Apprentissage supervisé de métriques avec garanties en généralisation
Auteur / Autrice : | Aurélien Bellet |
Direction : | Marc Sebban, Amaury Habrard |
Type : | Thèse de doctorat |
Discipline(s) : | Informatique |
Date : | Soutenance le 11/12/2012 |
Etablissement(s) : | Saint-Etienne |
Ecole(s) doctorale(s) : | École doctorale Sciences Ingénierie Santé (Saint-Etienne) |
Jury : | Président / Présidente : Liva Ralaivola |
Examinateurs / Examinatrices : Pierre Dupont, Rémi Gilleron, Jose Oncina |
Mots clés
Résumé
Ces dernières années, l'importance cruciale des métriques en apprentissage automatique a mené à un intérêt grandissant pour l'optimisation de distances et de similarités en utilisant l'information contenue dans des données d'apprentissage pour les rendre adaptées au problème traité. Ce domaine de recherche est souvent appelé apprentissage de métriques. En général, les méthodes existantes optimisent les paramètres d'une métrique devant respecter des contraintes locales sur les données d'apprentissage. Les métriques ainsi apprises sont généralement utilisées dans des algorithmes de plus proches voisins ou de clustering.Concernant les données numériques, beaucoup de travaux ont porté sur l'apprentissage de distance de Mahalanobis, paramétrisée par une matrice positive semi-définie. Les méthodes récentes sont capables de traiter des jeux de données de grande taille.Moins de travaux ont été dédiés à l'apprentissage de métriques pour les données structurées (comme les chaînes ou les arbres), car cela implique souvent des procédures plus complexes. La plupart des travaux portent sur l'optimisation d'une notion de distance d'édition, qui mesure (en termes de nombre d'opérations) le coût de transformer un objet en un autre.Au regard de l'état de l'art, nous avons identifié deux limites importantes des approches actuelles. Premièrement, elles permettent d'améliorer la performance d'algorithmes locaux comme les k plus proches voisins, mais l'apprentissage de métriques pour des algorithmes globaux (comme les classifieurs linéaires) n'a pour l'instant pas été beaucoup étudié. Le deuxième point, sans doute le plus important, est que la question de la capacité de généralisation des méthodes d'apprentissage de métriques a été largement ignorée.Dans cette thèse, nous proposons des contributions théoriques et algorithmiques qui répondent à ces limites. Notre première contribution est la construction d'un nouveau noyau construit à partir de probabilités d'édition apprises. A l'inverse d'autres noyaux entre chaînes, sa validité est garantie et il ne comporte aucun paramètre. Notre deuxième contribution est une nouvelle approche d'apprentissage de similarités d'édition pour les chaînes et les arbres inspirée par la théorie des (epsilon,gamma,tau)-bonnes fonctions de similarité et formulée comme un problème d'optimisation convexe. En utilisant la notion de stabilité uniforme, nous établissons des garanties théoriques pour la similarité apprise qui donne une borne sur l'erreur en généralisation d'un classifieur linéaire construit à partir de cette similarité. Dans notre troisième contribution, nous étendons ces principes à l'apprentissage de métriques pour les données numériques en proposant une méthode d'apprentissage de similarité bilinéaire qui optimise efficacement l'(epsilon,gamma,tau)-goodness. La similarité est apprise sous contraintes globales, plus appropriées à la classification linéaire. Nous dérivons des garanties théoriques pour notre approche, qui donnent de meilleurs bornes en généralisation pour le classifieur que dans le cas des données structurées. Notre dernière contribution est un cadre théorique permettant d'établir des bornes en généralisation pour de nombreuses méthodes existantes d'apprentissage de métriques. Ce cadre est basé sur la notion de robustesse algorithmique et permet la dérivation de bornes pour des fonctions de perte et des régulariseurs variés