Thèse soutenue

Conditionnement de processus markoviens

FR  |  
EN
Auteur / Autrice : Jean-Louis Marchand
Direction : Bernard Delyon
Type : Thèse de doctorat
Discipline(s) : Mathématiques et applications
Date : Soutenance en 2012
Etablissement(s) : Rennes 1
Ecole(s) doctorale(s) : École doctorale Mathématiques, télécommunications, informatique, signal, systèmes, électronique (Rennes)
Partenaire(s) de recherche : Autre partenaire : Université européenne de Bretagne (2007-2016)

Résumé

FR  |  
EN

Le but de cette thèse est de décrire la loi conditionnelle d'un processus markovien multidimensionnel connaissant la valeur de certaines combinaisons linéaires de ses coordonnées à des instants donnés. La description recherchée consiste à mettre en évidence un processus de même type, facile à simuler, dont la loi est équivalente à la loi conditionnelle ciblée. La classe principalement étudiée est celle des processus à diffusion. Dans un premier temps, des techniques de grossissement de filtration (Jacod 1985) permettent de déterminer les paramètres de l'équation différentielle stochastique vérifiée par le processus conditionnel. Cependant, on s'aperçoit alors que la dérive n'est pas explicite, car celle-ci dépend des densités de transition du processus initial, inconnues en général. Ceci rend impossible,une simulation directe par exemple à l'aide d'un schéma d'Euler. Afin de pallier ce défaut, nous proposons une alternative, dans l'esprit de Delyon et Hu (2006). L'approche consiste à proposer une équation différentielle stochastique de paramètres explicites, dont la solution est de loi équivalente à la loi conditionnelle. Une application en collaboration avec Anne Cuzol et Etienne Mémin de l'INRIA, dans le cadre des écoulements fluides est également présentée. On applique la méthode proposée précédemment à un modèle stochastique inspiré des équations de Navier-Stokes. Enfin, la classe des processus markoviens à sauts est également abordée.