some of our

propositions.

Summary and conclusions

In Chapter 1, we discussed the problematic, the context and the motivations of this work.

First, the existing communication systems for railways were surveyed, and the special needs of

operators and passengers were explained. Then, we presented the concept and the architecture

of the CR, before exploring the possibility of developing a communication system for railways

based on the CR. The focus of the last section of this Chapter was to highlight the areas of

the CR research where this thesis contributions belong, i.e. developing waveform awareness and

spectrum awareness functions.

Our first task was modeling the radio environment of railways such as the developed methods

must respect the characteristics of this special context. These characteristics come mainly form

the high mobility, the EM interferences, and the topology of the environment. Chapter 2 pre-

sented the resulting constraints from these phenomena. The characteristics of the mobile radio

channels mainly the Doppler effect related to the high mobility was presented. We adopted the
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generalized exact Doppler spread model to simulate the dynamic radio channel due to its prop-

erties which are well matched to the theoretical model. Furthermore, practical multiple-antenna

receivers suffer from the spatial correlation which may degrades the performance of wireless

systems. These correlations were modeled by the Kronecker model based on the exponential cor-

relation model. This model is physically reasonable in the sense that the correlation decreases

with increasing distance between antennas. Also, the EM noise interferences were modeled by

the α-stable processes. This model was justified not only by the generalized central limit theo-

rem, but also by the proposed distribution fitting of the measured transient EM noise acting on

GSM-R antenna. The importance of this new result lie in the fact that it confirms the validity of

the wide use of α-stable processes to model impulsive noise. These constraints were taken into

consideration in Chapter 5 where the problem of narrowband spectrum sensing was studied.

Thereafter, the waveform awareness of a CR device was the focus of Chapter 3. This awareness

can be improved by identifying several features of the received signal, e.g. the used modulation

scheme, whether spectrum spreading is employed or not, and whether the signal is a multi-

carrier one or not. Literature review of existing waveform identification algorithms is presented.

Then we proposed a modulation recognition algorithm for MIMO systems based on HOS. This

method, to the best of our knowledge, is among the first ones that studied the modulation

recognition for MIMO systems, and the first one that addressed the spatially-correlated case.

Three new algorithms were introduced and studied: the AMR-D, the AMR-ZF, and the AMR-

SCMA algorithms. The proposed algorithms showed to be capable of identifying different linear

digital modulation schemes with good accuracy. Thereafter, a blind identification method of MC-

DS-CDMA signals based on autocorrelation estimator fluctuations was proposed. The described

scheme efficiently estimates symbol duration, CP duration, and subcarriers number. We proposed

to enhance the identification performance by exploiting the multiple-antennas at receiver while

keeping the detection duration constant. A performance comparison between this method and

the one that directly employs the autocorrelation function reveals that this method gives a better

identification performance .

The CR based solution for railways requires having a general image of the frequency bands

of interest through the spectrum sensing function. Two approaches of spectrum sensing exist,

namely, the narrowband sensing and the wideband sensing. Chapter 4 presented a preliminary

literature review of these two approaches. The obvious conclusion was that the wideband sensing

is still in its early stages, contrary to the narrowband sensing which is well studied in the

literature. As a contribution to the narrowband sensing activity, we proposed a new narrowband

spectrum method based on the predicted eigenvalue threshold. The proposed method is blind

non-parametric and gives good performance when compared with other existing methods. On the

other hand, we proposed an improved cooperative Welch periodogram based wideband sensing.

