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ABSTRACT 
 

In this thesis, a new numerical approach is presented for the dynamic simulation of the electro- and 

electro-thermo convective phenomena that occur in a dielectric liquid subjected to unipolar injection 

and a thermal gradient. The main difficulty of computation comes from the determination of the 

electric field and charge density distribution, as the space charge modifies the electric field which in 

turn, controls the space charge distribution. This nonlinear coupling has prevented obtaining 

analytical solutions, especially in complex geometry configurations. An efficient algorithm is 

proposed to simulate electric field-space charge coupled problems. In the first step, the governing 

equations of the system are rewritten in the form of a so-called generic transport equation describing 

a general unsteady convection-diffusion transport of a conserved quantity. Then a finite volume 

approach is used to discretize the generic transport equation. The total variation diminishing (TVD) 

type high-resolution (HR) scheme and improved deferred correction (IDC) scheme of surface 

decomposition method are used to compute the convective and diffusive fluxes separately. The 

application of TVD scheme prevents non-physical oscillations and allows capturing accurately the 

possible high gradients in the charge density distribution.  

The first part of this thesis is some fundamental research with the TVD and IDC schemes. A unified 

approach for TVD-type bounded high-resolution convection scheme is presented and various limiter 

functions are applied to the unsteady pure convection problem to compare the effectiveness, 

accuracy and computational cost. The connection among three widely used methods for the 

calculation of diffusive flux, i.e., the coordinate transformation method, the surface decomposition 

method and direct gradient evaluation method has been revealed. The original IDC scheme is 

improved by the application of 2
nd

 order gradient evaluation method (Gauss formula or the 

Least-squares approach).  

After the description of the computational process and numerical validation of the electric 

field-space charge coupled module, our numerical solvers have been applied to several classic EHD 

and ETHD problems. The simulation begins with the electro-convection in insulting liquids between 

two parallel plates induced by unipolar injection. Both weak and strong injection cases are 

considered. The methodology was assessed by the determination of the linear and nonlinear stability 

criterion in the finite amplitude regime. By continuous increasing the driving parameter (T) of the 

system, the successive instabilities and the route to the chaotic state with the strong injection case has 

been defined. Then, the effect of the diffusion mechanism for charge density transport and vertical 

walls on hysteresis loop (including TC and Tf) and flow structure of finite amplitude convection is 

investigated.  
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To improve the performance of our numerical algorithm, some numerical aspects, like injection 

boundary condition treatment, optimal time marching and TVD schemes and performance with 

non-uniform grids, are discussed.  

The last section of this thesis is concerned by the electro-thermo-convection when a dielectric liquid 

layer is simultaneously subjected to unipolar injection and a thermal gradient. Our numerical ETHD 

solver was firstly verified with a stationary and an overstable stability problem which have been 

tackled with the linear stability analysis approach. The model problem that both heating and 

injection are from the bottom electrode has been analysed in details. The neutral stability curve 

which separates the stable and unstable regions was reproduced. The existence of nonlinear 

phenomenon, finite-amplitude bifurcation behaviour and the flow structure are highlighted.  

 

 

Keywords: Dielectric liquid, finite volume method (FVM), charge-coupled system, total variation 

diminishing (TVD) scheme, improved deferred correction (IDC) scheme, electro-convection, 

electro-thermo-convection, unipolar injection.  
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NOMENCLATURE 
 

Symbol Description Units 

A  Coefficient matrix  

 Amplitude of velocity field  [m/s] 

AM Angular momentum [N.m.s] 

b Thickness  [m] 

c CFL coefficient  

cp Specific heat capacity [J/kg.K] 

D Ion diffusion coefficient [m
2
/s] 

e0 Electro Charge [C] 

e1 Derivative of permittivity to temperature  

E


 Electric field  [V/m] 

f  Frequency [Hz] 

f


 Force field vector [N/m
3
] 

ef


 Electric force field vector [N/m
3
] 

I  Electric current  [A] 

dI  Displacement current   

j


 Electric current density  [A/m
2
] 

k Boltzmann constant  [J/K] 

kC Critical wave-length  

Dk  Dissociation constant  

Rk  Recombination constant   

K Ionic mobility [m
2
/V.s] 

k1 Derivate of mobility to temperature  

L Horizontal length [m] 

kn


 Unit normal vector   

P Actual pressure [Pa] 

P
~

 Modified pressure with electrostrictive force  

P(f) Power spectral  

q  Ionic charge density  [C/m
3
] 

0q  Charge density at emitter electrode  

Q Heat flux [W/m
2
] 

r Gradient ratio  

S Surface area [m
2
] 

t Time [s] 

U


 Velocity vector [m/s] 

V  Voltage [V] 

Vp Volume of control cell  [m
3
] 

U  Under-relaxation factor for velocity  



X 

 

p  Under-relaxation factor for pressure  

θ Temperature [K] 

θ0 Reference temperature  

ρ Mass density [kg/m
3
] 

  Scalar  

 Electric potential [V] 

  Permittivity [F/m] 

ε0 Permittivity of vacuum/air  

  Dynamic viscosity [kg/m.s] 

ν Kinematic viscosity [m
2
/s] 

σ Electrical conductivity  [S/m] 

δ Growth rate  

κ Thermal diffusivity [m
2
/s] 

η Injection coefficient  

Φ Limiter function  
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T Electric Grashof number 

C Injection strength 

M Non-dimensional mobility number 

Re Reynolds number 

R Electrical Reynolds number 

Ra Rayleigh number 

Pr Prandtl number 

  Non-dimensional ionic diffusion number 

L Non-dimensional temperature derivate of dielectric constant  

N Non-dimensional temperature derivate of ion mobility 

Nu Nusselt number 

Ne Electric Nusselt number 
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Chapter 1 Introduction 

1.1 Background 

Electrohydrodynamics (EHD) is an interdisciplinary science dealing with the interaction of fluids 

and electric fields or charges [1]. There is a strong nonlinear coupling between electric field and 

fluid field. The effect of fluid motion on electric fields as well as the influence of the fields on the 

motion should be considered simultaneously [2].  

Flow control and optimization is increasingly incorporated in the design of engineering devices 

ranging from aircraft and space vehicles to micro-fluidic devices [3]. Comparing with traditional 

pressure-driven mechanism, flow driven through electric fields has the following advantages: 

1. The devices are simple, as only power supply and electrodes are necessary. No complex 

mechanical structures and moving partes are needed;  

2. The size of the device is small and the shape and the size of electrode can be easily adjusted, 

indicating strong mobility;  

3. The flow responds rapidly to the applied electric fields; 

4. Low power consumption and noise.  

In addition, for the application of the EHD technique in heat transfer or heat exchanger design, 

there are two extra advantages,  

5. The technique can be applied to the environment with zero or low gravity, while 

buoyancy-driven mechanism may not work;  

6. High efficiency in the case of small temperature difference.  

Considering all above advantages, the EHD technique presents some promising opportunities in 

flow control, enhancement of heat and mass transfer, micro-electromechanical system (MEMS) 

and some other industrial processes. However, at present stage, there are few mature commercial 

products or applications purely based on the EHD technique. Two very recent conceptual designs 

can be found in [4] and [5] with applications in the cooling of laptop and devices on a flight in 

space separately. The relative backwardness of such applications with the EHD technique can be 

attributed to the lack of complete mastering the characteristics of flow motion.  

Since the first observation according to which water can be attracted by “electrics” rubbed with a 

cloth by William Gilbert during the 16th century [6], there had been wide and deep studies on the 

interaction between fluids and electric fields. Nowadays, the knowledge of most processes 

involved in EHD field has reached a stage where a modeling may be done with a certain 

confidence. Some widely known phenomena with EHD and their explanations can be found in [7] 

and [8]. For more general theoretical studies on EHD, three monographs [1][9][10] are strongly 

recommended.  

To fully understand the behavior of dielectric liquids under the effect of external electric fields, the 

first task is to classify the acting forces involved. Luckily, in dielectric liquids characterized by low 

values of conductivity, Maxwell equations reduce to the electroquasistatic limit [10, p.123]. In 

other words, the magnetic effects can be neglected in the realm of EHD.  According to the theory 

of Laudau [11], the electric (body) force acting on dielectric liquids mainly contains Coulomb 
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force, dielectric force and electrostrictive force. Early work in EHD mainly concerned the 

dielectric and electrostrictive forces [12-17], as there was no efficient method to introduce charge 

carriers into dielectric liquids. It should be noted that the temperature field analysis is always 

needed when considering the dielectric force because of the close physical properties relationship 

between them.  

Along with the development of physical chemistry, the technique which can reproduce injections 

of ions has come of age. At present, there are two classes of methods to introduce ions into 

dielectric fluids. The first class is to cover the electrodes with electrodialytic membranes or 

varnishes [18]. This method won wide application in the early EHD experiments [19-22].  

However, the membranes and varnishes are easily degraded under mechanical and thermal stresses 

[23]. With the other class, only applied for nonpolar liquid, weak and moderate injection can be 

achieved by adding some specific salts to the liquid [24]. For the latter method, bare electrodes can 

be directly used. The details of the injection mechanism will be explained in Chapter 2.   

In addition, dissociation of impurities can be considered as a third way for ions creation in 

dielectric liquids. This dissociation is governed by the physical and chemical processes. The details 

of the dissociation process are linked with the nature of impurities and dielectric liquids [1, 

p.24-27]. Generally, there is no difference between the injected and dissociated ions [25, 26], 

though P. Atten once showed a different opinion [27]. More importantly, with plentiful 

experiments, it is proved that the injection process is the dominant one comparing with dissociation 

for both polar liquid [28] and nonpolar ones [29] with different electrodes [30-33]. 

Once some ions appear in the fluids, the flow will be driven by the ion-induced Coulomb forces. 

The complex coupling relationship between the flow field and the charge density distribution 

usually brings great difficulties to determine their values [34]. On the one hand, the flow field is 

influenced by the charge distribution through the Coulomb forces in the Navier-Stokes equations; 

on the other hand, the charge density (the Coulomb forces) is updated via the conservation 

equation of charge. In addition, the change of charge density distribution also affects the local 

electric fields through the electric potential equation.  

In a word, Coulomb-driven convection in insulating liquids shows more non-linear characteristics 

comparing with the buoyancy-driven convection. The strong nonlinear interaction precludes the 

possibility of using analytical methods to determine the charge distribution, even with extremely 

simple geometry configurations.   

When applying the EHD technique to enhance heat transfer, the temperature field must be taken 

into account. The formed electro-thermo convection leads to more complex interaction among 

fluid, heat and electric fields. Generally speaking, heat field has at least three types of direct effects 

on EHD convections: (1) buoyancy force in momentum equations; (2) dielectric force and 

electrostrictive force; (3) temperature-dependent physical properties (like fluid density, ionic 

mobility and permittivity).  

Since the solutions of EHD and ETHD are not readily amenable to an exact mathematical analysis, 

these problems have been tackled by several alternative methods. The Galerkin method and the 

small disturbances method are widely used in linear stability analysis [35-37]. By the analogy with 
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thermal plumes, some authors utilize a self-similar analysis and an integral model to analyze EHD 

plumes [38][39]. However, there are distinct limitations for all these methods. For example, the 

linear stability analysis methods generally can only be applied to problems with strict assumptions. 

The Galerkin method could not provide satisfactory description of the convective flow in slightly 

supercritical and subcritical conditions. 

Since the governing equations of EHD problems have been obtained with a certain confidence, a 

natural idea is to directly solve the whole system with numerical methods. In the present study, we 

try to build an efficient numerical tool which can be applied to Coulomb-driven convection and 

electro-thermo-convection both in two- and three-dimensional problems with unipolar ion injection. 

The essence of numerical calculation is converting the (coupling and nonlinear) partial differential 

equations (PDEs) which govern a problem into discrete calculations which can be solved on a 

high-performance computer. In principle, all EHD problems can be solved by appropriate 

numerical methods as the governing equations are deduced based on continuum model, which can 

avoid the difficulties met by theoretical methods. However, developing an efficient numerical tool 

for EHD problems would meet some practical difficulties.    

In the study of fluid mechanics, an important idea is to refine the essences of fluid flow by 

focusing on some classical problems, like Rayleigh-Bénard convection, lid-driven cavity flow, 

Taylor vortex, Couette flow between concentric spheres and so on. In the present study, we follow 

the same thought by considering some fundamental problems in EHD: the convection induced by 

unipolar injection in a plane layer of dielectric field. In addition, the effect of the thermal gradient 

on the instability phenomena and the heat transfer enhancement by the Coulomb-driven convection 

are the other two research topics of the present study.   

With the relatively simple geometry problem, we would like to gain some basic understandings of 

physical models, charge conduction process, flow structures and bifurcation of stability in an 

electrical-hydrodynamic (EHD) or electro-thermo-hydrodynamics (ETHD) nonlinear dynamical 

system.   

1.2 Previous and related studies 

1.2.1 Finite volume method 

Based on iterative segregated methods, a numerical simulation of a complete EHD problem 

contains two or three modules depending on whether the temperature field is included or not: the 

electrostatics module, the velocity-pressure module and the energy module. These three modules 

correspond to Maxwell’s equation, Navier-Stokes equations and energy equation respectively.  

There is no doubt that numerical methods based on finite volume method (FVM) are dominant in 

the field of Computational Fluid Dynamics (CFD). Even with problems of very complex geometry 

structure, finite volume method can work well. A very good example can be found in [40], which 

was published in 1998. In this paper, a parallel finite volume method for unstructured grids, 

combining local grid refinement and efficient linear system solver, is applied to a direct numerical 

simulation of the flow around a sphere at Reynolds number (Re = 5000). The good agreement of 
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flow structure between numerical solutions and visualization experiments shows the ripeness and 

stability of FVM with fluid simulation.  

In fact, the application of FVM has been successfully extended to some other fields, like solid 

stress analysis [40-43], fluid-solid interaction [44][45], radiation heat transfer [46][47, chapter 13] 

and others.  

As for numerical techniques for electrostatics, traditionally, Finite Difference Method (FDM) and 

Finite Element Method (FEM) are the dominant ones, see [10, chapter 6] and [48]. Only during the 

past 10-15 years, the FVM has started to be used to solve electromagnetic problems. Various 

discretization schemes and algorithms have been developed [49-53]. Recently, N. Neimarlija, et al. 

applied the FVM to calculate electrostatic fields in electric precipitators and made a systematical 

explanation of the practical implementation process [54]. In a subsequent paper, N. Neimarlija et al. 

incorporated the calculation of electrostatic fields into a much complex system including the flow 

of gas, particle dynamics and electrostatics [55]. The core idea of [54] and [55] is to employ an 

iterative segregated solution procedure of the resulting set of algebraic equations. Traoré et al. have 

successfully developed a direct numerical simulation based on FVM to solve the EHD [56] and 

ETHD equations [57].  

The present study follows a similar algorithm as the one proposed by N. Neimarlija et al. [54][55] 

and the one by Traoré et al. [56][57] with an iterative segregated solution procedure. The main 

difference between our numerical algorithm and the one in [54][55] includes two aspects:   

1.  Transient calculation.  

All the examples provided in [54] and [55] were based on the assumption of steady state. This 

assumption would help decreasing the computational cost by the neglect of the formation or 

developing process of various fields. However, for EHD simulation, the formation or developing 

process may play an important role in understanding the flow structures. For example, an important 

observation in EHD experiment with unipolar injection in a plane layer of dielectric liquid is the 

fluctuations of the electrical current once the liquid is in motion. In addition, for bifurcation study, 

the steady state may not exist. Thus, temporal terms (in charge density equation, Navier-Stokes 

equations and energy equation) and transient process will be considered in our numerical solvers. 

The transient SIMPLE algorithm is used to solve both steady and unsteady Navier-Stokes 

equations. However, including the temporal term, the charge conservation equation without 

diffusion transport mechanism turns to be a hyperbolic partial differential equation. This 

conversion brings some new difficulties in the construction of numerical algorithms.  

2. Discretization schemes.  

One key difficulty in numerical modeling of the Coulomb-driven convection in insulating liquids is 

the method of adequately computing charge density distribution with steep gradients. The problem 

arises from the fact that diffusion mechanism of charge transport is negligible comparing with 

other charge conduction mechanisms. It has been proved by numerical results in [58] that a second 

upwind differencing (SUD) scheme turned out to be inefficient when computing the charge 

distribution because of its severe numerical diffusion [59].  
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In [54] and [55], the authors use a kind of hybrid scheme by blending the second-order central 

differencing (CD) scheme and the first-order upwind scheme (FUD). The problem of the hybrid 

scheme is the determination of the blending factor. In addition, this scheme can’t guarantee the 

positivity of the obtained charge density field.  

The numerical diffusion can be reduced by decreasing the size of the mesh or using local grid 

adaptive technique. Howeverm, the computational cost or the complexity of the numerical 

algorithm increases dramatically.  

There is a clear similarity between the hyperbolic charge conservation equation and the unsteady 

advection equation. The advection equation has been extensively studied as the model problem or 

combining with other fluid dynamical equations [60]. One survey of Rood [61] mentioned that 

over 100 algorithms for discretizing the convective terms were found. An extensive bibliography 

was summarized in [61]. In EHD field, some numerical methods were specially designed while 

some others were borrowed from other areas to solve charge conservation equation. Two widely 

used methods are the particle in cell (PIC) method [62][63] and the flux corrected transport (FCT) 

method [64][65]. Both methods have been used to simulate the development of electro- convection 

between two parallel plates [66][67] and their abilities to deal with transport problems in the 

presence of steep gradients were demonstrated. Some differences showing in the prediction of 

small oscillations of the velocity and the electric current are highlighted and explained [66]. 

Generally, the computational cost of FCT method is much lower than the one with PIC method, 

especially with the weak injection case.  

In the present study, the so-named high-resolution (HR) schemes [66-70] will be used to tackle the 

difficulty. Considering the development history, both FCT and TVD-type schemes are designed for 

the shock capturing when solving compressible Euler equations. The basic ideas of the two 

algorithms are similar to each other. Both of them use a low order, oscillation-free scheme and a 

higher order, oscillatory scheme to reconstruct the optimal solution. The difference is the flux 

limiting procedure: FCT contains two steps while TVD scheme uses an adaptive limiter function. 

Thus, we may expect TVD schemes to be more efficient than FCT schemes in solving the charge 

conservation equation from the viewpoint of the simplicity of the algorithm.  

Normally researches based on CFD technique are some kind of systematic engineering. It is clearly 

impossible to give a complete survey of all aspects with CFD here. Instead, we will briefly 

describe some key techniques involved in our practical developing process.   

It’s also worth pointing out that our numerical algorithm employs the same discretization and data 

structure for both fluid flow and electrostatic equations which facilitates the formulation of an 

efficient solution algorithm. In other words, all governing equations will be written in the form of a 

generic transport equation, which helps explaining the discretization methods. More significantly, 

the consistency between the convective flux and charge density equation and the consistency 

between diffusive flux and Poisson equation are highlighted. This kind of research strategy puts 

more emphasis on the common ground of governing partial differential equations (PDEs) from 

different physical processes.   

High-Resolution schemes 
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The charge density equation and Navier-Stokes equations contain convection terms, though with 

different names and meanings. For CFD researchers in both compressible and incompressible fluid 

fields, the discretisation method of the first-derivative advection term attracts much attention from 

practical application requests. The essential reason is that the majority of fluid flows encountered 

in nature and industry are characterized with high Reynolds numbers (even at turbulent state), 

which means that convection term is at a dominant position [68, page 46]. The study aims to obtain 

several schemes of good properties (e.g. stability, convergence, boundedness, and accuracy, etc.) 

with low computational cost. It is difficult to design a scheme to meet all the requirements of the 

above-mentioned properties and only the major requirements should be considered. In addition, 

different properties may conflict with each other. For example, high-order linear schemes (like 

second-order upwind, QUICK and k-scheme [69]) can lead to high accuracy but unphysical, 

oscillatory behavior, especially in regions of steep gradients, while the solution obtained with the 

first-order upwind (FUD) and other low-order schemes often suffer from severe artificial diffusion.   

However, boundedness is an extremely important property for some problems. For example, in the 

absence of sources, some equations (e.g. heat equation for temperature) require the minimum and 

maximum values of the variable to be limited on the boundaries of the domain [70, page 33], and 

the pollution concentration to lie between 0% and the value of its initial moment. Another 

representative example is with k  turbulent models, a negative value of turbulent dissipation 

would results in negative turbulent viscosity, usually with disastrous effects on the solution 

algorithm [71]. In compressible fluid field, the goal of efficient shock-capturing methods is to 

capture discontinuities in the solution automatically and reduce smearing to a minimum, and not to 

introduce nonphysical oscillations near the discontinuities [72, page 6]. In all cases, the convection 

term in its differential form does not violate the bounds of the variable given by its initial 

distribution. Therefore, this property should also be preserved in the discretised form of the term.  

A formal definition of boundedness can be described as the one with which the numerical solution 

will never surpass the maximum or minimum values inherently determined by the physical process 

[73]. It is essentially equivalent to the demand of avoiding numerical under- and overshoots in 

regions of strong variation [74].  

Considering the importance of boundedness property, sustained effort has been made to find or 

design schemes which can lead to accurate and bounded solutions. However, the road to find a 

linear high-order scheme which can also lead to oscillation-free results has been blocked by 

Godunov’s famous theorem [75] which states that no linear convection scheme of second-order 

accuracy or higher can be monotonic. It is now well-known that the use of a non-linear convection 

schemes can lead to solutions of oscillation-free and high-accuracy. The fundamental idea behind 

the non-linear schemes is straightforward. These schemes can be viewed as blending schemes of 

high and low order approximations. In other words, based on local information, the actual used 

scheme would switch between high-order oscillatory schemes and low-order bounded schemes. To 

achieve the goal, two typical questions need to be answered: 

1. How to recognize the regions where the switch is required; 

2. What kind of switch should be introduced ; 
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Different answers to above questions lead to two well-known types of high-resolution (HR) 

schemes: Total Variation Diminishing (TVD) schemes [76][77] and Normalized Variable Diagram 

schemes (NVD) [78][79]. TVD schemes emphasize the mathematical properties, while NVD 

schemes are based on appropriate translation with physical meanings of boundedness property. The 

first TVD scheme has been designed for unsteady equations. Later, Roe [80] and Z. Wang & B.E. 

Richards [81] extended it to steady-state equation. Despite the different starting points, TVD and 

NVD schemes share some commons. For example, both of them use some sort of “unboundedness 

indicators” to recognize the regions where interventions are needed and the definition of the 

indicator requires at least three local points. In addition, some switching functions were designed to 

include lots of established schemes. The essential connection between TVD and NVD schemes has 

been firstly revealed in [82]. In simple terms, the two types of schemes can convert to each other 

through some simple formulae.  

Till recently, the complete numerical tools have not been widely used to tackle EHD problems. By 

careful examination, the demand of solving charge density equation is quite similar to the example 

of pollution concentration mentioned above. In details, it is always desired that the numerical 

solutions of charge density containing no non-physical negative values. To achieve the goal, a 

unified approach which has been clearly explained by in [81-84] will be adopted.  

The main features of the unified approach can be summarized as,  

1. The expression of the unified approach follows the flux-limiting algorithm, which are more 

convenient than NV methods, since a deferred correction (DFC) approach can easily be 

adopted [85][86]. In fact, all five-point schemes can always be transformed into the unified 

expression [73, page 132], which has greatly facilitated the implementation of new schemes.  

2. The schemes may be applied to transient problems when they are combined with an 

appropriate time marching method and obey the time-step restriction condition [84]. 

3. The approach employs two more general boundedness criteria: positivity and the convection 

boundedness criterion (CBC). The change of the boundedness criteria from TVD has a vital 

significance for understanding the performance of schemes in multidimensional cases. The 

TVD condition has been proved for one-dimensional case, but never in multiple dimensions, 

though there are quite a lot of success applications based on the time splitting approach. In 

the “dimensional splitting”, 2D or 3D implementation consists of one-dimensional schemes 

applied separately along each direction. The unified approach can be successfully applied to 

multi-dimensional problems. The detailed proof process can be found in [79] and [87, 

chapter 5].  

It is worth pointing out the relationship between the above mentioned TVD-type high-resolution 

and the FCT method, which has already been applied in EHD set of equations [66][67][88]. The 

basic idea of the FCT method is the same with the TVD schemes which also uses a low order 

scheme (that includes serious numerical diffusion) and a higher order scheme (that includes 

unphysical oscillation) to reconstruct the optimal solution. The key difference is the limiting 

procedure: the FCT method contains two steps while all TVD schemes need only one step with an 

inherent adaptive limiter function. Though there is no clear conclusion about the accuracy 

comparison, the computational efficiency of TVD schemes is obvious. Then it explains why we 

introduce the TVD schemes rather than the FCT methods to solve the charge density equation.  
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Our final goal is to build an efficient numerical tool for EHD problems, which can be applied to 

arbitrary complex geometry configurations. In recent years, the unstructured grid methodology is 

quickly evolving in CFD field mainly due to its inherent flexibility for discretization of 

complicated geometries [89][90]. However, most HR schemes cannot be applied to unstructured 

grids directly. The main difficulty is the lack of far-upwind cell information [91]. To circumvent 

this difficulty various methods have evolved [71][91-93]. There are two main thoughts to apply the 

HR schemes on unstructured meshes. The first is to avoid explicitly using far-upwind points, like 

GAMMA scheme [71] and Bruner’s approach [92]. GAMMA scheme uses an ‘unbounded 

indicator’ without far-upwind information, whereas it uses the CD scheme as the high order base 

scheme. However, GAMMA scheme requires that the nodal point locating in the centre of the 

control volume, which is not always the case for unstructured meshes. The second is to construct 

the virtual far-upwind points, like Darwish’s r-factor algorithm [91] and Lian-xia Li’s new r-factor 

algorithm [93]. Both algorithms need to calculate nodal gradients and to use extra memory for 

virtual points. The most serious problem of all above mentioned methods is all of them show minor 

oscillations, even if the grid size is sufficiently small.  

Besides some implementation details of the unified approach, in the present study, we will mainly 

focus on the following two aspects of HR schemes,  

1. The performance of different limiter functions, i.e., different TVD schemes and their effect 

on complete EHD problems; 

2.  The reason of the minor oscillations when extending TVD schemes to unstructured grid 

system and the possible solutions;  

 

Temporal schemes 

In order to match with the application of high-resolution of hyperbolic charge density equation, the 

discretisation method for temporal term should also be paid extra attention. There are two standard 

ways to derive numerical algorithms for multi-dimensional flow problems [94]: either by the 

method of lines (MOL) approach, where space and time discretization are considered separately, or 

with the dimensional splitting approach, starting from a fully discrete one-dimensional method. 

Both approaches have been combined with HR schemes and are being widely used in CFD fields. 

Generally speaking, dimensional splitting often leads to more accurate solutions in wide Courant 

number range when one-dimensional high-resolution methods are applied in each direction 

separately [95]. The main advantage of MOL approach is its simple algorithm and straight 

extension to nonlinear conservation laws. In addition, the generic transport equation solver can be 

directly applied to the charge density equation when following the MOL approach.   

If we assume that the time dimension is the same as the space dimension, it is not difficult to 

understand the fact that some time marching schemes may potentially introduce oscillations. 

Taking the well-known three time level (I3L) scheme for example, the essence of its construction 

is to make a linear interpolation among solutions at three time levels, just like the linear high-order 

spatial schemes. Thus, it possibly leads to oscillating results. A typical test example can be found 

in Chapter 3.  



13 

 

In fact, in recent years, it has been a hot research topic in designing the so named TVD [96][97] or 

Strong Stability Preserving (PPS) time schemes [98][99]. The SSP schemes are used to match with 

higher-order oscillation-free schemes, like TVD, essentially nonoscillatory (ENO) [100] and 

weighted ENO (WENO) methods [101][102]. The essential requirement for these schemes is the 

ability of avoiding oscillatory solutions.  

Since excellent up-to-date reviews of the previous studies on this subject have been documented in 

the literature [103][104], they are not repeated here. Some content closely related to the present 

study can be found in Chapter 3. In this thesis, we will not go deep into the design process of each 

time scheme. On the contrary, we are more concerned with the performances (accuracy, robustness, 

computational cost and so on) of these schemes when combining with TVD-type high-resolution 

schemes and their effects in numerical solutions of complete EHD problems.   

Surface-decomposition method 

The solving methods of Poisson equation or all partial differential equations containing the 

diffusion term is another research point in the present study. Considering its broad utility in 

electrostatics, mechanical engineering and theoretical physics, quite a lot of methods have been 

developed, both numerically and theoretically.  

Starting from our CFD and NHT background, an efficient finite volume Poisson solver based on 

surface decomposition approach [107, page 33] and a recent proposed improved deferred 

correction (IDC) scheme [105][106] was developed.  

Normally, it is not difficult to use 2
nd

 - or 4
th

- order Central Differencing (CD) scheme to solve 

Poisson equations numerically when control volumes are regular and orthogonal. However, when 

control volumes are unstructured or non-orthogonal, the accuracy of CD schemes degrades. It 

should be emphasized that ‘unstructured’ represents the data storage ordering while 

non-orthogonal represents the geometry property of grid. There is no essential connection between 

them. There exist some types of unstructured orthogonal meshes, like regular-triangle, regular 

polygon and admissible meshes [108]. However, in general cases, unstructured meshes are also 

non-orthogonal. Thus, we put them together here to highlight the fact that the IDC scheme can also 

be directly applied to arbitrary unstructured meshes.  

When the grid is non-orthogonal, the discretization of diffusive flux is indeed less straightforward 

than with orthogonal ones. A variety of methods have been developed to take the non-orthogonal 

contribution into account, like the coordinate transformation method, CTM [109][110], the normal 

decomposition method, NDM [68][105][107] and the direct gradient evaluation method, DGEM 

[111][70, page 234-235]. Some other methods are summarized in [73, page 194-197] [112][113]. 

Although these three above mentioned methods have been invented independently with different 

conceptual bases, all of them have gained wide applications from CFD or NHT community. In the 

present study, we are concerned about two aspects:  

1. The similarity and relationship among the above mentioned three methods for diffusive flux 

computation on nonorthogonal meshes;  

2. Some implementation details and further development of the IDC scheme;  
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The first aspect aims at providing some constructive answers to the following questions,  

1. Can all these methods lead to the converged solution on extremely skewed meshes?  

2. Based on the converged solution, how to evaluate the advantages and disadvantages of 

these approaches in terms of accuracy and computational cost? 

3. What are the main factors affecting the accuracy and computational cost of these different 

approaches? 

The second aspect is to increase the accuracy of the scheme by carefully selecting gradient 

evaluation method and implementing numerical boundary conditions and to extend it to 

three-dimensional problems.  

SIMPLE algorithm and its improvement 

For incompressible fluid, the pressure-based approach is the mainstream choice. Among the 

pressure-based approaches, the pressure-correction method is the most widely-used one because of 

its simplicity and straightforwardness in physical concept [114]. Patankar and Spalding proposed 

the first pressure-correction method in 1972 [115] and named it SIMPLE algorithm. There are two 

major approximations made in the SIMPLE algorithm,  

1. The initial pressure and velocity field are assumed independently, hence the interconnection 

between pressure and velocity is neglected, leading to some inconsistency between them;  

2. The effects of the velocity corrections of the neighboring grids are arbitrarily dropped in order 

to simplify the solution procedure, thus making the algorithm semi-implicit. 
 

Though the two approximations will not affect the final solutions when the solution process 

converges [116], they do affect the convergence speed and the stability of the solving process. 

Therefore, a number of variants have been developed to overcome the two approximations. In 1981, 

Patankar proposed the SIMPLER algorithm [117], which successfully gets rid of the first 

approximation. In the SIMPLER algorithm, the initial pressure is determined by a pressure 

equation. Many variants of the SIMPLE algorithm are available, like SIMPLEC [118], SIMPLEX 

[119], PISO [120] and Yen and Liu’s explicit correction step method [121] and so on, but none of 

them have successfully overcome the two assumptions simultaneously.  

Until very recently, Tao Wenquan’s group of Xi’an Jiaotong University, China, uses a 

sophisticated technique to overcome the second assumption of SIMPLE algorithm. They directly 

improve the pressure, rather than introducing the pressure correction and proposed the CLEAR 

algorithm [122][123]. To improve the robustness of the CLEAR (coupled and linked equations 

algorithm revised) algorithm, a modified algorithm, named CLEARER was designed [124]. In 

addition, another algorithm named the IDEAL algorithm (Inner Doubly-iterative efficient 

Algorithm for Linked-equations) [125][126], which is also on the basis of the CLEAR algorithm, 

was proposed to retain the fully-implicit feature and to further enhance the robustness and 

convergence characteristics. The Implementation details of the IDEAL algorithm on 3D collocated 

grid system and its performance for three-dimensional incompressible fluid flow and heat transfer 

problems can be found in [114][127].  
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In the present study, the more advanced but complicated CLEAR(ER) or IDEAL have not 

implemented into our EHD or ETHD solvers, as the original SIMPLE algorithm can fully meet our 

current needs. The above short review indicates the direction of future extension of 

velocity-pressure coupling algorithm. Instead, we try to make another contribution to CFD field by 

tacking the problem of pressure-velocity coupling on extremely non-orthogonal grids. In [128], 

Peric studied the property of the pressure correction equation in a non-orthogonal grid system. By 

comparing the simplified equation (neglecting the non-orthogonal terms) with the complete 

equation, he found that the iteration process never converges with the simplified equation if the 

grid is extremely non-orthogonal (with typical angle  45,135  ). In addition, the range of 

the relaxation factors was seen to become narrower for higher skewness of the grid. Though the 

problem can be solved by using the full 9-point pressure-correction equation for 2D flow, the 

method is not efficient from the viewpoint of computational cost. For 3D flow, the full 

pressure-correction equation contains 19 diagonals, which bring great troubles for selection of the 

linear system solver and considering computational cost.  

To alleviate or solve this problem, Cho and Chung [129] proposed a way of incorporating effects 

of non-orthogonality in the pressure-correction without extending the computational molecule. 

However, an additional user defined parameter is needed. T. Lenhause and M. Schafer designed a 

new linear interpolation method based on a muti-dimensional Taylor series expansion (TSE) [130], 

and applied it to the pressure-correction equations on non-orthogonal grids and found its 

effectiveness in improving overall performance of Navier-Stokes solvers [131]. The main ideas of 

the above two methods are to adjust the coefficient of the neighboring points directly to take into 

account the non-orthogonality of the grid system on the condition that no far near points are used. 

In the present study, we follow another approach by the application of IDC scheme to 

pressure-correction equations. The essence of the IDC scheme is to introduce the angle information 

into the discrete equation, and the angle information represents non-orthogonal information to a 

great extent. 

1.2.2 Coulomb-driven convection  

In single-phase liquid flow and under DC electric field, the Coulombic component of the electrical 

body force exerted on the fluid by collisions between ions and neutral molecules is the main 

driving force. There are various physico-chemical processes that may result in the production of 

free charge carriers inside fluids. Considering the very reactive chemical property of the liquid, 

electrolytic impurities can undergo chemical reactions giving rise to ionic pairs [132-134]. Another 

more direct and effective method is the injection of ions by electrochemical reactions at metallic 

electrodes [135-137]. The second mechanism tends to dominate at large field [30-32]. However, 

the electric force of all charge carriers are of the same type, though with different generation 

mechanisms. Typically, the fluid will be set in motion under the action of Coulomb force, thus 

changes the distribution of charges that in turn modifies the electric field. The two ways coupling 

makes the EHD convection a difficult subject.  

Generally speaking, researches with EHD are closely linked with the type (shape and size) of 

electrodes. In early experiments, focus was put on the relative importance of different components 

of the electrical body force and the ion injection process. Needle-plane, knife-plane and 
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blade-plane [138][139] electrode configurations are favorable because they feature locally high 

electric fields that enhance charge generation. However, the complex geometry structures bring a 

lot of difficulties in the theoretical analysis. Only until very recently, EHD flow of a dielectric 

liquid around a blade electrode was systematically explained with the aid of a simple injection law 

[140-142].  

On the other hand, another class of relatively simple electrodes (parallel planes) attracts much 

attention. The physical model is quite simple: the initially still dielectric fluid was put between two 

parallel plane (circular) electrodes. By external electrical field, the free charger carriers (i.e., ions) 

are formed in the medium due to an intense electric field in the vicinity of one of the electrodes 

(the emitter). While these charges move towards the other electrode (the collector), they impose 

momentum to the neutral molecules of the medium, thus ‘dragging’ them along and producing a 

net of flow of the medium. However, the above mentioned two ways coupling brings serious 

obstructions for accurate determination of charge density distribution and flow field. In a simple 

word, the final purpose is to well understand the voltage-current characteristic of dielectric liquids 

under different types of applied electric field. Just like most fluid problems, all three tools, i.e., 

theoretical analysis, physical experiment and numerical simulation are used.  

Theoretical analysis and physical experiment  

For two plane parallel electrodes geometry, there are some analogies between unipolar injection 

and Rayleigh-Bénard (fluid layer heated from below) problems. In both cases, the state of rest is 

potentially unstable and the viscous dissipation prevents the disturbances from growing for low 

enough motive forces (buoyancy force for RB flow and Coulomb force for electro-convective 

flow). At a certain threshold the fluid layer becomes unstable and turns into a regular pattern of 

convective cells. The certain threshold is named the critical linear stability value. The first linear 

stability analysis has been performed by Schneider and Watson [143] in the case of 

space-charge-limited (SCL) injection. Two important assumptions were made: (1) perfectly 

insulating medium and (2) negligible diffusion. The stability values of the general case of any 

injection level were reported in [144], which requires a third assumption of zero charge density 

perturbation on the injector (autonomous). To verify the theoretical criteria, physical experiments 

were taken by Watson, et.al, and the agreement was satisfactory [145]. It should be noted that there 

is a difference between the problems tackled by Schneider and Watson and the core problems of 

the present study. In [143] and [145] the dielectric liquid layer had a free surface and the present 

study only considers the case with rigid boundaries. A closer physical experiment can be found in 

[19]. In this paper, the authors considered two asymptotic states of convection: viscosity and 

inertial effects dominated. The figures of the electric Nusselt number versus the stability 

parameters in different liquids are provided, which is of great help to understand the general 

features of electro-convection.  

However, there is a main difference in the transport of the scalar quantity between RB flow (heat) 

and unipolar injection (charge density). Heat is transferred by diffusion alone whereas the charge 

carriers migrate under the action of the electric field with a fixed mobility, their diffusion being 

mostly negligible. The drift velocity and the liquid velocity can compete: for instance, a laminar 

liquid motion prevents the ions from entering regions in which their velocity component along the 
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electric field direction at least balances the ionic velocity KE [146]. Thus, it is possible to have 

some regions strictly free of charges that bring a completely new nonlinear phenomenon for 

unipolar injection. In fact, for double injection case, a similar nonlinear phenomenon has also been 

observed experimentally [147].  

The main feature of the nonlinear phenomena is the existence of two criteria, one being the 

classical linear stability criteria Tc associated with perturbations of infinitely small amplitude, the 

other, Tf , corresponding to finite amplitude velocity disturbances. Considering Tf <Tc, there is a 

hysteresis loop and jumps of the steady values of both the velocity amplitude and the current 

between the two critical values [148].  

The most important features of the nonlinear instability mechanism have been derived by Félici 

[149]. Later, P.Atten and J.C. Lacroix investigated the phenomena that occurred at the onset of 

instability of unipolar injection based on a simplified model and obtained some more detailed 

conclusions [148]. Experiments with various liquids under SCL conditions have also been 

performed [146][148]. The existence of the hysteresis loop in the electrical current-voltage figure 

has been highlighted.  

As for flow structure in three-dimensions (3D), it is experimentally observed that convection sets 

in the form of hexagonal cells when the driving parameter was slightly above the onset of 

instability. In details, when the applied voltage is suddenly increased to a level above the critcal 

value, the liquid layer initially at rest starts to move and a pattern consisting of nearly prismatic 

cells is detectable at a very short time. After some reorganisation, the polygonal cells become very 

regular and stable hexagonal cells.  

Numerical modeling 

When numerically simulating the problem, the first task is to separate the injection problem in 

liquids from the one in gases. Taking air at atmospheric pressure as an example, the ions created by 

the electrodes generally have a drift velocity much higher than the air velocity. In that case the 

motion has but negligible effects and the ion trajectories are the electric field lines. The coupling of 

electric field and velocity field can be considered as one way, which greatly simplifies the EHD 

problem [150].   

In 1987, A. Castellanos and P.Atten developed the mathematical model of unipolar injection, 

explained the ion generation process and some preliminary researches on numerical stability 

analysis were performed [151]. In 1989, A. T. Perez, et al., investigated the influence of charge 

diffusion upon the nonlinear stability criterion and subsequent finite amplitude electro-convection 

of an isothermal liquid layer subjected to weak injection [152]. It was found that a new 

non-dimensional parameter (the ratio of the Coulombic repulsion to the charge diffusion) played a 

major role.  

In 1991, the physical model including electrical boundary conditions and governing equations of 

unipolar injection were further described by A. Castellanos [153]. In addition, the bifurcation 

behavior of the nonlinear system was also introduced primarily. Then, P. Atten explored the effects 

of space charge density and the geometry of the electrodes on fluid. In 1997, R. Chicon, et.al, used 
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a method of superparticles to solve the unipolar injection problem [34]. A good agreement between 

their numerical results and experimental observations is obtained for both weak and strong 

injection cases. In 2006, P. A. Vazquez et al. used both FCT and PIC methods to deal with the 

distribution of electric charge [66]. In 2008, P. A. Vazquez et al. considered the full model by 

incorporating the computation of the velocity [67]. In addition, they did the analysis of time scales. 

Very recently, Ph. Traoré et al. also solved the whole set of electrohydrodynamic equations using a 

finite volume method [154][56]. Their emphasis was put on the strong injection problem. In 2011, 

P. A.Vazquez and A. Castellanos performed the stability analysis of the 3D electro-convective 

charged flow between parallel plates using the PIC method and imposing velocity roll structure 

[155]. The traditional QUICK scheme with a novel boundary condition treatment method has been 

used to solve charge density equation in [289]. With this new method for the charge density 

equation and a commercial software FLUENT, they studied the turbulent electro-convection 

between two parallel square electrodes. 

Comparing with the accurate calculation of the velocity field, the technique which is capable of 

capturing the steep gradients of the electric charge is the primary concern. Very often, the velocity 

field can be provided through some models. There are some obvious shortcomings with this 

velocity field imposing technique. Firstly, it cannot be applied to complex geometry cases. 

Secondly, even with simple geometry configuration, the self-similar flow structure may not always 

work. For example, the fact of possible non-existence of a stable roll with weak injection is 

mutually conflicted with the imposed assumption [67]. Thirdly, the technique can only be applied 

to flow near stability criterion. If we want to have some insights of flow with stronger destabilizing 

force or forced flow, the velocity field must be obtained by solving simultaneously the 

Navier-Stokes equations.  

In addition, though injection induced by unipolar injection in a plane layer of dielectric has been 

the object of research for several decades, there are still many basic questions to be answered. For 

example,  

1. There is a discrepancy between the theoretical (also verified numerically) and measured 

values for the onset of instability;  

2. Experimental observations showed that the electrical current is always time-dependent 

once the liquid is in motion. The fluctuations of the electrical current have a well 

defined average value but present a chaotic state [59];  

3. What will happen to the system with higher potential difference;   

In the present study, with our newly developed numerical tool, we would like to provide some new 

understandings of above questions.  

1.2.3 Electro-Thermo-hydrodynamics (ETHD) 

Heat and mass transfer enhancement through external forces is an important subject of fluid 

mechanics research. Electro-Thermo-Hydro-Dynamics (ETHD) is a relatively new inter- 

disciplinary subject. The major contents of the subject are to use electrical forces to enhance 

mixing heat transfer within the fluid (both gas and liquid). The earliest experiment of this topic was 

accomplished by Ahsmann and Kronig [156] in 1950. Over the past half century, the heat transfer 

enhancement by external electric field has been continuously studied and large number of work has 
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been published. Several reviews [17][157-160] are available, the most noteworthy being that of 

Jones [160]. In [160], the author classified the various theoretical and experimental studies and 

provided a complete bibliography.  

In the present study, we mainly focus on the coupling effects of heat, velocity and electric fields in 

a simple configuration of a horizontal dielectric liquid layer between two parallel plates subject to 

an arbitrary unipolar injection and a thermal gradient. It is necessary to distinguish the present 

work from some published results.  

1. Coupling mode. As listed in [161], there are at least four distinct EHD coupling modes: 

Columbic forces, electrostriction, dielectric gradients and Joule heating. In preliminary 

researches, researchers mainly considered the effect of the synergism between the 

permittivity gradient and the imposed temperature gradients [162-165]. In the present study, 

the Coulomb force is the main driving force.  

2. Working medium. Though some other works also considered the Coulomb force, they 

generally took the ohmic or quasi-ohmic liquids as the work medium. For these liquids, the 

generation of free charge is through the conductivity gradient, which can be induced 

through a temperature gradient. For these classes of problems, some results about stability 

analysis and evaluation of heat transfer effect can be found in [12][166-171]. However, for 

dielectric liquid of low conductivity, more intense process of charge creation is ion 

injection. More significantly, this charge injection and corresponding Coulomb force may 

be considered as being independent of temperature gradients [172].  

Following the above distinction, we found that only few work have been done on this particular 

problem. Some related and worth referring works are summarized below.  

Fernandez et al. [173] performed experiments with an EHD-enhanced oil heater in tubes. The 

results showed that a radial motion of the fluid was strongly generated and that the heat transfer 

rate increased of more than 20 times over the fully developed laminar flow when a high DC 

voltage was applied. T. Mizushina, et al. [174] experimentally investigated the effect of radial 

electrical fields on heat and momentum transfer in dielectric liquid through concentric annuli. They 

found that EHD enhancement was less pronounced at higher Reynolds number forced flows. 

Similar conclusion has been obtained by A. Castellanos and N. Agrait through theoretical analysis 

[175]. The experimental results obtained by Bradley and Hoburg [178] highlighted the increase in 

Nusselt number due to injection. Paschkewitz and Pratt [179] investigated the effects of fluid 

properties on EHD heat transfer enhancement. Both viscous and electrically dominated flow 

regimes were considered. It was found that EHD had more important effect in lower viscosity 

liquids at the same low Reynolds number.  

An interesting coincidence is that all above works were done with forced flow. However, as 

pointed out in [22] and [172] the convection state was mainly determined by the Coulomb force.  

Thus, heat transfer can be viewed as the passive transfer, a similar case in force flow condition. 

Thus, the conclusion obtained with forced flow may also for initially still fluids.  

The most relevant experiments and theoretical analysis were performed by P. Atten, et.al [22][173]. 

Considering the importance of these two papers, some key ideas are summarized here.  
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In the experiments, the case of weak injection case was considered. It is interesting to find that the 

typical test case is different from all previous experiments used for hydrodynamic stability analysis 

[19][146][148].The reason is that the membranes used to generate strong injection were 

particularly poor thermal conductors. Thus, the ion injection is introduced by adding some salts to 

non-polar liquids, which limited its strength. Through the experiment, all four possible situations: 

(i) heating and injection from below or (ii) from above, (iii) heating from below and injection from 

above or (iv) heating from above and injection from below, were conducted.  All results verified 

the dominant role of the Coulomb force compared to the buoyancy force.   

In theoretical analysis, the author started from the experiment observations which stated that 

natural convection played a very minor role in heat transfer with electro-convection. Then, the 

non-dimensional Nusselt number (Nu) was assumed to be individually dependent on the Reynolde 

number (Re), like in the forced flow case. Then the left job was to estimate the velocity field.  

With the energy argument proposed by Felici [180], the formulas of velocity expressed by different 

parameters were obtained for two asymmetric cases: viscously and inertially dominated regimes. 

Though the author obtained the relevant parameters which governed the electrical forces for the 

two regimes, the problem was still far from the complete solution. On the one hand, the exact 

power law coefficients which relate the Nu and Re numbers have not been obtained. In fact, in 

some cases, like the transition range between viscously and inertially dominated regimes, it is 

impossible to get the law, as the estimation of the velocity field is extremely difficult. On the other 

hand, some possible error sources should be taken into account, like the modification of charge 

injection level during experiments and the effect of temperature on the conductivity of the working 

liquid.  

Besides the above two experiments, more works have been done on the stability analysis. Through 

the systematic analysis of published references, the stability analysis with the typical problem is 

complete. The completeness means the problem with arbitrary unipolar injection and 

temperature-dependent state equations (ionic mobility and permittivity). The detailed information 

can be found in a series of papers [15][16] [181-183].  

For the same problem, we are interested in these aspects: stability analysis and heat transfer 

enhancement effect. Rather than traditional linear stability analysis, we carry out a direct numerical 

study of the problem. Though Yan, et al. provided a numerical modeling of EHD effect on natural 

convection in an enclosure in [184], the full coupled ETHD problem has not been performed in a 

satisfactory way. In [184], the author concerned more about purely mathematical calculation, rather 

than combining together with the physical meaning of the problem. Thus, the roles of electrical 

parameter, mobility parameter and charge strength in heat transfer enhancement did not show up.  

