Contributions à la segmentation des structures cérébrales en IRM foetale
Auteur / Autrice : | Benoît Caldairou |
Direction : | Christian Heinrich |
Type : | Thèse de doctorat |
Discipline(s) : | Signal, image, automatique et robotique |
Date : | Soutenance le 22/06/2012 |
Etablissement(s) : | Strasbourg |
Ecole(s) doctorale(s) : | École doctorale Mathématiques, sciences de l'information et de l'ingénieur (Strasbourg ; 1997-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire des sciences de l'image, de l'informatique et de la télédétection (Strasbourg) |
Jury : | Président / Présidente : Olivier Haeberle |
Examinateurs / Examinatrices : François Rousseau, Nicolas Passat | |
Rapporteur / Rapporteuse : Laurent Najman, Christian Daul |
Mots clés
Résumé
L'étude de la maturation cérébrale a pour objectif une meilleure compréhension du développement du cerveau durant la grossesse et la mise en évidence des liens entre la modification des structures cérébrales et le développement cognitif. Cette étude est rendue particulièrement difficile par l'évolution constante que connaissent ces structures au cours de cette période, évolution due notamment à la croissance et à l'organisation des tissus cérébraux. La technique de visualisation privilégiée pour observer le cerveau est l'imagerie par résonance magnétique (IRM), méthode non invasive permettant l'acquisition d'images des structures cérébrales in vivo et en trois dimensions à une résolution relativement élevée. Cependant, les différences anatomiques et l'évolution rapide des structures cérébrales chez le fœtus nécessitent une nouvelle modélisation du cerveau. Le travail de cette thèse est composé de deux parties. Tout d'abord, nous avons modifié l'algorithme FCM (Fuzzy C-Means) de manière à permettre une meilleure prise en compte du bruit et du biais de l'image grâce à la méthode des moyennes non-locales issue du débruitage d'image. Ces travaux ont fait l'objet d'une validation à partir de bases d'images synthétiques et réelles. Enfin, nous nous sommes penchés sur la problématique de la segmentation des tissus cérébraux en IRM fœtale, et nous avons introduit un modèle comportant des contraintes topologiques de manière à permettre une segmentation séquentielle des tissus, en se fondant sur la position relative des différentes structures. Ces travaux ont fait l'objet d'une validation à partir de cas réels.