This method is a compromise between reducing complexity and sampling rates (compression rate

100%), i.e. using sub-Nyquist sampling while still avoiding the NP-hard problem of spectrum

reconstruction. However, improving the wideband sensing performance is a tradeoff with using

more antennas than that required in the narrowband sensing. Nowadays wideband spectrum

sensing is a very active research area and may become preferred to the narrowband spectrum

sensing in the near future.
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Sensing the spectrum for railway-dedicated CR application faces some special constraints to cope

with. That is, the high-speed results in a time-varying wireless channel, and the EM interferences

makes the Gaussian noise assumption (assumed in Chapter 4) invalid. First, it was found that

the time-varying channel degrades the performance of the NSS methods presented in Chapter

4. Therefore, we introduced a new NSS method based on the weighted covariance matrix,

and optimized to improve the sensing performance in the low SNR regime. The new weighted

covariance value for time-varying channels method provides an average SNR gain of 3 dB when

the train is moving. Also, we found that spatial correlations do improve the sensing performance

of some methods, e.g. the SPET method. However, higher detection levels were achieved by

exploiting the spatial correlation phenomenon. We proposed the new weighted covariance value

for spatially-correlated multiple-antenna systems method. This method provided an average

SNR gain of 2 dB when antennas are moderately correlated. Finally, we had found that the

presence of heavy-tailed impulsive noise degrades the performance of NSS methods developed

based on the Gaussian noise assumption. Two method were proposed to mitigate the effect of

the heavy noise tails when the SαS distributed noise is assumed. The first method is based on

the myriad filtering while the second one tries to exploit the covariation properties of the SαS

distribution. The first method was found to be more efficient when the noise tails are heavier.

Perspectives

Beyond the contributions presented in this thesis, some questions remain open issues and need

further investigations. Below, we list some topics that may be viewed as the natural continuity

of our work:

❖ We assumed the isotropic scattering when modeling the Doppler power spectrum, i.e.,

each channel tap is associated with the classical Jakes Doppler spectrum. In practice, this

assumption may be not always valid. Measurements has to be done in different scenar-

ios to confirm which model to be employed to characterize the wireless channel. These

measurements are beyond our research wok, however, some new results published in [126]

may be taken into consideration. Also, our algorithms must be evaluated in other existing

Doppler power spectrum models like asymmetrical Jakes spectrum, bi-Gaussian spectrum,

bell-shaped spectrum, etc.

❖ The proposed waveform awareness methods, presented in Chapter 3, had not taken into

consideration the effects of the high mobility and the heavy-tailed impulsive noise. Devel-

oping modulation scheme recognition and modulation technique identification algorithms,

that take these phenomena into account, is an important perspective of our research work.

❖ The sub-Nyquist sampling is used for the proposed cooperative Welch periodogram based

wideband sensing while still avoiding the NP-hard problem of spectrum reconstruction.

One of our perspectives is to develop the proposed wideband sensing method to work

with lower compression rates without the need of spectrum recovery. This will relax the

constraints on ADCs and reduce the complexity and consequently cut down energy cost.



General Conclusions 142

❖ We have shown in Chapter 5 that the presence of spatial correlation improves the sensing

performance of some methods. However, we proposed a weighting matrix to better exploit

these correlations to enhance the sensing performance. This imrovement was confirmed by

the simulations results. Yet the weighting matrix of WCV-S method has to be optimized.

This optimization problem is one of our near future research perspectives.

❖ Theoretically, the covariation properties well characterize the SαS processes. The per-

formance of the covariation based spectrum sensing was not as high as expected because

of the low performance of the modified fractional lower order estimator. An improved

covariations estimator will certainly improves the sensing performance.

❖ Our thesis contributions were restricted to the physical layer functions. Our research work

will be extended, by employing the knowledge obtained during this Ph.D. candidature and

the developed methods, to the area of the cross-layer design. The objectives are to develop

techniques for resource management, priorities organization, and the joint scheduling of

sensing and transmission durations.

❖ Some of the proposed methods in this thesis will be implemented and evaluated on the Ope-

nAir Interface platform in the framework of the ANR project CORRIDOR. This platform

is developed by EURECOM and other partners within several collaborative projects [127].







Appendix A

α-stable Noise Generation

In order to generate α-stable distributed data {wk}k=1,...,N , we have used the inverse transform

method, whose principle is briefly described below.