On the contrary, Traoré et al. [57][185] developed a numerical tool with FVM, which has been 

successfully applied to solve the full coupled ETHD problem. The numerical procedure is based on 

the Augmented Lagrangian method [188]. In [185], the author used the numerical method to 

systematically analyze the stability parameter with a typical problem of a planar layer of dielectric 

liquid heating and injection both from below. Some other applications of their numerical approach 

can be found in [186][187]. 
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In the present study, we developed another similar tool but on collocated grid systems. The 

SIMPLE algorithm is used for the pressure-velocity coupling instead of the Augmented Lagrangian 

algorithm. Some effects are made to improve the accuracy and reduce the computational costs. 

With the newly developed tool, we firstly investigated some other problems like various heating 

and injection modes. In addition, we try to introduce the time-dependent state equations (both ionic 

mobility and permittivity).  

1.3 Present contributions  

 

This study makes the following specific contributions to the fields of computational fluid dynamics 

and electrohydrodynamics: 
 

1. A unified approach of the TVD-type high-resolution convective scheme coupled with 

various temporal schemes has been detailed and successfully applied to solve the charge 

density equation. Numerical performances of various TVD limiter functions were 

compared with steady and unsteady convection equations.  

2. The extension of TVD schemes to unstructured meshes has been reviewed. We proved the 

equivalence of two widely used extension methods, named Jasak’s type [69] and Darwish’s 

type [89].  

3. The relationship among three widely used diffusive flux discretization methods has been 

built. Some implementation details of the IDC scheme, like numerical boundary condition 

treatment and the selection of gradient evaluation methods, have been considered to 

improve the accuracy and robustness of the scheme. In addition, the IDC scheme has been 

successfully extended to three-dimensional problems  

Based on the above improvement of the FVM approach, an efficient numerical tool has been 

developed for EHD and ETHD problems. With this tool, some interesting problems have been 

investigated numerically,  

4. A systematical bifurcation study of a two-dimensional EHD nonlinear system has been 

done. The critical values of stability parameter with linear stability, non-linear stability has 

been obtained numeically. For both weak and strong injection cases, the numerical values 

we obtained are very close to the ones predicted by the stability analysis.   

5. The optimal choices, like TVD schemes, time scheme, Poisson equation solving frequency 

and implementation on the non-uniform grid, has been discussed with the numerical 

solutions of strong unipolar injection case.  

6. The role of the charge diffusion in finite-amplitude electro-convection is revisited, 

especially with strong injection case.  

7. The effect of wall boundary conditions on both linear and nonlinear stability criterion has 

been discussed in details with 2D problems. 

8. The continuous bifurcation and route to chaotic state with the two-dimensional strong 

injection problem has been defined.  

9. Some preliminary numerical results have been obtained for three-dimensional unipolar 

injection between two parallel square electrodes. 



22 

 

10. A new numerical approach for electro-thermal-convection was proposed. The solver was 

used to analyze the linear and nonlinear stability characteristics of the 2D mode that both 

heating and injection are from the bottom electrode.  

11.  The heat transfer enhancement effect by charge injection has been demonstrated.  

 

1.4 Thesis outline 

 

In Chapter 2, the EHD theory background is firstly explained. Then the physical model and 

governing equations of continuum mechanics (Electrostatic, Navier-Stokes and Energy equations) 

are summarized.  

Chapter 3 presents a second-order discretisation approach of the Finite Volume Method. 

Discretisation of a general scalar transport equation is examined. The temporal, convective and 

diffusisve schemes are discussed separately.   

In Chapter 4, a numerical tool for EHD problems is assessed and validated by applying it to some 

simple problems for which either analytical or well-known empirical solution exist.  

In Chapter 5, the problem of finite-amplitude electro-convection in dielectric liquids induced by 

unipolar injection is studied in details. Both weak and strong injections are considered.  

In Chapter 6, some numerical aspects which help improving the performance of our numerical 

solvers in electro-convection simulation are discussed in details.  

In Chapter 7, the flow structures of electro-convection due to strong charge injection are described 

in details. The route to chaotic state is defined numerically. In addition, the effects of vertical walls 

and diffusion mechanism for charge density transport on the hysteresis loop and flow structure are 

also discussed.  

In Chapter 8, the problem of electrohydrodynamic stability in the presence of a thermal gradient 

and heat transfer enhancement is analyzed with the numerical simulation approach.  

Finally, conclusions and suggestions for future development are given in the last chapter.  
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Chapter 2 Governing equations in Electro-Hydrodynamics 

and Electro-Thermo-Hydrodynamics flow 
 

2.1 Electrohydrodynamics (EHD) theory background 
 

This thesis mostly discussed about electro-convection and electro-thermal-convection between two 

parallel plates immersed in a single-phase dielectric liquid subjected to unipolar injection and a 

thermal gradient. Two typical problems will be:  

1. An isothermal thin dielectric liquid layer subjected to an electric liquid and unipolar 

injection;  

2. A planar layer of non-isothermal dielectric liquid subjected to both an injection of ions and 

temperature difference;  

In simple terms, when a strong DC electric field is applied, charge injection occurs and the electric 

body force sets the liquid into motion. Meanwhile, the charge density distribution and electric field 

are modified by the velocity field via the conservation equation of charge density. If a thermal 

gradient is simultaneously applied, a more complex interaction among velocity field, charge 

density distribution, electric potential and temperature fields can be expected. Before presenting 

the complete physical models and their governing equations, some theoretical background will be 

introduced in this section firstly.   

According to the theory of Landau [11], the electric body force per unit volume can be expressed 

as,  
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where E


is the electric strength, q  is the free (or space) charge density,   is the permittivity, 

  is the mass density and   is the temperature.  

The first term on the right hand side of (2-1) represents the Coulomb force exerted by an electric 

field upon the free charge within the bulk liquid. The second and third terms represent 

dielectrophoretic (or dielectric) and electrostrictive forces that depend on the nature and spatial 

distribution of E


 and  . Generally speaking, the Coulomb force is the strongest term and 

usually dominates when DC electric fields are applied. The dielectric force is usually weaker than 

the Coulomb force and only dominates when the action of AC electric fields with a period much 

shorter than the charge relaxation time and/or the ionic transient time, is imposed [10, p.126]. The 

electrostrictive force is a conservative vector. Thus this term can be included into the pressure term. 

To estimate its value, the partial derivative,  


  , can be expressed with the Clausius- Mosotti 

relationship, i.e. 

  000 2)2)((     
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In EHD field, one key problem is the understanding of the passage of electric current. Numerous 

studies determined the main features of the mechanisms of conduction, which are fairly better 

understood. A simple schematic drawing of the experiment to obtain the voltage-ampere 

characteristic (VAC) of dielectric liquids (DL) is plotted in Figure 2-1 (a). Though the final 

current-voltage curve depends on various factors, like the nature of the electrodes, the number of 

runs or the growth rate of the voltage [189], it generally exhibits three distinct parts (see Figure 

2-1b) [1, page 105-107][189-191]:  

(i) At low fields ( cmkVdVE /1/  ), the current appears to be a linear function of the 

applied voltage V, and obey Ohm’s law. This quasi-ohmic behavior corresponds to the 

electrolytic conduction.  

(ii) Increasing the voltage to the range cmkV /10040 (moderate field), the current tends to 

rise usually proportionally to 2V . This range is named as the sub-ohmic part and 

corresponds to the tendency towards current saturation.  

(iii) At high fields there is a strong increase in the current ( VI  , 1 ). The current 

increases sharply for comparatively small increments of the field. This final region 

corresponds to the dominance of the injection process.  

Finally, the liquids will break down at a sufficiently high magnitude of electric strength.  

 

 
(a) 

 
(b) 

 
Figure 2- 1 (a) A schematic drawing of experimental circuit to determine the Volt-ampere characteristics 

(VAC) of dielectric liquids (b) the VAC for Nitrobenzene [192]  

In the next paragraphs, we make a brief introduction of the creation mechanisms of free charges in 

dielectric liquids. There are mainly three possible origins of net space charge: the conductivity 

model [193], dissociation of impurities in the bulk and ion injection. The ion injection is also 

named ‘mobility models’ of charge transport in some literature. Both dissociation and injection can 

be enhanced by the external electric fields, giving rise to the typical nonlinear current-voltage 

characteristics, common to most of the insulating liquids.  

The conductivity model 

The conductivity model states that a temperature gradient will give rise to a conductivity gradient 

and the charge density cmq can be expressed with [168],  

A 

V 

= U 

DL 
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where  is the electrical conductivity of the liquid. Apparently, the model can only work for 

non-isothermal fluids, which means it fails to show the instability mechanism in the limit of small 

temperature gradient. In addition, this type of space charge production is more relevant to ohmic or 

quasi-ohmic liquids [172]. For dielectric liquids with low conductivity, other sources of free charge 

are more important than this. In the present study, it is wise to neglect this mechanism.  

Dissociation of impurities 

Dissociation of impurities in liquids is normally governed by complicated physical and chemical 

processes. In real world, perfectly pure dielectric liquids do not exist, the impurities or the liquid 

itself contribute to their conductivity. Two typical dissociation processes with ionophore and 

ionogen electrolytes are explained below.  

Ionophore electrolytes are mostly ionic salts. Within the solvent, the ion-dipole interactions will 

break the ionic lattice, and free ions (positive and negative in pairs) are generated. It should be 

noted that not all ionophore molecules will break up [26],  

where (A
+
B

-
) represents a ionic-pair and A

+
 and B

-
  represent the free ions. According to the 

Onsager theory [194], the dissociation constant may be expressed as 

)(0 EFkk DD     

where 0

Dk is the dissociation constant of the thermodynamic equilibrium ionic pair/free ions, and 

)(EF is a well-known tabulated function of the electric field [194]. In contrast, the recombination 

constant Rk is independent of the electric field strength in a wide range, and it can be computed 

with the theoretical Langevin expression,   

 /2 0ekR    

under the assumption that the anions and cations have the same mobility  (for liquids, this 

assumption is generally well respected).  In above equation,  and 0e denote the permittivity of 

the liquid and the absolute electronic charge separately.  

The direct dissociation process cannot be applied to ionogen electrolytes, which are formed by 

covalent bonds. Generally, the production of free ions with ionogen electrolytes contains two steps. 

The first step is the chemical reaction between the impurity molecules and /or another impurity 

species or solvent, which produce some ionic pairs. Then, the reaction products dissociate into free 

ions, just like ionophore electrolytes. Though the physicochemical process with dissociation is 

clear, the essential difficulty is the evaluation methods for reaction rate coefficients, like the 

dissociation and recombination coefficients and kinetic rate constants. In general, all the impurities 

Rk  
(A

+
B

-
)  A

+ 
 + B

- Dk  
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in polar liquids will be dissociated into free ions, while there is a dynamic equilibrium between 

free ions and ionic pairs. Some assumptions were made and different models were proposed, like 

Debye model for the combination constant [195], Fuoss formula for the ionic association constant 

[196], the Thomson model [197] and so on. Qualitatively, the rate of generation of free ions is 

modified by the presence of an external electric field, and an exact evaluation of the effect has been 

provided by Onsager [194]. In addition, the recombination constant is almost unaffected by the 

external electric field. In present study, the ions produced by dissociation will not be considered 

temporary for its small amount comparing with ion injection mechanism.  

Polar and Non-Polar liquids 

Before the explanation of ion injection process in dielectric liquids, we need to distinguish polar 

and nonpolar liquids. To strictly distinguish between them, one needs to compare the size of the 

ions with Bjerrum distance. From molecular structure point of view, the structure of polar liquid is 

asymmetrical in space while the structure of non-polar liquid is symmetrical. The difference in the 

molecular structure leads to the difference in electronegavity. The ability to attract electrons of 

polar liquids is stronger than non-polar liquids because of their higher electronegavity. In the 

experiments, the unipolar and strong injection can be obtained by covering the electrodes with 

electrodialytic membranes which then behave as injector of ions [198]. In nonpolar liquids, weak 

and moderate injection can also be obtained by adding some specific salt to the liquid [24].   

Charge injection  

When dielectric fluids contact with metal, another ion generation mechanism may become 

dominant. The ion injection process can be divided into two processes: ions with same polarity as 

the electrode are created and then entering into fluid. There are various physical mechanisms that 

can be used for ion injection. First of all, the injection mechanism in liquids and in vacuum or air 

are different. The well-known Schotky injection and field emission don’t apply for dielectric 

liquids. In the present study, we focus on the injection through electrochemical reactions in 

dielectric liquids. A brief introduction of this type of injection in both nonpolar and polar liquids 

will be made below and the emphasis is on the possible effects of electric fields.  

At the interface between a solid (like metal) and a liquid, a physio chemical process takes place 

and an electrical double layer is created. Different models were proposed to describe the electrical 

double layer (EDL), like Helmotz model [199], Gouy and Chapman model [200][201], Stern 

model [202] and so on. Some more recent theoretical developments of EDL are reviewed by J. 

Lyklema [203]. Here, we use the Stern model to qualitatively describe the injection process in 

nonpolar and polar liquids.  

The neutral molecules, ions and ionic pairs attach to the metal surface because of the chemical 

and/or electrostatic image forces. Then electrons are transferred between the metal and the attached 

microscopic particles, giving rise to an EDL.    

There is a first layer of absorbed solvent molecules and to a less extend also molecules, ions and 

ionic pairs originated from the dissolved impurities. The second layer is formed with solvated ions 

of polarity opposed to the electrode. Both layers define the double charged sublayer with a 
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width, Hl , of the order of the solvated ionic radius. Another region is defined by the distance 4/Bl ,  

where Bl  is the Bjerrum distance. In this region, the ions are subjected to their image force. When 

the electric field is applied, a potential barrier is formed.  

 

Figure 2-2 Stern double layer model on electrode, the figure is reproduced following [7] 

For polar liquids, the Bjerrum distance, Bl , is equal or lesser than the width of DBL, Hl , and 

therefore the ions, once produced, are immediately injected into the liquid. For nonpolar liquids, 

the ions have to overcome the potential barrier created by the image fore and the external electric 

field before injecting into the bulk of fluid. In the following, the creation of charge carriers in polar 

and nonpolar liquids is present in a succinct way and highlights the function of external electric 

field. We assume that an electron transfer from a molecule of the fluid to the metal electrode.  

Injection in polar liquids [191] [1, page 29-30] 

In [191], N. J. Felici modeled the ions injection in polar liquids with the following reaction,  

 
where M  and A  represent the metal and the electron donor molecule separately, and ox and 

rd are the oxidation and reduction constants. If there is no external field, a dynamical equilibrium 

state can be reached. The presence of an external field will bring different effects to the oxidation 

and reduction processes, which can be precisely described in terms of oxidation and reaction 

constants [1, page 29],  
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where o

ox  and o

rd  are the oxidation and reaction constants at thermodynamic equilibrium, Bk  

is the Boltzmann constant and T is the temperature. It is easy to find from Eqns. (2-3) that the ion 

generation process is enhanced with the external electric field.  All the extra ions are injected into 
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the bulk of the liquid. Using 
i

A
n   to represent the number density of the extra ions, we obtain the 

following equation from charge conservation law.  

  ArdAox

i

A
neneEen             (2-4) 

where An  and A
n are the species concentration per unit area of neutral molecules and positive 

ions separately, and  is the mobility of positive ions. Assuming that An is constant with the 

value of 0

An  during the reaction, the concentration of the number density of the total positive ions 

and injection ions can be simply expressed as 
0

AA
Cnn   and

0

A

i

A
Cnn   . By the definition 

formula of the injected charged density, H

i

Ai lenq / , and the injected current density, 

EqJ ii    , we obtain [1],  
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Two limiting cases can be used to simply Eqn.(2-5).  
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Only with SEE  , the widely used ‘autonomous injection’ hypothesis can be guaranteed. 

The hypothesis means that the injected charge density is constant and independent of 

electric field. However, in practical situations, the requirement might appear harder to 

satisfy.  

Case II: 1/ SEE  
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Both the current and the injected charge density increase exponentially with external 

electric field.  

Injection in nonpolar liquids [33][1, page 30-32] 

In nonpolar liquids, the ion injection process may be separated into two steps. In the first step, the 

ions are created at the electrodes. Then, the ions escape into the bulk of fluid after overcoming the 

potential barrier. The complete reaction may be described as,  

ox  
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The first part of the above chemical equation is similar to injection in polar liquids. In the latter 

part, ext is the extraction constant of the ion from the image force. The first equation can be 

obtained based on the assumption that the density of ionic pairs is constant [1],  
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The final object of the analysis of injection process is to determine the injected charge current and 

density. The injected current density is:   
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where n  and n are the surface density of ionic pairs and ions formed by electron transfer at the 

electrode. Firstly, oxidation and reaction constants, i.e., ox  and rd , can be expressed in a 

similar equations as in Eqn. (2-3). Then, the rest task to decide the rate of extraction of ions, ext , 

though , will be not easy. An accurate and complete expression requires the understanding the 

transport mechanisms participating at the interface: ionic migration and diffusion. A detailed 

analysis can be found in [33] and a simple version in [1, page 31]. Here, we directly give the final 

expression,  
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where OB llb / , EelO 16/ , and 1K  is the modified Bessel function of the second kind 

and order one. Function )(x denotes the potential barrier. It should be noted that the diffusion 

coefficient, which account for the diffusion transport mechanisms, is expressed with the ionic 

mobility by the aid of Einstein’s relation. Two situations can be distinguished by the comparison of 

chemical reaction rate of the two steps.  

Case I: The second step of extraction process is much faster than the first step of the 

oxidation-reduction reaction. The exponential law of injection for the polar liquid, i.e., Eqn. (2-7) 

is recovered.  

Case II: However, the reverse situation that the extraction speed is slower than the ion generation 

is more common in real world. Then, the current density equation Eqn.(2-9) may be simplified to,  
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Taking Eqn.(2-10) and formula of ox  and rd  into Eqn.(2-9), the final expression for the 

injected current can be obtained [1, page 32]. 
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with 0

iq a constant that depends on the liquid and electrolyte nature. The electric field only appears 

in b parameter and it is found that the ‘autonomous injection’ hypothesis works well for values of 

mVE /10410 65  [1][153].  

Once the free ions were generated and injected into the bulk of fluids, the electric field will exert a 

force on these free charges. Then, the force is transmitted on the neutral molecules by collisions.  

Typically, the liquid will be set in motion. The distribution of charges will follow constantly 

changing and the electric field will be modified. Further, the amount of ions injected into the fluids 

may change if conditions for autonomous injection are not satisfied. The complete coupling makes 

the EHD problem difficult to understand and solve.  

2.2 Electro-Thermo-Hydrodynamics (ETHD) theory background 

 

In recent years, the complex interactions that occur when an electric field and a thermal gradient 

are simultaneously applied across a dielectric liquid containing space charge have received much 

attention. Two apparent research motivations of electro-thermo-hydrodynamics are:  

1. Scientific point: the underlying nature of the instability and the rich subsequent nonlinear 

development or bifurcation of electro-thermal convection;  

2. Engineering and industrial point: The promising way to increase or control the heat transfer 

by means of electric forces;  

In general, the thermal field dramatically increases the complexity of the EHD system. This 

complexity shows itself through the following factors:  

Firstly, the possibilities of free charge carrier generation due to the conductivity model.  

Secondly, the buoyancy driving force in the momentum equations. The buoyancy force is induced 

by the variation of the fluid density with temperature. The classical Boussinesq approximation will 

be used in the present study to simplify the effect of non-constant fluid density. Boussinesq 

approximation states that the density differences are sufficiently small to be neglected, except 

where they appear in the terms multiplied by the acceleration due to gravity.  

Thirdly, various temperature-dependent properties. Strictly speaking, besides density, kinematic 

viscosity, thermal diffusivity, electrical permittivity and ionic mobility may also vary with the 

temperature field. However, in the present study, it is assumed that the kinematic viscosity and 

thermal diffusivity remain constant. We neglect such variations to highlight the effects of 

buoyancy force, temperature dependence of mobility and permittivity.  
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Since the electrical permittivity gradient would be induced by the imposed temperature gradient, 

the dielectric force should also be taken into account. However, under DC condition with space 

charge generation in the liquid, the force never becomes dominant when comparing with the 

Coulomb force.  

In addition, the Joule heating and other dissipation effects in energy equation provide other couple 

modes between EHD and ETHD systems.  

The equation of the temperature in EHD has been obtained by A. Castellanos with the classical 

procedure of thermodynamics of irreversible process [1, chapter 5][204]. In addition, the 

Boussinesq approximation is also introduced into EHD to simplify the temperature equation. In the 

present study, we will use the simplified temperature equation. For more details of derivation, 

please refer to [1, chapter 5][204].   

2.3 Physical model and governing equations 
 

Consider an incompressible and perfectly insulating liquid of density  , permittivity , constant 

kinematic viscosity  and constant thermal diffusivity , enclosed between two parallel planar 

electrodes at a distance d from one to the other. For EHD problems, only an electric potential is 

applied between the electrodes so that injection of charge can occur. Though double injection is 

possible and can be well controlled in some liquids [205], the case of unipolar injection is the main 

concern in the present study. After applying an external electric field, electric charges are injected 

into the system from the electrode of higher potential.  

For ETHD problem, the two horizontal metallic electrodes are assumed to be rigid perfectly heat 

conducting plates and maintained at fixed different temperatures 0 and 1  respectively.   

As for vertical sidewalls, both symmetric boundary condition and rigid wall boundary conditions 

will be applied to velocity variables according to the physical problems of interest. Symmetric 

boundary stands for infinite domain, while no-slip wall boundary indicates the problems are in 

enclosures. In addition, the polarities of electrodes and the relative magnitude of 0  
and 1  are 

not fixed, which allows the four possible situations for stability analysis in 2D and other six 

configurations for heat transfer enhancement evaluation, see Figure 2-3. 

2.3.1 Basic assumptions 

 

Before the introduction of the physical model, some basic assumptions need to be made. The 

following should be satisfied with all problems under consideration in this dissertation.  

1. Incompressible Newtonian liquid; 

2. DC electric field and unipolar injection;  

3. One kind of ion in the fluid;  

4. Negligible magnetic effects;  

5. Negligible electrical double layer; 
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Unipolar injection means ion injection occurs at one electrode only. It should be pointed out that 

unipolar injection is more classical than double injection (ambipolar). This was verified by 

electro-optic measurement. Certainly, numerical simulation of double injection is a bit more 

complicated than unipolar injection, as the recombination process must be taken into account [206], 

a similar situation with injection under AC fields [207][208] .  

Some extra assumptions are needed for individual problems. For pure EHD problems,  

1. Isothermal fluids;  

2. The electrical conductivity  , the permittivity  and ion mobility k  are constant;   

For ETHD problems,  

3. The Boussinesq approximation;  

4. The permittivity  and ion mobility k  are constant or vary linearly with temperature;  

5. Viscous dissipation and Joule heating is neglected;  

Typical 2D and 3D problems with some well-defined boundary conditions are plotted in Figure 2-3, 

2-4 and 2-5. 

 

 

 

Figure 2-3. Different heating and injection modes (blue arrows - heat; red arrows – injection) 

 

 

 

 

 

(1) Heating and injection below (2) Heating and injection above 

(3) Heating above and injection 

below 

(4) Heating below and injection 

above 

(5) Injection and injection vertical 

_same 

(6) Injection and heating vertical 

_opposite 
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Figure 2-4. The dielectric liquid layer and parallel plane electrodes configuration in 2D 

 

Figure 2-5. The dielectric liquid layer and parallel plane electrodes configuration in 3D 
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2.3.2 Governing equations  

 

Electrical Equations 

For dielectric liquids of low conductivity, Maxwell equations reduce to the electroquasistatic limit 

( BcE


 , where c  is the velocity of light and B


represents the magnetic fields), thus falling in the 

realm of EHD [1, page 5-8]. In other words, the electrical equations in EHD are,  

  q 


   0 E


   0



J

t

q 
 

where 


is the displacement vector, E


   and J


is the current density;  

For unipolar injection with only one species injected into a perfectly insulating liquid, 0 , the 

constitutive law for the current density is :  

  UqqDEqKJ


  

The first term gives the contribution due to the drift of ions that move relatively to the liquid with a 

velocity EK


, with K  the ionic mobility. The second term accounts for molecular diffusion, with 

D  the charge diffusion coefficient. The Einstein’s relation ekKD //  ( k the Boltzmann 

constant and e the elementary charge) can be used to estimate the order of D . The third term of 

above equation is due to convection of charge density by the liquid velocity fieldU


.  

To conclude, the complete electrical equations for unipolar injection can be summarized as,  

  q E               (2-13) 

E                (2-14) 

  0



UqqDEqK

t

q 
         (2-15) 

where   stands for the electric potential.  

Mechanical Equations 

Following the assumption of incompressible Newtonian liquid, the mechanical equations (the 

conservation of mass and momentum) are,  

0 U


               (2-16) 

eb ffUpUU
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where   denotes the dynamic viscosity. bf


 and ef


 are the possible buoyancy and electrical 

forces. The complete expression for ef


 is given by Eqn.(2-1). However, we consider the Coulomb 

force and dielectric force in the present study and put the electrostrictive force into the pressure 

term,  

     EEEqfe



2

1
            (2-18) 

As for buoyancy force, the final expression can be obtained by applying the Boussinesq 

approximation,  

  0 0 0( )b i if g g                   (2-19) 

where ig is the component of the gravity acceleration vector in ix -direction,   is the coefficient of 

thermal expansion and 0 is the reference temperature at which 0  and other physical properties.  

Energy Equation 

In [1, page 62-82][204], A. Castellanos firstly derived the entropy equation for dielectric fluids in 

movement from the first principle. Then, the temperature is derived from the entropy equation with 

the entropy definition equation. However the energy equation he provided contains too many 

variables and some further simplifications are needed for the practical situations we are concerned 

about.  

1. For frequencies below the microwave region, the molecular polarization is in 

equilibrium with the field, and dielectric heating is not present [1, page 81].  

2. Small temperature difference. It should be pointed out that there are two functions of 

this assumption. First, it is used to neglect the reversible variations of temperature with 

the electric field [1, page 80]. Second, it helps making use of the Boussinesq 

approximation, which means that the contribution from viscous dissipation can also be 

neglected safely. 

Under above two conditions and with the Boussinesq approximation, the temperature equation in 

EHD reduces to,  


 2



U

t


             (2-20) 

where   denotes thermal diffusivity.  

In principle, there are two extra terms on the right hand side of above equation,  

    The Joule heating term: pcEJ /


    

    The viscous dissipation term: VV


2  
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For most attempts to solve ETHD problem numerically, the effects of Joule heating and viscous 

dissipation can be neglected based on some order (dimensional) analysis with the fact the electric 

current is of μA or less with highly insulating liquids. The validity of neglecting both heat sources 

in space-charge-limited-current regime has been proved with an illustrative example in [209]. The 

authors estimated that the energy dissipation of a typical dielectric liquid (like silicone oil) due to 

Joule heating and viscous dissipation would increase the temperature at a rate ~ sK /10 4 .  

In addition, its neglect can be understood in another way. It is well-known that Joule heating for 

forced convection can be safely neglected. Remembering the experimental results of [22][172], 

heat transfer within ETHD system can be viewed as the similar case of forced flow. Thus, Joule 

heating should be small enough to justify its neglect.  

The state equations 

The first state equation is for fluid density,  

  )(1 00                (2-21) 

Similar with density, it is possible that the ionic mobility and the electrical permittivity vary with 

temperature. Some models are needed to describe the specific relationship. In present study, a 

linear model is used. The same model has been widely used for stability analysis with ETHD 

systems [15][16][26][181-183],   

  )(1 010   e              (2-22) 

  )(1 010   kKK             (2-23)

 

In Eqns. (2-21) ~ (2-23), a subscript 0 denotes a reference value which for later convenience, will 

be taken as 0y . The coefficients 1e  and 1k denote the corresponding derivatives of  and 

K with respect to temperature separately.  If we want to freeze  and K to be constant, we just 

have to set 01 e  and 01 k .  

It should be pointed out that the above ‘linear model’ is just an approximation of an elaborate 

model. Taking the ionic mobility as the example, its temperature-dependent relationship is usually 

expressed by the Arrhenius-type equation [15],  






















0

0

11
exp)(


kWKTK          (2-24)

 

where kW  is the ratio of an activation energy to the Boltzmann constant [210, chapter 1], so 

Eqn.(2-23) is equivalent to a Taylor expansion of Eqn.(2-24) to first order in )( 0  , which 

means that the ‘linear model’ can work well only with small thermal gradient ( mmo /1 ) [36].  

Some quadratic and higher-order approximations are also available.  
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2.3.3 Boundary conditions  

 

A coordinate system is chosen to express boundary conditions easily. With the parallel plane 

electrodes, we set (x, y)-plane to coincide with the electrode. For velocity, electrical potential and 

temperature, the physical and corresponding numerical boundary conditions can be easily defined.  

Considering the rigidness of electrodes, the velocity boundary conditions at the electrodes are 

assumed to be non-slip. The electric potential is usually fixed at the electrodes, so 

that givenelectrodes   .  For other vertical sides, symmetric, periodic and wall boundary conditions 

are possible. In addition, in some cases, inflow and outflow boundary conditions may be used.  In 

the present study, all other sides (i.e., all physical boundaries except electrodes) are set as 

Neumann boundary condition for potential equation.   

As for energy equations, only two types of boundary conditions will be considered: isothermal and 

adiabatic. Both of them can be easily transferred to corresponding mathematical expressions. It 

should be pointed out here the lack of constant heat flux boundary condition makes it impossible to 

completely reproduce the physical experiments of [22] [172] with our numerical tools. In the 

coming future, heat flux boundary condition treatment will be incorporated.  

The boundary condition for the charge density is regarded as one of the most complicated problem 

of EHD-related problems considering the complex electro-chemical reactions on the electrode 

surfaces (both emitter and collecting electrodes) [208].  

For the emitter electrode, the accurate value of charge density is not easy to determine. 

Theoretically, its value can be computed by extracting the injected current from the measured value. 

The detailed method is explained in [211], or a simple one in [171]. Another possible method is to 

use the definition of chemical kinetics, which makes it possible to express the charge density on 

the injection electrode in terms of the physical constants of the fluid [208]. However, in numerical 

studies, the injection strength is a control parameter, thus its value should be given in advance as 

boundary condition. The next question is whether the charge density on emitter electrode adjusts 

itself during the calculation process or not. Physically speaking, ion injection process may be 

affected by many factors. A complete analysis is beyond the scope of the present study. By the 

assumption of autonomous injection, we can avoid the problem. Autonomous injection means that 

the charge density at injectors remains constant during the whole simulation process, neither 

influenced by the electric field nor by the liquid motion. In [1, p. 29-32], unipolar injections in both 

polar and nonpolar liquids were analyzed in detail. The final conclusion is that the autonomous 

injection assumption is more likely to be satisfied with nonpolar liquids. However, the autonomous 

injection assumption has been widely used to reduce the complexity of problem. To get closer to 

the real physical problems, some non-autonomous injection laws should be incorporated into the 

numerical solvers. Taking the field-dependent law given by Felici and Gosse [212] (see also in 

[141]) for example, the non-autonomous injection can be expressed as,   

 
)2(2 1

*
0

bbK

q
q                (2-25) 
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where 1K  is the modified Bessel function of second kind and order one. The constant *q is 

linearly dependent with the residual conductivity 
 

of the liquid. The parameter b is the ratio of 

two physical distances,  

EB llb /   

kelB 4/2       :  the Bjerrum distance 

  2/1
)0(4/ EelE   

where k is the Boltzmann constant,   is the absolute temperature and )0(E is the electric field at 

the injector. For simplicity, the electrode conditions can also be formulated as [213],  

 )(0 EEFq i                (2-26) 

where  is the injection coefficient. The form of the function iF is determined by the emission 

properties of the electrodes and the specifics of the electrochemical reaction. When 1)( EFi , the 

injection law becomes linear. The linear injection law has been used in several cases, to see [214] 

and [215].  

For the collecting electrode, we assume that the injected charge carriers are instantaneously 

discharged once they arrive at the electrodes (a typical ejection law). This assumption is also 

named ‘the completely open condition’ in literature. The hypothesis indicates that we impose a 

boundary condition which is equivalent to the supersonic outflow boundary condition in 

aerodynamics [152]. Either the zero-slope method or the extrapolation method can be used to 

express the boundary condition.  

The zero-slope method 

0




y

q
  at dy             (2-27) 

The extrapolation method 

y

q




  continuous at dy           (2-28) 

For simplicity, in present study we will adopt the zero-slope, i.e., Neumann condition, except 

where some special statements are made.  

If we neglect the diffusion mechanism, the charge density equation becomes hyperbolic. Then we 

need not to specify any physical boundary condition at the collecting electrodes (and in fact cannot, 

since the charge density is entirely determined by the data given already) [72, page 19]. However, 

for numerical implementation method of high-resolution TVD schemes in present study, a 

mathematical boundary condition is necessary. To avoid or reduce the possibility of the noise that 
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generated at the outflow boundary propagate back into the inner domain, some numerical skill is 

needed to treat the mathematical boundary condition. A detailed analysis can be found in section 5.  

2.3.4 Initial conditions  

 

The complete system is an initial-boundary-value problem (IBVP). Thus, besides the boundary 

condition, the initial data is also necessary for final numerical solutions. Generally, three types of 

initial conditions are used in present study according to the purposes of simulation.  

1. Zero field 

    All variables (like velocity, pressure, charge density, electric potential and temperature field) 

are set to be zero. This type of initial condition stands for the computation starting from the still 

state of the fluid or a sudden step pulse is applied.  

2. Hydrostatic solutions 

    Quite a lot of hydrostatic or electro-thermal hydrostatic equilibrium solutions are available in 

literature, as these solutions are the starting point for linear instability analysis. Hydrostatic 

solutions means the velocity field keeps zero and other variables (like charge density, electric 

potential and temperature) are in a dynamic balance. For numerical simulation, these solutions can 

be used to shorten the computational time. In addition, it is important to damp out the fluctuations 

introduced by step pulse injection.  

3. Previous simulation results 

Quite a lot of computational cost may be saved if we start the computation from one steady state. 

In addition, this kind of restart and continuation computation is a key component for numerically 

determining the nonlinear stability criteria and hysteresis loop.  

2.3.5 Non-dimensional form 
 

For EHD and ETHD problems, it is difficult to foresee how electrical, mechanical and thermal 

effects will interact [10, page 99]. Another equally serious problem is the existence of several time 

scales. Thus, it is not easy to define the best non-dimensional scales. Some detailed analysis can be 

found in [1, page 54-60], [10, chapter 7], [216] and [217].  

However, several non-dimensional forms have already been applied to a fair amount of numerical 

work. In present study, we follow the same expressions. Two non-dimensional forms will be used 

to keep consistent with some published literature for the comparison purpose.  

EHD problem 

Taking d , 0 , 2

0 / d  and dK /0 as the scales for distance, potential, charge density and 

velocity respectively, the governing equation of EHD problem can be written as,  

0*  U


              (2-29) 
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where p~  includes the non-dimensional pressure and electrostrictive force term. The name, 

expression and physical meanings of the non-dimensional parameters newly appearing above can 

be found in Table 2-1.  

Another non-dimensional expression will also be used in present study for extremely strong 

injection to approximate the ‘space charge limited (SCL) injection’ C . With this new style, 

the scale for charge density is 0q , the charge density at the injection electrode. Some modification 

should be done with Navier-Stokes equations and potential equation,  
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      (2-30-2) 

** Cq               (2-31-2) 

ETHD Problem  

If now length, time, liquid velocity, charge density, electric potential, electric field temperature, 

pressure field, mass density, permittivity and ionic mobility are made dimensionless by making the 

following transformations: 
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the resulting governing equations of this thermo-electrohydrodynamic system are:  
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and the update equations for fluid properties,  

      L R a1                            (2-38) 

  NRaK 1                           (2-39)

 
The difference between above two non-dimensional expressions is the unit scale of new scales of 

charge density and liquid velocity. An interesting point is that the above non-dimensional form 

implicitly uses the viscous time as the time scale, which is recommended by P. A. Vaequez in [67] 

after a systematic comparison of the viscous time, the drift time and the Coulomb repulsion time.   

Note: 1. the above expression can be also used for pure EHD problem by setting Ra = 0;  

          2. The diffusion term has been neglected temporarily;  

          3.  RadeL /1  and RadkN /1  

Along with the non-dimensional forms, boundary conditions also need to be nondimensionalized. 

Special attention should be paid to the non-dimensional charge density at the injection electrodes 

with the two different non-dimensional styles.  

Table 2-1. Some important non-dimensional numbers and their physical meanings 

Name Nomenclature Expressions Meaning 

Electric Grashf 

parameter 

 

T  K

 0  
The ratio of the destabilizing Coulomb 

force to the stabilizing viscous force 

 

Injection strength 

 

C  
0

2

0



dq
 

A measure of the injection strength 

 

Mobility parameter 

 

M  

2/1

1













K
 

The ratio of  hydrodynamic mobility, 

  2/1
/   and the ionic mobility 

Electrical Reynolds 

number 

 

R  2M

T
 

The ratio of the ionic drift timescale to 

the viscosity timescale 

 

Rayleigh number 

 

Ra  

3g d

k

 




 

The ratio of the destabilizing 

buoyancy force to the stabilizing 

viscous force 

Prandtl number  

Pr  k


 

The ratio of momentum diffusivity to 

thermal diffusivity 

Diffusion number  
  

0K

D

 

The parameter represent the 

charge-diffusion effects 

The nondimensional 

temperature derivate of 

dielectric constant 

 

L  3

1

gd

e





 

The non-dimensionalised first 

derivative with repsect to temperature 

of dielectric constant  

The nondimensional 

temperature derivate of 

mobility 

 

N  3

1

gd

k





 

The non-dimensionalised first 

derivative with repsect to temperature 

of mobility 
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Some other non-dimensional parameters can also be defined, for example an electrical Grashof 

number (the Coulombic body force to the viscous body force) and an electric Prandtl number 

appear in [1, page 83-162].  

2.4 Physical range of non-dimensional parameters 

 

Through the above non-dimensional analysis, a large number of inherent parameters appear. On 

the one hand, various controlling parameters indicate the diversity of the fluid structures. On the 

other hand, these variables and their possible ranges bring a certain difficulty for systematical 

analysis. Considering our concerns are limited to dielectric liquids and under the action of unipolar 

injection, some physical ranges could be obtained for above non-dimensional parameters.  

The stability number T and Rayleigh number Ra are the two control parameters which are 

proportional to the potential and temperature difference separately, thus they could vary in a wide 

range. Some attention should be made to the Rayleigh number. We need to distinguish the 

stabilizing and destabilizing effects of buoyancy force when heating is from the above or the below 

side.  

C parameter represents the strength of charge injection. For weak injection, the electric field within 

the fluid is mainly determined by the applied electric potential difference.  On the contrary, for 

strong injection, the electric field within the fluid would be seriously affected by the space-charge 

distribution [216, page 21]. Following Tobazéron’s classification [218], three injection regimes of 

C are possible, see below 

- Strong injection:  C5  

- Medium injection:  52.0 C  

- Weak injection:  2.00 C  

The typical values for the non-dimensional diffusion number α range between 10
-3

 and 10
-4

[152]. 

This range can be determined through the Einstein relation for liquids [9], which relate the ionic 

diffusion to mobility of the fluid.  

In [150], Atten et al., highlighted the difference between liquid and gas systems using M parameter. 

Typical values for gases usually obey 1M  and for liquid 3M . The parameter implicates the 

closeness between the electric module and velocity module. For gas system, low M value indicates 

that the electric module can be solved independently without information from velocity field. Some 

values of M for different dielectric liquids are given by [152] and listed in Table 2-2.  

As for Prandlt number, there is also a wide range. For example, in [219], the three working 

dielectric liquids (Polyalphaolefin, ECO-C and Beta fluid) have quite different Prandlt number: 75, 

12.1 and 830.   

Parameters N and L are derived from the thermal dependence of ionic mobility and electrical 

permittivity respectively. Both N and L have similar signs. Negative (positive) N means injection 

from upper (lower) electrode.  
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Table 2-2. Values of M for different liquids [152]. 

Liquid Ions M 

Methanol H
+
 4.1 

Chlorobenzene Cl
-
 4.9 

Ethanol H
+
 8.8 

Ethanol Cl
-
 26.5 

Nitrobenzene Cl
-
 22 

Propilene carbonate Cl
-
 51 

Chlorinated diphenyls Cl
-
 60~475 

2.5 Closure 
 

In this chapter, the typical problems and their physical models and governing equations have been 

introduced. Some brief descriptions of charge generation mechanism and injection laws are 

summarized. Two dimensionless forms and non-dimensional parameters for EHD and ETHD 

systems are detailed. Some physical ranges of non-dimensional parameters are made considering 

the working mediums are dielectric liquids. After the establishment of the mathematical framework, 

the discretisation of the general transport equation in spatial and temporal domain is the next step 

in achieving the numerical solutions. This is the subject of the next chapter. 
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Chapter 3 Finite volume discretisation 

3.1 Introduction 
 

In the previous chapter the general mathematical model of Newtonian fluid flow and the equations 

defining the electrostatic field in EHD and ETHD system have been explained. In this chapter, the 

numerical discretisation method will be described. The purpose of the discretisation is to transform 

the partial differential equations into a corresponding system of algebraic equations. The whole 

discretisation process includes two parts: the discretisation of the solution domain and the 

discretisation of the equation.  

The discretisation of the solution domain is to define a numerical grid, which replaces the 

continuous spatial and temporal domain by a finite number of computational cells (control volume 

(CV)) and time steps where the numerical values of the dependent variables will be determined. 

Discretisation process consists in replacing partial differential operators in the governing equations 

by algebraic expression of the unknown function at given connected nodes. In the present study, 

the finite volume method (FVM) will be used integrate the equations. This discretisation method 

has the following features: 

1. All PDE equations (Navier-Stokes equations, energy equation and Maxwell’s equations) are 

solved with a fixed grid system.   

2. The collocated grid system where all variables share the same CVs is adopted. It is more 

suitable to treat problems of complex geometries than staggered arrangements.  

3. Due to the strong nonlinearity of the underlying equations, the PDEs systems are solved with 

a segregated iterative algorithm. This algorithm means that all PDEs are solved one at a time, with 

the inter-equation coupling treated in the explicit way.  

4. The method can be applied to both steady and transient calculations. The time marching 

method is incorporated for transient problems.    

The reminder of this chapter is organized as follows. Firstly, in section 3.2 the grid system is 

described. Section 3.3 presents the discretisation procedure for a generic scalar transport equation. 

The discretisations of the convective terms, diffusive terms and temporal terms are presented in 

Section 3.3.1, 3.3.2 and 3.3.3 separately. The generalized segregated approach with SIMPLE 

algorithm for pressure-velocity coupling is outlined in Section 3.4. Numerical examples, 

illustrating the behavior of the discretised terms are presented in Section 3.5. Finally, some closing 

remarks are given in the last section.  

3.2 Discretisation of the computational domain 
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The main purpose when discretizing the solution domain is to generate the computational mesh on 

which the governing equations will be solved subsequently. It also determines the positions of 

spatial nodes and temporal instants where the solutions are sought. The typical procedure can be 

split into two parts: the discretisation of space and time. Space discretisation will be explained in 

this section, while the temporal discretisation will be discussed in Section 3.3.3.  

The discretisation of spatial domain for FVM requires a subdivision of the domain into a number 

of contiguous, non-overlapping control volumes (CVs) which completely fill the computational 

domain. Under the collocated arrangement, all computational nodes are located in the CV’s 

centroids. The detailed process includes two main aspects: (1) the shape of the control volumes; (2) 

the topology of the control volumes. Both aspects are closely linked with the geometrical 

configuration of the problem to be solved. For simple geometry, the structured regular or 

non-orthogonal meshes are the best choices. For complex geometry, there are two options with 

different considerations: multi-block structured meshes and unstructured meshes. The primary 

advantage for the unstructured grid methodology is its inherent flexibility for discretization of 

complicated geometries. By comparison, the main advantages of the multi-block method are:  

1. It can resolve the topological complexity of a complicated geometry by permitting grid 

components to be generated individually and more easily fitted with the local boundary 

geometry.   

2. The wide variety of linear system solvers for structured grids can be directly used or with 

slight modification.   

3. It provides a natural way for parallel computation. Ideally, the computation in each block is 

assigned to a separate processor (domain decomposition in space).  

It should be pointed out that the grid generation for very complex geometries with multi-block 

method becomes very difficult. However, for the present study, multi-block method is a very 

appropriate choice as the geometry of study problems is not too complicated.  

For 2D problems, we use structured orthogonal and non-orthogonal quadrilateral meshes for 

simple and complex geometry cases separately.  For 3D problems, one approach which uses 

non-overlapping multi-block hexahedral meshes is adopted. Two examples of the general 

quadrilateral mesh and hexahedral mesh, with characteristic geometry quantities, are shown in 

Figure 3-1.  
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Figure 3-1. (left) Non-orthogonal quadrilateral mesh and (right) general hexahedral mesh  

3.3 Discretisation of the generic transport equation 
 

Before further discussions on numerical methods, it is indeed a happy coincidence that the spatial 

discretization schemes for charge density equation and Poisson equations correspond to convection 

and diffusion schemes in Navier-Stokes equation separately. In order to simplify the presentation 

of the numerical method, the form of a so-called generic transport equation which represents a 

general convection-diffusion transport of a conserved quantity is first described: 

)()()( 


SU
t




 
          (3-1) 

The two terms of left hand side (LHS) are transient and convection term, while the diffusion and source 

terms are listed on the right hand side (RHS) of above equation.  The meaning of the generic variable 

and the coefficients for governing equations in EHD system are given in Tab.3-1.  

Table 3-1. The meaning of ,  ,   and )(S  in generic equation (3-1) 

Equation     
U


   )(S  

Poisson equation 0   0 
0  q  

Charge density equation 1 q  EKu


  D  0 

Mass conservation equation 1   u


 0 0 

 

Momentum equation 
[*]
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Energy Equation 1 T  u


   
pcEqEKuq /)(


  

Noting (1) The electrostrictive force term is included in the pressure term; 

  (2) The source term in energy equation is the viscous dissipation and Joule heating; 

(3) [*] means term  tu

   should be added into the source term in the momentum equation to take  

into account the contribution due to the spatial variability of the viscosity 

3.3.1 Discretisation of the convective term 
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Though convection term is represented by a simple first-order derivative, its numerical 

representation remains one of the central issues in CFD community. Applying the Gauss Theorem, 

the discretisation of the convection term follows,  

       
f

ff

f

ff

f

f
SV

FUSUSdsnUdVU
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)(     (3-2) 

where nSS


 , S is the aera of the surface and fF in above equation represents the mass flux 

through the face:  

 ff USF


                  (3-3) 

The calculation of these face fluxes will be later discussed separately in Section 3.4.3.  

So equation (3-2) requires the face value of the variable   represented with the values in the cell 

centres, which is obtained using the convection differencing scheme. The first order upwind (FUD) 

scheme and the second Central Differencing (CD) scheme are the two simplest but widely used 

schemes.   
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Figure 3-2. Face Interpolation 

FUD 

    for 0

    for 0

P

f

N

F

F







 


              (3-4) 

CD 

(1 )f x P x Nf f       with  x

fN
f

PN
          (3-5) 

In fact, FUD scheme and CD scheme represent two general types of linear convection schemes.  

First order upwind (FUD), HYBRID and Power-Law: algorithmic simplicity, fast 

convergence and lead to plausible looking results; these methods can give reasonably accurate 

solutions for steady, quasi-one-dimensional flow. However, when used for flows oblique or skew 

to the grid, inherent artificial viscosity (or diffusivity) seriously degrades the solution, especially in 

fU
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the case of recirculation flows. They are known to generate excessive artificial viscosity or 

numerical diffusion.  

Central Differencing (CD), Second Order Upwind (SUD) and QUICK): high accuracy in 

smooth region but with convergence difficulties and a tendency to generate unphysical overshoots 

near sharp, monotonic transitions. The convergence difficulties are rooted in whether the 

coefficient matrix of the discrete equation is diagonally dominant or not. If the spectral radius of 

the coefficient matrix is close to unit, it is not easy to obtain convergent solutions. This kind of 

difficulty can be overcome by the deferred correction (DFC) technique, which will be described in 

the next section. However, the possibility to generate unphysical oscillation solution belongs to the 

inherent property of schemes, which can’t be changed by DFC technique. 

The reasons we put emphasis on the boundedness properties of the convection schemes are,   

1. There is a direct relationship between the boundedness and stability property of the 

schemes. The solutions may display unphysical oscillations in regions of steep gradients, 

which can be sufficiently serious to cause numerical instability and code divergence.  

