Thèse soutenue

Modélisation, conception et caractérisation de transducteurs ultrasonores capacitifs micro-usinés

FR  |  
EN
Auteur / Autrice : Cyril Meynier
Direction : Dominique Certon
Type : Thèse de doctorat
Discipline(s) : Sciences de la Vie et de la Santé
Date : Soutenance le 19/06/2012
Etablissement(s) : Tours
Ecole(s) doctorale(s) : École doctorale Énergie, Matériaux, Sciences de la Terre et de l'Univers (Centre-Val de Loire ; 2012-....)
Partenaire(s) de recherche : Equipe de recherche : Laboratoire GREMAN (Tours)
Jury : Président / Présidente : Jean Yves Chapelon
Examinateurs / Examinatrices : Anne Christine Hladky Hennion, Nicolas Felix
Rapporteur / Rapporteuse : Jean Yves Chapelon, Anne Christine Hladky Hennion

Résumé

FR  |  
EN

La transduction électrostatique est utilisée depuis plusieurs décennies dans les fréquences du domaine audible, principalement sous la forme de microphones membranaires. La transposition du même principe de transduction, mais dans un domaine de fréquence au-dessus du MHz, et par l’utilisation de dispositifs micro-usinés, c'est-à-dire produits à l’aide de technologies de photolithographie, a été proposée à partir de la fin des années 1990. Ces transducteurs, désignés sous l’acronyme cMUT (capacitive micromachine ultrasonic transducers), se composent d’un assemblage de transducteurs élémentaires, chacun possédant une partie mobile conventionnellement appelée diaphragme ou membrane, actionnée par la pression électrostatique. Cette thèse s’inscrit dans le développement de transducteurs de ce type destinés au domaine de l’imagerie médicale ultrasonore. Ce secteur d’application utilise actuellement des transducteurs basés sur des céramiques (ou, dans certains cas précis, des polymères) piézoélectriques. Le cMUT est intéressant dans certains sous-domaines d’application des ultrasons médicaux en raison de sa bonne adaptation à une production en grande série, de son intégration plus facile avec des éléments électroniques, de son faible échauffement et de l’absence de matériaux toxiques dans son processus de fabrication. La partie théorique de cette thèse repose sur une approche de modélisation par différences finies. Un modèle basé sur la théorie des plaques minces est développé pour prendre en compte la mécanique du transducteur élémentaire cMUT (c'est-à-dire d’un seul diaphragme). Ce modèle est ensuite complété par l’intégration de l’effet d’un chargement acoustique par un fluide. De façon à modéliser un transducteur entier, il est nécessaire de prendre en compte le couplage acoustique existant entre les différentes membranes. Pour rendre cela possible, un circuit équivalent, permettant de réduire chaque membrane à un système à un seul degré de liberté, est développé. Il est validé en le comparant au modèle de différences finies dans des cas où celui-ci peut être utilisé. Les travaux expérimentaux ont fait appel principalement aux deux techniques de caractérisation suivantes : les mesures d’impédance électrique, et les mesures de déplacement effectuées par interférométrie laser. Ces mesures ont été utilisées dans une double optique. D’une part, dans un objectif de caractérisation, ils ont permis de vérifier la fonctionnalité des dispositifs fabriqués et d’évaluer leurs performances. D’autre part, en comparant différentes configurations entre elles, ils ont rendu possible une validation expérimentale du modèle qui a été mis au point.