Let U be a random variable uniformly distributed over the interval [0, 1] and consider N of its

realizations {uk}k=1,...,N . Then, if FU (u) stands for the cumulative distribution function (CDF)

of U , we can write that FU (uk) = uk.

Let’s now consider that our data samples are obtained from {uk}k=1,...,N , via the transformation

wk = G (uk), where the function G is the inverse of, H, the CDF of α-stable distributed data,

so that G = H−1.

The cumulative distribution function of W can be then readily derived as follows

FW (w) = P [W ≤ w] = P [G (U) ≤ w]

= P
[
U ≤ G−1 (w)

]
= P [U ≤ H (w)]

= FU {H (w)} = H (w)

(A.1)

α-stable CDFs, α=1.5 , β = 0, γ = 1, δ = 0
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Figure A.1: Estimated CDF of simulated α-stable distributed data using the inverse transform
method and the corresponding theoretical CDF.
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Consequently, we can conclude from Equation (A.1) that the data samples given by wk =

H−1 (uk) are α-stable distributed.

Figure A.1 displays the estimated CDF of generated α-stable distributed data using the inverse

transform method and the corresponding theoretical CDF.
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Appendix Related to Chapter 3

B.1 Theoretical Values of the HOS for different modulation schemes

The theoretical values of higher order cumulants and higher order moments for k = 2, 4 and 6,

and 2-PSK, 4-PSK, 8-PSK, 4-ASK, 8-ASK,16-QAM, and 64-QAM signals, are given in B.1. These

values are computed for noise-free constellations with unit variance and equiprobable symbols

[48,56].

Table B.1: Some theoretical statistical moments and cumulants values for different modulation
schemes of interest.

2-PSK 4-PSK 8-PSK 4-ASK 8-ASK 16-QAM 64-QAM

C20 1 0 0 1 1 0 0

M40 1 1 0 1.64 1.77 -0.67 -0.18

M41 1 0 0 1.64 1.77 0 0

M42 1 1 1 1.64 1.77 1.32 1.34

C40 -2 1 0 -1.36 -1.24 -0.68 -0.62

C41 -2 0 0 -1.36 -1.24 0 0

C42 -2 -1 -1 -1.36 -1.24 -0.68 -0.62

M60 1 0 0 2.92 3.62 0 0

M61 1 -1 0 2.92 3.62 -1.32 0.38

M63 1 1 1 2.92 3.62 1.96 2.08

C60 16 0 0 8.32 7.19 0 0

C61 16 -4 0 8.32 7.19 2.08 1.8

C62 16 0 0 8.32 7.19 0 0

C63 16 4 4 8.32 7.19 2.08 1.8

B.2 Derivation of ZF Post-processing SNR in The Presence of

Channel Estimation Error

The ZF equalizer output is given by

ŝ = B̂ (Hs+w) (B.1)
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where B̂ = Ĥ
†
= (H+σeΩ)†. Assume σe ≪ 1, then the pseudo-inverse of the estimated channel

matrix can be approximated by the linear part of the Taylor expansion as B̂ = H†(IM−σeΩH†).

Hence, the estimated signal can be written as ŝ = s+ ŵ where ŵ is given by

ŵ = H†w− σeH†Ω s− σeH†ΩH†w. (B.2)

The last two terms in the above expression are additional noise introduced by the channel

estimation error. To calculate the effective post-processing SNR for each estimated stream we

need to calculate the covariance matrix of the effective post-processing noise, i.e. E[ŵŵH ]. This

covariance matrix is computed as,

E[ŵŵH ] = E

[(
H†w− σeH†Ω s− σeH†ΩH†w

)
×

(
H†w− σeH†Ω s− σeH†ΩH†w

)H
]