2. Physically speaking, the purpose of numerical simulation is to obtain the numerical 

solutions which are close to the real physical solutions. Taking the charge density 

distribution in EHD problems, the real physical solutions require the charge density to lie 

between zero and the value of the injection strength. Therefore, it is necessary to avoid 

the appearance of some negative values or values higher than the maximum charge 

density in the numerical solution. In other words, if the convection term in its differential 

form does not violate the bounds of the variable given by its initial distribution, this 

property should be also preserved in the discretised form of the term.  

It is necessary to mention the Blended scheme of Peric [220], as the construction process of the 

scheme is quite similar to the following high-resolution schemes. Peric represents an attempt to 

suppress the dispersive nature of CD scheme by a linear combination with FUD.  

BLENDED SCHEME 

    1f FUD CD
                   (3-6) 

where   is the blending factor with  a value between 0 and 1, and determines how amount of 

both schemes to be introduced. The core question is how to decide the value of the blending factor. 

Perić proposed a constant value of   for all faces of the mesh.  

All the convection schemes mentioned above are linear schemes. The linear schemes can be 

analyzed in terms of Taylor series expansion,   

1. If the leading term of the truncation error is odd-order derivative, the solution will be 

affected by numerical diffusion,    

2. If the leading truncation term is even-order derivative, numerical dispersion occurs, 

causing unphysical and bounded oscillations. In addition, the sign of the even-order 
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derivative is directly linked to the area where the oscillation is expected [221], and this 

phenomenon has been observed in the numerical tests in [222].   

TVD and NVD Schemes 

It is impossible to design a linear scheme which is of second order or higher accuracy, but 

removing above two limitations. That is, the linear schemes could not hold the high accuracy and 

oscillation-free property simultaneously. This limitation is predicted by Godunov’s theorem [75] 

which states that no linear convection scheme with greater than first-order truncation error can be 

monotonic.  

To achieve this goal, the nonlinear discretization schemes were designed, nonlinear which means 

that the schemes adjust themselves in some way according to the local solution values so as to 

maintain the bounded behaviour. Various methods based on some different but related concepts 

were proposed, such as the Normalised Variable Approach (NVA) [78][79], the Total-Variation 

Diminishing (TVD) methods [75][76], Local Extremum Diminishing methods (LED) [223], 

positive schemes [74], and Essentially Non-Oscillatory (ENO) schemes [96]. The relationship 

among these concepts can be seen in Yee’s diagram [224], which is also showed in [83].  

It should be pointed out that in the present study we confine ourselves to stencils with five points 

per (spatial) direction, though the idea of constructing nonlinear bounded schemes can be extended 

to the case of larger computational cell. The five-point stencil has following advantages, 

1. The five-point stencil is still relatively compact, which is easy for the implementation of 

boundary conditions.  

2. The five-point stencil allows orders of consistency up to 3 and comprises a number of 

potentially interesting spatial discretization schemes, like QUICK, SUD and k-scheme;  

3. All five-point stencils, which are of second or third order, can be rewritten as a function of a 

single variable. The conversion brings great convenience for the design of nonlinear 

high-resolution schemes.  

It is clearly impossible to give a complete survey of all nonlinear discretizations schemes here, and 

we mainly focus on two kinds of schemes which are being widely used in the numerical simulation 

of incompressible flow: NVD-type and TVD-type high-resolution schemes. The basic thoughts 

under the two types of schemes are to mix the first order upwind and high-order linear scheme, 

using a measure of the local monotonicity in the predicted field to switch to FUD approximation 

whenever and wherever non-monotonicity is identified. A direct result is that the numerical 

diffusion, induced by the lower-order scheme, dissipates the genesis of a spurious oscillation 

before it can damage the quality of the solution.  

Reconsidering the BLENDED scheme, high-resolution schemes essentially provide methods to 

define the  value.  

In details, designing an efficient high-resolution scheme requires answers to the following three 

questions:  



50 

 

1. Which high-order schemes?   

2. How to recognise the regions where switching to FUD is needed?  

3. What kind of intervention should be introduced?  

  Generally speaking, following the normalized variable approach, linear and nonlinear schemes 

can be constructed rather easily and the conditions for a scheme to be bounded can be clearly 

identified. However, flux-limiting algorithms are more convenient in practical implementation than 

NV method since a defect correction approach can easily be adopted.   

In the next section, we will make a brief introduction a unified approach of high-resolution 

schemes recently proposed by Waterson and Deconinck [84]. The unified approach follows the 

idea of flux limiting and well includes most already existing HR (both TVD-type and NVD-type) 

schemes. The cell-face value of the convected variable, predicted by the unified HR approach, may 

be written, using the notation outline in Figure 3-3. 
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             (3-7) 

where )(r is named as the limiter function of the gradient ratio r , 

fu xx
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              (3-8) 

With a uniform grid system, the ratio can be simplified to, 

CD

UCr







                 (3-9) 

It should be noted that the above definition of r is the reciprocal of the corresponding expression 

in [84]. Thus, the final expressions of HR schemes may need some modification if they are not 

symmetric [225].  

Through the selection of limiter functions )(r , Eqn.(3.1) could stand for various linear and 

nonlinear schemes. Some classical linear schemes are summarized in Table 3-2, while some 

high-resolution schemes are listed in Table 3-3 or Appendix A, including a recently developed 

third order TVD scheme [226]. Some other schemes can be found in reference [84] which did the 

excellent summarization.  
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Figure 3-3. Sketch of upwind-biased stencil and notation in 1D (left) and 2D (right) grid system 

Table 3-2. Limiter functions of Linear Schemes  

 Scheme Limiter function 

FUD 0 

CD 1 

SUD r 

QUICK  
44

3 r
  

 

The main idea of constructing bounded schemes is first to define the possible regions or the 

conditions of high-resolution schemes. Then the specific formulas of the schemes are designed 

considering accuracy, convergence, computational cost and other. As shown in [84], the 

Total–variation diminishing (TVD), Positivity and the Convection-Boundedness Criterion (CBC) 

are three most widely used criteria. Here we adopted the Spekreijse’s positivity region [226] which 

is more flexible and general than the other two. A complete description of the conditions for the 

Spekreijse’s positivity region can be described as,  

Mr  )(   and 


 2
)(

r

r
M        (3-10) 

where ]0,2[  and ),0( M are two constants. The positivity region on a r  diagram is 

shown in Figure 3-4 (left). In fact, there are some interior relations among different criteria and 

they could be converted to each other easily. For example, the Spekreijse positivity region can be 

converted to Normalized-variable Diagram via the relationship 
1

C

r

r
 


, as showed in Figure 3-4 

(right). The bounded criteria used here is not very important, as most of schemes listed in 

Appendix A can satisfy both CBC and the Spekreijse’s positivity region. A number of TVD-type 

HR schemes are shown in Figure 3-5, and the formulations are in Table 3-3.  

Table.3-3. Limiter functions of classical TVD-type HR schemes  
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Name Limiter function )(r  Source 

van Leer 
r

rr
r






1
)(  Van Leer(1974) 

Superbee )),2min(),2,1min(,0max()( rrr   Roe(1985) 

Min-mod ),1mod(min)( rr   Roe(1985) 

van Albada 

2

( )
1

r r
r

r






 van Albada et al. (1982) 

MC )2,2,2/)1min((,0max()( rrr   Van Leer(1977) 

UMIST  1 3 3
4 4

( ) max 0,min 2 , , 2r rr r       Lien and Leschziner (1993) 

SMART )2),25.075.0min((,4max()( rrr   P.H. Gaskell and A. K. C. Lau (1988) 

Note: only the van Albada limiter function is not equal to zero when 0r  .  

 

 
 

Figure 3-4. The Spekreijse positive region in Flux-Limiter Diagram (left) and Normalized-Variable 

Diagram (right) [84] 

 

The conditions with Eqn. (3-10) are not sufficient and necessary conditions for a scheme to lead to 

oscillation-free solutions. Some schemes violate the requirement of Eqn.(3-10), like the van 

Albada scheme [227] and Čada & Torrilhon’s new third-order scheme [226], can also lead to 

bounded solutions. A summarization of other boundedness criteria can be found in [228]. In the 

present study, we care more about the performances of different schemes, rather than the 

construction process.  
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Figure 3-5. Flux-limiter diagram: six flux limiters function of Table 3-3. 

On the extension of HR schemes to multi-dimensional grid 

In the present study, the so-named “dimensionally split” method which means that the 2D and 3D 

implementations are obtained by applying one-dimensional schemes separately along each of the 

other directions, is used to treat multi-dimensional problems. Gaskell and Lau [79] has proved that 

this method combined with the high order schemes which satisfy the CBC could always lead to 

bounded solutions. When a scheme which only satisfies the positive criterion is used in 

multi-dimensional problems through this method, do the results still remain bounded? The 

numerical tests carried out in the present study give a positive answer to this question.  

On the extension of HR schemes to unstructured meshes 

From the construction process of HR schemes, it is easy to find that most HR schemes cannot be 

applied to unstructured grids directly. The major obstacle is the lack of far-upwind cells 

information. The far-upwind cells information will appear both in ‘unbounded indicator’ and 

high-order schemes. Several methods have been proposed to circumvent this difficulty [71][91-93]. 

Generally, there are two natural thoughts to apply HR schemes to unstructured meshes. The first 

one is to avoid explicitly using far-upwind points, like GAMMA scheme [71] and Bruner’s 

approach [92]. GAMMA scheme uses an ‘unbounded indicator’ without explicitly using 

far-upwind information, meanwhile takes CD scheme as the high order base scheme. However, 

GAMMA scheme needs the locating of the nodal point in the middle of the control volume, which 

is not always the case for unstructured meshes. The second is to construct the virtual far-upwind 

points, like Darwish’s r-factor algorithm [91] and Lian-xia Li’s new r-factor algorithm [93]. Both 

algorithms need to calculate nodal gradients and to use extra memory for virtual points. In fact, 

through the comparison of the expression of Jasak’s ‘unbounded indicator’, (eqn(20). in [71]) and 

Darwish’s r-factor (eqn(16). in [91]), we can view them as the same method. Recently, Qin Qian, 

et al. [229] proposed a new approach which uses the upwind approximation as the ‘unbounded 

indicator”. During the computation, the actual scheme switches between QUICK scheme and 

1st-order upwind (FUD) scheme, according to whether the indicator locates in the range of 

physical bounds or not. To avoid the use of far upwind information in high-order scheme, we use 
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the CD instead of QUICK scheme [230]. However, little over-shoot is required to activate the 

schemes and a small amount of non-monotonicity is inevitable [229], which is the cost of using 

simple indicator. Thus, the problem of the extension of HR to unstructured grid has not been fully 

solved.   

Some preliminary research about this topic was done in the present study. Firstly, we will briefly 

introduce the extension algorithm based on auxiliary point method. Then, we will analyze the 

reason why the algorithms cannot lead to completely oscillation-free solutions.  

When switching to unstructured grid system, it is clear that the main difficulty in implementing 

TVD schemes in unstructured meshes lies in the need of defining a ‘virtual’ far-upwind U point, 

see Figure 3-6.   
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Figure 3-6. Unstructured triangle meshes 

In order to get rid of non-uniform grid problem, it is commonly advised to locate the virtual 

far-upwind point at the position that, CD UC , where   means the distance between two 

points. Some words should be said about the application of HR schemes to non-uniform grid, as 

unstructured grid systems are also normally non-uniform system. Strictly speaking, HR schemes of 

Eqn.(3-9) are derived on uniform grid system. For non-uniform grid system, some spatial 

parameters should be introduced to extend the applicability of the normalized variable formulation 

(NVF) methodology. Meanwhile, the boundedness criteria and accuracy conditions need to be 

updated too. The normalized variable and space formulation (NVSF) methodology is developed by 

Darwish and Moukalled [231] to extend HR schemes to non-uniform grid system. However, in 

unstructured grids, it is not easy to define accurately the extra spatial parameters needed for NVSF 

methodology. Moreover, almost all HR schemes need to be updated separately. Thus, an 

opportunistic question is: can the original expression of Eqn.(3-9) be directly applied to 

non-uniform grid system without any modification? From our numerical test results and some 

other numerical results in [232] and [234], the answer is positive. This conclusion can be 

understood in this way: firstly, the boundedness criteria, like CBC, do not depend on the 

uniformity of grid system; secondly, the accuracy of high-order component of HR schemes is 

linked to the uniformity of the grid. In other words, the original expressions of HR, i.e., TVD-type 

limiter functions still satisfy the boundedness criteria. However, their accuracy will be affected. It 

should be noted that the reduction of accuracy is not dramatic with most second-order schemes 

[232]. Only with third-order schemes (like SMART and STOIC [231]) and big expansion ratio, the 

improvement with NVSF is clear. The statement of HR schemes with non-uniform grid system is 
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very important for finding the essential reasons why the following two extension approaches tend 

to lead to slightly unphysical oscillations.  

1. (Darwish and Moukalled, 2003) [91] 

In this approach, the value of the virtual point is defined through information at point C and D,  

 2U D C
CD                  (3-11) 

and the r-factor is expressed as,  
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2. (Li, et al., 2008) [93]  

In this approach, the value of the virtual point is defined through information at CV node which 

contains the virtual point, U, see Figure 3-6.  

 U O O
OU                  (3-13) 

and the r-factor is expressed as,  
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Both methods have been tested in [92] over a problem of pure convection with a double-step 

profile in an oblique uniform velocity field. The superiority of Li’s method in terms of 

convergence speed and accuracy has been demonstrated. But, in this test case, both methods tend 

to generate unphysical oscillations, which is undesirable.  

To analyze the reason of this behavior, Li, et al., attribute it to ‘the original TVD definition in 

uniform and one-dimensional grids that may not be directly extended to multi-dimensional and 

unstructured one’.  In our opinion, this should not be the real reason. Goodman and Leveque [233] 

showed that on general grids in two space dimensions TVD schemes cannot be more than first 

order, though, as noted by Leveque [234], this does not prevent one-dimensional TVD schemes to 

be applied quite successfully in multiple dimensions through the use of “dimensional splitting” 

along individual grid directions, though such schemes are not technically TVD. In fact, when 

extending the TVD scheme to 2D and 3D, we just use its expression. We are not seeking the 

numerical solutions which satisfy the Total Variation Diminishing property, but a weaker 

restriction, like positive property.  

By comparison with multi-dimensional slope limiter methods, we attribute the oscillation to the 

introduction of gradient evaluations.  As seen in Eqns. (3-11) and (3-13), gradient values have 

been used to compute the values of the virtual far-upwind points. It is possible that the obtained 



56 

 

far-upwind point value is out of range of the maximum and the minimum variable values around 

the working cell.  

To solve the problem, there are two possible ideas.  The first one is to limit the gradient value. 

Mathur and Muthy [235] pointed out that the gradient at the cell could be limited to ensure the 

reconstructed value at each of the nodes bounded by the maximum and minimum values of   

over all the cells that share the node. The other one is to limit the obtained value of far-upwind 

point. A similar technique has been used in [236]. In our case, the final value of the virtual points 

can be decided as,  

 ,final min maxmax ,min ,neighbours neighbours

U U    
 

         (3-15) 

 where neighbors mean the CV cells sharing the faces of the working cell. 

In addition, for general structured meshes, the above algorithms can also be used. Moreover, the 

above algorithms are recommended for the implementation of TVD-type high-resolution schemes 

in extremely distorted structured meshes. The difference between structured and unstructured 

meshes is only the data storage, not in expressing the velocity field information. A nominal 

far-upwind cell (see from the storage order) may not offer the appropriate ‘upwind’ velocity 

information with a structured grid.   

An example is provided in Figure 3-7, following the structured storage, the point U will be used as 

the far-upwind point of cell face, f, which is obviously inappropriate. By examining the numerical 

test results, when using U as the far-upwind point, the solution is oscillation-free but with a fairly 

low accuracy [237].  
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Figure 3-7. An extremely distorted structured mesh  

3.3.2 Discretisation of the diffusive term 

 

Based on finite volume method, the discretization of the diffusive flux for a scalar 

quantity through a surface can be expressed as,  

 
Pp S

S
V

V dnd


)()(                  (3-16)                                 

with the Gauss’ theorem, where pS represents the surface around the control volume pV and n  is the 

unit normal vector to this surface. 
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The approximation of the term in the left hand side of Eqn. (3-16) is equivalent to the evaluation of 

the quantity of Eqn. (3-17), on each face k of the control volume.  

 
PP P

k kk
S n                                                 (3-17) 

Where P

kS
 
and P

kn
 
represent respectively the area of the surface k  and the unit vector normal 

to this face. Then the new problem is to find a consistent approximation of  
P P

kk
n   by using 

values of adjacent control volume nodes. If the mesh is non-orthogonal, the fact that the 

gradient  
f

 cannot be directly expressed by the values of   at centroids P and K brings a lot 

of difficulties. In order to obtain the higher accuracy, different approaches were proposed, like 

coordinate transformation method, CTM [109][110], direct gradient evaluation method, 

DGEM[111][70, page 234-235] and normal decomposition method, NDM [68][105][107]. Though 

these three above mentioned methods have been invented independently with different conceptual 

bases, all of them are widely used in computational fluid dynamic or numerical heat transfer fields. 

  As mentioned earlier, the diffusion scheme will be applied to both the viscous term in 

Navier-Stokes equations and Poisson equation. Thus, it is always worth spending time to select an 

efficient discretization scheme among considerable variety of choices. We started from NDM and 

tried to complete the method. In addition, we also successfully revealed some relationship among 

CTM, DGEM and NDM.  In the following, we make a brief introduction of NDM and several 

specific schemes.  

The normal decomposition method in its first version was initially proposed by Muzaferija in 

[107]. This version was called SDC, which stands for Standard Deferred Correction (see [105]). 

The basic idea of the method contains two steps: firstly, the surface vector is decomposed into two 

parts: 

 1 2n n n                                              (3-18) 

where 1n is defined in the PK direction , see Figure 3-8. Taking Eqn. (3-18) into Eqn.(3-17),  

           1 2k k k kk k k
S n S n S n                          (3-19) 

The first part of the right-hand side of Eqn.(3-19) can be easily approximated by a centered 

formula, while the second part will be explicitly computed using the values of the previous 

iteration, which is the core thought of deferred correction method [238]. Numerical tests show that 

there is a limitation of possible angle k  
(the exact maximum value is 38

o
) for Muzaferijia’s 

method [68] [105].  

In fact, there are many possible decomposition schemes, as Eqn.(3-18) and Eqn.(3-19) are always 

valid. Three approaches named Minimum Correction (the same with Muzaferija’s approach), 

Orthogonal Correction (
1

PK

PK
n  , where PK  represents the vector from point P to K, and   

stands for the distance between the two points, the same representation will be used below) and 
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Over-relaxed Correction (the same with Traoré’s approach, see below) separately are listed in [68]. 

Recently, Traoré’s et al. [105] proposed another decomposition scheme, which is named Improved 

Deferred Correction (IDC) scheme. In this new approach, 2n is parallel to the surface, see Fig.3-8. 

Considering the superiority of IDC scheme in the maximum possible angle k  and smoother 

convergence process, it is recommended for further application.  

 

Figure 3-8. Normal surface vector decomposition method and specific schemes 

To compute the second part of the right-hand side of Eqn. (3-19), the usual practice is to compute 

the dot product of vector  
f
 and 

2n  directly. The vector 
2n  can be chosen between:  

112
cos
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ennnn



                               (3-20) 

or  

tan22  en


    
                               (3-21) 

where 1e


 and 2e


 are depicted on Figure 3-9.  

The gradient at the intersection point f   should be determined from the gradients of the two cells 

sharing the face. A simple method is carried out in the present paper,  

      (1 )x xf P K
f f                               (3-22) 

where xf  is the interpolation factor and is defined as 
fK

x PK
f  , see Figure 3-9.  

 

Figure 3-9. The geometric relationship of two adjacent cells 

Taking Eqn.(3-20) into Eqn.(3-19), then we get,  

f 
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The  
f
 in the last term of Eqn.(3-23) will be explicitly computed from the values of the 

previous iteration. Obviously, IDC leaves out the consideration of skewness-induced error. 

Comparing with CTM, IDC needs no interpolation of nodal point values. On the contrary, the 

approximation of gradients at cell center points is necessary. And as we will show it later the 

accuracy of the gradient evaluation methods has great impact on the final solution accuracy.  

We could also put Eqn.(3-21b) into Eqn.(3-20) and reach another effective expression.  
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Before further discussion, the concepts of skewness on surfaces and non-orthogonality on 

boundaries are explained. Skewness on surfaces means that the intersection point between line PK 

and surface doesn’t coincide with the midpoint of the surface, to see Figure 3-10 (left). 

Non-orthogonality on boundaries is the situation that the lines connecting boundary nodes and 

near-boundary CV nodes are not normal to physical boundaries; to see Figure 3-10 (right). These 

are two main error sources for the calculation of diffusive flux on non-orthogonal meshes using 

surface decomposition method. Numerical experiments show that the methods for the treatment of 

the two error sources can significantly affect the final accuracy and convergence rate. 

 

 

 
 

Figure 3-10. (Left) Skewness on the surface and (right) non-orthogonality on the boundary 

3.3.2.1 On gradient evaluation methods 

 

We have noticed that the gradient values of CV nodes appear in convective flux estimation, 

diffusive flux and pressure source term (see next section) evaluation expressions when 



60 

 

unstructured or non-orthogonal grid systems are utilized. Thus, it is necessary to estimate the 

influence of different gradient evaluation methods on the accuracy, computational cost and 

convergence process. Five different approaches for gradient evaluation are explained in Appendix 

B. In the numerical test section of 3.5.3, all the approaches are tested to highlight the difference 

between their performances.  

By summarization of numerical results, it is found that there is obvious difference between the 

accuracy and the computational cost. The present study firstly highlights the importance of the 

selection of an appropriate and accurate gradient evaluation method for diffusive flux calculation 

when using normal decomposition method in non-orthogonal meshes. Secondly, some advices are 

given for the selection of the gradient evaluation method.   

3.3.2.2 Boundary condition treatment  

 

There are two types of numerical boundary conditions. Dirichlet boundary condition prescribes the 

value on the boundary, while Von Neumann boundary condition prescribes the gradient of the 

variable normal to the boundary. Following the normal decomposition approach, the core issue 

with the implementation of Dirichlet boundary condition is the lack of the gradients at boundary 

nodes. If the grid is orthogonal, the gradients at boundary nodes can be decided by the value of 

nodes on the boundary and in the internal domain. No difficulty appears. However, if there is 

non-orthogonality on boundaries, no simple method for the computation of gradients on boundaries 

is available. Compared with Dirichlet boundary condition, the treatment of Neumann boundary 

condition seems easier, as the Neumann boundary condition can be introduced directly into the 

discretized equation. With Neumann boundary condition, the real problem now is how to compute 

the values of variables on boundaries, which is usually needed for gradient evaluation of nearest 

grid nodes.  

In the present study, different approaches have been implemented in our solvers and the 

performances have been compared with different numerical examples. In the following, we firstly 

explain the possible methods to implement both Dirichlet and Neumann boundary conditions.  

To implement the Dirichlet boundary condition, two natural ways can be followed. The first way is 

to avoid the explicit use of the gradients based on some simplifying assumptions. The other way is 

to extrapolate from the gradients of inner nodes.  

In [68], Jasak provided a simple method, which is essentially equivalent to giving up the 

non-orthogonal correction at the boundary surfaces. 

Simple:  





cosBP
S PB

BB





            (3-25) 

where B is the value on  the boundary, given by Dirichlet Boundary condition.  

Apparently, the above equation is not accurate when the non-orthognality on boundaries is serious, 

i.e., the angle is big. Two methods which take the non-orthogonal contribution into account are 
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reported in [113]. The first method is to use a simple linear extrapolation method to obtain the 

gradient at the boundary, to see Figure 3-10:  

    First:         KPPB

KB

PB
          (3-26) 

The above extrapolation method is only first order when Point B, P and K are not on the same 

line, which is always the case for non-orthogonal meshes.  

The other method is to construct a virtual point 'P . The virtual point is the orthogonal projection 

of CV node P onto the mid-perpendicular line of the boundary surface. Then the diffusive flux on 

the boundary can be approximated as,  

    Second:   ' '

' cos

B P B P
B B BB

S S S
BP BP

   




 
                       (3-27) 

The second method can be viewed as a simplified version of the first method. The derivation 

process is given as follows.  

For the first method, a simplified extrapolation method is based on the assumption that the 

gradient at the boundary is the same as the nearest grid nodes,    PB   . Then the diffusive 

flux on the boundary can be expressed as,  

       1 2B B BB P P
S S S n n            

  2
cos

B P
B B P

S S n
BP

 





                (3-28) 

   For the second method, a common way to approximate the value of the virtual point is,  

 ' 'P P P
PP                                        (3-29) 

Taking Eqn.(3-29) into Eqn.(3-28), the final expression is,  

   
'

cos cos

B P
B B BB P

PP
S S S

BP BP

 
 

 


                          (3-30) 

Considering the geometric relationship, ' sinPP

BP   and 2' / /PP n .  

Eqn.(3-28) and Eqn.(3-30) are exactly the same.   

To implement the Neumann boundary condition, three methods to update the values of variable on 

boundaries are provided. The first one is to assume that the value is the same at the the nearest grid 

nodes,  
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Simple: B P                                         (3-31) 

A better approximation which uses a Taylor expansion can be expressed as,  

First:  B P P
PB                                        (3-32) 

In principle, an iteration loop is necessary for Eqn.(3-32) as B will be used for computing 

 
P

 . A simple way is to use the value of the previous iteration.  

It is noticed that the Neumann boundary condition doesn’t work in the updating process. This is 

against the rule of accelerating convergence of boundary value problems, which requires 

transferring the boundary information into inner domain as soon as possible. Following the idea, 

the third method is proposed,  

Second:   '' PPPPPB                               (3-33) 

The Neumann boundary condition is implicitly taken into account in the above equation in the first 

symbol of approximate equal.  

As it will be seen in the numerical test section, there is a clear difference in solution accuracy and 

convergence cost of the performance of different boundary condition treatment methods.  

3.3.2.3 Similarity and interconnection among CTM, DGEM and NDM 

 

Inspired by the idea of [239], which discussed the equivalence of three approaches of building 

shape-preserving advection schemes in one-dimensional system, we are interested in the 

relationship between CTM, DGEM and NDM for the calculations of diffusive fluxes. For the first 

step, we deduce the final formula for diffusive flux estimation with CTM and DGEM, to see 

Appendix C.  

The first observation is that Eqn.(3-24) is strictly equivalent to Eqn.(C-7) (in Appendix C). It 

indicates that with this implementation, the two methods CTM and IDC are mathematically 

identical. The subsequent discussion will focus now on the connection between IDC scheme and 

the DGEM method. The analysis contains two cases.  

Case 1. No Skewness situation 

Firstly, we will discuss the case when there is no skewness. Here no skewness means that f  and 

f   coincide with each other, see Figure.3-11. 
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Figure 3-11. No skewness on the surface 

The unit vector from f  to the top nodal point is defined as l . The relationship / / '  PP KK l  

is valid. From Figure 3-11, it is easy to demonstrate that the triangle 'PP f  is similar to 'KK f . 

So  

' '

' '

PP Pf P f
p

KK Kf K f
                                        (3-34) 

where p is a ratio coefficient.   

Due to the following geometric relationships,  

  Pf Kf PK                                         (3-35) 

' sinKK Kf , ' sinPP Pf                               (3-36) 

and the interpolation formula,  

     KPf
PK

Pf

PK

fK
                                 (3-37) 

the second term of the right-hand side of Eqn.(24) can be rewritten as,  

 
       









cos

''

cos

'' PPlKKl
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PPKK
S

PK

f
PK

f







 

    




cos

sinlPffK
S

PK

f




  

 tan   f f
S l                    (3-38) 

The above equation is strictly identical to the cross diffusion term in Eqn. (3-23). Summarizing 

Eqn.(C-13) and Eqn.(3-38), we can reach the conclusion that the coordination transformation 

method (CTM), the improved deferred correction (IDC) of the normal decomposition method 
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(NDM) and the Perić’s direct gradient evaluation method (DGEM) lead to equivalent schemes for 

diffusion flux computations, when no skewness arises in the mesh.  

Case 2: Skewness situation 

Unfortunately, no skewness is more the exception than the rule. In most of arbitrary meshes or with 

no special care in the grid generation process, grid skewness arises. In that case, the equivalence 

between the IDC scheme, DGEM and CTM vanishes.  

Before further discussion, we shall design another version of DGEM. To derive it, we first draw 

the line 2L  which is perpendicular to the surface 
fS  and crosses it at the intersection point 'f . 

Then, the locations of virtual points "K  and "P  are defined following the relationship, 

2"KK L  and 2"PP L , see Figure 3-12. The interpolation of   at these virtual points is still 

based on Eqn.(C-11a) and Eqn.(C-11b). Thus the final diffusive flux is computed as,  
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f
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               (3-39) 

 

Figure 3-12 Skewness and virtual points of modified direct gradient evaluation (MDGE) method 

We should name this new version as modified direct gradient evaluation (MDGE) method. 

Through similar analysis of the previous section of no skewness situation, we found that this new 

method is exactly equivalent to IDC scheme in any case.  

To compare the accuracy of IDC scheme and DGEM method, we investigate the difference 

between the two methods. By subtracting Eqn.(3-39) from Eqn.(C-12), the following expression is 

obtained,  
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f
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               (3-40) 

Considering ' ' " " cos cosK P K P KP      , and / / " / / ' / / "PP PP KK KK l   , the above 

equation can be simplified as,  
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               (3-41) 

Dividing the difference   with the whole non-orthogonal correction term, we obtain the relative 

error r : 
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It is straightforward to show that the difference is much smaller than the whole non-orthogonal 

correction. It means that the accuracy of the IDC scheme and the Peric’s DGEM is almost similar 

and that the accuracy is directly driven by the accuracy of the gradient evaluation method.  

  We should specially point out that the link between the three methods is very deep. With the link 

we established between the three methods we can expect that the CTM and the Peric’s DGEM can 

also be successfully applied for extremely skew meshes.   

  Through numerical tests we presented in test section, we obtained the following conclusions:  

(i) The coordinate transformation method (CTM) is mathematically equivalent to the 

improved deferred correction (IDC) but the particular implementation of IDC performs 

better than CTM especially in terms of accuracy. 

(ii) The only advantage of CTM on its counterparts is its lower computational cost. 

(iii) CTM which is widely used in modern CFD is turned out to be the most ineffective one on 

highly skewed grid.  

(iv) In the case of no skewness, the CTM, the IDC and the Perić’s direct gradient evaluation 

method DGEM lead to equivalent schemes for diffusion flux calculation. 

(v) In presence of skewness there is a slight difference between IDC and DGEM in favour of 

IDC. But the accuracy and computational cost of the two methods are very close to each 

other.  

It should be pointed out that the origins of error sources for the three above mentioned methods are 

different. For CTM, the main errors are (1) skewness-induced error, (2) nodal value interpolation 

error while for IDC and DGEM, the lack of accuracy of the gradient computation method is the 

main error source. In addition, all above derivation process is based on 2D general meshes, and the 

relationship among these methods with 3D non-orthogonal is one future research point.  

3.3.2.4 Extension of the IDC scheme to 3D problems 

 

Before to present some 3D results, we shall first describe in details how the 3D extension of IDC 

must be handled. The starting point of the method is based on the normal vector decomposition 

(see section 3.2.2.1) such as: 

1 2fn n n 
               

  (3-42) 



66 

 

with 1 1
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1
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For an efficient implementation the cosine of angle 
f  between 

fn  and 1̂e
 
is determined from 

the dot product between these to unit vectors which are obtained from the metrics. 

 

Figure 3-12. 3D metrics calculations 
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And at this stage all the needed quantities are known to compute this term in 3D. 

In the numerical test sections, several 3D Poisson problems with well selected non-orthogonal 

grids are used to evaluate the effects of gradient evaluation methods, compare different boundary 

condition implementation methods and verify the effectiveness of the extension approach.  

3.3.3 Temporal discretisation schemes 
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There are two kinds of time marching approaches for unsteady EHD problems. For Navier-Stokes 

equations, the implicit formulation is preferred considering the convergence speed.  

The first-order Euler implicit (IE) method and the implicit three level (I3L) second-order method 

are implemented within our Navier-Stokes flow solver.  The second-order approximation of the 

temporal derivative is [70, p142]:  

3 4

2

n o oo

t t

     


 
             (3-43) 

Note that we need to use other methods to start the calculation, which is the role of the Implicit 

Euler method in our solver.  

For charge conservation equation which is a classic hyperbolic equation if neglecting the diffusion 

mechanism, the selection of temporal scheme is not straightforward. To solve this equation, the 

method of line (MOL) approach is considered for its robustness and algorithmic simplicity when 

extending to multi-dimensional problems. 

 The MOL approach means the space and time discretization are considered separately. Following 

this approach, the time-dependent partial differential equations (PDEs) is first discretized with 

regard to the spatial variables to obtain a semi-discrete form,  

( )L
t








               (3-44) 

Here, L  is a spatial operator.  

This is then an ordinary differential equation (ODE) system regarding time, which can be solved 

by any ODE method. However, the selection of an appropriate time scheme is faced by the 

following considerations:  

1. The time discretization is able to maintain the strong stability in the same norm as the first 

order forward Euler version. In other words, when combining with some suitable non-linear 

spatial schemes, like TVD, ENO and WENO, the numerical solution obtained typically does 

not exhibit nonlinear instabilities (oscillation-free). 

2. The influence of temporal discretisation on the accuracy of the solution should be as small as 

possible. It is well known that accuracy of the solution for time-dependent problems does not 

only depend on the spatial formulation but also on the way the rate of unsteady term is 

represented [241]. To put in simple terms, we need to find a higher order time scheme.  

3.  The time step restriction should not be too tight. For Euler Explicit, an important drawback 

is the Courant number limit (Courant et al. [242]). The Courant number is defined as:  

f

O

U d
C

t





             (3-45) 
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where fU  is the velocity vector at a cell face, while d  is the distance vector between the 

two control volumes sharing the face. If the Courant number is larger than unity, the 

explicit system becomes unstable. For a given velocity field and grid system, this condition 

sets the biggest possible time step FEt .  

4. The computational cost and memory requirement. For large scale scientific computing in 

three space dimension, storage is an important consideration.  

It is difficult to design a scheme satisfying all requirements listed above. In the present study, we 

mainly focus on accuracy and computational cost. The special consideration for computational 

speed is because, in EHD system simulation, like ionic injection, gas discharge, the real physical 

time is very short. For low stage RK methods, which only require 2 or 3 storage units per ODE 

variable, please refer to [104] and [243].  

3.3.3.1 Explicit Euler, Implicit Euler, Crank-Nicolson and Implicit Three-Level schemes 

 

To perform a systematic comparison, we introduce various time integration schemes whose 

performance regarding the accuracy, time step restriction and computational cost will be examined 

in the following sections. In [68, page 87-92], the author did some preliminary analysis and 

compared the numerical diffusion induced by four widely used time schemes, i.e., Explicit Euler 

(EE), Implicit Euler (IE), Crank-Nicolson (CN) and the implicit three time level (I3L). Here, we 

are more concern with the property which can guarantee that the final solutions are oscillation-free 

(i.e., strong stability preserving, SSP).  

  Explicit and Implicit methods for form (3-44) can be written in general as,  
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       (3-46) 

where nt represents the n
th

 time step. With different choices, one obtains several schemes which 

are given in Table 3-4.  

Table 3-4. Various time marching schemes 

η Scheme Order Type 

0 Explicit Euler (EE) 1 Explicit 

1 Implicit Euler (IE) 1 Implicit 

1/2 Crank-Nicolson (CN) 2 Implicit 

 

   Firstly, we summarized some useful conclusions about the SSP property for these four 

schemes.  

1． Euler Explicit 
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When the TVD-type monotonic scheme is first proposed by Roe [75] and Harten [76] for 

hyperbolic equations, it appears as a mixture form with Euler Explicit as the time scheme. The 

well-known flux-limiter form and the r   diagram [76] (region of limiters for explicit TVD 

scheme, see Figure a) are based on Euler Explicit scheme. In other words, using the Euler Explicit 

as the time scheme is a natural choice when applying TVD schemes.  

2． Euler Implicit 

For steady flow computation, implicit schemes are preferred. In [80], the spatial terms are divorced 

entirely from the temporal discretization and the basic flux-limiter formulation is derived for the 

convective term. In [85], Zijlema and Wesseling systematically analyzed the conditions and region 

of limiters for implicit (Euler Implicit) TVD scheme and found that Sweby’s TVD region in the 

Flux-Limiter diagram is entirely contained in the new region, see Figure 3-12. That is, all TVD 

schemes which are designed based on the Euler Explicit scheme can also be used together with the 

Implicit Euler scheme to obtain oscillation-free results. Same conclusion was reached from 

theoretical mathematics field [244][245].  

3. Crank-Nicolson and Implicit Three-Level 

The Crank-Nicholson temporal scheme is unconditionally stable, but does not guarantee 

boundedness of the solution [66, p89]. For the Implicit Three-Level, (3-43), again, the 

boundedness of the solution cannot be guaranteed [110, p.142, 66, p91]. This point can be 

understood in this way: if we view time as a special space dimension, the I3L scheme is some kind 

of linear high-order scheme, which can lead to oscillating results. However, all numerical tests 

results of next sections do not support the claim that ‘CN method does not guarantee boundedness 

of the solution’.  

0 1

2

r

( )r

 

r

( )r

 

 2 r  

0

(1, 1)

 
 

Figure 3-13. Region of limiters for explicit TVD 

schemes 

Figure 3-14. Region of limiters for implicit TVD 

schemes 

 

3.3.3.2 Strong stability preserving (SSP) high order time scheme 

 

From a stability analysis point of view, to obtain oscillation-free solution is equivalent to preserve 

the strong stability of the solution. The strong stability preserving (SSP) methods are specially 

designed for hyperbolic problems with discontinuous solutions. When a spatial nonlinear scheme 
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and the forward Euler scheme are applied to the convective and temporal terms, if the solutions are 

guaranteed to be bounded, we can expect that when the same convective scheme and a SSP scheme 

are applied to the same problem, the solutions will also be well bounded.  

These time schemes were first developed in [96] and [97] and were called TVD time 

discretizations. They were further developed in [246]. Ref. [104] is the latest review which 

summarizes optimal explicit and implicit SSP Runge-Kutta and multistep methods, for linear and 

nonlinear problems. In fact, along the discovery of connections between SSP theory and 

contractivity theory, new optimal and efficient SSP methods were developed [104]. However, 

considering the accuracy order of Finite Volume method and spatial discretisation schemes, it is no 

necessary to combine a time scheme higher than 3
rd

 order.  

The essential idea of SSP methods can be explained with two steps. Firstly, with the method of 

lines, it is assumed that the first order forward Euler time discretisation of ODE is strongly stable 

under a certain norm when the time step t  is suitably restricted. Then, the task is to try to find a 

higher order time discretization (Runge-Kutta or multistep) that maintains strong stability for the 

same norm, perhaps under a different time step restriction.  

  EFtct                 (3-47) 

where EFt  is the time step dictated by the Courant-Friedrichs-Levy (CFL) condition for EE 

method and c  can be considered as a CFL coefficient.  

In the present thesis, two best known explicit SSP Runge-Kutta methods were implemented in our 

charge density solver, the two-stage second-order and three-stage third-order optimal explicit 

SSPRK schemes [104]. These two schemes are optimal among all Runge-Kutta methods with their 

respective order and number of stages [247].  

SSPRK (2, 2):  The optimal second order TVD Runge- Kutta method is given by,  
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with a CFL coefficient 1c  in Eqn.(3-45). 

SSPRK (3, 3): The optimal third order TVD Runge- Kutta method is given by,  
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with a CFL coefficient 1c  in Eqn.(3-45).  
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The latter method is widely known as the Shu-Osher method, and is probably the most commonly 

used SSP RK method. It is an explicit scheme, of third order and the algorithm is simple. It should 

be pointed out that fourth-order accuracy has only been obtained at the additional expense of 

introducing two additional evaluations of a related operator, leading to suboptimal efficiency, both 

in terms of time-step restriction and memory usage.  

Another relevant question is: can we find an efficient implicit high-order scheme to obtain 

oscillation-free solution, without time step limitation? The answer is negative. Even for optimal 

implicit SSP Runge-Kutta methods, there is some finite time step restriction for schemes to be 

unconditionally strongly stable [104]. However, implicit SSP method may have significantly large 

upper limit for time step than those of explicit methods with the same order and number of stages. 

The question is the computational cost required in the implicit solution is much bigger than explicit 

solution, especially combined with deferred correction (DFC) technique.  

In the next sections, three numerical test cases will be first introduced. Then, some numerical tests 

were performed for two goals: (1) the need for careful selection of time scheme to obtain 

completely oscillation-free solution; (2) the comparison of different time schemes coupled with 

TVD-type high resolution schemes. 

3.4 Algorithms for velocity-pressure coupling 
 

The discretisation of all terms in the generic transport equation, Eqn.(3-1), have been described  

in the preceding sections. The same principles would apply to the terms of the Navier-Stokes 

equations with some additional problems which require further treatment.  

Without any loss of generality, we use the two-dimensional case to describe the algorithm for the 

coupling between the pressure and velocity fields. Let us consider a laminar steady flow of an 

incompressible Newtonian fluid in an arbitrary two-dimensional domain described by the 

well-known Navier-Stokes equations: 
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      (3-49) 

where iu
 
are the velocity vector components with respect to the Cartesian co-ordinates ix , p  is 

the pressure,   is the kinematic viscosity and   is the density.  

 

In the segregated approach, the above equations are solved in sequence. However, some attention 

is required for the calculation of the pressure field. On the one hand, pressure field makes 

contribution to the momentum equations by its gradient. On the other hand, the continuity equation 

does not have a dominant variable. A specific way should be used to deal with inter-equation 

coupling in calculation of the Navier-Stokes equations. This is done by modifying the continuity 
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equation into an equation for pressure [115]. Derivation of the pressure equation for the collocated 

variable arrangement is well explained in [70].  

The SIMPLE Algorithm 

In the present study, the approach used to handle the velocity-pressure coupling is SIMPLE 

algorithm proposed by Patankar [115]. SIMPLE stands for Semi-Implicit Method for 

Pressure-Linked Equations. The SIMPLE algorithm is widely used for both steady-state and 

transient calculations. Here, we neglect an extensive description of the algorithm, as it can be 

found in standard text books, like [47] and [70]. Only the basic idea and an outline of the sequence 

of calculations are provided. The solution procedure consists of three main steps:   

Step 1: Momentum predictor. The velocity field is computed from the momentum equation by 

using the pressure and velocity from the previous iteration or the initial guess. For transient 

computation, the solution of previous time step is the natural choice for the initial guess. The 

equation should be under-relaxed with a factor, U  ( 10  U ), in an implicit manner.  

Step 2: Pressure solution. The pressure correction equation is formulated and solved in order to 

obtain the new pressure distribution.   

Step 3: Velocity and pressure correction. With the new pressure field, a new field of 

conserved fluxes is calculated using Eqn.(3-51). The associated velocity field which satisfies 

continuity is updated with the pressure gradient at the new iteration, but does satisfy the 

momentum equation until the overall process has converged. The solution of the pressure field also 

needs to be under-relaxed with the pressure-relaxation factor, p ( 10  p ), but in an explicit 

style,  

)( oldp

p

oldnew pppp            (3-50) 

where pp  is the solution of the pressure equation, oldp  is the solution from previous iteration or 

an initial guess. newp  stands for the pressure field for the next iteration.  

After the third step, a checking of the convergence criterion for all equations is needed. If the 

system has not converged, we go back to step 1 and a new iteration continue.  

For transient flows, an extra time stepping loop is needed. In each time step, the SIMPLE loop 

starts with the previous values of velocity and pressure and iterates till the convergent condition is 

met. The energy equation can be solved after step 3, using the corrected fluxes and velocities. It 

can also be solved after the whole procedure of velocity and pressure field.  

Pressure correction equation for non-orthogonal meshes  

The SIMPLE-algorithm needs to be modified when the grid is non-orthogonal and/or unstructured 

[70, page 247]. A complete derivation of the pressure-correction with non-orthogonal meshes in 

collocated grid system can be found in [128] and [70, page 247-250].  
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A one step method (Eqn.(8.61) in [70]) is incorporated in our solver. However, the IDC scheme we 

developed originally for the discretisation of diffusion terms is also used to solve the pressure 

correction equation on extremely distorted meshes. It is expected this application can reduce the 

convergence time for problem with non-orthogonal grids. The SIMPLE algorithm with IDC 

scheme for pressure correction equation may works for extremely skewed non-orthogonal meshes. 

Some preliminary comparisons with different surface decomposition schemes for the pressure 

correction equation have been done in [248].  

Rhie-Chow Interpolation 

Evaluating cell face velocity simply by arithmetic averaging neighbour cell velocities may lead to 

unphysical checker-boarder pressure field for collocated grid systems. To overcome the difficulty,  

Rhie-Chow [249] proposed a momentum interpolation method (MIM) with subsequent refinements 

by Perić [220]. Some improvements were made to alleviate or solve the drawbacks of original 

MIM of Rhie and Chow, like under-relaxation factor-dependence [250][251][253] and time step 

size-dependence [252][253][254]. However, the original MIM works well for most of the 

situations and will be adopted in the present study.  

The formula proposed by Rhie and Chow is to express the mass flux at a cell as 
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where the overbar denotes the interpolation from the neighbor cell values. The detail derivation 

procedure for above equation is referred to in Rhie and Chow [249].  

Under-relaxation  

To reduce the variation between two consecutive iterated solutions, under-relaxation is a common 

practice in all iterative process. Considering its importance, a short introduction is made below. For 

example, once the final discretised equations from the generic equation is obtained,  

BAA
neighboursj

jjPP  




         

where PA  and jA  are the coefficients, B  is the source term. The above equations was 

under-relaxed in an implicit manner,  

0* 1
Pp

neighboursj

jjPP ABAA 






 



    and   PP AA


1*
      

where   is the under-relaxation factor and 0

P  is the value from previous iteration.  

Perić [128] analyzed the under-relaxation process and recommended the following relationship,  

Up   1.1   
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2.0p  for the pressure and 8.0U  for momentum. 

This relationship is valid for both orthogonal and nonorthogonal grids when the full 

pressure-correction equation is employed. When the one step method is applied to the pressure 

correction with nonorthogonal grids, the optimum p  should be smaller than 0.2 [128].  

3.5 Numerical Tests 
 

In this section, numerical results will be presented. We shall start with the comparison of various 

high-resolution convection differencing schemes. A comparison of the HR schemes coupled with 

various time marching algorithms will be given in Section 3.5.2. The importance of gradient 

evaluation method for surface decomposition scheme is highlighted in Section 3.5.3. The 

numerical verifications of new methods for both Dirichlet and Neumann boundary condition 

treatment with IDC scheme are presented in Section 3.5.4. Finally, an example to show the 

extension of IDC scheme to three-dimensions is given.  

3.5.1 Comparison of various high-resolution schemes with flux limiters 

 

A number of schemes (High-resolution and traditional linear schemes) were implemented within 

our numerical code. All solutions here were obtained using a version of Stone’s strongly-implicit 

(SIP) algorithm [255]. The implementation was carried out with the aid of a deferred-correction 

approach [238]. To validate the effectiveness and compare the performance of HR schemes, two 

test problems were considered: advection of a step profile and the Smith and Hutton problem [256]. 

The model problem is the linear, scalar convection equation: 

  0 U


               (3-52)  

where  is a scalar variable being convected by a velocity field ),( yxU


.  

Problem 1 Advection of a step profile 

Figure 3-15(left) shows the well known benchmark test problem consisting of a pure advection of a 

transverse step profile imposed at the inflow boundaries of a square computational domain. The 

background velocity field is jiyxU


11),(  . Several different grid sizes were used, starting from 

a 2020  coarse grid and ending with a 240240 fine grid, to estimate the order of accuracy. 

