Thèse soutenue

Matrices aléatoires pour les futurs systèmes de communication

FR  |  
EN
Auteur / Autrice : Jakob Hoydis
Direction : Mari Kobayashi
Type : Thèse de doctorat
Discipline(s) : Télécommunications (STIC)
Date : Soutenance le 05/04/2012
Etablissement(s) : Supélec
Ecole(s) doctorale(s) : Ecole doctorale Sciences et Technologies de l'Information, des Télécommunications et des Systèmes (Orsay, Essonne ; 2000-2015)
Jury : Président / Présidente : Pierre Duhamel
Examinateurs / Examinatrices : Mérouane Debbah, Gerhard P. Fettweis, Walid Hachem, Erik G. Larsson
Rapporteur / Rapporteuse : Giuseppe Caire, Philippe Loubaton

Résumé

FR  |  
EN

Les futurs systèmes de communication mobile sont caractérisés par un déploiement de plus en plus dense de différents types de points d'accès sans fil. Afin d’atténuer les interférences dans ces systèmes, les techniques aux entrées multiples-sorties multiples (MIMO) ainsi que la coopération entre les émetteurs et/ou les récepteurs sont nécessaires. Les systèmes de communication mobile en deviennent plus complexes, ce qui impose une évolution des outils mathématiques permettant leur analyse. Ceux-ci doivent être capables de prendre en compte les caractéristiques les plus importantes du système, telles que l'affaiblissement de propagation, les interférences et l'information imparfaite d'état du canal. Le but de cette thèse est de développer de tels outils basés sur la théorie des grandes matrices aléatoires et de démontrer leur utilité à l'aide de plusieurs applications pratiques, telles que l'analyse des performances des systèmes « network MIMO » et des systèmes MIMO à grande échelle, la conception de détecteurs de faible complexité à expansion polynomiale, l'étude des techniques de précodage unitaire aléatoire, ainsi que l'analyse de canaux à relais multiples et de canaux à double diffusion. En résumé, les méthodes développées dans ce travail fournissent des approximations déterministes de la performance du système qui deviennent exactes en régime asymptotique avec un nombre illimité d'émetteurs et de récepteurs. Cette approche conduit souvent à des approximations de la performance du système étonnamment simples et précises et permet de tirer d’importantes conclusions sur les paramètres les plus pertinents.