= σ2wH
†
(
H†

)H
− σeσ2wE

[
H†

(
H†

)H
ΩH

(
H†

)H
]
+ σ2eσ

2
sH

†E
[
ΩΩH

] (
H†

)H

− σeσ2wE
[
HH†Ω

(
H†

)H
]
+ σ2eσ

2
wH

†E

[
ΩH†

(
H†

)H
ΩH

](
H†

)H

= σ2w
(
HHH

)−1
+ σ2eσ

2
sH

†P IM
(
H†

)H
+ σ2eσ

2
wH

†E
[
Ω

(
HHH

)−1
ΩH

] (
H†

)H

=
[
σ2w + Pσ2eσ

2
s + σ2eσ

2
wtr

((
HHH

)−1)] (
HHH

)−1

(B.3)

where E[ssH ] = σ2sIP ,E[wwH ] = σ2wIM , E[ΩΩH ] = P IM , H† (H†)H =
(
HHH

)−1
, and

E
[
Ω

(
HHH

)−1
ΩH

]
= tr

((
HHH

)−1)
IM .

Based on the above Equation, the post-processing SNR per symbol of the nth stream can be

expressed as,

ηn =
σ2
s/σ2

w[
1 + Pσ2e σ2

s/σ2
w + σ2e tr

((
HHH

)−1)] [(
HHH

)−1]
nn

, 1 ≤ n ≤ P, (B.4)

The probability of
[(
HHH

)−1]
nn

to be large is still small. The term σ2e tr
((

HHH
)−1)

in the

above Equation can be neglected. Finally, the post-processing SNR for each estimated stream is

approximated by,

ηn =
η0

(1 + σ2ePη0) [(H
HH)−1]nn

=
η0κn
λe

, 1 ≤ n ≤ P, (B.5)

This derivation was introduced in [61] for uncorrelated Rayleigh channel. Here, we proved that

this result is still valid for correlated MIMO systems when the exponential correlation model is

assumed.



Appendix C

Appendix Related to Chapter 4

C.1 Derivation Details of the SPET Missdetection Probability

The objective of this Appendix is to prove Equation (4.26). Here, we try to approximate

the missdetection probability in the presence of single strong source, i.e., the signal subspace

contains an eigenvalue of multiplicity L. Under this assumption, it is clear that 1
q

∑q
i=1 ℓi =

1
q

[
Lℓ1 +

∑q
i=L+1 ℓi

]
and the missdetection probability is given by

First, TSPET is altered to,

TSPET =
ℓ1

Lℓ1
q + 1

q

∑q
i=L+1 ℓi

=
ℓ1

Lℓ1
q + q−L

q
1

q−L
∑q

i=L+1 ℓi

=
ℓ1

Lℓ1
q + q−L

q σ2wξ

(C.1)

where ξ =

1
q−L

q
∑

i=L+1
ℓi

σ2
w

is asymptotically approximated to 1 [89]. The missdetection probability

is given by,

Pm = P [TSPET < λSPET|H1]

= P

[
ℓ1 < λSPET

(
Lℓ1
q

+
q − L
q

σ2wξ

)]

= P

[
ℓ1

(
1− λSPETL

q

)
< λSPET

q − L
q

ξ

]

= P

[
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σ2w

<
λSPET

q−L
q

1− λSPETL
q

ξ

]

= 1− P

[
ℓ1
σ2w

>
(q − L)λSPET

q − LλSPET
ξ

]

(C.2)
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The instantaneous received SNR ρ is obtained as,

ρ ==
E[ ‖x(n)−w(n)‖2]

E[ ‖w(n)‖2]

=
L
(
λ1 − σ2w

)

MLσ2w

=
1

M

(
λ1
σ2w
− 1

)
(C.3)

This implies that λ1
σ2
w
= 1 +Mρ. The largest eigenvalue has a limiting Gaussian distribution as

follows [100],

ℓ1
dist−−→ N

(
λ1 +

(q − L)λ1σ2w
N(λ1 − σ2w)

,
λ21
N

)
, (C.4)

which implies that ℓ1
σ2
w

dist−−→ N
(
µn, σ

2
n

)
, where

µn =
λ1
σ2w

+
(q − L)λ1
N(λ1 − σ2w)