However, only the results with 8080 meshes were illustrated in Fig.3-15 (right). 
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Figure 3-15. (left) physical problem (right) uniform 8080 mesh system 

  
(a) (b) 

  
(c) (d) 

Figure 3-16. Comparison of scalar variable of different schemes (a) FUD (b) CD (c) SUPERBEE and (d) 

SMART 

The computed values of   using FUD, CD, SUPERBEE and SMART schemes are shown in 

Figure 3-16. It is immediately noticed that the solution from the FUD scheme is extremely 

inaccurate. The CD scheme produces results with strong oscillations. On the other hand, the two 

TVD-type HR schemes, namely SUPERBEE and SMART, dramatically improved the results 

compared to the result of FUD. Clearly, the SUPERBEE yields to the best results because of its 

highly compressive property. Through with this simple example, we verify that the HR schemes 

can lead to high accurate and bounded solutions. It should be noted that, under-relaxation 

technique is a must for some schemes, like SMART in this case. The need of under-relaxation for 

some HR schemes comes from two aspects: (1) the difference between CBC and TVD criteria 

[257][258]; (2) the possible non-smooth transitions in NVD [71].  
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Problem 2 Smith and Huttom problem 

In the second test problem, shown schematically in Fig.3-17, a step discontinuity at 5.0x is 

convected clockwise from the inlet plane  0,0  yx  to the outlet plane  0,0  yx  by a 

rotational velocity field 
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           (3-53) 

 

Figure 3-17. Physical domain and grid system for the Smith-Hutton problem 

 

Figure 3-18. Scalar variable profile at exit from the domain, 0y  

Results are displayed in Fig.3-18. The numerical results obtained with the HR schemes are better 

than those achieved with FUD. The SUPERBEE, the SMART and the MUSCL scheme profiles are 

nearly similar. The result with Van Albada scheme is a bit diffusive, but as much as FUD.  

Problem 3 Advection of a cubic in a constant flow 

In [259], we compare the effectiveness, accuracy and computational cost of more than 20 

high-resolutions schemes (the limiter function can be found in Appendix A) when applying to the 

unsteady pure convection. All the schemes were tested by three one-dimensional problems: (1) 

sin-profile (2) step-profile (3) semi-ellipse, and four two-dimensional problems: (4) smooth initial 

data test (5) advection of a square shaped scalar field (6) solid body rotation (7) swirling 
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deformation flow test and two three-dimensional problems: (8) advection of a cubic in a constant 

flow (9) advection of a sphere in a turning roller flow. We found that all these high-resolution 

schemes can avoid the traditional high-order schemes’ oscillation problem and can largely improve 

the accuracy of the results in different dimensions and under different background flow fields. 

Moreover, there are significant differences of accuracy and computational cost among different 

schemes. To summarize all the test results, the MUSCL, SMART and UMIST schemes are 

recommended. Besides, it is also observed that there are two serious limitations of the extension 

method: (i) low CFL number (ii) lack of cross-terms’ approximation. Both limitations get more 

obvious along with the dimension of the problem which will seriously affect the effectiveness and 

accuracy of the extension method.  An example is given below to highlight the necessary of HR 

schemes in 3D flow problems. The problem considered here is the unsteady linear equation. The 

background flow is constant in time and space,  

      1u ,  1v  and 1w .          (3-53) 

And the initial data is,  






0

1
)0,,,( zyxq    

o t h e r w i s e

x 05.02.0  05.02.0, y 05.02.0, z
   (3-54) 

The spatial domain is 1 1 1  . The time step is 
4105 t  and we compute up to time 5.0t . 

The small time step has been taken here to reduce the temporal discretization error. The cell size is 

0.0125 (80 cells). Figure 3-19 shows the initial condition and the final solutions for the FUD and 

SMART schemes. The maximum values of SMART and FUD are 0.329 and 1.0, and the minimum 

values are 0.0. It is noticed that the shape of the variable distribution is well kept by the SMART 

scheme.   

 

Figure 3-19. Numerical results with the advection of a cubic in a constant flow test (left) FUD, 

iso-value = 0.25 (b) SMART, iso-value = 0.9 

3.5.2 Comparison of temporal schemes combined with HR schemes 
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The two-dimensional pure advection problems are considered for the comparison,  

   
0















y

v

x

u

t


            (3-54) 

where  is the scalar, and u and v  are the two velocity components. This is an ideal problem for 

examining the performance of both convection schemes and temporal discretisation methods.   

For space discretisation, the unified approach for TVD-type high-resolution is considered. All the 

discretization considered will be “dimensionally split”, that is 2D and 3D implementations will 

consist of one-dimensional schemes applied separately along each of the grid directions.  

It should be pointed out that this extension method for high-resolution schemes will not introduce 

the possibility of oscillation in the final solution. Detailed derivation can be found in [79] and [87]. 

With respect to this rule, the only possible resource for oscillation is the time scheme.  

For implicit schemes, the DFC technology is used and the stopping criterion is set as 

7
1

100.1 









n

nn
 . The classic SIP solver is used as the linear system solver.  Three classical 

test cases are considered. All the following test cases could provide the true solution no matter the 

flow structure, which lower the difficulties of accuracy evaluation.  

Case I: Advection of a square-shaped scalar field 

This is a classical test case for convection scheme test as it presents an increased number of 

discontinuities. In this case, a scalar square field is advected by a constant velocity field, directed at 

a 45  angle respect to the mesh directions. The domain is 1×1 units, while the size of the square 

field is 0.25 × 0.25 units. The maximum and minimum values of the field are 0.10max  and 

0.0min  , respectively. The field is advected for a length equal to 0.5 units from its initial location 

to the opposite corner of the domain. The u  and v  velocities are both equal to 1 unit.  

Case II: Rotation of a cone-shaped scalar field 

In this case, an initial distribution of scalar (consists of smooth hump, cone and slotted cylinder) is 

advected around by a stationary (in time) velocity field. The size of the domain is 1 unit by 1. The 

computational domain and the initial distribution can be seen in Figure 3-20.  

Hump: 
1

( , ,0) (1 cos( min( ( , ),1))),
4

q x y r x y      Cone: ( , ,0) 1 ( , )q x y r x y   

Slotted cylinder:  
1

( , ,0)
0

q x y


 


0 0.25

,

if x x

otherwise

  0 0.25or x x 
 

where 
0

2 21
0 0( , ) ( ) ( )

r
r x y x x y y    .  

The center of hump, cone and cylinder is (0.25, 0.5), (0.5, 0.25) , (0.5, 0.75) respectively. The 

background flow is constant, with a fixed angular velocity 0.2  units,  
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( 1/ 2)u y   , ( 1/ 2)v x   

Case III: Swirling deformation flow [60] 

As the performance of different schemes could depend on the structure of the velocity field, a 

swirling deformation flow problem is considered here,  

)()2sin()(sin 2 tgyxu   )()2sin()(sin2 tgxyv   

This flow satisfies 0 vu  on the boundaries of the unit square. The function )(tg  is used to 

introduce time dependence in the flow field. Here we use, )/cos()( Tttg  .  

on the time interval Tt 0 . The flow slows down and reverses direction in such a way that the 

initial data could be recovered at timeT : )0,,(),,( yxqTyx  .  

 

Figure 3-20. Initial condition for solid body rotation and flow swirling tests 

The need of SSP method 

In [246], an illustrative example with the Burgers equation (nonlinear equation) was presented to 

show the possible oscillations when non-TVD Runge-Kutta method are coupled with TVD spatial 

discretization. The objective of the following test example is to show that the same possible 

oscillation may appear for 2D linear advection equation.  

The limiter function is MUSCL scheme. The advection of a square-shaped scalar field is used. 

Two grid sizes are considered, 40×40 and 80×80. The maximum and minimum values are recorded. 

A desired scheme should not allow final solution bigger or smaller than initial largest and smallest 

values. In addition, the RMS errorreflects the overall performance of each scheme and is defined as 

follow:  

 

nodes ofnumber 

2

exact ,predicted , 


ij jiji

RMS


 

    The non-TVD scheme we use is borrowed from [246],  
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From Table 3-4, we can clearly see that the non-TVD and I3L results are oscillatory (presence of 

undershoot). On the other hand, the TVD Runge-Kutta method guarantees that the final solution is 

oscillation-free. This numerical test further supports the opinion ‘It is much safer to use a SSP 

Runge-Kutta method’, even for linear PDE problem.  

Table 3-4. Performance of TVD and non-TVD time schemes 

 40×40 grid 80×80 grid 

Max. Min. RMS error Max. Min. RMS error 

TVD 2
nd

 RK  10.000 0.000 2.165×10
-2

 10.000 0.000 9.750×10
-3

 

Non-TVD 2
nd

 RK  9.993 -1.153×10
-4

 2.452×10
-2

 10.000 -3.392×10
-4

 9.609×10
-3

 

Three Time Level 10.000 -7.993×10
-3

 2.139×10
-2

 10.176 -0.4864 9.557×10
-3

 

 

The necessity of high-order time method 

The objective of the following test example is to show the preliminary influence of different forms 

of time marching schemes on the final solution. The first test case is with MUSCL scheme as the 

spatial scheme and a 100×100 grid is used. The total time steps are 100.  

The performances of the schemes are quite different. The solution from the IE scheme is extremely 

inaccurate, considering the diffusion and shape-changing. The other four schemes (I3L, CN, 

SSSPK2 and SSSPK3), produce similar results. It is observed that the solution with I3L contains 

few undershoots, 010.0min  .  

Interestingly, the best results are obtained with the Euler Explicit method if we consider the RMS 

parameter only, which is of the first order in time and takes the least computational effort.  

Similar results have been reported in Ref. [261], for 1D case. Apparently, the order of accuracy and 

the absolute error are different concepts. However, the shape of the solution with EE is quite 

strange, and it is observed that the distortion direction is opposite to IE. This should be the result of 

negative numerical diffusion [68, page 138].  

Considering the computational cost, CN and I3L are implicit schemes and solving linear system 

solver is needed for each time step. Sometimes several times may be needed considering the 

application of DFC technology. Thus, both of them are not good choices for the test problem.  

To further compare the performance of SSPRK2 and SSPRK3, the rotation of a cone-shaped scalar 

field and swirling deformation flow tests are performed. Two limiter functions are considered, 

SMART and MUSCL. The RMS error and computational time is recorded.  
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In the solid-body rotation test, all the computations lasted for one revolution. For 100×100 grid 

system, the time steps are 0.001 and 0.0001, which correspond to 1.0Co  and 01.0Co  

separately.  

In the swirling deformation test, the total simulation time is set to 5.1T . The same grid as in 

previous case is used. Useful conclusions can be drawn by simultaneously examining Table 3-5 

and Table 3-6 and solution figures which are not listed here. Firstly, both SSPRK2 and SSPRK3 

can lead to oscillation-free solutions. It is also noticed that the solution from SSPRK2 and SSPRK3 

are almost the same for the same test case with the same high-resolution schemes. The required 

computational cost associated with SSPRK3 is much more than SSPRK2, about 1.3~1.4 times.  

Tab.3-5. Performance of SSPRK2 and SSPRK3 time scheme in the solid-body rotation test 

 1.0Co  01.0Co  

RMS CPU TIME RMS CPU TIME 

MUSCL RK2 9.812×10
-4

 18.50s 9.811×10
-4

 2m59.2s 

RK3 9.811×10
-4

 25.43s 9.811×10
-4

 4m9.7s 

SMART RK2 9.244×10
-4

 18.27s 9.245×10
-4

 2m59.0s 

RK3 9.245×10
-4

 25.36s 9.245×10
-4

 4m9.7s 

 

Table 3-6. Performance of SSPRK2 and SSPRK3 time scheme in the swirling deformation test 

 1.0Co  01.0Co  

RMS CPU TIME RMS CPU TIME 

MUSCL RK2 1.02×10
-3

 4.60s 1.01×10
-3

 43.89s 

RK3 1.01×10
-3

 6.25s 1.01×10
-3

 1m0.8s 

SMART RK2 9.614×10
-4

 4.62s 9.62×10
-4

 44.02s 

RK3 9.616×10
-4

 6.22s 9.62×10
-4

 1m0.7s 

 

 

(a) Euler Implicit 

 

(b) Euler Explicit 
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(c) Crank-Nicolson 

 

(d) Implicit-Three Time level 

  

(e) SSPRK2 (f) SSPRK3 

Figure 3-21. Plots of the scalar fields in the advection of a square shaped scalar test  

By comparing the results of different Co number, i.e., different time steps, the accuracy does not 

improve as the further decrease of time step, which means that the condition 1.0Co  is 

sufficient to satisfy the accuracy requirement.  

In conclusion, several temporal discretisation schemes have been evaluated with three 

time-dependent, linear problems with pure convection. While the ultimate selection of a particular 

scheme should be based on the nature of a given problem, this work has produced the following 

guidelines for the selection process:  

(i) The Euler Explicit, Euler Implicit, Crank-Nicolson can produce oscillation-free results. 

However, the implicit three time level scheme introduces oscillations.  

(ii) It is necessary to choose the high-order time scheme which holds the property of strong 

stability preserving. Non-TVD Runge-Kutta scheme could introduce oscillations, while 

SSP Runge-Kutta can ensure oscillation-free solutions under certain CFL limitation 

conditions.  

(iii) Implicit schemes are not suitable for unsteady pure convection problems because of its 

computational cost, especially when the deferred correction technique is applied.  
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(iv) From the accuracy point of view, first Euler Explicit scheme introduces negative diffusion 

and is inaccurate. There is slight difference between the RMS error of SSPRK2 and 

SSPRK3 in all test cases, which is a surprising finding.   

(v) Considering the computation cost, SSPRK2 performs much better than SSPRK3.  

To synthesize the above analysis, the SSPRK scheme is recommended as the temporal 

discretisation method for the charge density equation.  

3.5.3 On the gradient evaluation method for surface decomposition scheme 

 

In this section, the effects of different gradient computation methods are compared. Solving the 

Poisson equation with homogeneous Dirichlet or Neumann boundary conditions in a domain ( ) 

which are expressed in Eqn.(3-55a) and Eqn.(3-55b) provides a good test of the accuracy and 

computational cost of IDC scheme and its improvement approaches.  

f  in ( )                                  (3-55a) 

g  or g
n





on (  )                           (3-55b) 

Integrating (3-55a) over a quadrilateral mesh and using Gauss’s formula 
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                  (3-56) 

Here, as the structured quadrilateral meshes are used, the globally accepted finite volume notation is 

adopted. Applying the IDC, a generic equation is obtained,  
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where the coefficients and some terms are [105]:  
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           (3-58) 

By applying Eqn.(3-58) for every control volume defining the computational domain, we get a 

linear system bxA 


. The linear system will be solved with the SIP-solver or the Bi-Conjugate 

Gradient Stabilized (Bi-CGSTAB) of Van der Vorst [262] with a Modified Incomplete LU 

factorization preconditioner according to Gustafsson [263]. The reason of the application of two 

linear system solvers is that we found the performance of different methods with Neumann 

boundary condition closely linked to linear system solvers. For more implementation details, 

please refer to [105] and [106]. The whole solving process contains two major iterative loops: the 

first loop is the deferred correction iterative loop, while the second loop is the iterative nature of 
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the linear system solver. Two different stopping criteria are defined. For the deferred correction 

loop, sweepm
P

m
P

m
P











1

1

is used, while the classical stopping criteria based on the residual which 

should be less than a given tolerance solver
 
is used for linear system solver. In the present study, 

the values for sweep  is 7100.1  . Considering the discretized system described above includes 

some explicit terms, which depend on the displacement from the previous iteration, it would be 

therefore unnecessary to converge the solution of linear system to a so tight tolerance solver , since 

the new solution will only be used to update the explicit terms. In all tests, solver  is set to 

be 2100.1  . As for one-step and two-step Gauss formula implementation, the extra gradient 

iteration is controlled by setting the iteration times. 

A randomly distorted mesh and an extremely distorted mesh [264] are used, which is depicted in 

Figure 3-22. The characters of the two meshes are there is obvious skewness and non-uniformity in 

the inner domain while the nonorthogonality is not serious on boundaries, which will reduce the 

influence of boundary condition treatment.  
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Figure 3-22. (left) Randomly distorted, Mesh II and (right) extremely distorted meshes, Mesh IV  

 

Test Case I 

A two-dimensional Poisson problem,  

26  x   in  ( )                                      (3-59a) 

xyyx  23    on (  )                                        (3-59b)  

The analytical solution is given by xyyxyx  23),( . 

In Table 3-7, the values of the L2 error versus different methods have been reported for chosen grid. 

For both irregular non-orthogonal grids, the solution from simple Gauss formula is extremely 

inaccurate, especially for particularly skewed mesh. On the other hand, the other four methods, 

namely two-step Gauss Formula, one-step Gauss Formula, the simple and improved Least-square 

approaches, dramatically improve the results compared to the simple Gauss formula. For the 
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random mesh, the simple and improved Least-squares approach and the two-step Gauss formula 

are the most accurate methods with similar L2 norm for this test problem. For the extremely 

distorted mesh, the improved LS approach is the most accurate method. Next in the ranking is 

two-step Gauss formula followed by the simple LS approach. 

Table 3-7.  Performance of the various methods with two distorted mesh _case I 

 

 

Randomly distorted mesh (40×40) Extremely distorted mesh (40×40) 

INs Sweeps L2 norm    (×10
-3

) INs Sweeps L2 norm  (×10
-3

) 

Simple GT 37 22 2.404 302 194 18.199 

1 step GT (1) 52 36 1.915 348 227 9.230 

1 step GT (5) 60 41 1.206 481 352 4.402 

2 step GT 47 31 0.244 341 222 2.459 

Simple LS 42 31 0.245 352 228 8.624 

Improved LS 41 26 0.253 344 218 2.043 

INs: inner iterations 

 

Figure 3-23. L2 Norm Error of 1-step and 2-step GT versus the number of iterations on randomly (left) and 

extremely (right) distorted meshes 

It is noticed that the accuracy of one-step Gauss formula is closely linked with the number of 

iterations. In Figure 3-23, we have plotted the L2 norm error of both one-step and two-step Gauss 

formula versus the number of iterations. For the one-step Gauss formula, the results show that the 

L2 error reduces quickly for the first few iteration times and then the reduction speed slows down. 

For this specific test case, when we increase the times of extra loop to 6, the solution diverged. The 

reason may be the stability property of the one-step 2
nd

 Gauss method [265]. However, for the 

two-step Gauss method, the extra loop avoids the stability problem but brings little improvement of 

the accuracy. From the similar L2 norm error with two-step Gauss method and improved LS 

approach, we believe that the error of gradient evaluation induced by skeweness and 

non-uniformity has been greatly eliminated.  

Besides computational accuracy, the computational cost is another significant factor that needs to 

be addressed. Considering the close relationship between the CPU time consumption and the 

number of iterations, the number of sweeps and the total number of iterations for different methods 

with different grid are also listed in Table 3-7. Apart from accuracy considerations, the numbers of 

iterations clearly prohibit the one-step Gauss’ formula use since it requires more iteration times 



86 

 

than other methods. Even worse, the total iteration number of iterations increases greatly with N 

(the number of iterations for gradient computation). Simple Gauss method holds some but limited 

advantages in computational cost comparing with other methods. For both meshes, the two 

Least-squares approach and the two-step Gauss method require roughly the same iteration times.  

By summarizing all the results listed above, the Least-squares approach is preferred in this 

benchmark problem. As for methods of Gauss formula, the two-step Gauss formula could also 

provide acceptable results. 

As the performances of different gradient evaluation methods may link with the distribution of 

gradient, a test with smooth gradient values has also been done.  

Test case II 

2 2 2 2 2 22 (cos ( ) sin ( )) 2 (cos ( ) sin ( ))x x y y                in ( )      (3-60a) 

2 2sin ( ) cos ( )x y         on (  )                                      (3-60b) 

The computational domain is restricted to a square domain [1×1]. Exact solution is given 

by 2 2sin ( ) cos ( )x y    .  

The computational results are listed in Table 3-8.  

Table 3-8.  Performance of the various methods with two distorted mesh _case II 

 Randomly distorted mesh (40×40) Extremely distorted mesh (40×40) 

INs Sweeps L2 norm (×10
-3

) INs Sweeps L2 norm  (×10
-3

) 

Simple GT 39 27 7.787 323 188 6.748 

1 step GT (1) 45 32 6.506 388 228 3.287 

1 step GT (5) 56 41 4.525 486 316 1.711 

2 step GT 37 25 1.262 376 208 1.785 

Simple LS 36 25 1.207 382 214 2.831 

Improved LS 38 25 1.248 369 208 1.887 

INs: inner iterations 

Considering the accuracy aspect, most results are consistent with the previous test. For extremely 

distorted mesh, the two-step Gauss method becomes the most accurate method and the difference 

between simple and the improved LS approach is not as large as previous test. It seems that the 

accuracy of the two-step Gauss and the improved LS approach is of the same order. As for 

computational cost, the only advantage of simple Gauss method disappears.  
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(a) Simple GT (b) 2-Step GT 
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(c) 1-step GT, iteration = 1 (d) 1-step GT, iteration = 5 
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(e) Simple LS (f) Improved LS 

           Figure 3-24. Iso-contours of the absolute error with randomly distorted meshes with test II 
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(a) Simple GT (b) 2-Step GT 
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(c) 1-step GT, iteration = 1 (d) 1-step GT, iteration = 5 
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(e) Simple LS (f) Improved LS 

Figure 3-25. Iso-contours of the absolute error with randomly distorted meshes with test II 

In Figure 3-24 and Figure 3-25, the absolute errors made by different approaches on 40×40 

randomly and extremely distorted meshes are presented. It is immediately noticed that results of 

two-step Gauss formula and the two LS approach are much better than the other two.  

To summarize, the two-step Gauss method and the improved Least-squares approach are 

recommended for gradient evaluation, with general meshes and test cases.  
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3.5.4 Numerical verification of connection among CTM, IDC and DGEM 

 

In this section, numerical dedicated tests have been performed to highlight the link between the 

three methods revealed in the section 3.3.2.3.  

According to the test purpose, four different meshes are chosen. The first one is a uniform warped 

mesh, with an angle K  increasing from 0
o
 to 89.9

o
, see Figure 3-26(a). For this one, there is no 

skewness and the non-orthogonalilty can be only controlled by K . The second one is the randomly 

distorted grid, see Figure 3-22. The third one is a slightly skewed grid; see Figure 3-26(b). The last 

one is the particularly skewed Kershaw grid, see Figure 3-22. For the last three meshes the skewness 

is important and gradually increases from the second to the last one. Another interesting feature of 

the last mesh is its anisotropically distortion, which is another very severe test for diffusion schemes. 
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                  (a) Mesh I                                 (b) Mesh III 

Figure 3-26. (a) Uniform skewed meshes (b) slightly skew mesh 

Previously we have highlighted the importance of the gradient computation method for IDC 

scheme and MDGEM. For uniform skew mesh (Figure 3-26a) in absence of skewness, the simple 

Gauss formula will be used. For the other three meshes, skewness arises and the two-step Gauss 

formula and the Least-squares approach will also be utilized. For more details about these three 

gradient evaluation methods, please refer to Appendix B. For CTM, the simple interpolation 

method with 1/i iW r  (where ir  denotes the distance from the centroid of the i th cell to the 

nodal point) will be used to interpolate the values at nodal points. In this context, we have also 

tried  i iW V  where iV  is the volume of the i th cell, without significant gain. 

To compare the accuracy as well as efficiency, three parameters are checked and reported: (i) L2
 

norm (ii) the number of sweeps for deferred correction loop and (iii) the total number of iterations 

of the linear system solver.  

For the first test we consider the computational domain and meshes depicted in Figure 3-26(a) with 

‘Test Case I’ (Eqn. 3-59). Along with the angle  increasing from 10
o
 to 89.9

o
, the meshes become 

extremely skewed. First of all, we noticed that all three methods worked well even on the case of 

89 9.   . It is indicated that the convergence abilities of three methods are consistent with each 
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other. Table 3-9 presents the values of the L2 norm versus angle   for each method. In Table 

3-10 and Table 3-11, we have reported the number of sweeps required in the deferred correction 

process and the number of total number of iterations versus angle   for the three methods.  

Table 3-9. L2 norm versus angle   for a 40×40 grid (×10
-6

) 

θ 10
o
 30

 o
 40

 o
 50

 o
 60

 o
 70

 o
 80

 o
 89.9

 o
 

L2CT 6.407 8.336 9.444 10.566 11.587 12.369 12.767 --- 

L2IDC 5.365 2.176 1.277 4.416 7.755 10.561 12.334 12.753 

L2DGE 5.365 2.176 1.277 4.416 7.755 10.561 12.334 12.753 

 

Table 3-10. Number of sweeps versus   for a 40×40 grid 

θ 10
o
 20

 o
 30

 o
 40

 o
 50

 o
 60

 o
 70

 o
 80

 o
 89.9

 o
 

CT 12 16 21 27 38 55 89 159 --- 

IDC 11 17 22 28 38 55 83 121 143 

DGE 11 17 22 28 38 55 83 121 143 

 

Table 3-11.  Total number of iterations versus   for a 40×40 grid 

θ 10
o
 20

 o
 30

 o
 40

 o
 50

 o
 60

 o
 70

 o
 80

 o
 89.9

 o
 

CT 54 77 103 143 206 296 436 629 --- 

IDC 50 72 100 141 201 293 436 635 751 

DGE 50 72 100 141 201 293 436 635 751 

 

It is found that all calculation results of Improved Deferred Correction (IDC) method and Direct 

Gradient Evaluation (DGE) method of Ferziger and Peric are exactly the same. The numbers of 

sweep times and total iteration times of coordinate transformation method and the other two 

methods are about the same, while there is some difference in L2 norm. As discussed in Section3, 

the main error for coordinate transformation method comes from the approach for the calculation 

of nodal points’ values, and the gradient evaluation method is the main error source for IDC 

method and DGE method, as there is no skewness in this test case. Apparently, both the gradient 

evaluation method and interpolation method are affected by the skew angle  . But the specific 

influence rule is not clear. In Figure 3-27, we have presented the absolute error made on the 

30o  mesh. In this case, the accuracy of IDC method is slightly better than coordinate 

transformation method. It is noticed that the error distributions of the two methods are not the same; 

this is because error came from different error sources.  

As for computational cost, coordinate transformation method is cheaper in a single iteration, as it 

avoids the calculation of gradients of control volume nodes and gradients of the middle points of 

every faces.  
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 (a)                                 (b) 

Figure 3-27. Iso-contours of the absolute error, 30o   (a) Coordinate Transformation Method       (b) 

Improved Deferred Correction of Surface Decomposition method 

Now we focus on the performance of the three different methods when skewness arises in the 

computational domain. We solve ‘Test Case II’ (Eqn. 3-60) on randomly distorted (Figure 3-22 

left), slightly distorted (Figure 3-26b) and extremely distorted meshes (Figure 3-22 right).  

Because of the presence of skewness in the grid, and in accordance with what has been previously 

stated in previous section, the classical Gauss theorem implementation becomes irrelevant and one 

has to use the two-step Gauss formula is used for CV node gradient evaluation.  

The computational results are listed in Table 3-12, Table 3-13 and Table 3-14. It is immediately 

noticed that the solution from CTM is much more inaccurate comparing with the two other 

methods for all meshes. On the other hand, the number of sweeps as well as the total number of 

iterations are almost the same for all methods on all meshes.  

Table 3-12. L2 Norm of error for the three test grids 

 Mesh II 

20×20    40×40 
Mesh III 

38×42   

Mesh IV 

51×51 

CTM 5.734 e
-4 

2.455 e
-4

 3.246 e
-5

 9.971 e
-4

 

IDC 2.350 e
-4

 3.022 e
-5

 2.965 e
-5

 3.754 e
-4

 

DGEM 2.380 e
-4

 2.957 e
-5

 3.062 e
-5

 3.923 e
-4

 

Table 3-13. Sweeps times for the three test grids 

 Mesh II 

20×20      40×40 

Mesh III 

38×42   

Mesh IV 

51×51 

CTM 9 14 30 115 

IDC 10 14 30 123 

DGEM 10 12 30 126 

 

Table 3-14. Total number of iteration of the linear solver for the three test grids, 

 Mesh II 

20×20      40×40 

Mesh III 

38×42   

Mesh IV 

51×51 

CTM 32 63 146 831 

IDC 34 61 148 916 

DGEM 36 61 147 917 



92 

 

In Figure 3-28, we have depicted the iso-contours of the solution obtained with the three methods 

on a 40×40 randomly distorted mesh. The error distributions of IDC scheme and MDGEM are 

similar, but quite different compared to CTM. For CTM the error is concentrated in the middle area 

of the domain, where the magnitude of the variable is higher. For IDC and MDGEM the error is 

mainly distributed where the gradient of the variable is higher.  
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Figure 3-28. Iso-contours of the absolute error on a 40×40 randomly distorted mesh with (a) CTM (b) IDC 

with two-step Gauss formula (c) MDGEM with two-step Gauss formula 

 

To further confirm and highlight that the gradient evaluation methods are the key error sources in 

such computations, we also perform the same numerical test on a randomly distorted grid, but with 

the simple Gauss formula and the Least-square approach. The computational results are listed in 

Table 3-15 and iso-contours of the errors are plotted in Figure 3-29 and Figure 3-30. The 

comparisons among Figure 3-29, Figure 3-30 and Figure 3-28(b), show directly that the IDC and 

MDGEM combined with simple Gauss formula fall to the level of CTM accuracy. It is also 

interesting to see that these error distributions are therefore and logically very similar for the three 

methods.  

Table 3-15. L2 norm and total number of iterations and sweeps for the three tested grids for IDC scheme 

and DGEM combined with different gradient evaluation methods 

 Mesh II  

51×51 

Mesh III 

38×42 

Mesh IV  

51×51 

L2 S T L2 S T L2 S T 

Improved Deferred Correction 

Simple Gauss Formula 1.531 17 72 0.389 30 146 11.89 108 779 

Two-step Gauss Formula 0.152 18 75 0.297 30 148 3.754  123 916 

The Least-squares Approach 0.228  16 77 0.309 30 147 5.169  123 935 

Direct Gradient Evaluation  

Simple Gauss Formula 1.511  15 73 0.419 30 146 12.08  108 793 

Two-step Gauss Formula 0.150  16 75 0.306 30 147 3.923  126 917 

The Least-squares Approach 0.146 15 76 0.329 30 146 5.356  122 955 

L2 : ×10
-4

 ; S: Number of Sweep; T: Total number of iterations.  
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             (a)                                     (b) 

 

Figure 3-29. Iso-contours of the absolute error on a 40×40 randomly distorted mesh with (a) IDC with 

simple Gauss formula (b) DGEM with simple Gauss formula  

 

Still focused on cell gradient evaluation, we shall now perform some tests with IDC scheme and 

MDGEM combined with (i) simple Gauss formula, (ii) two-step Gauss formula and (iii) the 

Least-squares approach. Mesh II, III and IV will be as well employed. The results are summarized 

in Table 3-15. As expected, for the same gradient computation approach, the accuracy and 

computational cost of IDC and MDGEM are always very close to each other. The two-step Gauss 

method and the Least-squares approach are much more accurate than the simple Gauss formula 

whatever the kind of grid considered. Still in terms of accuracy comparison between Least-squares 

approach and the two-step Gauss formula does not show a clear predominance. The slight 

differences seem to be more attached to the type of mesh. 

For the randomly distorted grid (Mesh II) the Least-squares approach is slightly more accurate than 

two-step Gauss formula when applied to MDGEM but it is the contrary when applied to IDC 

scheme. For Mesh III the accuracy is almost the same for the two gradient evaluation methods as 

well as for the two schemes. For the very critical Kershaw’s mesh (Mesh IV) the results of 

two-step Gauss formula are a bit more accurate. So it is quite difficult to conclude on this point. 

The emphasis is now laid on the performances in term of accuracy for the three methods on the 

most critical mesh i.e. Kershaw grids. As shown in Figure 3-30, although IDC and DGEM are 

more accurate than CTM, the error distribution is similar. The errors are magnified in regions 

where there is strong skewness. According to us, in this case, strong skewness introduced serious 

error both for interpolation accuracy of vertex point values and cell gradient computation. These 

results emphasize the importance of the mesh quality in the grid design process for practical 

simulation. 
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Figure 3-30. Iso-contours of the absolute error on a 51×51 extremely distorted mesh with (a) CTM     (b) 

IDC with two-step Gauss formula (c) DGEM with two-step Gauss formula 

Another very important factor in such computations is the CPU time consumption. The emphases 

were laid on the performances of the three gradient evaluation methods. To evaluate the 

computational cost we choose the Kershaw grids as the most drastic test. From table 3-15 we can 

notice than in every case simple Gauss is cheaper than the two others. Two step Gauss and Least 

Square methods produce a number of sweeps and iterations very comparable with a slight 

advantage for Least Square method.  

3.5.5 Efficient boundary condition treatment for IDC scheme 

 

In this section, numerical test will be performed to investigate the effectiveness of the methods 

introduced in previous sections.  

3.5.5.1 Dirichlet Boundary Condition 

 

For the first test we consider ‘Test case I’ (Eqn.(3-59)) and uniform skew mesh (Mesh I) in which 

the non-orthogonalilty on boundaries can be controlled by K . 
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Table 3-16 presents the values of the L2 norm versus angle   for the simple method (Eqn.(3-25)) 

and the improved methods (Eqn.(3-26) and Eqn.(3-27)). In Table 3-17 and Table 3-18, we have 

reported the number of sweeps required in the deferred correction process and the number of total 

number of iterations versus angle   for the two methods. It is found that the computational cost 

of two improved methods is almost the same. The simple scheme produces convergence results but 

is very inaccurate, especially in situations involving serious non-orthogonality on boundaries. In 

Figure 3-31, we have presented the absolute error made on a 40×40 mesh. By comparison, the 

error distribution of the improved scheme is more reasonable.  

Table 3-16. L2 norm versus angle   for a 40×40 grid (×10
-3

) 

θ 10
 o
 20

o
 30

 o
 40

 o
 60

 o
 80

 o
 

Simple 3.178 8.298 15.254 23.680 41.540 52.916 

First 0.256 0.293 0.333 0.377 0.460 0.503 

Second 0.215 0.169 0.087 0.051 0.310 0.493 

 

Table 3-17. Number of sweeps versus   for a 40×40 grid 

θ 10
 o
 20

o
 30

 o
 40

 o
 60

 o
 80

 o
 

Simple 27 40 53 65 102 215 

First 28 50 50 64 98 207 

Second 24 45 47 60 92 182 

 

Table 3-18. Number of inner iterations versus   for a 40×40 grid 

θ 10
 o
 20

o
 30

 o
 40

 o
 60

 o
 80

 o
 

Simple 38 54 71 89 143 281 

First 38 38 66 84 133 261 

Second 35 33 63 80 127 236 

 

A test case using the same Poisson problem but with randomly distorted mesh is performed to 

highlight the performance of the three methods with slight non-orthogonality on boundaries. The 

numerical results are listed in Table 3-19.  

Table 3-19. Performance of the various methods with randomly distorted mesh 

 40×40 grid 80×80 grid 

Inner iterations Sweeps L2 norm(×10
-4

) Inner iterations Sweeps L2 norm(×10
-4

) 

Simple  49 35 6.194 92 66 3.402 

First 47 31 2.555 91 63 0.638 

Second 41 26 2.526 91 63 0.640 
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(a) Simple (b) First improvement  

X

Y

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

Error

0.00024
0.00022
0.0002
0.00018
0.00016
0.00014
0.00012
0.0001
8E-05
6E-05
4E-05
2E-05

 
(c) Second improvement 

 

Figure 3-31. Iso-contours of the absolute error,  30  

Even when the non-orthogonality on boundaries is not serious, the accuracy with the simple method 

is still much worse than the one of other two, especially with the finer meshes. As for the other two 

methods, the difference in computational cost and accuracy is not obvious in this case. However, the 

second method is always slightly better.  

In conclusion, the new method developed in the present study, i.e., the second one, is recommended 

to treat the Dirichlet boundary condition with surface decomposition method.  

3.5.5.2 Neumann Boundary Condition 

 

To compare the performance of different methods for updating boundary values, we solve the 

following Poisson problem,  

3 2 22(2 3 1) 6(1 )(2 1)y y x y         in 0 1x   and 0 1y       (3-61a) 

Dirichlet B.C.: 

 0x  ,  3 22 3 1y y                                       (3-61b) 

1x  ,  0                                                  (3-61c) 

Neumann B.C.:  
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                                      (3-61d)

 

The computational domain is always restricted in a square domain [1×1]. Analytical solution is 

given by 2 3 2(1 )(2 3 1)x y y     . A specially designed grid is used. The grid is a randomly 

distorted grid following the procedure of Shashkov and Steinberg [264], except the meshes of the 

fist and the last line in y-direction. The meshes on these two special lines are parallelograms, with 

a controllable angle  , see Figure 3-31.  

The performance of various methods may depend on the distribution of scalar variable, i.e., 

problem-dependent. Another case with smother distribution is considered,  

)sin()sin(2 yx  in 0 1x   and 0 1y                       (3-62a) 

Dirichlet B.C.:  

0x  ,  0                                

1x  ,  ysin1sin                                       (3-62b)                  

Neumann B.C.:  

0y , x
y

sin



 

1y ,  x
y

sin1cos 



                                   (3-62c)                                

The exact solution with this case is yx sinsin   
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Figure 3-31. Computational domain and grid for Neumann boundary condition tests 
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The numerical results with the first case are summarized in Tab.3-13 ~ Tab. 3-18. The first three 

tables were obtained with BICGSTAB solver and the left were achieved using SIP solver. It is 

found that the performance of different methods depends on linear system solvers. These 

findings are surprising to us and the reason is unknown at present. In Tab.3-19, we present the 

test results of the second problem with randomly distorted meshes.  

By careful investigation of the results, some conclusions can be reached.  

1. With BICGSTAB linear system solver, the simple method performs better than the other two 

considering computational cost. However, its accuracy is not desirable, especially with 

serious non-orthogonality on boundaries. The other two methods do not show clear rules for 

computational cost. However, the accuracy of the second method (Eqn.(3-33)) is better than 

the first improvement method (Eqn.(3-32)). The iso-contours of the absolute error made on a 

40×40 grid and with  30  are presented in Figure 3-32. More importantly, the results 

with the second method are not significantly affected by non-orthogonality on boundaries.  
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 (c) Second Improvement 

Figure 3-32. Iso-contours of the absolute error made on a 40×40 grid and with  30 , Test case 1. 

 

2. With SIP linear system solver, the above conclusion with accuracy is the same. There are 

new changes of the computational cost. Both the number of sweeps and inner iterations with 

the second improvement method are close to those obtained with the simple method. The 

both are much better than the first improvement method.  
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3. When the non-orthonality on the boundaries is not severe (randomly distorted mesh in case 2 

and the 10  in case 1), the simple method performs better in terms of computational 

cost and accuracy.  

Table 3-20. L2 norm versus angle   for a 40×40 grid (×10
-4

) with BICGSTAB solver 

θ 10
 o
 20

o
 30

 o
 40

 o
 

Simple 0.750 2.754 7.380 15.360 

First 1.289 1.585 1.964 2.334 

Second 1.070 1.070 1.123 1.090 

Table 3-21. Number of sweeps versus   for a 40×40 grid with BICGSTAB solver 

θ 10
 o
 20

o
 30

 o
 40

 o
 

Simple 54 64 84 119 

First 87 72 86 126 

Second 56 62 97 139 

 

Table 3-22. Number of inner iterations versus   for a 40×40 grid with BICGSTAB solver 

θ 10
 o
 20

o
 30

 o
 40

 o
 

Simple 69 79 100 136 

First 72 87 102 143 

Second 71 78 114 157 

 

Table 3-23. L2 norm versus angle   for a 40×40 grid (×10
-4

) with SIP solver 

θ 10
 o
 20

o
 30

 o
 40

 o
 

Simple 0.750 2.754 7.380 15.360 

First 1.289 1.585 1.964 2.334 

Second 1.070 1.070 1.123 1.090 

 

Table 3-24. Number of sweeps versus   for a 40×40 grid with SIP solver 

θ 10
 o
 20

o
 30

 o
 40

 o
 

Simple 15 16 18 20 

First 36 34 35 37 

Second 15 16 19 27 

 

Table 3-25. Number of inner iterations versus   for a 40×40 grid with SIP solver 

θ 10
 o
 20

o
 30

 o
 40

 o
 

Simple 520 552 628 698 

First 1639 1354 1293 1073 
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Second 522 560 640 754 

 

Table 3-19. Performance of the various methods with randomly distorted mesh, test case 2 

 40×40 grid 80×80 grid 

INs Sweeps L2 norm(×10
-3

) INs Sweeps L2 norm(×10
-4

) 

BICGSTAB 

Simple  61 44 1.154 133 104 3.037 

First 62 45 1.173 139 110 2.772 

Second 59 42 1.123 127 98 2.810 

SIP 

Simple  459 13 1.154 1716 17 3.037 

First 536 23 1.173 2184 24 2.772 

Second 460 13 1.123 1716 17 2.810 

 INs: inner iterations 

In conclusion, we recommend our newly developed method, i.e., the second improvement method, 

for the treatment of Neumann boundary condition when non-orthogonality on boundaries is severe. 

If the boundary is almost orthogonal, the simple method is enough. 

3.5.6 Three-dimensional extensional implementation of the IDC scheme 

 

To test the accuracy and efficiency of IDC scheme for solving 3D Poisson Equation, we choose the 

following test problem.  

      ),,( zyxfzzyyxx   ,  ),,( zyx         (3-63a) 

      ),,(),,( zyxgzyx  ,  ),,( zyx              (3-63b)  

For the first test case,   is limited to ]1,0[]1,0[]1,0[  . If  

)sin()sin()sin(3),,( 2 zyxzyxf     

and  

0),,( zyxg   

 the analytical solution of the problem is 

)sin()sin()sin(3),,( 2 zyxzyx    

Four different grids are considered: uniform orthogonal mesh (Figure 3-33a.), randomly distorted 

mesh (Figure 3-33b), extremely distorted mesh (Figure 3-33c) and a Double Kershaw mesh (Figure 

3-33d) [244].  
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(a) Uniform orthogonal mesh 

 
(b) Randomly distorted mesh 

 
(c) Extremely distorted mesh 

 
(d) a Double Kershaw mesh 

 

Figure 3-33. Computational meshes for 3D test 

The method for gradient evaluation is the 2
nd

 order Gauss Theorem Method. The computational 

results are listed in Table 3-20 and plotted on Figure 3-34. Table 3-20 presents the different 

indicators that we choose to evaluate the performance of various methods.  

Table 3-20. Total number of iterations, sweeps and errors for the three test grids 

 Grid 1 

50×50×50 

Grid 2 

50×50×50 

Grid 3 

51×51×51 

L2 norm（×10
-5） 0.033 0.048 1.206 

Total number of sweeps 2 8 84 

Total number of iterations 1362 2267 30511 

CPU time 12.201s 19.925s 4m14.7s 

Max Error 3.290e-4 8.412e-4 2.260e-2 
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(a) on uniform orthogonal mesh 

0.95

0.9

0.85

0.8

0.75

0.7

0.65

0.6

0.55

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

 
(b) on randomly distorted mesh 
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(c) on extremely distorted mesh 
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(d) on Double Kershaw mesh 

 

Figure 3-34. Iso-countours of the computational solution at z = 0.5. (a) with uniform orthogonal mesh Grid 

1 (50×50×50) ; (b) with randomly distorted mesh Grid 2 (50×50×50); (c) with extremely distorted mesh 

Grid 3(51×51×51); (d) with a double Kershaw mesh (16×16×16) 

In Table 3-21, the results of convergence rate for 2D and 3D test problems are summarized. It is 

well-known that the efficiency of linear system solver has a great impact on the whole 

computational time. From Table 3-20, we firstly noticed that the CPU time spent in solving the 

linear systems is more than 68% of the total CPU time of the computation for all tests. In our 

computational tests we used an extended version [267] of the Stone’s SIP solver. It is worth noting 

that both the stopping criteria for the linear system solver and the outer iteration loop (sweeps) 

would seriously affect the computational cost. Here they have been set to 10
-2

 and 10
-7

 respectively. 

Even though the test problem and grid non-orthogonality are not fully similar for both 2D and 3D 

cases, the same degree of distortion, α = 0.2, have been used [268]). 

Comparing the CPU time per cell for 2D and 3D case for the same mesh size in each coordinate 

direction, we can notice a larger increase for the 3D case. This should be attributed to the following 

differences between the 2D and 3D cases: (1) the computational task for every single cell, (2) the 

computational cost for each SIP loop and (3) the computational cost for each sweep loop. There are 

four surfaces for a single 2D quadrilateral mesh, while there are six surfaces for a 3D hexahedron 

mesh, which means that the computational task to account the nonorthogonal contribution to the 

diffusive fluxes computation in 3D is 1.5 times more than in 2D.  This point can be verified by 
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comparing the total iterations times per surface of 2D and 3D cases, which are always similar for 

the same mesh size in each coordinate direction. For every single sweep loop, the increase time in 

3D is mainly due to: the 2nd-order Gauss Formula for gradient evaluation and the Low and Upper 

Decomposition of SIP solver. 

Table 3-21. Comparison of CPU time per cell for the randomly distorted mesh in 2D and 3D 

 Two-Dimension Three-Dimension 

Number of cells 40×40 80×80 40×40×40 80×80×80 

Number of sweeps 4 4 3 3 

Number of SIP loops 418 1505 3 3 

CPU time for SIP --- 0.190s 3.420s 57.650s 

Total CPU time 0.024s 0.248s 5.028s 84.313s 

CPU Time per Cell  1.500 e-5s 3.860e-5s 7.86e-5s 1.648e-4s 

---: Lack of data; Computations are performed on a 3 MHz Pentium workstation.  

We also test the problem with the Double Kershaw mesh. The grid is known as one of most 

stringent test cases, as all six components faces are seriously non-orthogonal. Through the success 

of the application of IDC scheme to the mesh, we expect the IDC scheme combined with our 

extension method can be applied to arbitrary 3D meshes.  

 

3.6 Conclusions 

 

All governing equations in Navier-Stokes, Electro-hydrodynamics (EHD) and Electro- 

Thermo-Hydrodynamics (ETHD) system are rewritten into a general transport equation. A finite 

volume discretisation technique has been described.  

The discretisations of the temporal and spatial terms (convection and diffusion) have been outlined 

in Section 3.3. The proposed discretisation treatment is second-order accurate in space and time, 

even on non-orthogonal meshes for complex geometries.  

For convective schemes, we systemically described the so-called high-resolution (TVD-type and 

NVD-type) schemes, including their basic idea and expressions. High-resolution schemes can 

guarantee bounded solutions and preserve the second-order accuracy at least. Some practical 

details for the implementation (e.g., extension to multi-dimensional, boundary condition treatment 

and potential problems for unstructured meshes) are discussed.  

For temporal schemes, several traditional schemes (e.g., Euler Implicit, Euler Explicit, 

Crank-Nicholson and Implit Three Time Level) and so-called strong-stability preserving (SSP) 

high order time schemes have been examined.  

For diffusive schemes, we focused on a newly proposed scheme for the non-orthogonality 

treatment. The scheme is based on the normal decomposition method. We successfully build its 

connection with other widely used methods (i.e., direct gradient evaluation method and coordinate 

transformation method) for the calculation of diffusive flux. In addition, the ways for its optimal 
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boundary condition (both Dirichlet and Neumann types) and extension to three-dimensional 

problems are also presented.  

In Section 3.4, a discretisation procedure for coupled systems of equations has been presented. The 

SIMPLE algorithm is used to treat the pressure-velocity coupling system for both steady and 

transient flows. The Rhie-Chow interpolation is used to prevent the generation of checker- 

boarding pressure field for collocated variable arrangement.  

In the numerical test section, we compared the performances of various high-resolution 

differencing schemes. The behavior of different temporal discretisation schemes combining with 

high-resolution schemes is also given. For diffusion scheme, the importance of gradient evaluation 

method for the performance of normal decomposition schemes is highlighted.  
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Chapter 4 Program procedure and validation 
 

4.1 Introduction 

 

The numerical algorithm and various discretisation schemes described in the previous chapter have 

been used to develop the computer programs which can be applied to Electro-hydrodynamics 

(EHD) and Electro-Thermal-Hydro-Dynamics (ETHD) problems.  

One version uses the general quadrilateral mesh, which can be applied to both simple and complex 

geometry two-dimensional problems. Another version uses multi-block hexahedral elements for 

three-dimensional problems. Both versions are mainly detailed in [248] for some practical 

implementation.    

Before applying the numerical solver to complete EHD and ETHD problems, some validation tests 

need to be performed. Some problems, for which either analytic solutions or well established 

experimental or numerical results exist, are selected as the test cases.    

In Section 4.2, the solution sequence for the Navier-Stokes system with additional coupled 

equations (e.g. energy equation, charge density and electric potential equations) is explained in 

details. The update of boundary conditions and physical parameters are also included.  

In Section 4.3, the validity of the space charge – electric field couple module is tested with two 

problems. The first one is the hydrostatic solutions between two parallel planar electrodes. The 

other one is a steady state corona discharge using a non-orthogonal grid. The purpose of the latter 

case is to highlight the applicability of our solvers to problems with complex geometry.   

In Section 4.4, the classical two-dimensional lid-driven skew cavity and Rayleigh-Bénard 

convection (RBC) are used to validate the Navier-Stokes and energy modules. For lid-driven 

skewed cavity problem, we highlight the effectiveness with the IDC scheme for the pressure 

correction equation. For RBC problem, the numerical validation is based on the comparison 

between the numerical value of linear stability criterion, RaC, with the theoretical value, i.e., 1708.  