=
λ1
σ2w

+
q − L
N

λ1/σ2
w

λ1/σ2
w − 1

=
λ1
σ2w

(
1 +

q − L
N

1
λ1/σ2

w − 1

)

= (1 +Mρ)

(
1 +

q − L
N

1

Mρ

)

= (1 +Mρ)

[
1 +

L (M − 1)

MNρ

]

(C.5)

and

σ2n =
λ21
Nσ4w

=
(1 +Mρ)2

N

(C.6)

Let us denote x = (q−L)λSPET

q−LλSPET
, the missdetection probability is calculated by,

Pm = P

[
ℓ1
σ2w

< x

]

= 1−Q

(
x− µn
σn

)

= 1−Q

[ √
N

1 +Mρ
x−

√
N

(
1 +

q − L
MρN

)]

= 1−Q

( √
N

1 +Mρ

M − 1

M
λSPET −

√
N − L(M − 1)

Mρ
√
N

)

(C.7)
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C.2 Mathematical Derivation for the Pre-whitening Technique

The received signal is filtered by a narrowband filter. Therefore, the noise embedded in the

received signal is also filtered. Let w (n) be the noise samples before the filter, which are assumed

to be i.i.d. Let g(k), k = 0, 1, ..., Nf be the employed filter. After filtering, the noise samples

turn to,

w̃ (n) =

Nf∑

k=0

g(k)w (n− k) (C.8)

Let us Consider L consecutive outputs as follows,

w̃L(n) = [w̃(n), ..., w̃(n− L+ 1)]T (C.9)

The statistical covariance matrix of the filtered noise becomes,

RL,w̃ = E[w̃Lw̃
H
L ] = σ2wGG

H (C.10)

where G is an L× (L+Nf ) matrix defined as,

G =




g (0) . . . g (Nf − 1) g (Nf ) . . . 0
. . .

. . .

0 . . . g (0) . . . g (Nf − 1) g (Nf )


 (C.11)

Let D = GGH . Note that D is a positive-definite symmetric matrix. It can be decomposed to

D = Q2

where Q is also a positive-definite symmetric matrix. Hence, we can transform the statistical

covariance matrix into,

Q−1RL,w̃Q
−1 = σ2wIL (C.12)

Note that Q is only related to the filter. Furthermore, since Q is not related to signal and noise,

we can pre-compute its inverse Q−1 and store it for later usage. This pre-whitening technique

was used in [92,93].

Let us consider M antennas at the receiver. The M ×L matrix G is replaced by the matrix GM

as

GM =




G 0L . . . 0L

0L
. . .

. . .
...

...
. . .

. . . 0L

0L . . . 0L G




(C.13)
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Figure C.1: The covariance matrix of Gaussian noise acting at receiver antennas after applying
the narrowband filter.

(b)
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Figure C.2: The covariance matrix of Gaussian noise acting at receiver antennas after applying
pre-whitening technique to remove the effect of the narrowband filter.

Figure C.1 displays the noise-only covariance matrix when the narrowband filter is used. It

is clear that this filter turns the noise samples to be correlated. Also, Figure C.2 shows the

pre-whitened covariance matrix of the noise. This matrix is transformed to a diagonal one.



Appendix D

Appendix Related to Chapter 5

D.1 Derivation of Equation (5.8)

The received signal at the ith antenna is given by

xi(n) =
P∑

p=1

Cp∑

k=0

hi,p(n, k)sp(n− k) + wi(n), n = 1, 2, · · · (D.1)

where wi(n) is the AWGN with zero-mean and variance σ2w , Cp is the order of the channel

between the pth primary source (PSp) and each antenna, and hi,p(n, k) is the nth sample of the

kth tap of the time-varying channel response between PSp and the ith antenna.

The term r (n,m) = E [xi (n)x
∗
i (m)] is obtained as,

r (n,m) = E






P∑

p1=1

Cp1∑

k1=0

hi,p1(n, k1)sp1(n− k1) + wi(n)







P∑

p2=1

Cp2∑

k2=0

hi,p2(m, k2)sp2(m− k2) + wi(m)






=

P∑

p1=1

Cp1∑

k1=0

P∑

p2=1

Cp2∑

k2=0

E [hi,p1(n, k1)sp1(n− k1)hi,p2(m, k2)sp2(m− k2)] + σ2wδ(n−m)

(D.2)

Here we used the fact that the noise and signal components are uncorrelated. The inter-tap

correlation is insignificant, and source signals are assumed uncorrelated, hence, we have,

r (n,m) =
P∑

p=1

Cp∑

k=0

σ2srh (n−m) + σ2wδ(n−m)

= (P + C)σ2srh (n−m) + σ2wδ(n−m) + σ2wδ(n−m)

(D.3)

where rh(n−m) , E
{
hi,p(n, k)h

∗
i,p(m, k)

}
and C =

∑P
p=1Cp. In the absence of primary signals,

we have σ2s = 0. This proves Equation (5.8), i.e., Under Hη for η = 0, 1, r (n,m)is given by,
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r (n,m) = η (P + C)σ2s︸ ︷︷ ︸
,Ps

rh (n−m) + σ2wδ(n−m) (D.4)

D.2 Optimization of the Weighting Matrix for Time-varying Chan-

nels

Under H1, we have r (n−m) = Psrh (n−m) + σ2wδ(n−m).

The studied problem is optimized in the low SNR regime, i.e. Ps ≪ σ2w. Thus, the variance σ2∆,1

is approximated as

σ2∆,1 ≃
2σ4wt

2
0L

2

N
(λ2 + Λ2

t ) (D.5)

The cost function is reformulated as

J = αt,a

L∑

n=1

L∑

m=1,m 6=n

t̃i,jr (n−m) + αt,b (D.6)

where t̃i,j =
ti,j
t0

,αt,a = 1
√

2
N
σ2
wL
√

λ2+Λ2
t

, and αt,b = −λr(0)
√

2
N
σ2
w

√
λ2+Λ2

t

. The Lagrange function is

calculated by,

Ωt = J + ηt
(
Λ2
t − Λ2

t,0

)

= αt,a

L∑

n=1

L∑

m=1,m 6=n

t̃n,mr (n−m) + αt,b +
ηt
L2

L∑

n=1

L∑

m=1,m 6=n

dmax∑

d=dmin

t̃n,mt̃d,d−n+m − ηtΛ2
t,0

(D.7)

The partial derivative is given by

dΩt

dt̃n,m
= αt,ar (n−m) +

ηt
L2

dmax∑

d=dmin,d 6=n

t̃d,d−n+m +
2ηt
L2

t̃n,m, 1 ≤ n,m ≤ L, n 6= m (D.8)

Setting the partial derivative to zero gives

t̃n,m +

dmax∑

d=dmin

t̃d,d−n+m = −αt,aL
2Ps

ηt
rh (n−m) (D.9)

where r (n−m) = Psrh (n−m) , n 6= m. Applying the equality constraint, the arbitrary con-

stant Λt,0 is chosen such as,

t̃n,m +

dmax∑

d=dmin

t̃d,d−n+m = Lrh (n−m) , 1 ≤ n,m ≤ L, n 6= m (D.10)
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At first, we consider n > m, the above Equation is rewritten as,

t̃n,m +
L∑

d=1+n−m
t̃d,d−n+m = Lrh (n−m) , 1 ≤ n,m ≤ L, n > m (D.11)

Let us denote τ = n−m, we have

t̃n,n−τ +
L∑

d=1+τ

t̃d,d−τ = Lrh (τ) , 1 ≤ τ ≤ L− 1, 1 + τ ≤ n ≤ L− 1 (D.12)

The optimal weighting coefficients are determined by solving this system of linear equations.