Finally, some closing remarks are given in Section 4.5  
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4.2  The calculation procedure for EHD and ETHD system  

 

The first step with the numerical simulation is to generate the mesh for the computational domain. 

Here, some in-house programs were developed for simple geometry problems. For 

two-dimensional and three-dimensional problems, the pre-processor software GridgenV15 has 

been used for this purpose.  

The Poisson and charge density transport equations with two unknown variables: electric potential 

  and space charge density q , are the two governing equations describing the unipolar injection 

model.  The Poisson equation is solved with the proposed FVM-IDC scheme. With orthogonal 

meshes, the IDC scheme becomes the 2
nd

 central differencing. The charge density equation is 

solved with the FVM-TVD algorithm. Various temporal schemes (IE, I3L, EE, 2
nd

 TVD-RK and 

3
rd

 TVD-RK) were implemented in our solvers.  

For transient computations, the whole algorithm to obtain the electrical, velocity, pressure and 

temperature characteristics inside the physical domain consists of two loops: one inner loop and 

one outer loop. The inner loop solves the Navier-Stokes equations within the SIMPLE algorithm. 

To sum up, the complete procedure includes the following steps: 

1. Set up the initial conditions. The complete zero-field and hydrostatic equilibrium solutions 

are the two most common options.  

2. Start the calculation of a new-time step with the computation of Poisson equation. 

3. The electrical field is computed with the Gauss formula or the Least-squares approach. 

4. Solve the charge density equation with the FVM-TVD algorithm. The discretization of the 

temporal and convective terms is separated based on the method of line approach. Both 

implicit and explicit time schemes are incorporated into our solvers. 

5. Solve the Navier-Stokes equations with the SIMPLE algorithm. An inner iteration loop is 

required. The blended scheme with FUD and CD schemes is implemented to solve the mass 

and momentum conservation equations. The Euler implicit (IE) scheme and implicit three 

levels time (I3L) scheme are used for the time marching purpose. The electric field and 

space charge density are used for computing the electric body force Eqf


 . The 

temperature field is used to compute the buoyancy force. To judge the convergence of the 

inner loop, the stopping criteria based on reduction of the residual is used [70]. 

6. Solve the energy equation. The energy equation can be solved after the SIMPLE loop for 

velocity and pressure or may be included into the inner loop of SIMPLE algorithm. The 

choice depends on the coupling degree between the velocity and temperature fields.   

7. For non-autonomous injection, we need to update the boundary condition for charge 

density equation at the end of the time loop. For temperature-dependent physical properties, 

we need to update the values of   and K with the latest temperature field.  

8. If the final time is not reached, return to step 2.  

The full algorithm of the numerical solver for both EHD and ETHD problems is illustrated in 

Figure 4-1.  
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Figure 4-1. Computational cycle of the simulation process. The figure in the left dash box is the inner loop 

of SIMPLE algorithm   

 

 

4.3 Electric field-space charge coupled module 

 

Accurately predict the distributions of space charge density and electric field in EHD problem is 

the most important motivation of the present study. In this section, we selected two test cases to 

show the effectiveness of the proposed techniques for the charge density equation.  

Start: setting of initial and boundary conditions  

Time = 0 

Solve potential equation  
  

Compute Electrical Field 

 E


 

Solve charge density equation 

 q  

Solve Navier-Stokes equationsU


, p~  

(SIMPLE algorithm and inner loop) 

Solve energy equation  
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time step  
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4.3.1 Steady hydrostatic solution between two planar electrodes 

 

Considering the problem of unipolar injection between two parallel planar electrodes, the system 

admits a steady hydrostatic solution which means the velocity field keeps zero and the charge 

density is transferred with drift velocity only. Assuming the injection is from the lower electrode, 

the analytical solutions for the charge density is  

by

a
yq




1

2
)(             (4-1) 

which decreases from the injector and the electric field,  

 cbya  2/3)(
3

2
           (4-2-1) 

byayE )(             (4-2-2) 

modified by the space charge distribution.   

The constants a and b in Eqns. (4-1) and (4-2) depend on the injection strength C (see below).  

  1)1(
3

2
2

3

2

3

 bba  ,  
2

2

4C

a
b   and 2/3

3

2
1 abc     (4-3) 

Several typical values of the C parameter, which stands for different injection strength, will be 

used in the present study. The corresponding a and b are provided in Table 4-1.   

Table 4-1. Various injection strengths and their corresponding a and b constants 

C a b 

 0.1 0.4363 4.7590 

  0.25 0.6651 1.7696 

1.0 1.1256 0.3167 

10 1.4882 5.539×10
-3

 

100  1.4999 5.62×10
-5

 

For autonomous and homogeneous injection from the bottom electrode, the hydrostatic solution is 

essentially one-dimensional. However, in order to demonstrate the ability and accuracy of the 

FVM-TVD algorithm for multi-dimensional problems, both two- and three-dimensional cases are 

solved. Since there is no difference between two- and three-dimensional solutions, we only listed 

the 2D results below. Both weak  1.0C and strong  10C injection cases are considered. 

From the analytical expressions, it is noticed that the hydrostatic charge density and electric field 

distributions show slower variation in the vertical direction in the weak injection regime than in the 

strong injection regime. This difference indicates the grid size for strong injection simulations 

should be smaller than the one for weak injection, at least in the vertical direction. In Figure 4-2 

and 4-3, we take 50 and 100 cells in vertical direction for weak and strong injection separately. The 
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validity and accuracy of the TVD algorithm is highlighted by above numerical results which are in 

very good agreement with the analytical hydrostatic solutions.   

Weak Injection  1.0C  

 

Figure 4-2. Charge density (left) and electrical field (right) in weak injection regime, 
310t  

Strong Injection  0.10C  

 

Figure 4-3. Charge density (left) and electrical field (right) in strong injection regime, 
310t  

4.3.2 Hydrostatic solution in a two coaxial cylinders configuration 

4.3.3 A simple gas discharge problem 
 

The second problem is a steady simple gas discharge problem in point-plate geometry. The 

geometry of the problem is shown in Figure 4-4. A constant voltage is applied to a hyperbolical 

electrode, having a tip curvature radius of R and a length of L. The electrode is perpendicular to an 

infinitely large ground plate at a gap d. The discontinuous electron injection is also applied to the 

hyperbolical electrode.  

As the problem is symmetric only half of the domain is considered. The boundary conditions are 

indicated on figure 4-5. The injecting surface on the blade is limited from the edge of the blade 

until the point referred by s0= (-1.095E-5, 4.517E-5) and q0=0.01C.  
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Figure 4-4. Sketch of the blade-plane configuration. 

 

Figure 4-5. Sketch of the computational domain with boundary conditions. 

The governing equations describing the space-charge effects arising from electrical corona are the 

steady Poisson equation and the current continuity equation,  

0

2




q
              (4-4) 

 0 0K q                 (4-5) 

where 0  is the gas permittivity, mF /1085.8 12

0

 ; K0 is the mobility of charge carrier, 

4 2

0 2.0 10 m /V sK    . 

To obtain the steady solutions for above coupled equations, the segregated iterative algorithm [54] 

or a simple time marching approach can be used. The time marching approach means we convert 

the steady charge density equation to be time dependent. Then the two equations are solved in a 

segregated manner in each time step. After long enough time, a steady state will be reached.  Here, 

the emphasis is the spatial scheme. Thus, a fist Euler Explicit scheme is used for time marching.   

0V  

1V  

d 



111 

 

The grid shown in Figure 4-6 is generated from the equipotential and electric field lines of the 

space-charge free solution [269] [270]. The grid of Figure 4-6 consists of 100×100 = 10000 cells. 

As the grid size is rather small, the time step should also be small enough to satisfy the CFL 

constraint. In the present study, t is set to be 10
-8

. To judge the steady state, we compared the 

solutions of charge density and electric potential of present time step with the ones at previous time 

step.  When 
7

0

0
10






, where  stands for the charge density or electric potential, we stop 

the computation and believe the solutions reach a steady state. The whole computation lasted for 

13071 time steps.  

For the computation of the Poisson equation, the IDC scheme and the improved Least-Squares 

approach are used. The SMART scheme is chosen as the limiter function for the TVD approach.  

The numerical solution obtained by Adamiak with the Finite-Element Method combined with the 

Method Of Characteristics (MOC) is very close to Figure 4-7 (a) and (b). It is noticed that solutions 

of the charge density with both methods are bounded in the range [0, 0.01].  

 

Figure 4-6. Computational grid constructed from equi-potentials and field lines [269] 

  
(a) Charge density distribution  (b) Electric potential distribution  

 

Figure 4-7. Numerical solution of the simple gas discharge problem with the FVM-TVD-IDC approach 
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To make a quantitative comparison of the solutions obtained with FEM-MOL technique, we 

presented the charge density profile in the radial direction and in the y direction along the vertical 

plate in Figure 4-8. The results were compatible with the solutions obtained with the FEM-MOL 

method, which testifies the effectiveness of our FVM-TVD-IDC numerical algorithm. The main 

advantage of our method compared with FEM-MOC is a significant decrease of computational cost. 

Indeed the methods based on MOC require a re-meshing of the computational domain with 

additional interpolations at each time step which are not necessary in our case since the same mesh 

for electric potential and charge density is used.  

  

(a)  (b)  

Figure 4-8. Comparison of charge density distribution along the horizontal symmetric line versus r 

(a) and on the plane electrode versus y (b). 

Another numerical test with the computation of hydrostatic solutions in a two coaxial cylindrical 

configutration is done and details results can be found in [260].  

4.4 Navier-Stokes and energy modules 

 

The first test case chosen below is to highlight the application of IDC scheme to pressure 

correction equation. The second one is to verify the energy module.  

4.4.1 Lid-driven skewed cavity  

 

Laminar Lid-driven cavity flow has long served as a standard test case for both orthogonal and 

non-orthgonal grids. The problem is depicted in Figure 4-9 (a). The top wall is moving from the 

left to the right at a constant speed, Ulid. The aim of the problem is to demonstrate the capability of 

our solver for complex geometry problems and to show the effectiveness of the IDC scheme in a 

full Navier-Stokes computation framework.  



113 

 

 

 

 

(a) (b) 

  

Figure 4-9. (a) Lid-driven skew cavity flow (b) uniform skewed non-orthogonal meshes 

Demirdzic et al. [271] have investigated this problem with a body fitted algorithm and obtained the 

benchmark solutions by using a 320 × 320 quadrilateral grid. The case with inclined angle θ = 30° 

was studied. Calculations were carried out for two Reynolds numbers, 100 and 1000. A uniform 

skewed grid with 100×100 cells was generated for this study as depicted in Figure 4-9(b). Note 

only 20×20 cells are depicted here on figure 4-9b. The streamlines are presented in Figure 4-10. 

These flow patterns agree well with those obtained by Demirdzic et al. [271]. Centerline velocity 

profiles for u (A-A direction) and v (B-B direction) velocity components are shown in Figure 4-11 

and 4-12.  

 

 

(a) Re = 100 (b) Re = 1000  

Figure 4-10. Calculated stream functions contour for skewed lid-driven skewed cavity flow 

  

Figure 4-11. Comparison of the computed velocity at the centerline with the benchmark solution: velocity 

component u along A-A line 

From above comparisons, we see that our numerical results match the benchmark solutions fairly 

well.  

In [128], Peric stated that the SIMPLE algorithm with the simplified one-step pressure correction 

equation became inefficient when the angle between grid lines approaches 45
o
, and it usually failed 
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to converge for angles below 30. It should be noted that the SDC scheme is used by Peric to solve 

the unique pressure correction equation. When applying the IDC scheme for solving the pressure 

correction equation, we can obtain convergent solutions even for an angle of 20. However, the 

problem has not been solved completely, as we failed to obtain convergent solution at angle of 10. 

Some more studies are required for this point.  

 

Figure 4-12. Comparison of the computed velocity at the centerline with the benchmark solution: velocity 

component v along B-B line  

4.4.2 Two dimensional Rayleigh-Bénard convection  

 

The classic Rayleigh-Bénard convection problem is used as test case to validate the energy module 

within our numerical solver. Considering a planar horizontal fluid layer Lx 0 and assume the 

temperatures at the undeformable top and bottom surfaces of the layer to be fixed. 

 

Figure 4-18. Geometry and boundary condition for Rayleigh-Bénard convection 

The sketch of the computational domain with boundary conditions is presented in Figure 4-18.  
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where hT  . In the case of 0 , the system is potentially unstable.  It is well-known that 

the main parameter that drives the physical phenomenon is the Rayleigh number (Ra). In fact, 

when Ra is lower than a first critical value, the flow stay at rest and heat transmission is only due 

to conduction. Above a critical value, the fluid is put into motion exhibiting convective rolls. The 

critical value of Ra has been determined both analytically [272] and experimentally [273], being 

independent of the Prandtl number (Pr). For the case of both top and bottom surfaces of the layer 

are rigid, the critical Rayleigh number and its corresponding critical wave-number:  

762.1707CRa  ,  117.3ck  

We numerically solved the equations of Navier-Stokes with energy equation to provide a 

numerical prediction of the linear stability criterion. Close to the instability threshold, the 

perturbations of every physical quantity f grow according to the exponential law teff 
0 . The 

growth rate  is positive above the instability threshold and negative below it. The linear criterion 

is characterized by 0 . If we let the system evolve from rest, the tiny numerical fluctuations will 

provide suffice to induce the motion. After an initial period of still state, an interval of exponential 

growth of the velocity is observed, to see Figure 4-19. For a given set of L, Ra and Pr number, we 

calculated Pr),,(max RaLm   and represented m as a function of Ra for given Pr, see Figure 

4-20. For the case Pr=10, )(Ramm   is straight line segments, cutting the Ra-axis at,  

6.1706)( numericalRaC  

a value very close to the one provided by stability analysis. Generally, the difference between the 

numerical and the analytical ones decreases with finer grid size. It should be noted that the 

expression )(Ramm    is linear function only in the range Ra is close to RC. However, the 

perturbation amplitude is proportional to   2/1

CRR   at small values of the expansion parameter. 

Thus we cannot use Ra values which are too close to RaC, otherwise the system needs very long 

time before the convection starts.  During the computation, L=1 is chosen to keep consistent with 

half of the critical wave length, 0.1/  CC k . The symmetric boundary condition is applied to 

vertical sides to simulate the convection in an infinite layer. We fixed Pr as 10 and picked Ra = 

1750, 1800 and 1850 to determine the relation )(Ramm   . The maximum value of the vertical 

velocity Vmax in the computational domain is used as the representative quantity and its time 

evolution is plotted on Figure 4-19.  

   
(a) Ra = 1750 (b) Ra = 1800 (c) Ra = 1850 

Figure 4-19. The evolution of Vmax in the domain, Pr=10, L=1, 100×100 uniform grid;  
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Figure 4-20. Growth ratio   versus Ra for L = 1 and Pr = 10 

 

Besides the critical criterion, it is also interesting to have a look of the Nu – Ra curve, which has 

been widely used to express the experimental results. The mean Nusselt number is defined as 

CQQNu /  

where Q is the actual heat flux across the cavity and CQ is heat flux that would result from pure 

conduction. The heat flux Q may be calculated by summing the convection and diffusion fluxes 

through CV faces at any grid line of x = constant. Owing to the inherent conservativeness of finite 

volume method, it is equal to the wall heat flux, which is determined by the difference in the wall 

and at the centers of the near-wall CVs. Both the hot and cold wall heat fluxes were recorded in 

Table 4-2 and shown in Figure 4-21. It is expected that there is always little difference between 

Nu_hot and Nu_cold. It is also noticed that the bifurcation of RBC is supercritical as there is no 

velocity jump at RC and hysteresis loop.  

It is noticed that there is a decrease of Nu number at Ra=7000 and 8000, which should be due to 

the change of the flow structures. Up to Ra=7000, the flow is steady with one convective cell, 

while at Ra = 8000, the flow adopts a two-cell structure, to see Figure 4-22. This kind of flow 

structure bifurcation will also be observed for unipolar injection problem, in the next chapter.  

Table 4-2. Numerical results on the heat transfer between two parallel plates   

Ra 1700 1750 1800 1850 1900 2000 2100 2200 2300 2400 2600 

Nu_hot 1.0 1.035 1.074 1.112 1.147 1.213 1.274 1.330 1.328 1.431 1.518 

Nu_cold 1.0 1.035 1.074 1.112 1.147 1.213 1.274 1.330 1.328 1.431 1.518 

Ra 2700 2800 2900 3000 4000 5000 6000 7000 8000 9000 10000 

Nu_hot 1.557 1.595 1.630 1.663 1.924 2.104 2.243 2.356 2.011 2.153 2.280 

Nu_cold 1.557 1.595 1.630 1.663 1.924 2.104 2.243 2.356 2.011 2.153 2.280 
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Figure 4-21. Numerical results on the heat transfer of Rayleigh-Bénard flow problem. The Nusselt 

number is plotted against the Rayleigh number. Pr = 10, L = 1. Symmetrical boundary conditions have 

been applied to the lateral walls.  

 

(a)  Ra = 7000, one convective cell  

 

(b)  Ra = 8000, two convective cells   

Figure 4-22. Velocity field, stream function contour and temperature field distribution for (a) Ra = 7000 and 

(b) Ra = 8000, Pr = 10, L = 1 
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4.5 Closure 

 

In this chapter, the solution procedure for the EHD and ETHD problems was explained in detailed. 

The electric field-space charge couple module, Navier-Stokes and energy module were validated 

with various meaningful test cases. Very good agreements with known results are obtained.  
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Chapter 5 Numerical simulation of electro-convection in 

insulating liquids induced by unipolar injection: finite 

amplitude convection 
 

5.1 Introduction  

 

Unipolar injection from an electrode into a perfectly insulating liquid is a fundamental problem in 

the field of electrohydrodynamics. The question of hydrodynamic instability appears when the 

geometries of electrodes are highly symmetrical. Three typical cases are: parallel planar plates, 

co-axial cylinders and concentric spheres. In the present study, only the first case will be 

investigated. Considering the condition that the charge is uniformly injected into the liquid, the 

motionless state with zero velocity fields ( 0U


) is a solution of the whole system. The motionless 

state is also named hydrostatic solution. The linear stability problem is to decide the critical 

condition under which the motionless solution destabilizes.  

 For linear instability phenomena, the unipolar injection shares analogy to the Rayleigh-Bénard 

(RB) problem (a horizontal fluid layer heated from below). In RB problem, the motion starts only 

when the adverse temperature gradient (characterized by Rayleigh number, Ra) exceeds a critical 

value [275, page 10]. In addition, the motion ensuing from the surpassing the critical temperature 

gradient has a stationary cellular character (neutral stability) [275]. In pure unipolar injection, the 

qualitative conclusions are more or less the same: (1) there is a critical voltage which is associated 

with the onset of the motion; (2) the motion is in the form of cellular convection near the critical 

voltage. However, the detailed linear stability mechanisms are slightly different from each 

other.The instability study of the problem was done by Atten and Moreau [144]. Their study well 

explained the linear instability mechanism and defined a non-dimensional number as the attractor 

of the pure unipolar injection problem.  

The analogy to the RB problem is no longer valid for the liquid in motion due to the conduction 

mechanism of the scalar quantity in motionless state: drift with a finite velocity EK


 for charge 

carrier, diffusion for heat [276]. Considering the behavior of the system for T close to TC, there is a 

discontinuity at Tc for the steady amplitude of the convective velocity and the steady current, while 

the steady amplitude of the convective velocity and average Nusselt number varies in a continuous 

way with Ra in RB problem, to see Figure 4-15. In addition, the unipolar injection problem is also 

characterized by a sub-critical bifurcation. In the interval ],[ Cf TT , there exist one stable and one 

unstable finite amplitude solutions. This is related with a hysteresis loop, which can be shown with 

the velocity amplitude and the electric current. Both the linear and nonlinear stability phenomena 

have been verified with experimental of the space-charge limited (SCL). Some representative 

results are presented in Figure 5-1 to show the two stability criteria. In Figure 5-1a, Ne is the 
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electric Nusselt number and is defined as 0/ IINe  , the ratio of measured steady current I  and 

current 0I  without liquid motion. It is noticed that the discontinuities at nonlinear (51V) and linear (56 V) 

instability voltages. In Figure 5-1b, the non linear criterion is 933.0/ CTT c and the critical amplitude of 

velocity field is 6.1A . 

 

  
(a) (b) 

 
Figure 5-1. (a) Variations of Ne as a function of applied voltage [276] when SCL injection into a mildly 

polar liquid, Pyralene 1460TM between plane parallel electrodes. (b) Velocity amplitude for steady 

electro-convection as a function of CTT c/ )1.0( C [153].  

Increasing the voltage, the electric current is steady and there is no motion in liquids. At a certain 

voltage VC , corresponding to the linear criterion, the fluid is set in motion and the current jumps to 

a higher value and then continues to increase with voltage. If the voltage is decreased, the fluid 

keeps its motion and current do not reach its original value for CVV  , but until a value Cf VV   

is reached, where fV  is the nonlinear criterion.  

The linear and nonlinear phenomenon can also be characterized by a sub-critical (backward) 

bifurcation from a mathematical viewpoint. In the interval ],[ Cf VV , there exist two finite amplitude 

solutions, one stable and the other one unstable [276]. This is related with a hysteresis loop and 

jumps of the steady values of both the velocity amplitude and the current at the linear CV  and 

nonlinear criteria fV  [148].  

Linear instability mechanism 

Theoretically, the main object of the instability study is to determine the critical conditions for 

which at least one perturbation begins to grow exponentially by examining the time evolution of  

the perturbations.  

A simple argument can help to qualitatively understand the linear stability. At stationary state, the 

charge density distribution decreases from the injector into the fluid due to Coulomb repulsion 

while the electric field is increasing. If we consider the virtual displacement of a fluid ‘parcel’ 

which conserves its charge towards the collector, we see that it is then subject to a greater Coulomb 
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force than the fluid immediate to it. It will thus have a tendency to continue its displacement 

towards the collector. The coupling between charge and velocity perturbations is then positive 

[276]. This positive coupling indicates the stationary charge distribution is unstable. When the 

electric force is strong enough to overcome viscous damping, small velocity perturbation will 

amplify. A more accurate explanation which takes into account the change of charge density 

during the displacement of blob was given in [276].  

In the case of weak injection limit )1( C , the linear stability is characterized by the 

criterion 7.2202 CTc  , while in the other asymptotic case of space charge limited ( C ), 

161cT . For arbitrary injection strength, the critical values can be found in [144] and Figure 5-2 

which is plotted with the data provided in [144] to highlight the tendency of cT
 

varying with the 

injection strength. In addition, the critical non-dimensional wave number ck
 
takes values close to 

5 and only slightly depends on C , see Figure 5-3. The shape of the curve is analogous to the one 

of RB problem, to see Figure 2 in [275, page 15].  

  
Figure 5-2. Linear stability criterion Tc for various 

injection strength C 
Fig.5-3 Numerical values of parameter P=TC

2
 

characterizing the marginal perturbations of 

wave-number k in the case of weak injection 

 

The experimental studies have been carried out for the SCL injection into viscous mildly polar 

liquid in planar geometry. Both the linear stability and nonlinear phenomena have been observed 

successfully with the help of the measured electric current. However there are clear discrepancy 

between the experiments and theoretical analysis, when comparing the experimental value of 

  100
exp

cT [175] and the theoretical value   161
thecT . The difference remains yet unexplained 

[59]. Some attention should be paid to the assumption made in [144]: infinite space; the fluid is 

non-autodissociable; homogeneous and autonomous unipolar injection; the neglect of diffusion 

transport of charge. The difference between  
expcT and  

thecT  may come from these simple 

hypotheses. For example, when taking into account the diffusion mechanism for charge transport, 

the difference will decrease [277]; when the physical domain is limited, the vertical wall boundary 

conditions will stabilize the flow (a higher  
thecT ), especially for the case of finite size [56]; the 

assumption of  autonomous injection would also lead to lower bounds for the critical linear 

criteria [276]. 
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Only the critical conditions can be derived with the tool of standard linear stability analysis. As for 

the flow configuration, the non-linear analysis is required.   

Nonlinear instability 

The great features of the nonlinear instability mechanism have been derived by Félici who used a 

simple hydraulic model in the case of weak injection between two parallel plates [147]. Atten and 

Lavroix [148] extended the foregoing simplified model to the case of hexagonal cell and studied 

the nonlinear stability problem with a Galerkin method. They successfully predicted the existence 

of a nonlinear stability criterion as well as a hysteresis loop associated with the discontinuities in 

current and liquid velocities.  

When the motion sets in, it always takes place with a maximum liquid velocity greater than the ion 

drift velocity, and there is a region of the convection cells where ions could not enter into the 

region and the region would therefore remain avoid of charges.  

Due to this charge void region, the electric torque increases with velocity more than linearly and 

thus more rapidly than viscous resistance. In other words, a smaller electrical potential (or a 

smaller T) is needed to compensate the drag.  

With this hydraulic model, the nonlinear criterion and the amplitude of velocity field (A) follows 

the following rules: 

CTT cf    and   
CT

T
AA

c

2)1(    
2

1

2












CT

T
A

c

  with  
fTT   

Atten and Lacroix [146] improved the model by assuming the motion was in the form of steady 

hexagonal cells. With a Galerkin method, these authors [148] also proved the existence of a 

nonlinear stability ( fT ) which is smaller than the linear one, i.e., cf TT  . Along with the nonlinear 

phenomenon, a hysteresis loop is associated with the discontinuities in current and liquid velocities 

at both criteria. The value of the nonlinear stability obtained by Atten and Lacroix [146] is 

110][ thefT , which is not far from the experimental one 90][ exp fT  [19]. In the present study, 

we choose three typical injection strengths ,1.0C 0.1  and 0.10  to represent the weak, 

moderate and strong injection. The linear and nonlinear stability criterion of theoretical predictions 

are summarized in Table 5-2 with the original data are from [144] and [148].   

The nonlinear behavior of electro-convection is completely new compared with the 

thermal-convection with the Rayleigh-Bénard problem. The difference is due to the physical 

difference in the transport of the scalar quantity (charge density versus temperature): heat is 

transferred by diffusion alone whereas the charge carriers migrate under the action of the electric 

field. In general, the effects of diffusion transfer for charge density can be neglected.   

Therefore the liquid flow can entrain charge carriers against the force exerted by the electric field 

on them and prevent the injected charges from entering directly the return columns. In these 

columns the charge density takes values lower than the average ones.  
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The general structures and features of electro-convection are quite different for weak and strong 

injection. A brief introduction is made below,  

Convective motion for weak injection  1C  

The weak injection case is characterized by 1C  and, therefore by a weak effect of the 

Columbic repulsion between charge carriers. The charge density can be considered as remaining 

constant along the charge carriers trajectories. The weak space charge only slightly alters the 

uniform field distribution. When the liquid starts to move, the field on the injector and the current 

density only slightly increase. Considering the small value of the charge density at the injecting 

electrode, the electric current can be viewed constant and independent of the state of motion.  

Some particular approximate solutions have been obtained by imposing some further assumptions, 

like the flow is a steady two-dimensional convective roll structure and with small Reynolds 

number [144]. The details of the analysis can be found in [144] and [148]. The main conclusions 

are summarized below: 

1. The non-linear criterion takes the value CTT Cf 933.0 corresponding to a 

non-dimensional amplitude of the convective roll: 6.1A . 

2. The asymptotic behavior for large T  values is such that 2/1)(TCA .  

3. Two regimes (viscous dominated and inertial effects dominated) can be defined. In each 

regime, the typical velocity follows different laws.  

4. The transition between the two regimes should occur for a particular value of the critical 

Reynolds number, which should be on the order of 10. However, such a transition will not 

be always observed because a convective regime where the viscous effects are dominant 

can always exist. In some cases, we may find that the system passes from the no-motion 

state to fully chaotic.  

It should be pointed out that with metallic electrode, weak injection is more physically realistic, as 

the amount of charge created at the metal/liquid interface is limited by the electrode process.  

However, experimental with weak injection has not been carried out yet.  

Convection under space charge limited injection  C   

Comparing to weak injection, electro-convection induced by SCL injection is better documented 

and has been verified experimentally. With the help of the experimental Schlieren observations 

using transparent electrodes, four typical flow structures can be preliminarily distinguished. 

1. When the applied voltage is smaller than the linear stability criterion, there is no motion.  

2. Near the onset of motion, the flow is in the form of stable hexagonal cells. However, it 

must be emphasized that the flow state is always time dependent once the liquid is in 

motion. There are fluctuations imposing on a well-defined average values.   

3. When the voltage further increases, the hexagonal cells turn to unstable filaments.  

4. Finally, the flow becomes turbulent at higher voltage.  

There are also two asymptotic states of electro-convection with SCL injection: viscosity dominated 

and inertial dominated regimes. In each state, another two or three spatial regions can be 
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distinguished. Some theoretical predictions are obtained with the approximate equations that hold 

in different regions. These predictions are also verified with experimental data.  

     Viscosity dominated regime: 2/1

0/ TII   

   Inertial dominated regime:   2/14/1

0 // MRTII   

where I and 0I  are respectively the measured electric current and the current (depending on C) 

which would exist without liquid motion. The current density ratio  0/ II  is named as the electric 

Nusselt number. Since M number is some kind of fluid property-dependent parameter, the electric 

Nusselt number saturates in the inertial dominated regime. The transition between the two 

convective states in the case of SCL electro-convection, which means that the viscous and inertial 

effects are of similar importance, is associated with a transition number   30TMR , which is an 

electric Reynolds number related to an ordinary Reynolds number: 10Re tr  .  

Generally, the applied voltage is gradually increased and then decreased with a small margin to 

measure the steady current during the execution of physical experiments. This typical operation 

process offers the idea for accurate numerical determination of linear and nonlinear stability 

criterion.  

Besides the theoretical and experimental studies, the numerical approach has been also applied to 

the problem, most of which concerning two-dimensional problems. The main difficulty of 

numerical studies comes from two aspects: (1) strong nonlinear coupling between the distribution 

of electric field and charge density (2) the diffusion of charge being negligible. Since at the 

electrodes the velocity goes to zero, and that the continuity of the current requires that the bulk 

convective transport is matched by drift transport, the boundary regions must be characterized by 

strong gradients. The hydrostatic solution in the previous chapter can help to understand the strong 

gradients of charge density. In addition, the existence of charge void region is another major 

problem because of serious variation of charge density near the “separatrix” between the void and 

charge covering regions.   

Table 5-1. Summarization of published numerical simulation work with unipolar injection problems 

Author(s)  and  

References 

Numerical methods Notes 

 

 

 

 

Castellanos & Atten, 

1987 [151]  

weak injection  

1. The whole system is solved; 

The Navier-Stokes equations 

are solved with SIMPLER 

algorithm;  

2. Finite difference method with 

first order upwind scheme; 

The predicted linear stability criterion is    

    22075CT ; 
[*]

 

There is no zone void of charge due to the 

numerical diffusion;  

One cell structure was found for T = 3000, 

C=0.1 M = 60;   

1. The velocity field is imposed 

with a 2D self -similar 

 

A better estimation for the hysteresis loop is 

obtained, but the method failed to sustain the 



125 

 

function;  

2. The particle-type method is 

applied to the charge density 

equation;   

“vacillation” of the velocity;  

 

 

 

 

 

Castellanos & Atten, 

1987 [58]  

weak injection  

 

 

 

1. Finite difference method with 

second upwind differencing 

scheme 

2. The whole system is solved;  

The predicted linear stability criterion is    

    23710CT ; 
[*]

 

    
10400

MfT  

    
10100

60


MfT  

 

1. The velocity field is imposed 

with a 2D self-similar 

function;  

2. The particle-type method is 

applied to the charge density 

equation;   

 

The predicted value 6.1942 CTC  
is in 

good agreement with the asymptotic theoretical 

value, 220.75.   

There is a long transient regime with large 

amplitude oscillations around slowly 

increasing average;  

At the end of long transient regime, the 

oscillation dies out;  

 

 

 

Chicon et. al., 1997 

[34]  

Strong injection 

Weak injection  

 

 

 

 

1. The velocity field is imposed 

with a 2D self-similar 

function;  

2. The improved particle-type 

method is applied to the 

charge density equation;   

 

Strong injection ( 10C ): 

   171CT , 5.126fT  

Weak injection ( 1.0C ):  

   
23450CT , 2.2040fT  

The convective state obtained is always 

time-dependent for both strong and weak 

regimes, and the power spectra behaves in a 

similar way to those obtained experimentally;  

The fluctuations never die out;   

 

 

P A Vazquez, et. al., 

2006 [66] 

 

Strong injection 

Weak injection  

 

1. The velocity field is imposed 

with a 2D self- similar 

function;  

2. The improved particle-type 

method (PIC) and the Flux 

corrected transport (FCT) 

method 
[**] 

 are applied to 

the charge density equation;  

 

Both methods (PIC and FCT ) lead to steady 

state solution and satisfactory results for both 

weak and strong injections;  

 

Only with PIC method, small oscillations of 

velocity and electric current are observed; and 

they may be a function of the mesh size;  

 

 

 

 

P A Vazquez, et. al., 

2008 [67] 

Strong injection 

 

1. The whole system is solved;  

2. The Navier-Stokes equations 

are solved with Finite 

Element Method;  

 

Strong injection ( 10C ): 

163CT [*] (without the convective term)  

Two roll structure is observed for 400T   

Weak injection ( 1.0C ) 

Two-roll structure is observed for 30000T  
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Weak injection  

 

3. The improved particle- type 

method and the Flux 

corrected transport method  

are applied to the charge 

density equation;   

 

For the first time, the range of T, which is a bit 

far away from the linear stability value, is 

investigated.  

 

 

 

Ph. Traoré & A. T. 

Pérez, 2012 [56] 

Strong injection  

1. The whole system is solved;  

2. The Navier-Stokes equations 

are solved with Finite 

Volume Method with 

Augmented Lagrangian 

method [188] as velocity 

-pressure coupling algorithm.   

3. The TVD scheme is applied 

to the charge density 

equation;   

 

Strong injection ( 10C ): 

    64.155CT [*] 

Two roll structure is observed for 300T    

Flow structures for a wide range of T were 

investigated;  

At sufficiently high T value, electro-plumes 

were observed for the first time;  

[*] It should be noted that the comparison among these linear stability values are of little meaning as these values can 

be improved with finer grid (for FD and FCT) or more particles (for PIC). 

[**] The components of FCT method are: two-step Lax-Wendroff method as high order scheme, First order upwind as 

low order, oscillation-free scheme and Zalesak limiting procedure [64].  

Some concluding remarks can be made from the above summary.  

1. The method for charge density equation lies in an essential position for the complete algorithm. 

The drawback of PIC method is its computational cost [66], while FCT method is quite 

complicated. In addition, PIC method cannot be applied to convection-diffusion problems.  

2. For velocity field, the method of imposing a 2D self-similar function is quite popular. Though 

the method can be applied to both strong and weak injection, its applicability is limited to the 

range which is slightly below or above both linear and nonlinear criterion.  

3. Considering the numerical results, all algorithms can successfully predict the linear stability 

criterion. However, accurate determination of the nonlinear stability criterion puts forward 

higher requirement for numerical method.  

The present study is dedicated to the following aspects of electro-convetion in a dielectric liquid 

layer subjected to unipolar injection with numerical tools:  

1. To build an efficient numerical tool which can be applied to electro-convection of 

dielectric liquid inducing by unipolar injection of arbitrary injection strength; a new 

algorithm for the charge density equation is an important component of the numerical 

tool.  

2. To accurately determine the linear and nonlinear criterion and to show the flow 

structure of the system in the finite amplitude region;  

3. To investigate the effect of charge density diffusion for the whole system; the method 

we developed for charge density equation can easily take into account diffusion 

transport mechanism.    
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4. As the velocity and pressure field are solved directly instead of imposing, our numerical 

solver can be used for T of wide range. The successive instabilities of the 

electro-convection and the route to chaos have been identified for strong injection.  

5. Our numerical tool bas been successfully extended to the three-dimensional cases. 

However, as the code has not been parallelized, the computational time is an important 

limiting factor.  

 

5.2 Finite amplitude convection  

 

In the present study, we will solve numerically the whole set of coupled equations associated with 

the electro-convection in a dielectric liquid subjected to unipolar injection. The typical problem we 

consider is the homogeneous and autonomous unipolar injection between two rigid parallel 

electrodes which has been widely studied theoretically, experimentally and numerically. It should 

be noted that only the experiments with space-charge limited (S.C.L.) injections have been carried 

out.  

Problem description 

A perfect dielectric fluid is immersed between two plane electrodes of length L and a distance d 

apart. The system is considered to extend infinitely along the transversal direction so that the flow 

can be taken as two dimensional. An electric potential is applied between the plates so that 

injection charge occurs. The electric field forces the charges away from the injector and in this way 

a space charge appears in the bulk of the liquid. The physical problem is schematically described in 

Figure 2-2. The fluid is assumed be incompressible, isothermal and insulating with constant mass 

density, dynamic viscosity and permittivity. The dimensional governing equations are 

0 U
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noting that the non-dimensional diffusion coefficient in charge density equation is set to zero to 

keep consistent with the theoretical analysis [144] and [148]. The potential effect for this problem 

will be discussed in details in Section 5. 4. It is more convenient to work with non-dimensional 

style. Taking d , 0 , 2

0 / d  and dK /0 as the scales for distance, potential, charge density and 

velocity respectively, the governing equation of EHD problem can be written as,  

0 U


               (5-5) 
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Three non-dimensional parameters appear in the above equations,  
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The physical meanings of these parameters are well explained in Table 2-1.  Symmetric 

conditions are imposed on the velocity at the lateral walls to represent the infinite horizontal layer 

of fluid and electrodes.  Figure 5-4 shows the non-dimensional computational domain and 

boundary condition for the problem.  

 

Figure 5-4. Non-dimensional physical domain and boundary conditions for the homogeneous and 

autonomous unipolar injection problem between two parallel plates 

As for the non-dimensional length in horizontal direction, we choose 614.0L  and 

687.0L respectively for strong )10( C  and weak injection )1.0( C , both lengths being the 

critical half wavelengths of a convective cell. For moderate injection we set 650.0L  which is 

different from the critical wavelength. The effect of this choice to the linear and nonlinear stability 

criterion will be discussed later.   

The numerical method has been explained in details in chapter 4. Considering that one main topic 

of this thesis is to develop an efficient numerical method for electro-convection problem, various 

options are incorporated into the numerical solver for charge density equation.  

1. Time marching method: Euler Explicit, Euler Implicit, 2
nd

 TVD Runge-Kutta and Implicit 

three time level;  

2. TVD scheme: more than 20 limiter functions; 
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The performance of different options will be compared to determine the optimal schemes for 

electro-convection problem. 

5.2.1 Numerical determination of linear and nonlinear stability criteria 

 

A first trivial test of the numerical algorithm was carried out by using CTT   and comparing the 

results with the hydrostatic solution, to see Chapter 4. The second test was based on the 

comparison of the linear stability criteria with those determined with the linear stability analysis 

approach. In addition, the nonlinear criterion has also been computed with our numerical tools and 

compared with those determined with the Galerkin method. The results are summarized in 

Table5-2. Linear stability analysis shows that the threshold value ( CT ) depends on C  but not on 

M  which has also been verified with our numerical results.  

Table 5-2. Comparison of numerical and analytical linear and nonlinear criterion for weak, moderate and 

strong injection regimes 

   C M TC (present) TC (analytical) Tf (present) Tf (analytical) 

Weak injection 0.1 50 24022.5 24147.57 [6000,6500] ~ 2400                                                                                    

Moderate injection 1.0 50 520.0 510.993 [230, 240] 244 

Strong injection 10.0 10 163.2 164.1 [109,110] 111.7 

Note: For solving charge density equation, the implicit three time level and SMART scheme are adopted; the grid 

system owns 50 and 100 cells of equal size in X and Y direction; 

5.2.1.1 Numerical method for the determination of linear stability criterion 

 

For a fixed unipolar injection system with given L, C and M, the simplest idea to determine the 

linear stability value is to select two T values, with one slightly above and the other one slightly 

below the theoretical one, and then run the computation to see whether there is motion in the 

domain or not. A potential problem is that it needs an extremely long time for the system to set into 

motion when T is very close to the linear stability value. The closer T gets to CT , the longer time 

will be needed. Thus this simple method is not efficient to determine the linear criterion, an 

indirect search is necessary. The idea is similar to the one used in Chapter 4 to calculate the Rac for 

RB problem. We have used the maximum value of the vertical velocity in the domain of 

computation as a representative physical quantity. Interestingly, the value also happens to be the 

amplitude 




 

22
max yx VVA  of the velocity field. It is expected that, in the very first stage of 

growth, the velocity follows the law )exp(0max tvv  . Having fixed L, T and M, we calculate 

T from the first interval of exponential growth, and represented m  
as a function of T. By a 

linear extrapolation, the linear stability value, which corresponds to 0  , can be determined. 
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The original data of Vmax evolving with time, and the growth rates with T and the extrapolation 

step are presented in Figure 5-5.  

Some important aspects should be noted for accurate and efficient calculation of the linear stability 

criterion.  

1. Generally we need only two sets of values of (σ, T) to extrapolate to obtain the linear 

threshold TC. For better accuracy, the selection of T should be close to the analytical TC, as 

the time evolution of perturbations strictly follows the exponential law in this limited range. 

If we use some T which are far away from the analytical TC, a lower value would be 

obtained. An example with strong injection case can be found in Figure 5-6.  

   
(a) T = 170 (b) T = 180 (c) T = 190 

   
(d) T = 530 (e) T = 550 (f) T = 620 

   
(g) T = 26000 (h) T = 26500 (i) T = 27000 
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(j)  Strong injection C = 10.0      (k)  Moderate injection C = 1.0      (l) weak injection C = 0.1  

Figure 5-5. The evolution of the maximum velocity in the domain and growth rate versus T, (a-c) strong 

injection; (d-f) moderate injection; (g-i) weak injection;  

 
Figure 5-6. On the importance of appropriate selection of T value for more accurate TC estimation 

 

2. Technically, the linear stability value obtained above is the value for a fixed grid system. 

The final critical value should be computed with the grid system of indefinitely small size. 

Normally, the finer the grid the smaller the difference between the predicted TC and the 

analytical value, see an example in Appendix D. With TC evaluated with several sets of grids, 

another extrapolation may help to obtain a final value. However, this technique is not very 

practical for several reasons. Firstly, the computational cost increases a lot. Secondly, we 

observe that the TC predicted with a single moderately fine grid is very close to the 

analytical one. Thirdly, there is some artificial error induced by computation of the growth 

rate, which may offset the improvement by the extrapolation approach. Thus, in the present 

study, we did not use the extrapolation with several grids for linear stability determination. 

Instead, we always used a single grid to compute the linear stability value and the error is 

believed to be small.  

 

3. It is found that the grid size and time step is relevant to the time of the onset of the motion 

from numerical results. The general law is: the smaller the grid size or bigger time step the 

longer non-dimensional time is required for the system to set into motion. An example is 

presented in Figure 5-7. Three sets of uniform grid are used. The control cells in horizontal 
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direction are fixed as 100. For the first set grid, only 65 units of non-dimensional time is 

required for the system to reach the final steady state, while 100 and 150 units of time are 

needed for the second and third cases.  

The essential reason for this phenomenon has not been investigated yet. We think it may be 

linked to the amplitude of the numerical perturbation. Assuming the system evolves from a 

rest state, the motion starts only when the numerical fluctuations have reached a certain level. 

The numerical fluctuations may be proportional to the grid size and time step, which means 

that the coarser the grid or the bigger the time step the numerical fluctuations more easily 

meet the requirement level.  

   
(1) 100 × 50 cells              (2)  100 × 100 cells        (3)  100 × 150 cells 

   
(4) 01.0t                    (5) 001.0t             (6)  0001.0t  

 

Figure 5-7. An example to show the transition period is relevant to grid size (1-3) and time step (4-6); strong 

injection case (C=10, M=10, T=180); the I3L method is used for charge density equation; (4-6) are 

computed with the 100 × 50 cells grid system; 

4. Generally, two types of initial fields can be used: complete zero-field and hydrostatic 

solution field. In fact, the two initial fields correspond to two typical physical operations 

with the unipolar injection system. For zero-field, it means we actually solve a unipolar 

injection with a sudden step voltage. For hydro-static solution field, it requires starting from 

applying a small voltage and then increase step by step. For strong and moderate injection, 

there is no big difference between the solutions with different initial fields. However, the 

difference is significant with weak injection case. In Figure 5-8, we provide the solution of a 

weak injection system )30000,50,1.0(  TMC starting from the complete-zero 

field, which is obviously different from Figure 5-5 which is computed with the hydrostatic 

solution. The motion starts from the beginning. There is no transition period with the 
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hydrostatic solution. In fact, the hydrostatic solution never forms; see Figure 5-8 (middle). 

The solution is unsteady with drastic oscillations. In addition, there is no charge free region 

in the domain.  

5. In Table 5-2, it is observed that there is a certain gap between the computed Tc and 

analytical one with moderate injection. The difference should be due to the inconsistence 

between the non-dimensional size of physical domain and the most unstable wavelength. 

Theoretically, for a sufficiently large domain, the system would automatically organize itself 

with the most unstable wavelength, which corresponds to the lowest TC, see Figure 5-3 and 

Figure 5-9 (left). However, with a limited region, there exist some selection mechanisms. In 

[56], the authors provided a curve which shows the variation of TC with the horizontal length 

of the computational domain, see Figure 5-9 (right).  

  

Figure 5-8 Time evolution of the maximum velocity in the domain from complete-zero field (left), the 

contour map of the charge density of a very early step (middle) and the final time step (right); 

)30000,50,1.0(  TMC ;  
4101 t , 50200  uniform grid system.  

  

Figure 5-9 The marginal perturbations of wavelength λ in the case of Space charge-Limited Injection (left) 

[144] and TC versus L for a strong injection system (C = 10.0 and M = 10) [56]  

In [56], the authors firstly pointed out that all minima correspond to the same value of T and occur 

at one or more times half of the most unstable wave-length 614.02  . Here, we would like to 

build the relationship between Figure 5-9 (left) and Figure 5-9 (right). Considering the 

range ]9.0,4.0[L  of Figure5-9(right), where only one convective cell is possible, TC value should 

be consistent with the region ]8.1,8.0[2/  of Figure 5-9(left). This argument can be understood in 
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a reverse way. Generally, we will define the size of the domain with the most unstable wavelength, 

and then we can obtain the TC for this wavelength, which is also the linear stability threshold. By 

contrast, we now firstly define the domain with a size which may deviate slightly from the most 

unstable wavelength. The size of the domain would correspond to a wavelength. During the 

simulation process, this wavelength will be the final selection of the system to organize its 

convective cell. In other words, we computed the linear stability value which corresponds to the 

wave-number 23.5k for the moderate injection case.  

5.2.1.2 Numerical procedure for the determination of nonlinear stability criterion 

 

It is more difficult to obtain a precise determination of parameter T for non-linear criterion than for 

the linear one, theoretically and numerically. An important premise for the accurate prediction of 

the nonlinear criterion is that the charge free region is computed precisely.    

To decide the nonlinear criterion, fT , it is necessary to start from an initial state of stationary 

convection if there is. In the physical experiments, this is achieved by first applying a voltage 

higher than the linear criterion and then by slowly decreasing it to a target value Ut.   

The same thought can be carried out with the numerical practice. We start from a steady or 

quasi-steady solution obtained with a T higher than TC, and then we decrease T value step by step 

to see whether Vmax tends to zero or not.  

    Case I: If fTT  , the final stationary state is reached through a transition characterized by an 

exponential decrease of Vmax, see Figure 5-10 (b) and (c).  

    Case II: If fTT  , the velocity decrease is more important and Vmax also decreases 

following an exponential law within a certain range, see Figure 5-10 (a).  

As the total transition process does not require much time, the simple ‘try’ method can be used for 

the determination of nonlinear stability criterion. In [148], Atten proposed a technique which is 

similar to the one for the linear stability criterion, and that could be used to determine the nonlinear 

stability criterion. His idea bases on the assumption that the growth rate in the above mentioned 

case II varies linearly with T in a certain range below Tf. Then a linear extrapolation can be used to 

obtain Tf which corresponds to the zero growth rate. Though the assumption was verified with our 

numerical results (see Figure 5-10-d), Tf obtained in this way is far from the analytical one.  

The results are summarized in Table 5-2. For strong and moderate injection cases, the results are in 

good agreement with the theoretical values, which proves the high accuracy of our numerical 

solver. However, there is a considerable discrepancy in the weak injection case.  
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(a) T = 108 (b) T = 112 (c) T = 116 

   
(d) (e) (f) 

Figure 5-10 Strong injection (C=10.0 M = 10.0), time variation of Vmax after T parameter has been 

suddenly decreased from T=170 to T=108 (a), 112 (b) and 116(c); (d-f) are the semi-log plot of (a-c) to 

highlight the existence of exponential ranges  

To analyze the reason for this discrepancy, we firstly recomputed the solutions by decreasing 

from 26000T . The conclusion is more or less the same. We attribute the discrepancy to the 

drastic oscillation in the charge density and velocity field. For strong and moderate injection, the 

velocity field is steady, and we observe a sharp line (named “separatrix”) separating charged and 

uncharged adjacent regions. In the weak injection case, the velocity is changing in time, and the 

frontier of the “separatrix” may be very complex. Due to the oscillations, part of the charge near 

the “separatrix” will be dragged into the region initially free of charge, thus causing a decrease in 

the driving torque after a certain time delay. This in turn will decrease the velocity giving rise to a 

bigger delayed electric torque and so on. This mechanism could explain why the system becomes 

static even when T is still far away from Tf.  

 

5.2.2 Flow structure with finite amplitude convection 

  

In this section, we investigate the flow structure of the finite amplitude convection of unipolar 

injection system. Finite amplitude convection means the flow structure with T slight above TC and 

or in the range of ],[ Cf TT .  



136 

 

5.2.2.1 Flow structure of finite amplitude convection with strong unipolar injection  

 

Firstly, the simulation was run with C=10, M=10 and T=200, which is slightly above the threshold 

value. Thus, we expected to get instability and that a roll would develop. Figure 5-13 shows the 

main calculating results with this set of parameters. These results exhibit good agreement with 

other published results, either with FCT or PIC method, imposing velocity or solving the whole 

coupled system.  

The evolution of the amplitude of the velocity roll is shown in Figure 5-11. The computation 

started from a complete-zero field. In the early stage, the amplitude reaches a zero value after a 

transient regime (see the inset figure in Figure 5-11). In the beginning, we thought this was due to 

the grid size or time step. However, even with an extremely fine grid system and small time step, 

the phenomenon never vanished. Our explanation is: when some charge carriers suddenly enter 

into an originally stationary field, they will induce some local velocity disturbance which needing 

time to damp out by the viscosity of the system. Thus, we believe that this phenomenon has its own 

physical sources. Some further work needs to be done to quantitatively understand the 

phenomenon.  

           

Figure 5-11.  Evolution of the amplitude of the velocity roll for T = 200, C = 10, M = 10 with a 101 × 201 

uniform grid system and 10
-4

 time step  

After the above mentioned transition range, the system is at a quasi-stationary state before a slow 

increase of the velocity takes place. Then the convective motion starts, following an exponential 

law, which is consistent with the evolution of perturbations predicted by Landau [279]. Finally, a 

steady state is reached.  

Figure 5-12 (a-d) show the distribution of electric charge for different time points, aiming at the 

evolution process of the system. The system sets into motion at a specific time (here t=6.0) because 

of the numerical perturbation. A one-side hump appears in the charge density distribution figure; 

see Figure 5-12(b). The randomness of numerical perturbation means which half side owns higher 

average charge density is unpredictable. The most important characteristic of the solution has three 

aspects: (1) there is a central region with no electric charge and there is a sharp frontier between 
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this void region and the charge covered region; we confirm again that the success of capture of this 

void region is the precondition for nonlinear criterion prediction; (2) the curve which separates the 

two regions is named ‘separatrix’ and we observed that it is connected with the upper electrode, 

which provides a path for the charge carriers in the void region to escape; this is an important proof 

of the fact that the Coulomb repulsion was included in our solver [152]; (3) only one cell structure 

forms at the final state, see Figure 5-12(e) and (f).  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 5-12. Numerical results with a strong injection system (a-d) charge density distribution: (a) 

hydrostatic solution (b) t = 10.0 (c) t = 12.0 (d) t = 50.0; (e) streamline at steady state (f) velocity vector at 

steady state; Parameters: T = 200 C = 10 M = 10;  

As mentioned before, the core issue of the numerical simulation of electro-convection under 

unipolar injection is the method for charge density equation rather than the Navier-Stokes 

equations themselves. Thus we can also incorporate our numerical solver of the charge density 

equation and Poisson equation with the imposing velocity field. The details of this combination 

method and the expression for the self-similar background velocity field can be found in [34]. An 

example is given below.  
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(a) (b) (c) 

Figure 5-13. Numerical results with a strong injection system by imposing velocity field method; (a) time 

evolution of the velocity amplitude; (b) charge density distribution of the steady state ( T=178, C=10.0, 

M=10.0) (c) charge density distribution of the steady state ( T = 130, C = 10.0, M = 10.0), backward 

decreasing from T=178 case; 

Through the comparison of the above results with the one obtained by solving the complete system, 

we firstly prove that this combination technique with imposing velocity field works well for strong 

injection case.   

Another motivation of this computation is to state our understanding of the chaotic motion in finite 

amplitude convection range. The starting point is the phenomenon observed by physical 

experiments. It is observed that the motion is time-dependent even in a domain just above the 

linear critical voltage cU . The fluctuations of the electrical current and velocity have a well-defined 

average value [20]. With the standard discrete fast Fourier transform technique, the power spectral 

of the measured signal (the total current) has been studied and found that the spectral has a 

well-defined main peak at some frequency 1f  and decay exponentially following a 

law  cff /exp  . In [66] the PIC method was applied to the problem of finite-amplitude 

electro-convection, both in strong and weak injection regimes. The solutions of velocity amplitude 

and electrical current are always time-dependent. By the spectral analysis, the authors believe that 

they successfully reproduced the physical time-dependent convective state with numerical tools. 

However, we are not confident with their conclusion.  

Firstly, we used both imposing velocity method and solving Navier-Stokes equations method, and 

we did not obtain oscillatory solutions for any M value when T is slightly higher than TC, which 

means the oscillations should not be due to the solving velocity field, but to the charge density 

equation treatment.  

Secondly and most importantly, P. A. Vazquez, et.al, [66] mentioned that the oscillations observed 

with PIC method are related to the mesh size. It is observed that along with the increasing of the 

mesh resolution, the amplitude of the frequency components reduces. The solutions without 

grid-independent test are not acceptable from numerical simulation point of view. It is possible that 

these oscillatory behaviors have their numerical origins.  

When applying our numerical method to the strong injection problem, we successfully capture the 

main characteristics of the flow structure but we did not notice any oscillatory behavior of velocity 
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or charge density field. However, no agreement has been reached about the causes for the chaotic 

behavior of electroconvection [58][59][280][281]. It is important to note that this question has 

decisive significance with the evaluation of numerical method for unipolar injection. On the one 

hand, if the chaotic current oscillations are in correlation with the turbulization of liquid convective 

motion, we need not to improve our numerical method. On the other hand, if the chaotic behavior 

is due to the nonuniform injecting properties of the electrode surface [281], attention should be 

paid to the more realistic injection law rather than our numerical algorithm. Further discussion with 

this point is beyond the scope of the present study and more theoretical work is required.  

Next, the simulation was run with C=10 and different M and T. The critical values TC and Tf of the 

linear and nonlinear criterion and the corresponding hysteresis loop for the velocity are shown in 

Figure 5-14, which is in good agreement with the theoretical analysis. In the subcritical region, i.e., 

],[ Cf TTT   the velocity amplitude follows a 21)( TTC  law when T is close to TC.   

 

Figure 5-14. Vmax versus T with the strong injection case; Parameters: C = 10 and M = 10  

With the systematic summarization of the numerical results, we can define some universal laws of 

the flow structure of strong injection in the finite amplitude convection range.  

1. A steady state with one cell structure can always be reached; The roll develops faster for 

greater T; The area of charge-free region is increasing with T;  

2. The existence of a narrow channel connecting the charge-free region with the receiving 

electrode; It seems the width of the channel is constant for different T and M values;  

3. Though the linear stability criterion does not depend on M parameter, the transition time 

required to reach the steady state is related to it, see Figure 5-15. In addition, the final 

velocity value depends on M, when M is small, here, 20M , which is inconsistent with the 

conclusion commonly assumed [34].  

5.2.2.2 Flow structure of finite amplitude convection with weak unipolar injection  

The difference between the weak and strong injection case is reflected in two aspects:  
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(a) The weak effect of the Coulombic repulsion between charge carriers. In this case, the charge 

density can be considered as remaining constant along the trajectories of charge carriers.  

(b) The weak space charge only slightly alters the uniform potential (or electric) field 

distribution; see Figure 5-16 as an example. Considering the electric current through the emitter 

electrode, it has little to do with the state of motion and almost keeps constant. This point is the 

reason why physical experiments have not been taken, as it is hard to distinguish the electric 

current due to residual conductivity or due to ion injection.   

From numerical calculation point of view, there is no difference between strong and weak injection 

simulation. However, there is notable difference between the solutions. Firstly, we compute a case 

with a T number slightly above the threshold value. The main results are summarized in Figure 

5-18. We have also tried other T numbers, like 25000 and 30000. The main characteristics of the 

solutions are the same and can be summarized as follows:  

 

Figure 5-15. Vmax versus Time with different M values; Parameters: C= 10 and T =200 

  

Figure 5-16 Comparison of electric potential field between a strong and weak injection (left) C=10, T=200, 

M=10, the final steady state (right) C=0.1, T=30000, M=50, t=100s;  

1. The final solution is chaotic with serious oscillation reflected in the Vmax - time and 

electric current - time curves; see Figure 5-17 (d) and (e).  
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2. The final state is a two-roll structure; see Figure 5-17 (c). One-roll structure has also been 

observed at time 5.48t , see Figure 5-17(b). The transition between one-cell and two-cell 

has also been observed by P. A. Vazquez et al, with FCT and PIC method [67]. It should be 

pointed out that the transition time is very short, no more than 5s in this case.  

3. Even with serious oscillations, the time aveage value of electric current is just slightly 

above the stationary current, to see Figure 5-18 (i). This is in agreement with the above 

analysis and indicates that we can not use the electric Nusselt number to describe the flow 

regimes in weak injection case.  

The expression of the non-dimensional electrical current depends on nondimensional expression, 

with Eqn. (5-7) and (5-8), it can be expressed as 

  dx
t

E
E

y

y

y 














costant
Vq          (5-9) 

    
(a) (b) (c) (d) 

    

    
(e) (f) (f) (h) 
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(i)    (j) 

Figure 5-17. Numerical results with weak injection; charge density with (a) hydrostatic solution (b) t=83.5 

(c) t =85.0 (d) t=200; streamline and velocity vector at (e) t=83.5 (f) t=85.5 (g) t=87.5 (h) t=89.5 (i) Vamx 

versus time (j) electric current versus time; Parameters: T=28000 C=0.1 M=50;  

The last term in the square brackets corresponding to the displacement current is an important 

contribution to the actual time fluctuation of the current. Only including this term, the current at 

any y-plane can strictly follow the Ampère’s law at any time moment.  

To highlight the evolution of one-roll and two-roll structures, we computed the angular momentum 

of the domain with the following formula and plotted it in Figure 5-18.  

dSUrrAM
cell


  )( 0             (5-10) 

where 0r


 is the position vector of the centre and S represents the area of the control volume in 2D. 

In addition to using the center point, we also computed the angular momentum of both left and 

right half domains.  

 

Figure 5-18. Evolution of the angular momentum for T = 28000 C = 0.1 M = 50; the dash box is the 

transition regime between one-cell and two-cell structures; AC, AL and AR stands for angular momentum 

with center point of the whole domain, the left half and the right half domain 

The flow starts from a stationary state (AC = 0), then one-cell structure is formed along with strong 

oscillations (AC increased to a peak value). In a short time, the average value of AC tends to zero, 
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but AL and AR help showing the two-cell structure as both of them are osillating with non-zero 

average.  

 
  

(a) (b) (c) 

Figure 5-19. Numerical results with a weak injection system by imposing velocity field method; (a) time 

evolution of the velocity amplitude; (b) charge density distribution of the steady state ( T=24000, C=0.1,  

M=50.0) (c) charge density distribution of the steady state ( T=3000, C=0.1, M=50.0), backward decreasing 

from T =24000 case;  

The above flow strucuture is quite different from other published results. Considering most of 

these results are based on velocity imposing method, we recompute a similar case but without 

solving Navier-Stokes equations. Instead, we use the same velocity imposing method to highlight 

that the difference is not from Navier-Stokes solver. The results are presented in Figure 5-19. 

These results are in good agreement with solutions computed with the PIC method [34] [66] and 

FCT method [66]. In fact, these results are similar to the solution in the strong injection case. A 

fully developed and steady roll structure is formed.  

  

(a) (b) 

 

Figure 5-20. (a) Three dimensional plot of the charge density distribution corresponding to Figure 5-20;  (b) 

charge density distribution with C=0.1, M=50, T=30000 using PIC method, a copy of Fig.8 of [66]  

An internal charge-free region was well captured. An interesting finding is that our numerical 

results show a non-zero electric charge, along the right side, which is about 70% of C value. This 

non-zero field is also observed in [66] with FCT method, which is easy to understand because of 

the similarity between FCT method and our TVD algorithm. However, with the PIC method, the 
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density is essentially zero along the right side, see Figure 8 in [66] (reproduced in Figure 

5-20(right)) and the authors attribute the deviation mainly to the symmetric boundary condition 

treatment. The PIC method imposes no boundary condition for the charge density there, while FCT 

method (also TVD algorithm) uses 0 nq


where n


 the unit vector normal to the boundary. 

Then the question is ‘which solution is closer to the real physical solution’. We will analyze this 

problem in the next chapter.  

The emphasis of this section is to understand the reason why two methods (imposing field method 

and solving Navier-Stokes equations) lead to completely different solutions.  

First of all, we observed the similarity of the flow structures between a strong injection case 

(T=1300, C = 10, M = 10) and the weak injection case (T=30000, C = 0.1, M =50). Both of them 

evolve from a hydrostatic solution. After a transition phase following an exponential law, a 

one-cell structure state is reached. Then in a short time, the motion changes to a two-cell structure 

and oscillates around some main frequencies all the time, see Figure 5-21.  

Then a natural thought is: the way to the chaotic regime for strong and weak injection may be the 

same and we just need to select a T value slightly above the Tc in the weak injection simulation. If 

we reduce T number to a value which is slightly above TC, we should obtain a steady solution just 

as in the strong injection case. However, with numerical results shown in Figure 5-22, this thought 

is proved to be incorrect. Even with T=24160 (M=100), which is only 0.06% above Tc, the final 

state is still very chaotic, noting that this test takes a long time, the system set into motion at 

t=9.0033×10
6
. To summarize, for the weak injection system (C=0.1, M=50), the system passes 

from no-motion state to a fully chaotic state in 2D.  

  

Figure 5-21. Power spectral for (left) a strong injection L=0.614, C=10.0, M=10, T=1300; (right) a weak 

injection L=0.687, C=0.1, M=50, T=30000 

Secondly, we made a preliminary estimation of the time average value of Vmax, see the results in 

Figure 5-23 and evaluation curves in Figure 5-24. The sudden reduction of Vmax_average between 

5500 and 6000 is due to the appearance of electro-plumes. It is well-known that plumes only 

appear for high values of the Reynolds number. In addition, it is observed that Vmax increases as 

T
1/2 

in [27000, 45000] range, which is consistent with the law in the inertial effect dominating 
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regime [276]. From above analysis, we can conclude that the system (C = 0.1, M = 50 or 100) 

passed from the no-motion state to fully developed chaotic state. Is this possible?  

 

Figure 5-22. Time evolution of Vmax with a T very close TC, T = 24160, M= 100, C= 0.1.  

 

Figure 5-23. Time average of Vmax values in a weak injection system, C = 0.1 and M = 50; (left) vs. T 

(right) V vs. T
1/2 

In [283], P. Atten mentioned the possibility that the viscous effect dominated regime may not exist 

in weak injection case, which is an obviously different phenomenon from the strong injection case. 

To judge which regime the electroconvection locates, it is useful to define the Reynolds 

number  /KVR  . For convection under space charge limited (SCL) injection, the transition 

Reynolds number is on the order of 10 [19]. The same argument also makes sense for the weak 

injection case [283]. An important difference between strong and weak injection is the linear 

stability criterion TC. Considering the large TC for small C value, there is a wide varying range for 

CR , as 2/ MTR CC  . Then, it is possible that with some sets of systems (T, M, C), the 

inequality transitionRe ReRc   holds. Once transitionReRc  , it means the system is in the inertial 

dominated regime at TC and the Vmax–time curve should behave very chaotically, just as Figure 

5-22 shows.  



146 

 

  
(a) (b) 

 

Figure 5- 24 (a) Evolution of the maximum vertical velocity for weak injection with C = 0.1 and M = 50; (b) 

A snapshot of the thermal plume appearing in T = 70000 case; these simulations have been carried out with 

a 51× 151 uniform grid system.  

With our numerical results with weak injection case, we successfully validated Atten’s prediction 

about the appearance of special transition procedure in weak injection with numerical tools.   

In addition, we highlighted an important drawback of the imposing velocity field method in weak 

injection simulation. The imposing velocity field has been widely used for electro-convection 

under both weak and strong injection. However, as we have showed that the system (C=0.1 and 

M=50) does not own the viscous-dominated regime, not to mentioned the self-similar rolls 

structure for fluid motion. Therefore the validity of applying the imposing velocity field method to 

the system must be questioned.  

Lastly, these findings reminded us of a thought, unlike strong injection case, M parameter may play 

an important role in the type of flow structures in weak injection case.  

In the rest of this section, we firstly list some numerical results of a weak injection system (C=0.1, 

M=5) which shows quite different solutions with M=50. Like Prandlt number, M parameter is 

related to physical properties of the system. For dielectric liquid, its range can be limited to ]500,3[ , 

see Table 2-2.  
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Figure 5- 25 Evolution of the maximum vertical velocity for weak injection with C = 0.1 and M = 5; (top 

left) T = 27000 (top right) T = 30000 (down left) T = 40000 (down right) T = 100000 

At T=27000, the evolution of the velocity amplitude is similar to what we observed in the strong 

injection case. However, after the exponential growth period, the amplitude value does not tend to 

be steady. Instead, there exist very slight oscillations, see Figure 5-25 (top left). These small 

oscillations have been verified with finer grid systems and smaller time step. We name this kind of 

state as ‘quasi-steady’. The corresponding charge density distribution and velocity field are 

presented in Figure 5-26. It is easy to find the cell-structure and the developing process is also 

quite similar to the strong injection case. In addition, the final charge density distribution is 

identical to the solution obtained with the velocity imposing method; see Figure 5-20 (b).  
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(a) 

 
(b) 

 
(c) 

  
(d)                 (e) 

 
(f) 

 

Figure 5-26. Numerical results with a weak injection system by solving Navier-Stokes equation numerically; 

charge density distribution of (a) hydrostatic solution (b) time=3500 (c) time=4000; (d) velocity field (e) 

stream functions (f) drawing of partial enlargement of (d) and (e); (c) - (f) are at final quasi-steady state; 

Parameters: C=0.1, M=5, T=27000; 51 × 101 uniform grid and 
310t  

Surprisingly, we observed two small vortes at corners; see Figure 5-26 (f). This finding has been 

verified with a larger domain (1.374×1) computation. We think these vortexes are concomitant 

phenomena of the quasi-steady state. The numerical linear stability value, TC, nonlinear stability 

value, Tf, and the associated hysteresis loop of the same weak injection system are plotted in Figure 

5-27. The obtained TC is very close to the analytical value. Though the obtained Tf value 

( ]3500,3250[
5


MfT ) is still a bit far from the analytical one ( 97.2252933.0  CTT Cf ), it is 

much better than the one obtained in M=50 system, ]6500,6000[
50


MfT . 
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It is interesting to find the corresponding amplitude value of T=3250 is 1.66, which is quite close 

to the analytical value 1.6. In addition, Vmax curve in the range [3250, 24000] follows a nonlinear 

law as T
1/2

, which is also inconsistent with the analytical prediction. We attribute the discrepancy 

to the comprehensive effect of numerical diffusion and the slight oscillations. 

 

Figure 5-27. Evaluation of Vmax versus T with the weak injection case; Parameters: C= 0.1 and M = 5  

At T=30000, the flow structure is the same as at T=27000. The only difference is that the amplitude 

and frequency of the oscillation increase with T value; see Figure 5-24 (top right). As T further 

increases to 40000, the flow entered a new state, see Figure 5-24 (down left). The flow is generally 

periodic with one-cell structure. However, the amplitude of the velocity field varies dramatically in 

each cycle. At T=100000, the flow is fully chaotic, see Figure 5-24 (down right). It should be 

stressed here that the flow keeps the one-cell structure at the chaotic state, which is different with 

the two-cell structure of strong injection at final chaotic state.  

From above solutions of weak injection case, we notice that the flow structure highly depends on 

M value. Thus, it is a natural thought to have a look what will happen if we continually change M. 

In figure 5-27, we present some results for the same C and T with different M. Some other 

computations with M=5, 6 and 7 have also been done to help summarizing the general change in 

the law of the flow structure.  

In discussing the obtained results, we follow a descriptive approach to delineate the overall 

physical picture of the phenomena. Considering the much more complex flow structures than 

strong injection case, these descriptions reflect my personal understanding of the physical problem, 

and some more rigorous, quantitative analyses should be done to verify some of our assumptions in 

the coming future.  
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M = 3 M = 4 M = 10 

   
M = 20 M = 50 M = 200 

Figure 5- 28. Evolution of the maximum vertical velocity for weak injection with C=0.1 and T=30000 

Firstly, we summarize what we observed with Figure 5-28 and some other results not listed.  

1. The flow structures of M=5, 6, 7 and 10 are of the same type. A final quasi-steady state is 

reached after the exponential growth of the velocity field. The flow contains only one 

primary cell. There exist small oscillations on the quasi-steady velocity field. In addition, 

the amplitude and frequency of the oscillation increase when M decreases.  

2. The flow structure of M=4 is quite similar to the one obtained with T=40000 and M=5.  

And for M=3, the flow structure is consistent with the one obtained with T=50000 and M 

=5. Though these solutions are unsteady, the one-cell structure is kept.  

3. The flow structure of M=20, 50 and 200 are relatively more complicated, since there were 

serious oscillations appearing in the charge density distribution and velocity field. For 

M=20 and T=30000, the final solution is of one-cell structure, but the direction of the cell 

varies periodically, see Figure 5-29.  

4. For M=50 and T=30000, the solution is of unsteady two-cell structure. The evolution 

process and final state is close to what we observed with the strong injection case (C=10, 

M=10, T=1300). 

5. For M=200 and T=30000, some electro-plumes were observed, see Figure 5-30. It should 

be pointed out that these plumes were developed after the formation of two-cell structures; 

see Figure 5-28 (a). The evolution process and final state is close to what we observed with 

the strong injection case (C=10, M=10, T=4000). 
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(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

 

Figure 5-29 Numerical results with weak injection; charge density with (a) hydrostatic solution (b) t=110.5 

(c) t=140.0; (d)-(h) a complete cycle to show the change of void region direction;      Parameters: T= 

30000, C=0.1, M=20;  

 
(a)                           (b)                      (c) 

 

Figure 5-30 Charge density distribution of a weak injection (C= 0.1, M=200, T=30000); (a) Two cell 

structure (b) electro convective plumes (c) a moment corresponding to four-cell structure;  

In the next paragraph, we will illustrate our understanding of the complex phenomenon in weak 

unipolar injection case.  

1. It is well-known that whether the viscous or inertial effects are dominant the electro- 

convective regime depends on the non-dimensional electric Reynolds number 2/ MTR  . 

It has been determined experimentally that the transition R number (RT) is 10 for strong 

injection case. The transition R number for weak injection case has been estimated to be on 

the order of 10. However, an exact value has never been provided.  



152 

 

2. For strong injection, as the linear stability criterion is on the order of 100, 
2/ MTR CC  may always be smaller than TR . In other words, the strong injection system 

may always starts from the no-motion state to a viscous effects dominating state. However, 

considering the linear stability criterion for weak injection (taking C=0.1 as the example) is 

of the order of 10000, it is possible that TC RR   for some relatively small M value. Under 

this condition, the system would pass from the no-motion state to the state where inertial 

effects dominate or viscous and inertial effects are of the same order. This is exactly what 

happens in the range ]10,3[M .  

3. For 10M , R  increases along with the decrease of M. The inertial effects become more 

and more important. For inertial effects dominating regime, we assume that the convection 

follows a routine to final chaotic state: quasi-steady (R1) quasi-periodic (R2)  aperiodic 

(R3)  chaotic (R4). For a specific small M, it is possible that 2/ MTR CC   appears in 

any region among R1, R2, R3 and R4. From the solutions showed in Figure 5-25, we  

obtain,  

],[ 21 RRRT  ,     105  M  

],[ 32 RRRT  ,     4M  

],[ 43 RRRT  ,     3M  

These findings are consistent with the results listed in Figure 5-24, which is obtained with    

a fixed M (M=5) and various T values. With the increase of T till its value greater than 

30000, it is possible to reach the same state of at T=30000 with M=4 or M=3. 

4. For 10M , the viscous effects are dominant with both strong and weak injection cases. 

Then a natural thought is that the weak injection system in this range may follow the same 

way to chaotic state as the one in strong injection system. However, the solutions showed in 

Figure 5-27 do not support this viewpoint. It has been found that both the velocity and 

charge density (electric current) fluctuate in time even when T is slightly greater than TC in 

weak injection system, which is in contrast to the strong injection case. These oscillations 

should belong to the essential nature of the flow. The source for these regions may be the 

weak Coulomb repulsion between ions and the existence of a small amount of charge inside 

the hole in the cell. With the oscillatory convection, M may dramatically change the 

bifurcation behavior of the flow. For 50M , it is observed that the average value of the 

velocity is independent of M for the same T and the amplitude of the velocity fluctuations 

strongly depends on M value. The fluctuations increase with M. This typical law can be 

qualitatively understood from a physical point of view, since large values of M correspond 

to lower ionic mobility, which means that ions are more strongly dragged by the liquid and 

can therefore be more easily trapped in the ‘separatrix’ between the free region and the 

charge occupied areas. To summarize, the electro-convection due to weak injection is in the 

viscous dominating regime when 10M . However, the flow is unsteady even at T slightly 

greater than TC and the M significantly affects the flow regime. The basic law is that the 

flow is more volatile with the higher values of M.  
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Figure 5-31. A summarization of the relationship between M and flow regimes in weak injection system 

As the physical experiments with weak injection have never been done, the above findings may 

help to understand outcomes of future experiments. In addition, it seems that the quasi-steady flow 

can only be found in a narrow region ]10,5[M . Thus it is important to select appropriate material 

when designing some experiments to highlight the possible flow structure (like hexagonal and 

quasi-cellular motion in strong injection case) and the hysteresis loop associated with the linear and 

nonlinear stability criterion.  

 

5.3 Conclusions 
 

In this chapter, the problem of electro-convection due to unipolar injection between two parallel 

electrodes has been tackled with a novel numerical algorithm based on finite volume method. One 

key component of the whole algorithm is the application of TVD scheme to the charge density 

equation.  

When the electric potential between two parallel electrodes immersed in a dielectric liquid is high 

enough the development of a subcritical electro-convective instability occurs in the bulk. A linear 

and non linear critical value of the electric potential give rise to a hysteresis loop when a 

representative quantity is plotted versus the potential. Transient evolution of electro-convection in 

a dielectric liquid between two parallel plates is analysed numerically. Both strong and weak 

injection cases are considered.  

The linear and non linear stability parameter noted respectively Tc and Tf that we obtained 

numerically are very close from the ones predicted by the stability analysis. The very good 

agreement indicates that the simulation is able to capture the important features of 

 M = 10  

 M = 3   M = 200  

Inertial effects 

dominate 

Viscous effects 

dominate 

R=T/M
2
 

quasi-stead

y  

quasi-periodic 

aperiodic 

chaotic 

State 
The flow is always unsteady;  

The M significantly affects the 

flow regime;  

The higher M value, more 

oscillating the flow;  
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electro-convective flows both in strong and weak injection. It completely validates our numerical 

tool for such simulations.  

In addition, the flow structure of electro-convection in the finite amplitude regime has been 

discussed in details. Particularly, we observed that the flow structure at T slightly above TC highly 

depends on M parameter with the weak injection case. The reason for such a relationship has been 

analyzed thoroughly. In weak injection, the discrepancy, for the non-linear criterion Tf, between the 

predicted value of the hydraulic model and our result is also explained by the inertially dominated 

regime that the simple model of Felici cannot undertake. 
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Chapter 6 Numerical simulation of electroconvection in insulating 

liquids induced by unipolar injection: numerical aspects 
 

Some numerical details and skills will be introduced and discussed in this chapter. Some are for a 

better approximation of physical problems, some for reducing computational cost. As the method 

for solving Navier-Stokes equations belongs to the standard techniques in CFD fields, we will only 

discuss about solving details of the charge density equation and Poisson equation.   

6.1 On solving the charge density equation  
 

In Chapter 3, we use some pure advection problems to test the performance of different time 

schemes and TVD schemes. Here, we extend the comparison with the strong injection problem. 

Before further discussion, it is important to demonstrate how to correctly treat the boundary 

conditions.  

6.1.1 On symmetric boundary condition 

 

In Figure 6-1, we notice the difference of the charge density distribution near symmetric 

boundaries between our TVD algorithm and PIC method. 

 

Figure 6-1. Charge density distribution at steady state of a moderate injection case;            

Parameters: C = 1.0 M = 50, T = 550  

Here we will prove that our results are more accurate through a simple example. The idea is simple: 

since there are some potential questions about the symmetric boundary condition treatment we just 

enlarge the domain to twice larger, which means the symmetric boundaries disappear, and 

recomputed the same condition. The results in Figure 6-1 clearly show that there are some 

non-zero charges in the central region. With the PIC method, if the symmetric boundary conditions 

are simply treated with the same method for outlet boundary condition (i.e., imposing no boundary 
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constraint), some important physical phenomenon may not be caught. The observed non-zero field 

region of charge density should be due to the weak or moderate injection cases, which is easy to 

understand.   

6.1.2 On injecting and collecting electrodes 

 

For electro-convection between two parallel plates, the injecting and collecting electrodes represent 

two kinds of boundary conditions for charge density equations. In chapter 2, we have explained the 

physical boundary conditions requirement for the charge density equation. For emitter electrode, 

the charge density should be provided following the injection law. For collecting electrode, the 

physical boundary condition is of no need if we neglect the diffusion term. Taking into account the 

diffusion term, an extra boundary condition is necessary to complete the system. Various choices 

are possible: the zero-slope method or the extrapolated method.  Here, we firstly discuss the case 

of neglecting diffusion term.  

   0



UEq

t

q 
                      (6-1) 

We define UEU


* as the background field for charge density variable. It should be noted that 

this background field is not divergence-free, i.e., 0* U .  

Injecting electrode 

At the injecting electrode, the velocity field is always zero due to non-slip boundary condition, 

while yE


, the vertical componential of electric field, is always positive. Thus, the condition 

0*  UEU


is always guaranteed during the whole computation process. That means we 

actually treat the classic “inflow boundary condition” for the charge density equation at the emitter 

electrode.  

Let us consider the boundary condition (also the injection law) 

)(),0( 0 tgtxq                         (6-2) 

where )(0 tg  is a given function. With the finite volume method, the conservation law of the 

charge density equation at the first inner control volume can be expressed in the form,  
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where nF 2/1  and nF 2/3  are some approximation to the average flux along 0x  and xx  . 

Generally, we can compute the exact flux nF 2/1  
by integrating along the boundary,  
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The essential problem is to express 2/5Q
 
and nF 2/3 , see Figure 6-2. As our TVD algorithm is a 

five-point method, a special formula is needed to express 2/5Q
 
with 1Q , 2Q  and 3Q , which is 

not an easy task because of their non-uniform distribution. With the FUD scheme, a three-point 

method, the problem will not appear. Thus one possibility is to apply the FUD scheme at the first 

cell, together with the high-resolution TVD schemes at other cells. Rather than explicitly switching 

to a different formula at the inlet boundaries, we prefer to use the ghost-cell method for its 

generality and simplicity. The motivation for the method is that we apply the same formula for all 

the inner cells. We then define a ghost cell, 0Q , with the same size of the first inner cell. We want 

to express 2/5Q  with 1Q , 2Q  and 3Q  with the same formula for other interior cells. The 

problem is now how to set the value of the ghost-cell.  

 

Figure 6-2. The computational domain near the emitter electrode, the domain is extend to one ghost cell for 

specifying boundary conditions  

For convection-diffusion equations, a simple and widely used method is the linear extrapolation 

[47, page 159][284],   

nnn QQQ 210 2                         (6-5) 

For the advection equation we can easily compute sensible values using our knowledge of the 

exact solution. We would like to set  

 


a

xa
n

n dxtxq
x

Q ),(
1

0                       (6-6) 

Of course the true solution isn’t even defined for ax  , but we can easily extend the solution past 

the boundary using our knowledge of characteristics, setting  
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Again, we could approximate this integral by the second-order approximation, obtaining  

Emitter electrode, x = a 

2Q  
3Q  1Q  

0Q  

nF 2/1
nF 2/3  

2/5Q  
4Q  

*U

 

To compute r here, ghost cell value is needed 
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For autonomous injection, we simply set  

CQQ nn  10                           (6-10)
 

The difference of the two setting methods can be highlighted with the computation results of 

electric currents. For computation of buoyancy-driven convection problem, it is important to check 

the conservation of heat flux. Here we follow the same idea to check the conservation of electric 

current. It is well-known from the Ampère’s law that the electric current through any horizontal 

plane should be consistent with the one through the injection electrode.  

 

Figure 6-3. The computational domain and grid system with the strong injection to show the importance of 

proper boundary condition treatment.  

Taking a strong injection system (C=10, M=10 and T=240) as the example, we output the electric 

current though the injection, middle plane and collecting planes, see Figure 6-3. The numerical 

results with different extrapolation methods for setting values of ghost-cells are present in Figure 

6-5. Only with the second extrapolation method, the Ampère’s law is fully respected. 

Injection 

electrode 

Middle plane 

Collecting 

electrode  
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Figure 6-4. Values of electric field at bottom plate: analytical vs. linear extrapolation 

 

Figure 6-5.  Evolution of electric current of different planes with time (left) linear extrapolation (right) 

setting with knowledge of characteristics; Parameters: C = 10, T = 240, M = 10; 51×101 uniform grid;  

It is also observed that in Figure 6-4, there is also some slight difference among the injecting and 

collecting electrodes. The difference may come from inaccurate extrapolation method when 

computing the electric field on bottom plates. During the calculation process, we first solve the 

Poisson equation for potential, and then evaluate the electric field in the inner domain with some 

gradient evaluation methods (like Gauss formula or Least–squares approach). Some extrapolations 

are needed to decide the electric field on the boundary nodes. A linear extrapolation is used to 

obtain the results in Figure 6-5. However, the linear extrapolation method is not that accurate. For 

simplicity, the hydrostatic solution can be used to demonstrate the problem. The difference 

between the exact hydrostatic value and the value obtained by linear extrapolation (with point A 

and B in Figure 6-4) is about 11%, while the current difference is about 15%.  

Collecting electrode 
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At the collecting electrode, the velocity field is also always zero due to non-slip boundary 

condition, while yE


 is always positive. Thus, 0*  UEU


and we actually treat the outflow 

boundary condition for the charge density equation at the emitter electrode.  

 

Figure 6-6. The computational domain near the collecting electrode, the domain is extend to one ghost cell 

for specifying boundary conditions  

There are two types of ‘ghost-cell method’. The first type is the one introduced above. With this 

method, we need not to develop special formula for a use near the boundaries, e.g. nF 2/3  and we 

have to extend the computational domain to include only one additional cell.  However, some 

special treatment is necessary to determine the fluxes at the physical boundaries, e.g., nF 2/1 . We 

name this type of method as ‘half ghost-cell method’. The other type is the ‘full ghost-cell method’. 

This method follows the idea that all physical boundaries as the interior interfaces are treated with 

the same formula for the original interior faces. If the five-point convection schemes are used, two 

additional cells are required for each boundary. The values of these ghost cells are set at the 

beginning of each time step in some manner that depends on the boundary conditions and perhaps 

the interior solution [72]. With this method, a variety of boundary conditions can be treated with a 

unified approach, which greatly simplifies the practical implementation.  

Eqn. (6-1) is of hyperbolic type, and then we should not specify any physical condition at the outlet 

boundary in principle. However, some numerical boundary conditions may be needed, which 

depends on numerical schemes and numerical treatment approaches.  

Half ghost-cell method 

Two steps are needed for this method. Firstly, we need a formula to express 1NQ  with other inner 

cells, like NQ  and 1NQ . It is in this step that some numerical condition should be specified. If 

we set  

NN QQ 2  

a Neumann condition 0
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q
 is used.  

To compute r here, ghost cell value is 

needed 
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Secondly, a ghost cell is needed to compute the )()( 12   NNNN QQQQr value which is 

necessary for n

NF 2/1  if the velocity directs from right to left. Both zero-order and first-order (or 

linear) extrapolations can be used.  

Zero-order extrapolation  

n

N

n

N QQ 1                      (6-11) 

First-order extrapolation    
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N QQQ 12 2                        (6-12)
 

Full ghost-cell method 

With this method to treat outlet boundary condition, we compute n

NF 2/1 with the same formula as 

the one for other interior interfaces. Theoretically, if we use a one-sided scheme such as FUD, then 

we do not need any numerical boundary condition. If we use ghost cells, then we can assign 

arbitrary values to the ghost cells on the right with no effect on the interior solution, since these 

values will never be used. If we use the five-point method (like TVD schemes) that does use values 

to the right, then some numerical boundary conditions must be specified. In general, we must take 

some care in how we specify these conditions to obtain a stable and accurate method. Since there is 

no physical boundary, we should guarantee that the information to compute values of cells near the 

boundaries only from left even if some values of right appear in the expression.  

Besides the method of switching to FUD for cells near the outlet boundaries, we can also achieve 

the goal by carefully setting the values of ghost cells. With zero-order extrapolation,  
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since  0* U .  The method becomes some kind of FUD method. With linear extrapolation, there 

is a possibility that noise generated at the right boundary will propagate back into the domain and 

contaminate the solution elsewhere and perhaps even cause instability. Generally, the TVD 

schemes are highly dissipative for this left-going waves and so this will not cause serious problems 

and the method can be proved to be stable [72]. 

In the present study, we use the ‘half ghost-cell method’ and first extrapolation for the treatment of 

collecting electrode. It should be noted that the charge-diffusive boundary layer at the electrode 

will not affect the mainstream solution of our problem. 

6.2 Comparison of the time marching algorithm 

 

In this part, we extend the comparison of different time marching methods with the complete 

unipolar injection problem. The purpose of this and of the next section is to provide some 
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guidelines for the selection of time and TVD schemes in calculation of unipolar injection 

problems.  

Four different time schemes including Explicit Euler (EE), Implicit Euler (IE), Implicit Three Time 

Level (I3L) and the optimal second-order TVD Runge-Kutta method (RK2TVD) will be 

considered. A strong injection system (C=10.0, M=10.0) will be used as the test case. With 

different T parameters, the final solution will be steady or unsteady. Two typical T values are 

selected: one (T=240) representing the steady case and the other one for unsteady (periodic) case. 

The SMART scheme will be used in all the test cases. The physical domain is [0, 0.614] × [0, 1].  

Case I. T = 240.0 M = 10.0 C = 10.0 

In this case, a 50 × 100 grid system has been used. The results for two time steps of 10
-3

 and 10
-4

 

are presented in Table 6-1. It is immediately noticed that all the solutions of Vmax are almost the 

same, which proves that all time schemes work well for the test cases. The required computational 

effort associated with each scheme is also shown in the same Table. Though explicit schemes 

require less computing time than implicit schemes, the difference is tight. The CPU results may 

prohibit IE’s use since its computational cost is high.   

 

Table 6-1. Performance of the various time schemes in the steady unipolar injection test 

  Implicit Euler Explicit Euler  RK2TVD Implicit 3 Levels 

Time step = 10
-3

 

Total time = 30 

CPU time 10min21s 10min14s 9min48s 10min18s 

Vmax 4.650 4.649 4.650 4.650 

Time step = 10
-4

 

Total time = 30 

CPU time 86min43s 79min12s 83min17s 84min36s 

Vmax 4.652 4.652 4.652 4.652 

 

Case II. T = 550.0 M = 10.0 C = 10.0 

In this case, a very fine 100 × 200 grid system has been used to reduce the potential effect of the 

spatial discretization scheme. The time evolution curves with two different time steps are shown in 

Figure 6-7. The information of the maximum vertical velocity component and CPU cost are 

summarized in Table 6-2.  
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Figure 6-7. Evolution of the maximum vertical velocity for strong injection with C = 10 M = 10 T = 550 

(left) Euler Explicit and dt = 10
-3

 (right) Implicit Three Time Level and dt = 10
-4

. These simulations have 

been carried out with a 101× 201 uniform grid system.  

It is a surprise to see that the final solution is steady with 310dt and regular periodic 

with 410dt . The difference should be due to numerical diffusion introduced by temporal 

discretisation. Further tests with a smaller time step, 5×10
-4

, were done to verify the solution with 
410dt is grid-independent.   

As shown in Table 6-2, the computations with EE and RK2TVD scheme failed because of the 

violation of CFL condition. However, the divergent points for EE and RK2TVD scheme are 

different. The computation stopped when Vmax is 4.35 with EE scheme and 7.295 with RK2TVD, 

which means the CFL coefficient is smaller for RK2TVD than EE scheme. It should be noted that 

if we further increase the time step to 5×10
-3

, the computation with implicit time schemes will also 

diverge.  

 

Table 6-2. Performance of the various time schemes in the unsteady unipolar injection test 

  Implicit Euler Explicit Euler  RK2TVD Implicit 3 Levels 

Time step = 10
-3

 

Total time = 120 

CPU time 456m12s Divergent Divergent 317m7s 

Vmax 5.581 5.581 

 

Time step = 10
-4

 

Total time =120 

CPU time 2222m54s 2089m6s 2129m16s 2186m3s 

Vmax* 5.686 5.685 5.686 5.686 

Amplitude 0.120 0.120 0.120 0.120 

Frequency 21.89 21.89 21.89 21.89 

      Vmax*: the time average value 

From the solutions with dt = 10
-4

, we firstly noticed that the accuracies are the same. Comparing 

the CPU cost, Implicit Euler again is not efficient at all. EE and RK2TVD scheme require less 

computer time than I3L, but the difference is very limited. If we optimize the stopping criteria with 

deferred correction loop and linear system solver for implicit schemes, the difference will be 
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further reduced. It is interesting to find that I3L method is well suited to simulate unipolar injection 

problems. In above test cases, the lowest value of the charge density is almost zero (non-zero value 

is of 10
-6

). In conclusion, I3L and RK2TVD schemes are recommended.  

 

6.3 Comparison of TVD schemes 
 

In this section, we would like to highlight the importance of the selection of an appropriate TVD 

scheme. From a practical implementation point of view, various schemes can be easily 

incorporated into our numerical solver under the unified approach introduced in chapter 3. The 

only difference is the selection of the flux limiter function.  

The strong unipolar injection (C=10, M=10) is selected as the test case. The domain space is 0.614 

× 1 units, and a 51× 101 grid is used. The time scheme is I3L method and 10
-3

 is set as the time 

step. Only the numerical linear and nonlinear criteria with different convection schemes are 

tabulated in Table 6-3. Special attention should be paid to the numerical nonlinear criterion, as it 

reflects the overall performance of each scheme.  

Table 6-3. Performance of the various discretization schemes in the unipolar injection test 

Schemes Linear criterion TC Nonlinear criterion Tf 

FUD 162.2   [117, 118] 

CD 164.5*    [108, 109] * 

MINMOD 164.5  [112, 113] 

SUPERBEE 165.9  [108, 109] 

MUSCL 165.2  [110, 111] 

SMART 164.6  [109, 110] 

        *: the values were obtained with the data before the divergence;   

Firstly, we observed that there is serious problem with solution obtained with the CD scheme. On 

the one hand, there are clear non-physical oscillations in the evolution curve of Vmax and 

significant undershoot with charge density distribution, see Figure 5-38. The amplitude of the 

oscillation increases along the T value. More seriously, the computation with CD scheme would 

suddenly stop after long a enough time.  
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Figure 6-8 Time evolution of the maximum vertical velocity and charge density distribution at time = 100 

unit for a C = 10 M = 10 T = 200 system; CD scheme is used to solve charge density equation  

From Table 6-3, we firstly noticed that all schemes can successfully lead to an accurate linear 

stability criterion. However, the numerical prediction of the nonlinear criterion promotes more 

advanced challenges. As explained before, the subcritical nonlinear phenomenon is closely linked 

to the area and shape of the free-charge region.  

 

Figure 6-9. Contour lines ( 5.0q ) with different convection schemes; Parameters: T = 190, C = 10, M = 

10; 51×101 grid;  

In Figure 6-9, we plotted the contour lines ( 5.0q , representing the free-charge region) of the 

solutions with different convection schemes. It is noticed that all the schemes can lead to 

oscillation-free solutions. However, the solution from the FUD scheme is extremely inaccurate. 

The other monotonic scheme, produce more accurate results. By enlarging the figure, we can 

distinguish the difference: MINMOD is more diffusive than the other three. The same conclusion 

can be reached by checking the minimum value of the solutions: FUD (0.1186), MINMOD 

(0.0302), SUPERBEE (0.0143) and SMART (0.0142). Though SUPERBEE scheme can lead to the 

largest area of free-charge region, its prediction of nonlinear critical value is not the best one. The 

reason may be that the ‘over-compressive’ behavior in smooth region of the scheme [285] and the 

shape of the void region is not well-preserved.  Only with MUSCL and SMART schemes, both 
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linear and nonlinear criteria can be well predicted. Thus, the two schemes are recommended for 

unipolar injection simulation. 

6.4 On Non-uniform meshes 

 

From the above numerical solutions of strong and weak injection, we noticed that the charge 

density distributions are quite different. Taking the hydrostatic solution as an example, the charge 

density distribution and electric field show a very slow variation with the vertical direction in the 

weak injection case, see Figure 5-16. In contrast, both charge density and electric field show 

drastic variations near the injecting electrode in strong injection cases. Since the numerical error 

(here it means the truncation error) depends on the derivative of the variable and the grid spacing, 

it is a natural thought to apply the non-uniform grid for the calculation of strong injection case. The 

same technique has been strongly recommended in [34] when dealing with PIC method.  

Generally, there are two types of non-uniform grids. For the first type the grid size increases or 

decreases with a constant expansion ratio. In the other type one cuts the whole domain into several 

sub-domains and the nodes are evenly distributed in each sub-domain. As mentioned in chapter 3, 

our TVD algorithm can be directly applied to non-uniform grid system without any modification. 

Although the derivation of TVD schemes is based on uniform grid, the final expression doesn’t 

show its clear dependence on the uniformity of the grid system.  

   
   

Figure 6-10 (left) a specially designed 51 × 101 non-uniform grid (middle) time evolution of Vmax (right) 

charge density distribution at steady state for a C = 10 M = 10 T = 240 system;  

To apply our TVD algorithm to the first type of non-uniform grid, we need to design some specific 

formula for boundary condition treatment. With the second type, we need to be sure that the 

expansion ratio with the grid sizes between sub-domains is less than 0.5, otherwise there is no 

guarantee of the boundedness property [231]. Here we give a simple example to prove the 

effectiveness of our numerical solver with non-uniform grids. The physical domain is [0, 0.614] × 

[0, 1] and the non-uniform grid system contains 100 cells in y-direction and 50 uniform 

distribution cells in x-direction. The 100 cells in vertical direction are separated into two parts:  

the size of the first 20 (near the injection electrode) increases with a constant expansion factor, 1.05, 

and the spacing is uniform with the left 80 cells. The grid system, the charge density distribution at 

final steady state and the time evolution curve of Vmax are plotted in Figure 6-10. By checking the 
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final Vmax value, the solution of this dedicated grid is roughly equivalent to a 51 × 151 uniform 

grid system.  

6.5 On solving the electric potential equation  

 

There have been various discussions about solving a single Poisson equation. Here, we place some 

emphasis on two skills of solving Poisson equation in the whole unipolar injection system.  

On starting fields 

For solving a single Poisson equation with iterative method, it is convenient to start from a 

zero-field guess of the solution variable. However, for our time marching numerical method for 

unipolar injection, this choice is not economical from the viewpoint of CPU time saving. Instead, 

we strongly recommend setting the solution of previous time step as the starting field of present 

time step. Though this approach requires some more storage for two time levels of electric 

potential, the computational cost reduces markedly.  

For weak injection case, we can even always start from the hydrostatic solution. It is well known 

that the final solution of a Poisson equation depends on both source term and boundary conditions. 

In unipolar injection system, the relatively small value and variation of source term limits their 

effects on the final solution.  