The following is straightforward proved,

t̃n1,n1−τ = t̃n2,n2−τ , 1 ≤ τ ≤ L− 1, 1 + τ ≤ n1, n2 ≤ L− 1, (D.13)

which results in t̃n,n−τ = Lrh(τ)
L−τ . Finally, we conclude,

t̃n,m =
Lrh (n−m)

L− (n−m)
, 1 ≤ n,m ≤ L, n > m (D.14)

Repeating the same steps when n < m, the optimal weighting coefficients are given by,

t̃n,m =
Lrh (n−m)

L− |n−m| , 1 ≤ n,m ≤ L, n 6= m (D.15)
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Titre : Contributions aux capacités de reconnaissance de l’environnement de

la radio cognitive pour des applications mobiles à grande vitesse.

Résumé

Les principaux objectifs des opérateurs ferroviaires visent à accroître la sécurité, réduire les coûts d’ex-

ploitation et de maintenance et augmenter l’attractivité et les bénéfices du transport ferroviaire en offrant

de nouveaux services aux passagers. Ceci ne pourra être atteint que grâce à la multiplication des échanges

de données entre les différents acteurs du monde ferroviaire. L’interopérabilité, l’efficacité spectrale, l’op-

timisation de l’usage des ressources radio et l’amélioration de la fiabilité des communications sont des

exigences fortes pour les applications de télécommunication ferroviaires. Les recherches dans le domaine

de la radio cognitive ont vu le jour afin de répondre aux besoins de communication de l’armée ainsi qu’aux

besoins dans les secteurs de la sécurité publique. Ces domaines partagent souvent les mêmes exigences

que les chemins de fers. Ainsi, la radio cognitive a montré un potentiel prometteur pour répondre aux

besoins listés précédemment. Une des principales fonctionnalités d’un dispositif de radio cognitive est

de prendre conscience de son environnement radioélectrique et de détecter les bandes disponibles. Trois

principaux éléments définissent l’environnement de la radio cognitive : l’utilisateur, les règles d’accès

au spectre radio et les domaines radio. Cette thèse met en avant plusieurs contributions relatives à la

reconnaissance de l’environnement radiofréquence et la détection de bandes libres. Plus spécifiquement,

ces contributions portent sur la reconnaissance par la radio cognitive de l’occupation du spectre et de la

modulation des signaux présents dans les bandes analysées. Ces fonctions ont été conçues pour le contexte

ferroviaire, c’est-à-dire la grande vitesse et un environnement électromagnétique difficile en présence de

bruit impulsif.

Mots Clef : Cognitive radio, sondage spectral, identification de forme d’ondes, grande vitesse ferroviaire,

bruit impulsive, antennes multiple, multiple-input multiple-output.

Title : Contributions to Cognitive Radio Awareness for High Mobility

Applications

Abstract

An essential goal of railway operators is to increase safety, reduce operation and maintenance costs, and

increase attraction and profit by offering new services to passengers. These objectives will be reached

thanks to a huge increase of data fluxes exchanges between railways stakeholders and infrastructures.

Interoperability, spectral efficiency, optimization of radio resource usages, and improvement of communi-

cations reliability are of significant interest for railway applications. The Cognitive Radio (CR) research

has been successfully applied to meet the communication needs of the military as well as the public-safety

sectors, which share many of the same needs as railway. CRs have shown significant promise to answer all

of the previously listed requirements. One of the main capabilities of a CR device is to sense and finally

become aware of its environment. Three major domains define the environment of the CR, namely, the

user, policy, and radio domains. This thesis highlights several contributions to radio environment aware-

ness of a CR device. More specifically, these contributions lie in the spectrum awareness and waveform

awareness functions of the CR. We designed these functions for the railways context, that is, a high speed

vehicular context, besides difficult electromagnetic environments resulting a heavy-tailed impulsive noise.

Keywords : Cognitive radio, spectrum sensing, waveform identification, high mobility, heavy-tailed

noise, multiple-antennas, multiple-input multiple-output systems.