On solving times 

The second skill follows the idea that there is no necessity to solve Poisson equation in each time 

step since the electric field is not very sensitive to the charge variation. We introduce a control 

parameter to define the frequency of solving Poisson equation in the whole system. Two simple 

cases were tested with strong injection cases (C = 10, M = 10). One case (T = 240) stands for 

steady solution, while the other one represents (T =600) the unsteady case. We solve the Poisson 

equation every ζ (= 2, 4, 6, 8) time step and compare the solutions and CPU costs. There is a clear 

reduction of CPU time along the increase of ζ. At the same time, the numerical solutions of both 

steady and unsteady cases need exactly the same time.  

However, it is not easy to define the limit value of this parameter. For chaotic regime, there is 

some risk to apply this technique as there could be dramatic changes of charge density in short 

time period.  

6.6 Three-dimensional electro-convection: a simple example  
 

The previous studies of electro-convection between two parallel plates are limited to two 

dimensions. Two very recent publications [155][289] tried to investigate the problem in 

three-dimensions. In [155], the PIC method is extended to 3D and is used to compute the charge 

density equation. A cylinder configuration was used and only weak injection case was considered. 

The velocity field is not obtained by solving the Navier-Stokes equations but imposing a 

self-similar field. The linear stability criterion which is the same with 2D solutions has been 
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successfully reproduced. An obvious drawback of this method is its computational cost. In [289], 

the authors examined the 3D flow structure qualitatively and quantitatively in a box configuration. 

The commercial software FLUENT is used as the simulation tool. A key problem considered in 

[289] is the EHD turbulence. It is interesting to note that the numerical method used in [289] is 

very novel though not many details were revealed. In this paper, the whole algorithm is based on 

finite volume method and a special boundary condition implementation incorporating with classic 

QUICK scheme is used to solve the charge density equation. The Navier-Stokes equations were 

solved directly to get the velocity and pressure fields. The strong injection case was run. It is found 

that the flow structure of 3D electro-convections is more chaotic than 2D case. In addition, a new 

distribution of length scales which has not been observed in 2D has been successfully shown in 3D 

results.  

A simple example is provided here to show our numerical algorithm can be easily extended to 

three-dimensional problems. The same box configuration as [289] is considered, to see Figure 2-5 

in Chapter 2. Instead of chaotic regime, we are concerned with the steady regime which means the 

driving parameter T is close to the linear stability criterion TC. It has been shown through 

experiments that the flow structure is of hexagonal cells which are similar to the well-known 

thermal cells in RB convections.  

With finite volume discretization and the dimension splitting idea, the extension of our numerical 

algorithm to 3D is straightforward. Comparing with the PIC method, the superiority of our TVD 

algorithm in the computational cost in 3D is even more obvious. In the following, the geometry of 

the configuration and the complete numerical method are described. Then, two sets of numerical 

solutions are presented to show the flow structure.  

Two parallel square electrodes are separated by a distance d. The electrode is normal to the y-axis 

and the length of each side is L. The charge carriers are injected from the bottom side and the 

injection strength is set as strong. The aspect ratio L/d is used to control the physical domain. For 

the bottom injection electrode, the value of the charge density and electric potential is maintained 

at a fixed value. The up electrode is grounded which means the electric potential always keeps zero. 

We assume the zero-gradient condition for the charge density at this electrode. For all the vertical 

sides, we apply the symmetric boundary conditions for all variables including charge density, 

electric potential and velocity fields.  

Two aspect ratio, 1.2 and 4 are selected. The large one is to ensure that the physical domain is 

larger than the theoretical wavelength. The uniform 50×100×50 (G1) and 200×100×200 (G2) grid 

systems are used to discretize the small and big physical domains.  

Our numerical solver was firstly verified by computing the hydrostatic solution with G1 grid. 

Taking the charge density and electric potential indexes, the maximum difference between the 

numerical solutions and the analytical solutions are less than 5%.  

The second test is to determine the linear stability criterion. The method to compute TC is the same 

with 2D cases. With the G1 grid, three T values (180, 190 and 200) are used to extract the 

exponential ratios from the Vmax-time figure, see Figure 6-11(a). Similar to what we observed in 

2D case, the velocity keeps zero at the beginning until a time where the growth ratio becomes 
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exponential, then a steady convective state is reached. The obtained TC value is 165.6 which is very 

close to the theoretical one, i.e. 164.1. The flow structure with T=200 is presented in Figure 6-12. 

The charge distribution for y=0.5 horizontal planes is plotted in Figure 6-12(a). It is observed that 

the charge is confined in a narrow region; see Figure 6-12(b). The whole region was separated into 

two regions: charge-covered and charge-free region. The convective cells are of three-dimensional 

structure rather than quasi-two-dimensional straight rolls. In Figure 6-12(c) we plotted the velocity 

field. The direction of the velocity vector follows the distribution of charge density. The 

up-direction vectors appear at the charge-covered region.  

However, due to the small size of the physical domain, we failed to observe the complete structure 

of a convective cell with L/d=1.2 case. In the second calculation, we extend the aspect ratio L/d to 

4.  

Figure 6-11(b) shows the evolution in time of the amplitude of the convective cells in the lager 

domain computation. Compared with Figure6-11(a), there is a non-smooth stage before reaching 

the final steady state. This adjustment stage may be due to the determination of a critical 

wavelength.  

In Figure 6-13(a), we plotted the two-dimensional section of normalized space charge at y=0.5. 

This figure can be compared with the results provided in [289], see Figure 6-14. There is a good 

qualitative agreement. The void region of charge is further highlighted in the iso-surface figure of 

charge density in Figure 6-13(b). The velocity vectors are shown in Figure 6-13(c). The left part of 

Figure 6-13(c) is the enlarged drawing which corresponds to the central region of Figure 6-13(c) 

right part. The up-direction and down-direction vectors follow the same rules shown through the 

small domain case. It is easy to see the three-dimensional irregularly shaped rolls.  

 

(a) L/d = 1.2, T=200, M=10, C=10            (b) L/d = 4, T=240, M=10, C=10 

Figure 6-11. The time history in dimensionless unit of the maximal vertical velocity in 3D cases 
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(a) charge density distribution at y=0.5 plane (b) iso-surface of charge density q=1.0 

 
(c) velocity vector of convection cells in the inner domain 

 

Figure 6-12. Numerical solution with L/d = 1.2, T=200, M=10, C=10  

 

(a) charge density distribution at y=0.5 plane (b) iso-surface of charge density q=1.0 
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(c) velocity vector of convection cells in the inner domain 

 

Figure 6-13. Numerical solution with L/d = 4, T=240, M=10, C=10 

 

 

Figure 6-14. Normalized space charge at y=0.5d; Parameters: L/d = 6, C=10 and T=500 [289, Figure 5(a)]   

However, we failed to observe the regular hexagonal structure. In the center region, we find an 

irregular hexagonal cell.  

It has been stated in [287] that three-dimensional results own a larger range of roll structure size 

which is opposed to the two-dimensional simulations. The reason is three-dimensional mixing 

encourages the formation of smaller-scale eddies. In our results, rolls of different sizes are also 

observed.  

In order to successfully obtain the regular hexagonal structure, we may need to further enlarge the 

physical domain to further reducing constraints imposed by the vertical boundaries. Large domain 

means more cells and computational cost. Further work is needed to obtain more accurate results. 

The code must be parallelized to be able to use meshes of small grid size in the simulations. For 

unsteady flow regime because of higher T parameter, time step must also be taken into account.  
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6.8 Conclusions 
 

In this chapter, we focused on the numerical aspects of our numerical solvers for EHD and ETHD 

problems. The unipolar injection between two parallel electrodes has been selected as the standard 

test case.  

For the charge density equation, we firstly discussed the boundary condition treatment method at 

the injection electrode. With the ghost-cell method, the importance of appropriate extrapolation is 

explained and demonstrated. For the time marching method, the implicit three time level (I3L) and 

explicit 2
nd

 order Runge-Kutta TVD (RK2TVD) are recommended considering the computational 

cost and accuracy. For the comparison of various TVD limiter functions, we use the linear and 

nonlinear criteria as indicators. It is interesting to notice that all convective schemes can lead to 

good estimations of the linear criterion. However, there is an obvious difference with the prediction 

results of the nonlinear criterion. The nonlinear stability criterion which reflects the overall 

performance of each scheme should be used for accuracy comparison. The MUSCL and SMART 

schemes are recommended for unipolar injection simulation.  

Our numerical algorithm can be easily extended to the three-dimensional cases. With two simple 

examples, the three-dimensional structures of the convection cells are shown. Due to the effects of 

the physical domain size, we observed irregular cells rather than the regular hexagonal cell.  
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Chapter 7 Numerical simulation of electroconvection in insulating 

liquids induced by unipolar injection: flow structure  
 

In chapter 5, we discussed the flow structure of electro-convection in the finite amplitude regime 

which means T parameter close to the linear and nonlinear stability criteria. In this chapter, we 

shall maintain our focus on the flow structure of electro-convection between two parallel plates. 

Emphases will be put on the stabilizing role of the diffusion mechanism for charge transport, the 

successive instabilities and the way to the chaotic state and flow structure in a 2D box.  

7.1 Role of charge diffusion for strong injection  

 

Diffusion is the third transport mechanisms for charge density besides drift and convection. 

Considering the small coefficient of charge diffusion, it is a common practice to neglect this 

transport mechanism. The complete conservation equation of charge density can be expressed as,  

 

   qUEq
t

q 2






          (2-17) 

where   is the nondimensional diffusion coefficient, with a typical value between 10
-3

 and 10
-4

.  

From the theory of partial differential equations, neglecting the diffusion term change Eqn.(2-17) 

from a second-order elliptic type to a first-order hyperbolic one. To close the system, one more 

boundary condition is required for the elliptic equation than for the hyperbolic one. For charge 

density equation, this extra condition specifies how the charge is removed from collecting 

electrode, i.e., ejection law. Here we use the same zero-slope method,  

0




y

q
  at dy    

In the numerical simulation, there is some numerical diffusion due to physical and temporal 

discretization schemes. Even without the physical diffusion term, we actually compute a 

hyperbolic equation with numerical diffusion. The only difference is the amplitude of the diffusion 

coefficient.  

Let us recall the charge density distribution we obtained in the previous content, see Figure 5-12(d), 

5-17(d). There is always a region containing a small amount or no charge. In addition, the 

transition between the two regions is not smooth but with sharp gradients. The formation of the 

charge-free region is due to the drift mechanism. As there is no physical diffusion term, the few 

charge carriers in the void region can only escape from the upper electrode. When taking into 

account the diffusion mechanism, the boundary between the two regions tend to be smoothed out 

along with the increase of  . Then it is natural to reach a qualitative conclusion: if the physical 
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diffusion is neglected completely, all theoretical estimations of the finite-amplitude 

electro-convection, the nonlinear criterion and hysteresis loop are greatly overestimated.  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 7-1.  Charge density and electric field in the steady hydrostatic state for weak (C=0.1, (a) and (b)) 

and strong (C = 10.0, (c) and (d)) injection with various diffusion coefficients  

In [88][152], Pérez and Castellanos discussed the role of the charge diffusion in finite-amplitude 

electroconvection of weak injection both analytically and numerically. Some conclusions for the 

weak injection cases have been made,  

1. Diffusion stabilizes the system, increasing substantially the non-linear criterion and reducing 

the subsequent amplitude of the electro-convection. However, the linear stability criterion is 

not affected by the appearance of diffusion under weak injection condition.  

2. The charge density distribution depends on the balance between Coulomb repulsion and 

diffusion. A new parameter 2

1

/C

 

can be defined to measure the relative importance of 

both mechanisms. For small value of 2

1

/C , the diffusion becomes dominant and cannot be 

neglected.  
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In the present study, we try to complete the analysis for strong injection case. The first motivation 

is to verify whether the above conclusions hold for the strong injection case or not. The main part 

of the numerical algorithm is the same with our solver for the case neglecting the diffusion term. 

We apply the 2
nd

 order CD scheme to discretize the diffusion term. To limit the numerical 

diffusion, all results presented in this section are based on a 101×201 uniform grid.  

First, we compared the hydrostatic solution of weak and strong injection cases with various 

diffusion coefficients. The numerical results are summarized in Figure 7-1, showing the charge 

density and electric field distributions. For the weak injection, a very small change due to the 

introduction of physical diffusion is observed; see Figure 7-1 (a) and (b). The distinguishable 

difference can only be seen in the charge density figure with 1.0 . In contrast, the change with 

strong injection is obvious, even with 01.0 ; see Figure 7-1 (c) and (d). From this comparison, 

we may expect that the diffusion mechanism may play a more prominent role in strong than weak 

injection. In the next step, the steady solutions with convection are compared.  

   
α = 0.1 α = 0.01 α = 0.001 

   
α = 0.0005 α = 0.0001 α = 0 

Figure 7-2. Time evolution of the maximum vertical velocity component with different   

Through gradual increase of the diffusion coefficient, we try to figure out the general rules how the 

system behaves with diffusion coefficient.  Five values are selected and the typical value range 

[10
-4

, 10
-3

] is included.  

In Figure 7-2, we have plotted the evolution of the amplitude of the velocity field versus the time 

for different diffusion coefficients. It is clear that all systems follow the same routine to a final 

steady state, i.e., an exponential evolution after the hydrostatic period. The only difference is the 

value for the velocity amplitude of final steady state. In Figure 7-3, we listed the maximum vertical 

velocity component at steady state with different diffusion coefficients. It is found that the 

amplitude decreases with the increase of the diffusion coefficient, which is consistent with the 
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conclusion obtained with weak injection case. In addition, when 
310 , the decline becomes 

fairly small. 

 
Figure 7-3. The maximum vertical velocity component at steady state with different diffusion coefficients 

  for a strong injection; Parameters: T = 240, C = 10, M = 10  

 

   
α = 0.1  α = 0.05 α = 0.01 

   
α = 0.001 α = 0.0001 α = 0 

 
Figure 7-4. Charge density distribution with different non-dimensional parameter α;    

 Parameters: T = 240, C = 10, M = 10;  
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In Figure 7-4, we plotted the charge density distribution of various systems at final steady state. 

Here, we focus on the transition between the void region free of charge and the charge-covered 

region. Some characteristics and rules can be summarized: 

1. Along with the increase of α, the area of charge free region decreases. For 1.0  , the 

minimum value of the charge density is 1.176, and we can regard that the charge-free 

region does not exist in this case.  

2. By checking the area between iso-lines with value of 0.5 and 1.0, we find that the transition 

also becomes smoother with the increase of  .  

3. The solutions for α = 0, 10
-3

 and 10
-4

 follow the above laws. However, solutions are almost 

the same with slight difference.  

As we have explained that the area and shape of the free-charge region is closely linked with 

nonlinear stability criterion, we show the non-linear criteria and their associated hysteresis loop 

obtained for different α in Figure 7-5. 

We noticed that the linear stability value depends on α, which is opposite to the conclusion for 

weak injection case. Then we can reach a conclusion that the critical value TC depends on the 

strength of injection C and also on the value of diffusion coefficient for the case of strong injection 

(see Table 7-1), which can be understood with the high charge gradients present in the stationary 

solution. This conclusion may help to partly explain the difference between the distinction between 

the analytical and experimental linear stability values in SCLC regime.  

We also see that diffusion stabilizes the system, decreasing the linear stability criterion, increasing 

the nonlinear stability criterion and reducing the subsequent amplitude of electro-convection. 

Comparing with weak injection, the effect of diffusion is more important in strong injection case if 

we consider the decisive parameter, 2

1

/C .  

 

 
(a) 1.0  

 
(b) 01.0  
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(c) 001.0  

 
(d) 0005.0  

 
(e) 0001.0  

 

Figure 7-5. Hysteresis loop for a strong injection system, C=10, M=10. Noted that α=0.1, the hysteresis 

phenomenon disappeared;  

 

Table 7-1. Linear and nonlinear criterion for strong injection (C=10) system with various diffusion 

coefficients 

 

α 0 0.01 0.001 0.0005 0.0001 

TC 164.1* 135.8 155.7 159.8 163.8 

Tf 111.7 [122, 123] [117, 118] [112, 113] [111, 112] 

                   * is the analytical value; -- means no existence;  

 

7.2 Bifurcation studies for strong injection  

 

The nature of the transition to turbulence is a basic question in fluid mechanics. For 

two-dimensional problems, it is more correct to use the concept ‘chaotic’ than ‘turbulent’ which is 

virtually linked with three-dimensional characteristics. Similar to Rayleigh-Bénard flow, the 

unipolar injection system tends to display an increasing degree of complexity as T is increased no 

matter what kind of boundary condition is applied to vertical sidewalls. In this section, we only 

consider the case of strong unipolar injection between two infinite horizontal plates, thus 

symmetric boundary condition will be used.  
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For simplicity, we are trying to answer the question: what will happen to the system if we increase 

T value? This simple question is essentially equivalent to define the transition route towards chaos 

under supercritical conditions in unipolar injection system. Our objective is to numerically exhibit 

the cellular development and the rich bifurcation route to chaos with the strong unipolar injection 

system. The same strong injection system (C=10, M=10) will be used as the representative 

example.  

In [67], Vazquez et al., investigated this problem for the first time with their FE-PIC method. They 

found that an oscillatory two-roll structure was developed at T=400, T=500. In their numerical 

results, the solution of T=300 is still a well-developed one-cell structure. In a very recent 

publication [56], Traoré and Pérez firstly observed the same two-roll but steady structure at T = 

300. Some other important observations are summarized below,  

1. They noticed that the flow started to oscillate periodically in time and space at T=260 for the 

first time.  

2. Steady two-cell structure are kept till T=500.  

3. Above T=500, the two convective cells again start to oscillate and the regime becomes 

unsteady but still periodic.  

4. Above T=1500, the unsteadiness of the flow is more pronounced and a new regime 

characterized by the appearance of plumes arises.  

5. Further increasing T, the flow becomes fully unsteady and electro convective plumes are 

generated more frequently.  

It should be noted that if the flow regime is unsteady, the numerical results normally are very 

sensitive to the spatial and temporal discretization steps. As the grid and time step information in 

[56][67] are not clear, it is believed that the numerical diffusion is the reason for the difference 

between these two references. In the present study, we use a very small grid size and time step to 

reduce the effects of numerical diffusion. All the numerical calculations are based on a 101 × 201 

uniform grid and a 10
-4

 time step. The emphasis of this section is to complete the study of [56] with 

the quantitative analysis of the amplitude spectra information.   

7.2.1 Flow structure for moderate values of T parameter 

 

With the gradual increase of T till 260, the flow keeps the same structure (steady one-cell) as at 

T=200 (see Figure 7-6). At T=260, we noticed that the flow started to oscillate periodically with a 

single basic frequency in time and space. The oscillation can be highlighted though the periodical 

variation of the charge density distribution, see Figure 7-7.  
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Figure 7-6. Evolution of the maximum vertical velocity for strong injection with C = 10 M = 10 with time 

(top left) T = 260, (top right) T = 270, (down left) T = 280 and (down right) T =290  

 

Figure 7-7.  Charge density distribution of a periodic cycle of a strong unipolar injection system (C=10, 

M=10) with T=260. To highlight the difference, only contour lines between [0.5, 1.5] were presented.  
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Considering the physical domain is only half of the critical wavelength, it is natural to ask if this 

bifurcation behavior corresponds to the classical symmetry breaking. A computation with the same 

system and T (260) value on a [0, 1.228] × [0, 1] domain was done to verify this viewpoint. By 

carefully checking the charge density distribution, the velocity and the potential field, we found 

that these values at any two points which are symmetric with the line x = 0.614 are always the 

same. The property can also be seen in the evolution of the angular momentum, see Figure 7-9. 

The constant zero value of AC in Figure 7-9 and the equality between the absolute values of ALa 

and AR at any time moment mean that the velocity field is highly symmetric with the central line, 

x = 0.614. Thus, this bifurcation does not represent a symmetry breaking behavior.  

 

  

(a) (b) 

Figure 7-8. Power spectral for C=10, M=10 (a) T=260 and (b) T=270  

At T=270, the flow is still in regularly periodical regime, but with higher basic frequency and 

amplitude of oscillation, see Figure 7-6 and Figure 7-8. The simultaneous varieties of basic 

frequency and amplitude bring some difficulties to determine the onset of bifurcation with T 

number, if we assume that the onset of this bifurcation corresponds to a periodic flow with 

infinitely small amplitude and infinitely high frequency.    

At T=280, the periodicity of the flow has been lost. Instead, a quasi-periodic bifurcation solution 

with two irrelevant families of frequencies is developed.  

At T=290, we surprisingly find that the asymmetric flow returns to a symmetric state. However, the 

flow is no longer with one cell structure in the final state. The flow starts from the hydrostatic 

solution. After an exponential increase in the maximum of velocity amplitude, a steady one-cell 

state is reached, which is the same with a smaller value like T=240. Then this state slowly starts to 

oscillate before suddenly to switch to a new steady state which corresponds to a two cell structure. 

It is noticed that the two cells are highly symmetrical. The maximum difference between the 

absolute values of AL, AR at final steady state (see Figure 7-9b) is no more than 0.5 %. The 

number 290 is the smallest T value which shows the two- cell strucutre among all published 

literature. This is again due to the high accuracy of our numerical solver and the small grid size and 

time step we used. 
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To summarize, the flow structure of strong unipolar injection presents significant changes in a 

narrow region. The flow passes through four different regimes: steady one cell, periodic one cell, 

asperodic one cell and steady two cells.  

  

(a) (b) 

Figure 7-9.  Evolution of the angular momentum for C=10 M=10: (a) T=260, [0, 1.228] × [0, 1] domain; (b) 

T=300, [0, 0.614] × [0, 1] domain. AC, AL and AR stands for angular momentum with center point of the 

whole domain, the left half and the right half domain  

    
(a) (b) (c) (d) 

 

Figure 7-10. Contour map of the charge density at different time steps to highlight the evolution routine 

from one cell to two cells (a) t = 1.0 (b) t = 45 (c) t = 70 (d) t = 100. Parameters: C=10, M=10, T=300 

 

7.2.2 Flow structure for high values of T parameter and path for chaotic regime  

 

Above T=485 the two convective cells start again to oscillate slowly and the solutions exhibit the 

periodic nature plotted in Figure 7-11. In the viewpoint of stability theory, the nonlinear system has 

evolved from the fixed critical point to the periodic attractor.  
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In Figure 7-11, we also plotted the power spectrum for the solution computed at T=485 and T=540. 

It was observed that the characteristics of the frequencies were the same. There is a basic frequency 

and several ultra-harmonic frequencies in each solution. It is interesting to notice that these 

frequencies strictly obey the following rules: 

12 2 ff   1213 3 ffff   1314 4 ffff   1415 5 ffff   

 

 

Figure7-11. Illustration of the evolution of the maximum velocity and corresponding power spectrum of 

T=485 (left) and T=540 (right); Parameters: C=10 M=10; 101 × 201 grid and 10
-4

 time step;  

It is noted that the above relationship can be summarized as  

111 mffff mm    

which is well-known in nonlinear system theory [286].  
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Figure 7-12. Illustration of the evolution of the maximum velocity and corresponding power spectrum of 

T=550 (left) and T=600 (right); Parameters: C=10 M=10; 101 × 201 grid and 10
-4

 time step;  

The differences between the two sets of solutions are the time-average velocity, the basic 

frequency )( 1f and that the amplitude of the oscillations increases with the T parameter. Till now, 

we have not found a general law between the basic frequency and T value like linear or quadratic 

in the range [485, 540]. Thus, it is difficult to determine the onset of this bifurcation behavior.   

When the electrical stability parameter is increased to T=550, the periodic nonlinear system is split 

into the one having two irrelevant familiars of frequencies, see 1f and )2(

1f in Figure 7-12. For 

1f , it seems to follow the same increasing law as the previously predicted basic frequency 

between 485 and 540. The other newly born harmonic frequency 016.2)2(

1 f  is very close 

to 2/1f . We think this is a sub-harmonic frequency related with the fundamental one. 

Sub-harmonic frequency denotes the frequency that is below the fundamental frequency of an 

oscillator and can be expressed as mf /1  where ,8,4,2,1m [286].  
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Figure 7-13. Illustration of the evolution of the maximum velocity and corresponding power spectrum of 

T=1000 (left) and T=2800 (right); Parameters: C=10 M=10; 101 × 201 grid and 10
-4

 time step; 

By considering both the appearance of the new peak in the spectrum and the fact that the limit 

cycle is made of two loops, the system reaches a period-doubling bifurcation.   

In the next set of plots with T = 600 and T = 1000 (Figure 7-12 (right) and Figure 7-13(left)), this 

tendency is even clearer with the appearance of other peaks. The attractor becomes smoother and 

smoother, although keeping a pseudo-periodic structure.  

Finally, the flow will enter into a chaotic regime from the quasi-periodic regime. It is not easy to 

strictly define the starting value for the chaotic state as the appearance of new peaks (sub-harmonic 

frequencies) and other related ultra-harmonic frequencies is continuous. Taking solution at T=2800 

for example, it is found that the power spectrum does not show any sharp peak, but a smooth bump 

around 0.41 f Hz, see Figure 7-13 (right). By converting the power spectrum figure into the 

semi-log style, it is easy find that the power spectra exhibits a well-defined exponential decay 

)/exp( Cff  in the range between 1f  and the further limit where the power reaches the noise 

level introduced by the numerical round-off error, see Figure 7-14. The broadband spectra 

qualitatively agrees with the physical experimental results and can also be viewed as a 

characteristic when the system is in the chaotic regime.  
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Figure 7-14. Power spectra of velocity fluctuation of solution with a strong injection system (T=2800,  

C=10, M=10) in semi-log style, the same data with Figure 5-52(right).  

Though the physical experiments with strong injection has been done in a wide range of voltage, 

 CU200,0 , it does not make sense to compare our frequency information obtained with tTT  , 

where tT
 
denotes the critical transition value between the quasi-periodic and the chaotic regimes. 

Experimentally, it has been found that the liquid passed directly from rest to time-dependent 

(periodic) motion if U overtakes the critical voltage UC. Then a second frequency and a bi-periodic 

motion state were found at U slightly above UC. It should be emphasized that the physical reasons 

of this periodic and bi-periodic motion have not been well explained yet. The periodic flow after 

T=485 (C=10, M=10) and the bi-periodic flow after T=550 (C=10, M=10) we found numerically 

represent the essential property of this nonlinear system. However, it is interesting to find that the 

obtained numerical solutions in 2D chaotic regime and the physical solutions in 3D turbulent 

regime share some common features. In [56], the author noticed that the variation of the frequency 

of the main peak 0f
 
of the velocity fluctuation with solution at T higher than 3000 is linear with 

respect to T value, which well agrees with the law extracted from physical experimental results.  

Through careful examination of the charge density distribution at the starting period of the solution 

at T=1500, it is interesting to find some electro-plumes in the domain. These plumes are different 

from the ones formed with blade-plate or line-source injection structure. Under these 

configurations, the motion starts at the first beginning after the charge is injected into the system 

because of the non-symmetry of the physical system. A feature common to these circumstances is 

the existence of local regions where the charge density distribution is higher than that of the 

surroundings. The typical problem of EHD plume between a blade injector or a line source and a 

flat plate has been thoroughly investigated experimentally [150], theoretically [38][39] and 

numerically [139][287]. Our numerical solver can be easily applied to problems with a point-plate 

configuration, a simple example is provided in Figure 7-15. In this simulation, the laminar and 

stationary motion between a single point injection source and a flat plate are presented. One can 

note that the boundary condition for charge density variable is no longer homogeneous but with a 

single non-zero value at the central point in the bottom plate.  
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(a) (b) (c) 

 

Figure 7-15. EHD plume between a blade-plate configuration (a) the time history in dimensionless unit of 

the maximal vertical velocity; (b) charge density distribution (c) streamline function at final steady state;   

Parameters: C = 10, M=10, T = 2000, α = 5×10
-4

; [0, 0.614] × [0, 1] with 101×201uniform grid system; wall 

boundary condition for vertical sides [274];  

In the present study, we successfully exhibit the electro-plumes induced by homogeneous 

boundary condition for charge density. The appearance of the electro-plumes comes as no surprise 

as the thermal plumes under homogeneous thermal boundary condition are well-known phenomena. 

A schematic flow example for thermal plume and electro plume are presented in Figure 7-16. It is 

easy to find the multi thermal plumes are formed at both heating and cooling walls, while 

electro-plume can only be formed at the injecting plate. This difference was qualitatively analyzed 

by P. Atten et al. in [276], and we highlight it with the numerical simulation. It should be noted 

that the difference of the number of plumes in the domain in not an essential characteristic. In fact, 

if we further increase T number which corresponds to higher voltage difference, we find more 

electro-plumes. 

  

(a) (b) 

 

Figure 7-16. (a) Early stage of Rayleigh-Bénard convection (Pr = 15, A = 1, Ra = 10
8
) with adiabatic lateral 

walls [288]; (b) Early stage of electro-convection (C = 10, M = 10, T=10
4
) with lateral walls;   
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In the next, we make a simple description of the electro-plumes with the solution at T=4000. The 

results presented in Figure 7-17 were computed with zero-initial field and symmetric vertical 

boundary conditions for velocity. An important characteristic is that the hydrostatic solution state 

has never been reached, which can be verified from the time history curve. It is noticed that the 

motion quickly started after the injection. At time = 0.35, the contact surface between the charge 

covering and charge free regions is no longer a horizontal line. Then from time = 0.35 to time = 

0.75, some plumes were formed and developed at this contact surface. Later, the plumes were 

formed and detached from the injecting plate intermittently. The appearance of these plumes 

should be due to the destabilization of the laminar sub-layer near the surface [56].  

Similar to thermal plumes in Rayleigh-Bénard convection, the electro-plumes regimes may play a 

crucial role in real flow structures. On the one hand, the critical T value for the appearance of the 

electro-plumes is about 12TC , which is easily satisfied under experimental condition. On the other 

hand, the electro-plumes are responsible for much of the charge transport. Thus, some more studies 

should be done to classify the dynamics of electro-plumes and related regimes of motion.  

Till now, for a given strong injection system (C=10, M=10), we successfully defined the way to 

chaotic state with our numerical tool.  

 

 

    
 Time = 0.0  Time = 0.35 Time = 0.5 

    
Time = 0.65 Time = 0.75 Time = 1.07 Time = 1.17 

 

Figure 7-17. Evolution of the electro-plumes for C = 10, M = 10, T = 4000; 101 × 201 uniform grid and the 

time step is 10
-5

; the first curve is time history of Vmax;  
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7.2.3 Effects of charge diffusion and M parameter on flow structure 

 

Though the linear and nonlinear stability criteria are not seriously affected by small diffusion 

coefficients ( ]10,10[ 34  ) and M value in strong injection system, the bifurcation behaviors and 

their corresponding critical values at higher T ( 240T ) strongly depend on α and M. In addition, 

the initial field may also dramatically change the unsteady solutions. Three examples are provided 

here as a prelude for future research to systematically illustrate the detailed effects.  

In the first case, we compute a strong injection case with small diffusion coefficient for charge 

transport. Solutions are presented in Figure 7-18.  

We noticed that the flow is still in steady one-cell structure flow regime. Generally, the charge 

diffusion tends to stabilize the flow and prevent the appearance of further bifurcation. This is 

consistent with the fact that the same bifurcation phenomena would happen with a higher T when 

numerical diffusion increases with the grid size or time step. In the second test, a series of 

calculations were performed with M = 50. Some main results are summarized in Figure 7-19.   

Through the comprehensive analysis of solutions of electric and velocity fields, some general 

features can be summarized:  

1. Overall, the system with M=50 follows a similar way to the chaotic state as for M=10: no 

motion  steady one cell  steady two cells periodic  pseudo-periodic  chaotic.  

2. From the stage of steady one cell to steady two cells, the transition of M = 50 system is 

different from what we observed with M=10. We did not find the periodic or 

pseudo-periodic oscillation.  

3. The critical values for the transition from one-cell to two-cell structures and from steady 

two-cell structures to a periodic state are separately in the ranges [330,340] and [600, 650], 

which is for both higher than the ones we found with M=10 case.  

4. However, once the flow becomes unsteady with oscillations, the amplitude of the 

oscillations are much higher than in M=10 case. The increase of the oscillation amplitude 

can be explained with the physical meaning of the M parameter.   

   
(a) (b) (c) 

Figure 7-18. Numerical results with a strong injection system; (a) time evolution of the velocity amplitude; 

(b) charge density distribution and (c) stream function of the steady state; Parameters: T=500, C=10.0,  

M=10.0, α = 5×10
-3

;  
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(a) T = 240 (b) T = 330 (c) T = 340 

   
(d) T= 650 (e) T = 1600 (f) T = 2000 

 

Figure 7-19. Evolution of the maximum vertical velocity with time for a strong injection system (C=10 and 

M=50) with various injection strength; starting from hydrostatic solutions;  

 

Figure 7-20. Illustration of the evolution of the maximum velocity and corresponding power spectrum of T 

= 700 (left) start from hydrostatic solution (right) start from zero-initial field; Parameters: C = 10 M =10; 

101 × 201 grid and 2×10
-4

 time step.  
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From above solutions, we highlight the difference of bifurcation behaviors between the cases 

M=10 and M=50 under strong unipolar injection.  

As explained before, the zero-initial and hydrostatic field represents different physical problems. It 

is well known that the final solution does not depend on initial field for steady case, while chaotic 

solution is very sensitive to changes in the initial conditions. In principle, highly regular 

oscillations are more or less independently on the initial conditions. Thus we present a case in the 

pseudo-periodic stage (C=10, M=10 and T=700). 

From the above two sets of solutions, we firstly noticed that the ways to final state are different 

from each other. For the solution with hydrostatic initial field, there is a one-cell structure before 

time = 20. For the solution with zero-field, a two-cell structure is formed at the first beginning of 

the motion. Secondly, though the average values of Vmax at final pseudo-periodic stages of the two 

cases are more or less the same, there is a discernible difference between the power spectrum 

figures. Generally, the solution with zero-field is more chaotic than the one computed with 

hydrostatic solution, which agrees with our expectation. Starting from the zero-field implies a step 

injection and there exists a local velocity disturbance (see inset figure in Figure 5-12). For small T, 

this disturbance will be damped out completely because of the viscosity of fluid. Then, a 

hydrostatic state is reached and the fluid continues to evolve to a new motion regime depending on 

T which is introduced by tiny numerical fluctuation. However, for high T, this disturbance will not 

be damped out completely and the fluid motion will occur. As the amplitude of the local velocity 

disturbance is higher than the one of the numerical fluctuation, a direct consequence is that the 

time to reach the final state is shorter for the case starting from zero-field. In addition, the more 

chaotic final state should also be due to this local velocity disturbance.  

7.3 Electro-convection in a two-dimensional finite box: strong injection  

 

In physical experiments, the lateral wall boundary conditions are more realistic. In this section, we 

will have a look at the influence of the lateral walls on the linear and nonlinear stability criterion 

and the overall structure of the flow pattern that develops when the T number exceeds its critical 

value.  

The effective properties of electro-convection in a container of finite size depend on the related 

extensions along the different spatial directions (length, height and width). In the present study, 

only the two-dimensional enclosure will be considered. It is important to define a new 

non-dimensional geometry parameter 

d

L
A   

where L is the length of the horizontal electrode and d  is the thickness between the two parallel 

plates.   
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In the theory of pattern formation in continuous system, it is known that even distant boundaries 

may have surprisingly important effects, which is the consequence of the breaking down of the 

continuous symmetries [288].  

In the following, the vital role played by the presence of limiting lateral walls is discussed for the 

electro-convection due to unipolar strong injection. To run the simulation, the velocities boundary 

conditions for lateral boundaries are assumed to be of no-slip type. In RB problem, the thermal 

convection in an enclosure also depends on the type of thermal boundary conditions along the 

lateral walls, like conducting or adiabatic walls. The same arguments should also make sense for 

electro-convection problem. However, the reality is a little more complicated for injection problem 

as specific boundary conditions should be assigned for both charge density and electric potential. 

In the present study, we consider a case where the boundary conditions for electric potential and 

charge density are the same as shown in Figure 5-4. The parameters of the injection system are set 

as C=10 and M=10 or 50.  

To systematically analyze the problem, two sets of computations were performed.  

1. The ratio number A continuously changed from Amin=0.4 till Amax = 5.0. For this set of 

computations, our main concern was the law of the critical T number (namely TC) varying 

with A value. Qualitatively, it is easy to understand that TC with a small A should be higher 

than with a big A value since the lateral walls tend to stabilize and place extra constraint on 

the flow. In addition, we are also very interested in the flow structure for T slightly above 

TC as it provides important information about the hysteresis phenomenon at the subcritical 

region. To maintain the same computational accuracy, the nodes in horizontal direction 

have been increased with A and the size of the control cell have been kept constant.  

2. The ratio number A is fixed at 0.614. We gradually increase T to show the increasing 

degree of complexity when the extension of the system increases.  

 

7.3.1 Linear and nonlinear stability criterion with A  

 

For unipolar injection in an enclosure, the system possesses the same hydrostatic solution as the 

case with symmetric boundary conditions. In addition, the system also possesses the property of 

neutral-stability. In other words, the hydrostatic solution is unstable and the motion starts 

once CTT  , where CTT   is the critical (neutral) regime corresponding to the onset of 

steady-motion with infinitesimal amplitude perturbations and with a unique wavenumber 

.Ckk 
 
Since this neutral-stability problem has not been tackled with the linear stability analysis 

approach, we try to solve it with our numerical tools.  

For the range ]0.5,4.0[A , we observed that:  

1. If CTT  , the flow always stays at the motionless state, which means the fluid in the layer 

is stable with respect to infinitesimal perturbations.   
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2. When CTT  , the tiny numerical fluctuations would introduce the motion. We especially 

stressed that the motion may not be steady even if T is only slightly above TC, which is 

different from the computation of strong injection with symmetric boundary condition.  

All evolution curves start from the hydrostatic solution (Vmax = 0.0), then pass an exponential 

transition range (some examples can be found in Figure 7-23). We can use this exponentially 

developing process to determine TC following the same procedure applied to the case of symmetric 

boundary condition. Our numerical results of the linear criterion TC versus A are summarized in 

Table 7-2 and Figure 7-21. Several interesting features can be highlighted:  

1. When the aspect ratio A decreases, the critical threshold for the onset of convection 

increases. The critical T number increases by more than two times when A is reduced from 

1 to 0.4.  

2. When A is large enough, A , 1.164CT , where 164.1 is the critical value for the 

corresponding infinite layer. In our simulation, we obtained 164.2 with A = 10.   

Table 7-2. Neutral T number as a function of the enclosure aspect ratio in the case of no-slip sidewalls 

A 0.4 0.5 0.6 0.614 0.7 0.8 0.9 1.0 1.1 1.2 

TC 616.6 457.3 351.9 340.6 287.3 256.0 236.1 231.9 235.2 216.3 

A 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 

TC 203.2 197.7 193.4 191.1 190.5 189.3 184.6 181.2 178.9 176.9 

A 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.07 10 

TC 176.2 176.3 174.3 172.4 171.8 171.0 170.7 170.7 170.6 164.2 

 

 

Figure 7-21. TC versus A for a strong unipolar injection in an enclosure with wall boundary condition for 

lateral sides; Parameters: C=10 and M=50 

The curve is not smooth. For example, there is a hump at TC with A=1.1, which may be related 

with the modes of the most dangerous perturbation that replace each other when aspect ratio A is 

varied. In Figure 7-22, we provide the iso-lines of the charge density at the specific time which 

corresponds to the initial stage of development. For the case A = 1.0 the convection starts from one 

side, which is similar to what we observed with symmetric boundary condition; for the case A = 

1.2, the convection starts from both sides. In addition, the final solutions at steady state of the two 

different aspect ratios are also quite different from each other, to see Figure 7-23. 
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Figure 7-23 shows the computational results of two-dimensional electro-convection in a box with 

various A values and T parameter slightly above the linear critical criterion.  

In summary, the flow structures can be divided into two parts:  

(i) 0.1A  

 

For this part (see Figure 7-23 (1) and (2)), when T is slightly above TC, the flow motion will tend to 

a steady-state. The most important feature is that there is not charge-free region, as the minimum 

charge densities for A=0.4 and 1.0 are 0.567 and 0.693 respectively. In addition, there is no jump 

of velocity value at TC, and the velocity starts from zero value at TC and continuously increases 

with T value, which is similar to the situation of Rayleigh-Bénard flow.  

 

(a)                      (b) 

Figure 7-22. Charge density isolines with value of 1.0 at (a) time = 60.0 with A=1.0 and T=250        (b) 

time=25.0 with A=1.2 and T=250 

(ii) 1.1A  

 

At A=1.1, the flow motion also tends to a steady-state, with an evolution process quite similar to 

what we observed with the case with symmetric boundary condition. There is one charge-free 

region (qmin = 0.0284), and two-steady main convective cells are formed (to see Figure 7-23(3)). 

Extra small vortices are founded near corners.  

With ]6.1,2.1[A , the flow motion generally keeps the same flow structure as for A=1.1 with one 

charge-free region and convective cells. The only difference is that the flow is unsteady with 

oscillation. The oscillation becomes more serious and irregular as A parameter increases.  

At A=1.7, the state of the motion is still unsteady. The flow structure undergoes an important 

change. In this case, the flow no longer keeps one charge-free region and two primary convective 

cells. Instead, two empty regions and four primary cells can be observed at some moment, see 

Figure 7-23(6).  

Before A reaches 2.0, the flow state is unsteady and the structure varies between two cells and four 

cells. Interestingly, we found that the time ratio of four cells increased along with A values.  

At A = 2.0, 2.1 and 2.5, the flow ends with a steady state of four cells. The difference between the 

solutions with A = 2.1 or 2.0 and A = 2.5 is that the former case firstly evolves into a two-cell 
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structure (see the turning point at time ≈ 50 in Figure 7-23 (10-1)) then change to the final four-cell 

structure, while such transition between two and four cell structure disappears in the latter case. 

This difference indicates a change of the most dangerous perturbation mode, which is similar to 

what happened in Figure 7-23.  

With ]5.3,0.3[A , the final state of the flow again starts to oscillate. In addition, we notice there is 

some velocity jump in the Vmax-time figure, which corresponds to the change of number of 

charge-free regions and convective cells. The amplitude of the oscillation is much smaller than in 

the case of ]6.1,2.1[A .  

It is interesting to compare the solution with wall and with symmetric boundary conditions. For 

symmetric boundary condition, the solution with T slightly above TC is always stable. No small 

vortices at corners will be induced by the primary vortices. The number of convective cells in 

horizontal direction increases by one as A increases by 0.614. For )614.0)1(,614.0(  nnA , 

there exists a specific A value (namely AT) which corresponds to the change of the number of 

convective cells from n to n+1. For TAA   the number of convective cells remains n and the size 

of cells extends with the increase of A. This extension corresponds to the change of the most 

dangerous disturbance wave-numbers. For TAA  the number of convective cells suddenly 

increases by one. There is no transition solution which simultaneously owns n and (n+1) cells 

during the developing process.  

For wall boundary condition in moderate and large domain ( 1.1A ), the number of convective 

cells in horizontal direction also increases with A but with 2 as the unit. This is because the 

solution in the enclosure will not allow the existence of half charge-free cell. More importantly, the 

final state may not be steady. In addition, the unsteady solution may simultaneously own n and 

(n+2) cells during the developing process.  

The difference is highlighted by the comparison cases with A = 2.0 and A = 5.0, see Figure 7-23 

(15), (16) and (17).  

 

(1) A = 0.4, T = 700, qmin = 0.567 
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(2) A = 1.0, T = 250, qmin = 0.693 

 

(3) A = 1.1, T = 250, qmin = 0.0284 

 

 

(4) A = 1.5, T = 220 
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(5) A = 1.6, T = 200                       (6-1) A = 1.7, T = 200 

 

(6-2) A = 1.7, T = 200 at time =120 

 

(6-3) A = 1.7, T = 200 at time =140 

 

(7) A = 1.8, T = 200                     (8) A = 1.9, T = 200 



198 

 

 

(9) A = 2.0, T = 200       (10 - 1) A = 2.1, T = 200 

 

(10-2) A = 2.1, T = 200    (11 - 1) A = 2.5, T = 200 

 

(11-2) A = 2.5, T = 200 

 

(12) A = 3.0, T = 200 (13) A = 3.7, T = 200 
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(14) A = 3.9, T = 200 

 

 

(15) A = 2.0, T = 200, symmetric B.C. 

 

(16-1) A = 6.14, T = 190, sysmetric B.C.   (17-1) A = 0.614, T =190, wall B.C. 
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(16-2) A = 6.14, T = 190, sysmetric B.C. 

 

(17-2) A = 6.14, T = 190, wall B.C. 

 

(18-1) A=10, T =190, sysmetric B.C.,  

Vmax_final = 3.539 

 

(19-1) A = 10, T = 190, wall B.C. ,     

Vmax_final = 3.531 

 

(18-2) A = 10, T = 190, symmetric B.C. 
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(19-2) A = 10, T = 190, wall B.C. 

Figure 7-23. Numerical results of two-dimensional electro-convection induced by strong unipolar injection 

from below in rectangular containers for various values of aspect ratio 

(i) 0.10A  

 

Let us take A = 10.0 as the example to see what will happen to the electro-convective flow in large 

enclosure. For comparison purpose, the computation with symmetric boundary conditions was also 

done. The two set of solutions are highly consistent with each other if we compare the evolution 

history of motion, the Vmax value of final steady state, the number and size of charge-free region 

and convective cells. In addition, TC with wall boundary condition at A = 10.0 is 164.2, which is 

very close to 164.1, the critical value for infinite long parallel plates. We think the effects of wall 

boundary condition with the case of 10A  on flow structure are very weak and the solution is 

expected to be identical to the case of infinitely long parallel plates.  

To summarize, the wall effects of vertical wall boundary condition on electro-convection in the 

enclosure are strong with small aspect ratio. The effects are mainly reflected in the linear stability 

criterion and flow structure. The most important characteristic with small A is the high TC value 

which indicates the flow is stabilized by the wall. Another interesting feature with the solution 

obtained with small A at T slightly above TC is the lack of free-charge region. As the increasing of 

the aspect ratio, the effect gradually decreases and the solution tends to the one with symmetric 

boundary condition, i.e., the infinite long case.  

In the next part, we will consider the problem of the effects of wall boundary conditions on the 

nonlinear stability and the associating hysteresis loop. Three typical cases (A=0.614, 1.0 and 1.1) 

were selected and the results are reported in Figure 7-24. To obtain results with A=0.614 and 1.0, 

the initial conditions should be carefully chosen.  

Case I 1.1A  

The obtained hysteresis loop is quite similar to the one with symmetric boundary conditions.  The 

main characteristic of the flow is the development of a subcritical instability featuring the existence 

of a linear and non-linear criterion and consequently the appearance of a hysteresis loop. When the 

T values are below the critical one cT , the fluid viscosity counterbalances the electric force and the 

liquid stays at rest while the ions move to the counter electrode with the electric drift velocity KE . 

Above cT  which features the linear stability criterion the liquid is suddenly put into motion with a 

characteristic jump. In 2D the flow motion organizes itself in the form of two primary convective 
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cells of equal width, which is also equal to the half-length of the box, i.e. 0.55, see Figure 7-23(4). 

If starting with the solution obtained with T=300 recomputed with successively decreasing T 

values, and if fTT  , we would reach a new steady solution with smaller Vmax and area of 

charge-free region. For fTT  , the velocity reduces suddenly to zero and the solution goes back 

to the hydrostatic state. Comparing with Figure 5-14, the solution with wall boundary condition at 

A=1.1 shows higher TC and Tf.   

Case II 614.0A  

In this case, the first simulation has been executed at T=300 starting from rest. Successfully, T has 

been increased in steps of 10, starting from the solution obtained at previous value, up to T=500. 

Three different flow regimes are observed.  

4306.340 T  

In this range, the flow motion ends with a steady-state without charge-free region. Vmax at 340.6 

(the numerical TC value) is zero and smoothly increases with T parameter.   

 
(a) A = 0.614 

 
(b) A = 1.0 
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(c) A =1.1 

Figure 7-24. Evolution of Vmax versus T for strong injection (C=10) in an enclosure with various aspect 

ratio; Parameters: C=10 and M = 10, the grid size is 10
-2

 in x- and y- directions; time step is 10
-3

 

   

   

   
T = 400 T = 450 T = 500 
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Figure 7-25. Time history of the maximum of vertical velocity, contour map of the charge density and 

velocity field in the [0, 0.614] × [0, 1] domain for different values of T; Parameters: C = 10 and M = 50 

450440 T  

In this range, the flow structure is quite complicated. The state of the motion is unsteady with 

dramatic periodical oscillation. The charge density distribution and velocity field in Figure 7-25 

with T=450 correspond to a moment at which Vmax is at a peak value. The complex flow structure 

should be due to the interaction between the stabilizing effects of wall boundary and destabilizing 

effects of high value of T.  

550460 T  

Increasing T till 2CTT  , the final flow state is steady again. In addition, there is a charge-free 

region in the charge density distribution, which makes the flow similar to the one computed with T 

= 290 with symmetric boundary conditions. Let us emphasize that the appearance of the 

charge-free region is the characteristic phenomenon of a subcritical bifurcation and a hysteresis 

loop. We name 2CT  the second linear bifurcation value.  

To determine the hysteresis loop, we starts with the solution obtained with T = 550 and gradually 

decreases T value. When T is still higher than a critical value fT , the final state of the flow is 

always stable with smaller Vmax and free-charge region. When further decreasing T till fTT  , the 

velocity reduces suddenly to zero and the solution of the system goes back to hydrostatic solution. 

The complete hysteresis loop is shown in Figure 7-24 (a).  

7.3.2 Oscillatory and chaotic regimes of electro-convection in an enclosure 

 

Above T=600, the two convective cells start to oscillate slowly and the regime becomes unsteady 

with regular oscillation. This behavior is depicted in Figure 7-26(b). As we increase T, the 

amplitude and the frequency of these oscillations also increase. For higher values of T, above 800, 

the regular oscillation becomes irregular and the flow is in a quasi-periodic regime. 

For higher values of T, above 1000, the unsteadiness of the flow is more pronounced and the flow 

becomes chaotic. The power spectrum with T=700, 750 and 1000 are presented in Figure 7-27.  

If we further increase T, we observe the electro convective plumes. Taking T=3000 as the example, 

the destabilization of the laminar sub-layer near the bottom surface induces the electro-plumes. The 

hydrostatic solution period will be never reached as the plumes are formed at the initial stage, see 

Figure 7-28 (b-1).  
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(a) T = 550 (b) T = 600 (c) T = 700 

   
(d) T = 750 (e) T = 1000 (f) T = 3000 

Figure 7-26. Time history of the maximum of velocity in the [0, 0.614] × [0, 1] domain for different values 

of T; Parameters: C = 10 and M = 50;  

   
(a)  T = 700 (b) T = 750 (c) T = 1000 

Figure 7-27. Power spectra for numerical solution in an enclosure with different values of T; Parameters: C 

= 10 and M = 50;  

   
(a)  T = 1000 at time = 50 (b-1) T = 1000 at the initial stage  (b-2) T = 1000 at time = 35 

Figure 7-28. Contour map of the charge density in an enclosure with different values of T; Parameters: C = 

10 and M = 50;  
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It is interesting to notice that the way for electro-convection flow in box is similar to the one with 

infinitely long parallel plates: steady – periodic - quasi-periodic – chaotic – plumes. However, 

some subtle difference can be found in the charge density maps. For solution with wall boundary 

condition at T slightly above Tt, where Tt is the transition value for the flow to become chaotic, the 

thickness of the charge density layer near the vertical sides is much bigger than the one of solution 

obtained with symmetric boundary conditions. In addition, the electro-plumes with the case of wall 

boundary conditions are more easily formed at the regions which are a bit far away from vertical 

sides; see Figure 7-28 (b-2). 

7.4 Conclusions 
 

By continuously increasing the driving T parameter in the strong injection case, the successive 

instabilities and the way to the chaotic state have been defined: no motion  steady one cell  

periodic one cell  steady two cells periodic two cells  pseudo-periodic two cells  chaotic 

(including plumes).  

When diffusion mechanism for charge density is taken into account in the strong injection case, the 

system tends to be more stable. It is numerically shown that the linear and nonlinear stability 

criterion increases along with the increases of the diffusion coefficient for charge transport.  

Instead the symmetric boundary conditions for vertical sides, the lateral walls may seriously affect 

the linear and nonlinear stability criteria and overall structure of the flow pattern that develops 

when the T number exceeds its critical value. It is found that the vertical walls tend to stabilize the 

flow especially when the aspect ratio is small.  
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Chapter 8 Electro-thermo-convection in a dielectric liquid layer 

subjected to unipolar injection and a thermal gradient   

 

8.1 Introduction  

 

The system under consideration in this section is a horizontal layer of a dielectric liquid enclosed 

between two electrodes and subjected to the combined effects of an electric field and a thermal 

gradient simultaneously applied.  

The complex instability phenomena which result from this particular configuration have received 

much attention in recent years and have been studied in depth [15][16] [26][36] [181] [182][183] 

[290]. Another motivation for such interest is the promising way to control the fluid flow and 

enhance the convective heat transfer by means of externally applied electrical fields [291-293]. 

Indeed, it has been also shown experimentally that the heat transfer across an insulating liquid can 

be significantly increased [22][294][172]. With this type of active heat transfer enhancement 

technique, smaller and more effective thermal systems can be designed. For single-phase liquid, 

this noticeable increase of heat transfer is mainly due to the development of secondary motions that 

result from two principal body forces: Coulomb forces acting on any free charge present in the 

liquid and the dielectric force induced by a permittivity gradient which may result from a 

temperature variation. With a non-uniform distribution of charge carriers, the generation of 

vortices may also be enhanced. Thus, such combined effects are therefore worthy of examination 

not only from a fundamental point of view but also because of potential technological advantages 

that may result from them [295-297]. 

In the present study, we follow the mobility model as the charge generation mechanism. Based on 

this model, we consider the case of space charge only resulting from ion injection, the coupling 

between the conservation equations of momentum, electric charge and energy is mainly ensured 

via the Coulomb and buoyancy forces. This coupling results from direct interaction between the 

velocity, temperature and charge perturbations and from the indirect interactions between the 

velocity and the charge. This strong and non-linear coupling as well as the complexity of the 

mathematical problem has prevented the obtainment of any analytical solution. Therefore most 

researchers who have been working so far on electro or electro-thermo convective problems in a 

horizontal planar layer of dielectric liquids have mainly tackled the problem with experimental 

studies and stability theory. The earliest experiment evidence of the existence of electro-thermal 

instability of a dielectric liquid was provided by Gross and Porter [12]. By applying a DC electric 

field ( V/m102 5 ) and a thermally stabilizing (heating from above) with a temperature 

difference of 12 C  across a 1mm layer of transformer oil, corresponding to a Rayleigh number 

value of 20, they observed a steady cellular fluid motion. In [14], another type of fluid motion was 

presented. In this paper, Turnbull applied a temperature difference of 15 C  across a corn oil layer 

with a thickness of 25.4 mm, corresponding to a Rayleigh number value of 240000. They observed 

an oscillatory fluid motion with a frequency of 0.05. The above mentioned steady cellular and 
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oscillatory fluid motions are representations of stationary and oscillatory instability separately. It 

should be pointed out that the autonomous unipolar injection associated with a appropriate choice 

of the injection charge density and linear assumption for the temperature-dependent mobility can 

predict both types of stabilities successfully [15][16][181].  

The linear stability analysis has been applied to predict the onset of instability in a dielectric layer 

problem under weak [298] or arbitrary injection [26], and thermal constraints cooperating or 

competing with each other [16][181][182][290]. The effect of the temperature-dependent carrier 

mobility [15][182] and dielectric constant [298][182] on the stationary linear instability has also 

been investigated. These works greatly improved the theoretical background for the heat transfer 

enhancement applications.  

Like for pure electro-convection, the void charge region due to the non-linear coupling between 

charge and electric field may also exist in electro-thermo-convection. This void region is the 

indicator of the nonlinear subcritical bifurcation. However, this nonlinear stability characteristic of 

the system has seldom been analyzed due to the complexity of the mathematical models. To our 

knowledge, the only nonlinear study was taken by Worraker and Richardson [15] who investigated 

the problem with a normal-mode cascade analysis. Typically, this analytical method requires 

further assumption of the system, solid mathematical operation and is only applicable to 

small-amplitude motions when voltages are close to critical value corresponding to the onset of the 

linear stability.  

Besides the experimental and theoretical approaches, a direct numerical simulation of the ETHD 

problem is also an efficient investigation tool. Until now only a few numerical simulations have 

been attempted on ETHD convective problem with more or less success [299]. In [300], George S 

et al. simulate electro-thermally generated flows in closed enclosure and open channels. In this 

study, they consider the influence of the electric field on the electrically charged particles 

generated at one boundary side, which is similar to the case of unipolar injection considering by 

the present study. In [184] Yan et al. have solved the entire set of coupled 

Electro-Thermo-Hydro-Dynamics (ETHD) equations with a finite-difference method and have 

characterized EHD enhancement of heat transfer especially in the case of a uniform or non-uniform 

electric field. The QUICK scheme has been applied to solve the charge density equation.  

More recently Traoré et al. have developed a direct numerical simulation based on finite volume 

method to solve the entire set of EHD and ETHD equations [56][57]. A core component of the 

numerical procedure is the original method based on total variation diminishing (TVD) scheme for 

solving the charge density equation. From our practical experience, the application of such 

high-resolution scheme to capture the void region of space charge density is necessary for an 

accurate prediction of the possible nonlinear stability criterion. In [57], the authors started from the 

viewpoint of considering the effects of buoyancy force on pure electro-convection and mainly 

emphasized the appearance of subcritical and supercritical bifurcations which depends on the 

values of Prandlt number, Pr, and a mobility-related non-dimensional parameter, M. 

The main objective of this chapter is to show that our numerical approach can be used to compute 

the electro-thermal-convection. Both fundamental linear and nonlinear stabilities and 

application-related heat transfer enhancement will be considered. The reminder of this chapter is 
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organized as follows. The problem, the governing equations and boundary conditions have been 

already stated and described in chapter 2 and a brief introduction will be presented in section 8.2. 

The numerical method and solving chart has been explained in Chapter 3 and 4. Thus, in the 

section 8.3 we directly verify our numerical solvers with a complete ETHD problem which has 

been tackled with the linear stability approach. In section 8.4, features on the development of pure 

Rayleigh-Bénard and pure electroconvective instabilities are recalled and the neutral stability of the 

electro-thermo convection problem is presented. The conditions for which the instability develops 

regarding the driving parameters Ra and T are discussed. Finally a conclusion is drawn up in 

section 8.5. 

8.2 Statement of the problem  

8.2.1 Basic governing equations and their non-dimensional forms 

 

 

Figure 8-1. Sketch of the physical domain with electro-thermal-convection problems 

We consider a dielectric liquid layer of thickness H enclosed between two electrodes of length Lx. 

The layer is heated either from below or above and subjected to a thermal gradient
0 1     . 

Between the two electrodes a potential difference V=V0-V1 is applied. A charge density 0q is 

injected either from the below or the above electrode. The z-axis is taken perpendicular to the 

electrodes and the gravity is considered acting in the negative z-direction. The two-dimensional 

geometry is depicted on Figure 8-1. In total, there are four distinct modes representing the 

competition or cooperation relations between the buoyancy and Columbic forces, see Figure 2-3(1) 

~ (4). The general set of equations for an incompressible fluid includes the mass and momentum 

conservation, energy balance equation under the Boussinesq assumption, charge density 

conservation, and Gauss theorem for electric potential. Electric and buoyancy forces are included 

as source term in the momentum equations.  

In this study, we neglect the variation of kinematic viscosity and thermal diffusivity with 

temperature to highlight the effects of buoyancy force and temperature-dependent mobility and 

permittivity. We follow a simple assumption that both the mobility and permittivity varies linearly 
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with temperature. Taking into account all these considerations we reach the coupled partial 

differential equations system,  
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where u  is the velocity, 0 is the mass density, p is the pressure, g the gravity, elf stands for the 

electric forces induces by the electric field E


, Cp the thermal capacity,   the temperature, 0 is a 

reference temperature,   the conductivity,  the permittivity of the fluid, q the volumic electric 

charge density in the liquid. K is the ion drift velocity and V the electric potential.   is the 

volumetric thermal expansion coefficient, e1 , k1 are respectively the relative change of permittivity 

and mobility with temperature.  
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In the conservative equation (6-5) for the current density, there exists three distinct mechanisms of 

charge transfer: qDEqKuqj 


, where D denotes the charge-diffusion coefficient. Since the 

contribution of diffusion to the electric current is much smaller than the other two terms, it is 

commonly admit to ignore it [152]. The electric forces are expressed as 

follows:
2
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 where the first term is the Coulomb force, the second 

the dielectrophoretic force and the last one the electrostriction force. The electrostriction force can 

be combined with the static pressure term and we define a modified 
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pressure: 21

2 m

p p E







  
      

. The last term in the energy equation (6-3) represents the Joule 

heating, which can also be ignored due to the small amplitude of the current density [209].   

The above equations are put in dimensionless form by using the following references:  

[x,y]=H, [t]= 2 /H  ,     [u ]=
d


,     [ p ]=  

2

0 / d  ,     0 1     
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We obtained a complete and fully coupled set of dimensionless equations. 
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Several dimensionless parameters emerge in this analysis: 
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are respectively the Rayleigh number with g the gravity and  the thermal diffusivity, Pr the 

Prandtl number, T the instability parameter which is the ratio of Coulomb and viscous forces, 

analogous to the Rayleigh number in thermal convection. C a measure of the injection level with q0 

the injected charge, M the mobility parameter is decided by the fluid properties and stands for the 

ratio between the hydrodynamic and ionic mobility.  R is the electrical Reynolds number which is 

defined by convenience. N and L dimensionless are temperature derivative of respectively 

dielectric constant and mobility.  
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8.2.2 Boundary and initial conditions  

 

The boundary conditions in the case of heating and injection from lower electrode are depicted in 

Figure 8-2. On lateral boundaries we consider for the velocity, symmetrical boundary conditions to 

simulate an infinitely long cavity and no-slip boundary conditions to simulate the finite box.  

In this study, we consider two typical cases where charge injection is always performed from the 

below emitter electrode while heating may be from either below or above. The horizontal 

boundaries are assumed to be rigid heat conducting electrodes. The injection is assumed 

autonomous which means that 0qq  at 0z during the whole injection process.  

The above system of equations (6-1) – (6-9) possesses a steady one-dimensional hydrostatic 

equilibrium ( 0u


), ( ) [0, ( )]Tj q RE j z   and [0, ( )]TE E z  . The dimensional form for this set 

of hydrostatic solutions has been widely provided [182] as it is the starting point for linear stability 

analysis.  
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where   d/- 10    with )(11 d  . When the temperature of the above electrode is higher 

than the below one,   is positive. The electric field )(zE satisfies 10

d

0
)(   dzzE , where   

denotes the electric potential and  10    is the applied voltage difference.  

Here, we provided a non-dimensional expression when N=0 and L=0.  

y  

0 0 0 ( ) ( )j j Q RE RQ z E z  
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2

a
Q z

C z b



 

( )E z aC z b   

where a and b are two constants which depend on the injection strength C . For the strong 

injection case 10C , the values for a and b are 1.4882 and 5.539×10
-3

 respectively.  
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Figure. 6-2 Computational domain and boundary conditions for electro-thermal-convection problems 

The validity and accuracy of our numerical solver is first checked by application to the steady 

hydrostatic equilibrium solution. Note that the coupling between the electric-related variables and 

temperature is switched off because of the zero velocity fields. The hydrostatic equilibrium 

solution can also be used as the starting initial field for the charge density and the electric field. In 

all test cases, at t=0 the liquid is heated from below and the electric potential difference between 

the two electrodes is applied and electric charges are injected in the bulk. In other words, the 

heating and charge injection always start at the same time.  

8.3 Verification of the numerical ETHD solver  

 

The numerical procedure of our numerical ETHD solver has been explained in details in Chapter 4. 

After the comparison tests performed with pure electro-convection problems, the SMART limiter 

function and second order three time level implicit time scheme are always used to solve the 

charge density equation.  

In this section, we verify our numerical ETHD solver with two problems which have been tackled 

with the linear stability analysis approach. The first one is the stationary linear instability problem 

of unipolar injection equilibrium in the case of heating from above and injection from below. A 

small Ra number which means the thermal gradient weakly stabilizes the flow will be used. The 

mobility may not depend on temperature or depends linearly on it. This problem has been 

investigated in [15] and some references results like kC and TC are provided. It is also found two 

types of instability: (i) a space charge modified Bénard mode and (ii) a thermally modified space 

charge mode. The second one is the oscillatory instability problem with a strong stabilizing 

gradient.   

In addition, appropriate grid convergence checks have been performed to analyze the accuracy of 

the code.  
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8.3.1 Stationary linear instability with a weakly stabilizing thermal gradient  

 

In order to compare with published results in [15], we select the mode 3 in Figure 2-3 (heating 

from above and injection from below) and set the Ra number to 20. This Ra number corresponds to 

a weakly stabilizing temperature difference of 1
o
C across a layer of chlorobenzene or n-hexane of 

depth 0.5mm [15]. In addition, we choose 20Pr/ 2  MA and 1k  lying in the range of [10
-3

, 1]. 

The case 01 k is also computed. With our non-dimensional style, the value of 1k  should be 

converted to N according to Eqn.(6-17). As explained in previous chapter, a potential problem of 

using the direct numerical simulation to determine the linear stability criterion of a given EHD 

system is the size of the computational domain. In general, we set the horizontal length of the 

computational domain as the half of the critical wavelength of the system which has been provided 

through the theoretical stability analysis approach. For the ETHD problems considered in the 

present study, the information of the critical wavelength has been provided for various heating and 

injection modes. However, these information is mainly expressed through curves rather than 

detailed values.  

  

(a) (b) 

Figure 8-3. Time evolution of the maximum vertical velocity component in the domain from initial state 

until steady state (a) T=190, N = 0 (b) T = 70, N = 5×10
-3

 

As the purpose of this subsection is to validate our numerical solver, we specially choose some 

cases for which the critical wavelengths have been known. In this set of computations, we fixed the 

values of C, M, Pr, Ra, N and L, and then ran the computations with different T values which are 

slight below or above the linear stability criterion (TC). We observed that the system always keeps 

a rest state when T slight below TC. If we increase T to a value slightly above TC, we found the 

system would reach a steady state after some transition period. Two typical examples are provided 

in Figure 8-3 in which we use the maximum value of the vertical velocity component as the 

representative parameter. In both figures, the system evolved from a rest state. The system keeps 

the hydrostatic equilibrium solutions before an exponential interval. This exponential increasing 

period is induced by the tiny numerical fluctuations and can be used to compute the critical T value. 

The computation method and process are exactly the same with what we applied to the pure 
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electro-convection and the Rayleigh-Bénard convection, see chapter 4 and chapter 5 for more 

details. 

In table 6-1, we compared the critical Tc values for the different N values obtained with our 

numerical tools with the ones provided in [15] with the linear stability analysis approach. The 

maximum error is less than 13%. The good agreement between our numerical results and the 

theoretical values highlighted the effectiveness and accuracy of our numerical approach.  

Table 6-1. Comparison of numerical and analytical linear criterion for electro-thermo-convection problems, 

parameters: Ra = -20, A = 20 (Pr=500, M=5), C=10  

1  0 10
-3

 10
-2

 10
-1

 1.0 

N  0 5×10
-5

 5×10
-4

 5×10
-3

 5×10
-2

 

2/  0.611 0.637 0.724 0.828 0.885 

TC_theoretical [15] 165.6 149.0 96.0 42.0 19.6 

TC_present 168.0 158.4 99.63 48.0 22. 9 

 

In Figure 8-4 and Figure 8-5, we present two steady solutions with N=0 and N=5×10
-3 

separately. 

It is easy to find the two solutions showing obviously different flow structure. As the absolute 

value of Ra number is small, the stabilizing effect of the thermal force is limited. When N equals to 

zero, i.e., the charge carrier mobility does not vary with temperature, the results in Figure 8-4 are 

easy to understand as the Coulomb force is the main driving force because of high T value. The 

velocity field and charge void region is close to the one we obtained in pure EHD problem and the 

temperature can be seen as a passive transport variable. For the same strong injection strength and 

weak thermal force, in [15], the authors state that the mobility variation may play a dominant role. 

The result shown in Figure 8-5 is a good example as the thermally modified space charge flow.  

   

(a) Charge density isocontours (b) Temperature isocontours (c) Velocity field 

Figure 8-4. Numerical results with T = 190, Ra = -20, Pr = 10, M = 50, C=10, N=0 and L=0 
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(a) Charge density isocontours (b) Temperature isocontours (c) Velocity field 

Figure 8-5. Numerical results with T = 70, Ra = -20, Pr = 500, M = 5, C=10, N= 5× 10
-3

 and L=0 

8.3.2 Over-stable electro-thermal instability with a strong stabilizing gradient 

 

Till now, all the problems we encountered can reach stationary pattern of motion at the onset of 

instabilities. The flow motion often manifests as cellular convection. On the other hand, there is 

another class of instability in which oscillatory motion prevails at the onset of instability. This class 

of marginal sate is named as overstability. In the ETHD system considered in the present study, the 

oscillatory instability has been observed through experiments [14] in 1968. Some attempts have 

been made to explain the occurrence of the oscillatory modes [14][301] based on charge 

conductivity model. Later, based on the mobility model for charge transport, the existence of 

over-stable instability has also been successfully predicted through the linear stability approach 

[181][182][302]. It has been shown that the over-stable mode is preferred for strongly stabilizing 

thermal gradient.  

In this subsection, we use an example to show that our numerical tool can be used to simulate the 

over-stable electro-thermal convection. We choose a set of parameters for which the existence of 

the over-stable instability mode has been proved. In [182], the authors presented a figure showing 

the nature of the linear instability in corn oil for various ratio coefficients between temperature and 

mobility k1 and injection strength C, see figure 2 of [182]. We selected one point from this figure, 

see below. The system injects ion from the below electrode and is heated from the above side. A 

strong Ra number is used to represent the strongly stabilizing thermal gradient.  

1C   3750T   240000Ra   460Pr    

7.151M   0N   0L   

The hydrostatic equilibrium state is used as the starting condition. It is crucial to stress that the 

final regularly oscillatory solutions can only be obtained with this initial field rather than zero-field. 

The computational domain is a rectangle of size 0.988×1which is in consistent with the wavelength 

of the system. As the flow is oscillatory, we used a small time step 5×10
-4

. A 100×100 uniform 

grid is used to discretize the domain. The point located at (0.05, 0.05) is selected as monitoring 

point.  
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In Figure 8-6 we have presented the evolution of velocity, charge density and temperature at the 

monitoring point. In addition, the amplitude of the velocity field of the whole system and its power 

spectrum analysis result are also presented. The transition from rest state to oscillatory convection 

is highlighted. In the power spectral curve, only one basic frequency is found. 

 

  

Figure 8-6. Illustration of the evolution of the horizontal velocity (U), the vertical velocity (V), the charge 

density (Q) and temperature (T) at the monitoring point, the evolution of the maximum velocity (Vmax) of 

the system and corresponding power spectrum.  

Figure 8-7 shows the change of the charge density field, temperature field and stream function in a 

complete cycle. No charge free region is found. The convection velocity field is small, thus the 

transfer of the temperature and charge is limited. The successful prediction of such an over-stable 

motion is also a valid proof of our numerical method. It should be noticed that our results are the 

first numerical observation of over-stable motion in ETHD system.  
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(a) Charge density field 

   
(b) Temperature field 

 
(c) Stream function 

 

Figure 8-7. Numerical results of a over-stable linear problem in a complete cycle in a ETHD system  

 

8.4 Subcritical feature of Rayleigh-Bénard instability induced by the presence 

of an electric field 
 

In this section, we systematically investigate the problem of a dielectric liquid layer heated from 

below and simultaneously subjected to strong unipolar injection with our numerical tool. We try to 

numerically reproduce the neutral stability curve which separates the stable and unstable regions. 

In addition, the existence of nonlinear phenomenon and associated finite-amplitude bifurcation 

behaviour are highlighted in the case of the development of the Rayleigh-Bénard instability. 
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In the next subsection, features on the development of pure Rayleigh-Bénard and pure 

electro-convective instabilities are recalled and the neutral stability of the electro-thermo 

convection problem is analysed. The conditions for which the instability develops regarding the 

driving parameters Ra and T are discussed. 

In this study, the featuring of subcritical bifurcations is mainly highlighted by the existence of the 

linear and non-linear critical instability criteria Rac and Raf respectively for thermo-convective 

instability and Tc and Tf for electro-convective instability. The computational strategy to determine 

these criteria is the same with what did with pure EHD problems and detailed in previous chapter.  

For all the computations conducted in this study Pr=10 and M=10 and we are in the strong 

injection case with C=10. In chapter 4 and 5, we simulate the pure unipolar injection and pure 

Rayleigh-Bénard problems to show the effectiveness of our numerical tool in predicting both linear 

and nonlinear stability criteria. In principle, the nonlinear phenomenon can be expressed through 

discontinuous changes in heat flux, electrical current flow and the amplitude of velocity field. In 

the present study, the last one will be used as the indicated parameter. The second sets of 

simulations were to predict the Neutral stability curve in the Ra-T plane. In the concrete operation 

process, we fixed T parameters and selected several Ra numbers which were slightly above the 

theoretical critical one. To highlight the different bifurcation styles when unipolar injection and 

thermal gradient are simultaneously applied, we carefully chose three sets of (Ra, T) parameters to 

show the complete Vmax-Ra curves.   

8.4.1 Recalling electro-convection and Rayleigh-Bénard convection  

 

On Figure 8-8 we have depicted the development of the instability for the Rayleigh-Bénard 

instability (a) and electro-convective instability (b). The Rayleigh-Bénard instability is 

supercritical and the critical Rayleigh number Rac has been found numerically equal to 1706.6 

which is very close to the critical value predicted by the linear instability of Chandrasekar: 1708 

[275]. The electro-convective instability features the development of a subcritical bifurcation with 

a sudden jump for Vmax from zero to 1.25 in non dimensional unit when the linear critical value Tc 

parameter is reached. From this state, when T is decreased the fluid stays in motion even for T 

under Tc. When T equals to the non-linear value Tf the flow recovers its rest state. The two 

particular values Tc and Tf  denoted as linear and non linear critical values give rise to an 

hysteresis loop [153][276] which has been observed experimentally [19]. The linear and non linear 

phenomena are characterized respectively by a small amplitude and a finite amplitude. This basic 

difference between Rayleigh-Bénard and electroconvective instabilities lies with the different 

mechanism of transport of the temperature and of charge density respectively with the liquid at rest. 

For Rayleigh-Bénard heat diffuses whereas for electro-convective instability ions move with 

respect to the liquid with a finite velocity KE  where K is the ionic mobility and E  the electric 

field. The electric field strength increases with the distance from the emitter electrode and thus, the 

ion drift velocity KE  increases too. As the electric charge is convected with a velocityu KE , 

the regions where the liquid is moving upward will be more charged than the regions where the 

liquid is moving downward resulting in a electric torque and thus a convective movement in the 
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fluid. This convective movement will arise since the Coulomb force applied to each electric charge 

carrier overcomes the viscous damping friction. 

           

 

  

(a) supercritical thermo-convective instability (b) subcritical electro-convective instability  

Figure 8-8. Maximum velocity versus Ra (a) and T parameter (b) featuring respectively the supercritical and 

subcritical bifurcation corresponding to pure thermo-convection and pure electro-convection flows 

Once electro-convection takes place, ascending column are more charged that the descending one 

and ions are therefore carried by the liquid preferentially towards regions of ascending column. It 

results in the liquid a region void of charge [58]. It should be specified that this appearance of 

charged and uncharged adjacent regions is directly linked to the hyperbolic nature of the charge 

density transport equation. The existence of this region void of charge is responsible for the 

hysteresis loop and the featuring of the non linear criteria Tf [58]. This non linear instability 

mechanism has been also derived by Felici with its hydraulic model in the case of weak injection 

between two parallel plates [301]. Later Atten and Lacroix [148] extended the foregoing simplified 

model of Felici to the case of hexagonal cell and studied the nonlinear stability problem with a 

Galerkin method. They successfully predicted the existence of a nonlinear stability criterion as well 

as an hysteresis loop associated with the discontinuities in current and liquid velocities.   

In strong injection C=10, the linear critical value Tc and non linear one Tf have been numerically 

found respectively equal to 163.2 and 109 while the predicted values provided by the linear 
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stability are 164.1 and 110 [144][148]. It is worth noting that these values are the closest one from 

the predicted values provided by the linear stability ever found by numerical simulations. 

8.4.2 Neutral stability curve  
 

When ion injection is from below and the liquid layer is also heated from below, it is easy to 

understand that the displacement of a fluid parcel is reinforced by the two mechanisms. To a 

simple approximation, the neutral stability curve can be expressed as a straight line,  

1//  CC TTRaRa                (6-1)  

where CRa corresponds to the critical Rayleigh number at 0T , and CT is the critical value in 

the pure EHD case. The more accurate curve deviates slightly from the above straight line 

considering the inconsistency of the critical wave-length at both ends. An accurate expression for 

the neutral stability curve is provided by Castellanos and Velarde, see Equation (11a) in [298], 

which has been also provided below for comparison. For the neutral stability, the following 

condition should be satisfied,  
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Figure 8-9. Critical wavelength versus Ra for both heating and injection from the bottom side case [57]  

It should be emphasized that the variation of the critical wave-length brings some extra difficulties 

for the numerical determination of the neutral stability curve. It has been shown that the aspect 

ratio of the computational domain has an important effect on the critical Tc value in pure 

electro-convection [56]. With symmetrical boundary conditions, the determination of Tc would be 

close to the theoretical value 164.1 only when the aspect ratio will be multiples of the half 
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wave-length 0.614. But for a given (Ra, T) we do not know a priori the wave length of this 

electro-thermo convective problem which depends on the ratio TRa . In [57] the authors displayed 

the change of the wave length with Ra along the neutral curve, see Figure 8-9. It should be noted 

that the curve is obtained with the direct numerical approach and the curve is not smooth because 

of the finite computational domain. That explains why in order to limit discrepancy between 

numerical results and expected ones the domain has to be extended. It has been shown that this 

aspect ratio effect gradually fades with the increasing of L. In this study L=10 has been retained.  

On Figure 8-10 is displayed the neutral stability curves obtained numerically and from expression 

(6-1). The maximum error is not greater than 7.2 % and the possible discrepancy is essentially due 

to the length L of the domain that we choose.  

 

Figure 8-10. The neutral stability curve in the Ra –T plane  

8.4.3 Subcritical bifurcation of the flow  

 

On Figure 8-12 we have displayed the maximum velocity in the domain versus Ra for different 

values of the T parameter.  

For T=80 a subcritical instability occurs, associated with a hysteresis loop highlighting a linear Rac 

and non-linear critical values Raf. It is worth noting that for Ra=Rac=1000 a convective motion 

takes place whereas we are under the theroretical critical value Rac=1708 predicted in the case of a 

pure thermal problem. When Ra is decreased below 1000 the convective motion still occurs until 

Raf =750 where it stops. Let's define the difference between the linear critical value Rac and the 

non linear one Raf as   and maxCV  the maximum value of the vertical velocity obtained for Rac. 

For T=80, 250   and maxCV =1.107. For T=30,   decreases and equals to 4 and maxCV =0.325. 

If T is further decreased the difference between Rac and Raf will vanish and maxCV  will tend to 

zero. For T=10 we obtain 0   which means that the fluid is suddenly put into motion from rest 

state with a subcritical bifurcation as the velocity jump shows it. For T=0 i.e. pure thermal problem, 

the subcritical bifurcation turns into a supercritical transition and we recover the classical 

bifurcation observed in pure Rayleigh-Bénard flow. In our simulations Rac in the case T=0 has 
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been found equal to 1706.6 and has to be compared with the theroretical critical value Rac=1708 

provided by the linear stability analysis. 

 

 

Figure 8-12. Vmax versus Ra for different values of T parameter. 

 
 

Rac 
Raf 

Rac 

Raf Rac 

Rac=Ra

f 

Rac Raf 

c fRa Ra  

 

maxCV

 



224 

 

 

 T=30 T=10 

Figure 8-13. Vmax versus Ra (zoom of the previous figure for cases T=30 and T=10)  

8.4.4 Flow structure of electro-thermo-convection with both heating and injection 

from the bottom electrode case 

 

Under the theoretical critical values provided by the linear stability analysis Rac=1708 for a pure 

thermal problem and Tc=164.1 for a pure electroconvective problem no movement occurs. The 

combined effects of a thermal gradient and an electric field simultaneously applied to the 

horizontal dielectric liquid layer leads to a complex physical flow interaction and can completely 

change the stability conditions. Indeed, for some particular values of the Rayleigh number and T 

parameter under the threshold values, one can observe convective movements.  

 

(a) Stream function 

 

(b) Temperature field 

 

(c) Charge density field 

Figure 8-14. Steady state isocontours of stream function, temperature and charge density Ra=1000, 

T=80. 

 On Figure 8-14 we have depicted the flow structure for Ra= Rac =1000 and T=80. Figure 8-14(a) 

represents the stream function, 8-14(b) the isocontours of temperature and 8-14(c) the isocontours 

of charge density. On this figure we clearly show the convective motion in the domain. One have 

to keep in mind that for the pure thermal problem with Ra=1000 there is no motion and the fluid 

stays at rest. It is the same for a pure electro-convective problem with T=80. The number of 
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convective cells in the domain depends on the width of each cell which is equal to the half 

wavelength / 2 of the most unstable mode. For T=80 we observe 12 cells (Figure 8-14a) and the 

flow is mainly driven by the Coulomb force. For a pure electro-convective problem (Ra=0) the 

expected number of cells for this domain length, should be 16 which gives a half wave length 

/ 2  equal to 0.625. This value has to be compared with 0.614 the value predicted by the linear 

stability analysis.  

For the case T=10, Figure 8-15a displays 10 cells which is the exact number of cells expected in 

the case of a pure thermo-convective problem  (T=0) which has been shown in Figure 8-16. 

Indeed in this situation the half wave length is 1.0.  

Between this two limit values: 1.0 and 0.614 the half wave length of the problem changes along the 

neutral stability curve (Ra-T) of the Figure 8-10.  

It is worth to note that for both cases the Rayleigh number is below the theoretical limit 1708 but a 

convective motion occurs. 

For the case (Ra=1000, T=80) the maximum value of the stream function is 0.29 much greater that 

for (Ra=1600, T=10) which is only 0.036. It indicates that for the former case the convective 

motion is greatly enhance compared to the latter one despite that the Rayleigh number is higher. 

 

(a) Stream function 

 

(b) Temperature field 

 

(c) Charge density field 

Figure 8-15. Steady state isocontours of stream function, temperature and charge density Ra=1600, T=10. 
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(a) Stream function 

 

(b) Temperature field 

Figure 8-16. Steady state isocontours of stream function, temperature on pure thermal problem: Ra=2000, 

T=0. 

In the case (Ra=1000, T=80) electro-convection enforces its foot print on the flow (number of cells 

and temperature field figure 8-14b which matches perfectly with the charge density snapshot 

Figure 8-14c).   

In the case (Ra=1600, T=10) the flow is mainly governed by the buoyancy force and 

thermo-convection.  

The void region in the charge density contourmap is magnified on Figure 8-17, where only the 

q=0.05 isocontour is displayed.  

 

Figure 8-17. q=0.05 isocontours of charge density contour map Ra=1000, T=80. 

It has been shown [151] that this region void of charge was responsible for the hysteresis loop and 

the existence of the non linear criterion Tf in pure electro-convective instability. This explanation is 

extended for the case of electro-thermo convective problems where a subcritical bifurcation with 

an associated hysteresis loop featuring a non-linear criteria Raf occurs as well. The existence of this 

non-linear criteria Raf is therefore also due to this region void of charge. 

If we check the total amount of void region through the entire domain versus T, Figure 8-18, we 

observe that the decrease of T induces a decrease of this void region. 

Figure 8-12 has shown that when T was increased the values of the non-linear and linear criteria 

respectively Raf and Rac decrease. In the same time   and maxCV , which emphasize in a way the 

amplitude of the hysteresis loop, increase. This behaviour magnifies in fact the development of the 
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subcritical bifurcation and is directly related to the total amount of the region void of charge in the 

domain.  

This diminishing of the void region inducing a decrease of   and maxCV  has already been 

pointed out in [88]. In this paper the authors related the decrease of the void region to the diffusion 

mechanism for the charge transfer which was incorporated in their model. In our case the 

mechanism is different because it is only due to the value of the T parameter. But in any case the 

consequence on the subcritical bifurcation characterized by   and 
maxCV is the same.  

 

Figure 8-18. Total amount of the void region of the charge density contour map versus T for Ra=1000.  
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Figure 8-19. Snapshot of the charge density contour map for different T which highlights the number of 

cells for Ra=1000.  
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Figure 8-20. Vmax versus Ra for different values of the T=160  

 

(a) Stream function 

     

(b) Temperature field 

 

(c) Charge density field 

Figure 8-21. Steady state isocontours of stream function, temperature and charge density field: Ra=0, T=160, 

the results are obtained by restarting the computation from Ra = 250, T = 160 

The slight jumps which are observed on the curve for T=90 and T=160 correspond in fact to the 

change of wave length   of the most unstable mode which is actually related to the number of 

convective cells in the domain. Indeed it is observed on Figure 8-19 that when T increases the 

number of cells in the domain increases too. Conversely when T is decreased the number of cells 

diminishes which means that the half wave length increases to reach 1. (10 cells) observed for T=0 



229 

 

which corresponds to the pure thermo-convective problem (see Figure 8-16a). We have to keep in 

mind that in strong injection for pure electro-convective problem the half-wave length is 0.614. (16 

cells should indicate a half wave length of 0.625).  

At the end of this subsection, we present an interesting result. We first started the computation with 

T=160 and Ra=250, and we obtained a steady cell convection. Then we gradually reduce the Ra 

number to 0 and the results are summarized in Figure 8-20. The most interesting point is even 

when Ra=0 the flow is still on motion which means the heat is completely transferred through the 

Coulomb force. Thus the hysteresis loop shown in Figure 8-20 is not complete. In other words, 

there is only up-jump part. To completely damp out the convection, we need to reduce the T 

parameter or reverse the direction of the temperature gradient. The flow structure and temperature 

field is shown in Figure 8-21.  

8.5 Heat transfer enhancement induced by electrically generated convection  
 

In this section, we quantitatively show the heat transfer enhancement phenomenon due to strong 

unipolar charge injection in a rectangular box configuration. The aspect ratio of the box is set to be 

2 with no-slip boundary conditions on the lateral walls. 

The case of a strong injection C=10 is considered here. The variation of ionic mobility and 

permittivity is taken as independent of temperature so that N=L=0 and the dielectric force could 

also be disregarded. 

We start from rest and all the quantities are set to zero. At t=0 the liquid is heated from below and 

the electric potential difference between the two electrodes is applied and the electric charges are 

injected in the bulk. 

From the linear stability analysis, it appears that when submitting the liquid layer to charge 

injection, it is possible to induce a convective motion whereas the Rayleigh number is under the 

threshold value 1708.  Then the question of enhancing the heat-transfer through this mean arises 

naturally. We have computed the mean Nusselt number defined as below along the hot wall.  
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From Figure 8-22 it is interesting to note that the mean Nusselt number is noticeably increased 

with T as it has been confirmed by [172][292][294]. 

Figure 8-23 (a) gives the evolution of this mean Nusselt number versus Rayleigh number for 

different values of T. Figure 8-23 (b) represents experimental results performed by Pérez et al 

[294]. First we observe a similar tendency for both numerical and experimental results. From these 

curves another important point can be emphasized. Above a given range of Rayleigh numbers 

around 15000, and for T>0 increasing the Rayleigh number does not increase the Nusselt number 

much. This tendency is more visible on the experimental curves (see Figure 8-23 (b)). In other 

words the Nusselt number becomes almost independent of the Rayleigh number for high enough 

values of T. 
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 Figure 8-22. Mean Nusselt number versus T for Ra=10000, Pr=10.  
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(a) numerical results (b) experimental results Pérez et al. [12] 

 

 Figure 8-23. Mean Nusselt number versus Rayleigh for different values of the T parameter, Pr=10. 

 

In Figure 8-24, we present the time evolution of the maximum vertical velocity component of the 

flow at Ra = 10000 for several values of T as well as the flow structures in terms of streamlines 

isocontours.  

Let us notice that the aspect ratio is 2. For pure thermal problem (T=0) as expected we obtain a 

steady solution with two thermo-convective cells. When T is increased to 100 and 200 the steady 

value of the maximum velocity is visibly augmented. The increase of the velocity field explains the 

heat transfer enhancement in the range of ]250,0(T . Indeed in natural convection in enclosure 

the velocities are small and when the electric force is generated these velocities are immediately 

and significantly augmented [161]. When we further increase T value to 300, the steady two-cell 

structure starts to oscillate. Theses oscillations indicate a better fluid mixing, which can also 

contribute to the heat transfer enhancement effect. A significant change is observed with T =350 

and T = 400 in the flow structure. Indeed we can observe that the flow bifurcates to a four cells 

structure. For T=350 the flow is steady while for T=400 these four cells start to oscillate too as in 

the case T=300. 
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This four cells pattern will indubitably contributes to increase the vertical activity of the flow and 

hence the fluid mixing. This explain too why the heat transfer can be increased consequently.  

 

 

 

 

 

 

 

T=400 

 

T=350 

 

T=300 

 

T=200 

 

T=0 

 

 

Figure 8-24. Time history of the maximum of vertical velocity with the associated flow structure depicted 

by the streamlines for Ra=10000, Pr=10 and different values of the T parameter. 

 

In this final numerical experiment, the fluid is still heated from below and we consider electric 

charge injection from the bottom or the top.  
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Figure 8-25. Mean Nusselt number time history for Ra=10000, Pr=10. 

 

In Figure 8-25 the time evolution of the mean Nusselt number for Ra =10000 and for different T 

values is presented. We can notice that the value of the mean Nusselt number is notably increased 

in comparison with the reference case of the pure thermal problem for which T=0. For T=100 and 

T=200 after a brief transient period a steady state is reach and the final value of the Nusselt number 

is nearly the same whatever injection is from bottom or top. We observe an augmentation of the 

mean Nusselt number and therefore of the heat transfer of 10.4% for T=100, 30.96% for T=200 and 

96.23% for T=400 with injection from the top. This increase of the mean Nusselt number is 

directly linked to the dynamic mixture induced by an increase of the vertical activity generated by 

the development of the electro-convective instability.  

8.6 Conclusions 
 

The typical problem considered in this chapter is a dielectric liquid layer simultaneously subjected 

to thermal gradient and unipolar charge injection. The whole set of governing equations associated 

with the electro-thermo convective phenomena is solved directly with a finite volume method. An 

original numerical procedure based on total variation diminishing (TVD) scheme is implemented 

to compute the charge density distribution.  

The numerical approach was firstly verified with two stability problems (one is stationary and the 

other one is over-stable) which had been tackled with the linear stability analysis approach. A good 

agreement was found between our numerical values and theoretical ones. In addition, the 

over-stable flow of the ETHD system is verified with a direct numerical solver for the first time.  

The numerical solver then is used to systemically analyze the linear and nonlinear stability of the 

injection mode when both heating and injection are from the bottom electrode. The neutral stability 

curve which separates the stable and unstable regions is successfully reproduced. The existence of 

nonlinear phenomenon and associated finite-amplitude bifurcation behaviour are highlighted in the 
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case of the development of the Rayleigh-Bénard instability. It is shown that subcritical bifurcation 

with a hysteresis loop may occurs for suitable values of the electrical parameter T.  The detailed 

flow structure, the charge density, stream function and temperature fields involved in this problem 

are also presented.  

Finally, the numerical approach is used to investigate the effect of the charge injection on the heat 

transfer in a dielectric liquid layer. The numerical results show that the charge injection 

significantly increases the heat transfer accordingly to several experimental results from the 

literature. Injection from the bottom electrode of the upper one leads to almost the same 

enhancement. The Nusselt number becomes almost independent of the Rayleigh number for high 

enough values of T. Our results are in a good qualitative agreement with the available experimental 

data.  
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Chapter 9 Summary and Conclusions  
 

9.1 Achievements and Findings 

 

A direct numerical tool based on finite volume method has been developed to simulate electro- and 

electro-thermo convective phenomena of a dielectric liquid subjected to unipolar injection and a 

thermal gradient. The whole set of governing equations includes charge density equation, Poisson 

equation, Navier-Stokes equations and energy equation. All equations are rewritten in the form of a 

so-called generic equation describing a general unsteady convection-diffusion transport of a 

conserved quantity.  

The first part of this thesis consists in discussion on the discretization schemes about this generic 

equation. One of the aims of this study is to introduce some recently developed convective and 

diffusive schemes to enable numerical simulation of charged coupled problems. Considering the 

hyperbolic nature of the charge density equation, we focus on the Total Variation Diminishing 

(TVD) type high-resolution scheme which can accurately capture the possible high gradient of the 

charge distribution. For diffusion term and Poisson equation, we adopted a newly-developed 

Improved Deferred Correction (IDC) scheme which can be applied to extremely distorted meshes. 

The second part is to apply our numerical approach to study the flow motion of dielectric liquid 

due to unipolar injection and thermal gradient.  

Numerical schemes  

 

1. The unified approach for TVD-type bounded higher-resolution convection scheme is 

applied to the unsteady pure convection problem to compare the effectiveness, accuracy 

and computational cost. It is found that all these high-resolution schemes can avoid the 

traditional high-order schemes’ oscillation problem and can largely improve the accuracy 

of the results in different dimensions and under different background flow fields. Moreover, 

there are significant differences of accuracy and computational cost among different 

schemes, and the MUSCL, SMART and UMIST schemes are recommended. 

2. Three widely used methods for the calculation of diffusive flux: the coordinate 

transformation method, the surface decomposition method and direct gradient evaluation 

method have been revealed to be closely related to each other in two-dimensional 

non-orthogonal grid system. The performance of the original IDC scheme has been 

improved by using 2
nd

 order gradient evaluation method and appropriate boundary 

condition treatment.  

Electro-convection 
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3. Numerical simulations have been undertaken to characterize the development of subcritical 

electroconvection instability that occurs in a plane layer of a dielectric liquid subjected to 

unipolar injection. The linear and non-linear stability parameter respectively Tc and Tf that 

we obtained numerically are very close from the ones predicted by the stability analysis. 

Our results have been compared with the ones computed by all the available numerical 

studies in the literature. It is observed that our results are significantly more accurate than 

the other previous ones.  

 

4. Some difficulties were met for the weak injection case, though we can still obtain a good 

estimation for Tc. The flow structure is found to highly depend on M parameter. Only in the 

range ]10,5[M , the flow tends to be a quasi-steady state when T is slight above Tc. 

Otherwise, the motion is very chaotic and there is distinct discrepancy for the non-linear 

criterion Tf, between the predicted value of the hydraulic model and our result.  

 

5. Some further studies have been undertaken with the strong injection case.  

 

1) The successive instabilities and the way to the chaotic state has been defined: no motion 

 steady one cell  periodic one cell  steady two cells periodic two cells  

pseudo-periodic two cells  chaotic (including plumes). 

2) The effect of the diffusion mechanism for charge density transport on hysteresis loop 

(including Tc and Tf) and the flow structure of finite amplitude convection has been 

shown.  

3) The stabilizing effect of the lateral walls on the linear and nonlinear stability criterion 

has been revealed. It is also found that the overall structure of the flow pattern that 

develops when the T number exceeds its critical value highly depends on the aspect 

ratio of the physical domain, especially when this ratio is small.  

4) A three-dimensional case has been provided to show the extension method of our 

numerical algorithm. The three-dimensional structures of the convection cells are 

shown.  

Electro-thermo-convection  

 

6. Our numerical approach for electro-thermo-convection was verified with a stationary and 

an over-stable stability problem which have already been tackled with the linear stability 

analysis approach. A good agreement was found between our numerical values and 

theoretical ones. The over-stable flow of the ETHD system is observed with a direct 

simulation approach for the first time.  
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7. Taking the case that both heating and charge injection are from the bottom side as the 

example, a detailed analysis about the linear and nonlinear stability was done. The neutral 

stability curve which separates the stable and unstable regions is successfully reproduced. 

The existence of nonlinear phenomenon and associated finite-amplitude bifurcation 

behaviour are highlighted.  

 

8. Heat transfer enhancement by strong unipolar injection has been demonstrated. A good 

agreement has been found compared to some experimental results in literature.  

 

9.2 Improvements and Extensions  

 

Since our numerical solvers have been proved to be efficient, some direct application jobs can be 

done in near future.  

1. Numerical studies with pure weak unipolar injection. Some further studies are needed to 

explain why the flow structure in weak injection highly depends on M parameter or electric 

Reynolds number.  

2. The non-autonomous injection is closer to the practically physical problems. Though our 

numerical solver incorporates modules of non-autonomous injection based on some injection 

laws, numerical tests and studies have not been done yet.  

3. The three-dimensional computation of strong unipolar injection. An important goal of 3D 

simulation is to observe the regular hexagonal cell. Till now, we only observe the irregular 

hexagonal cell in a rectangle of a size of LX: LY: LZ = 4: 1: 4. Thus we plan to further 

increase the computational domain to reduce the constraint of the boundary sides on the flow 

structure.  

4. The combining effects of charge injection and thermal gradient on dielectric liquid can be 

divided into different situations. In this study, we only discuss one of them (both heating and 

injection are from below electrode) in details, some more works should be done with other 

heating and injection modes.  

5. There exist a large number of non-dimensional parameters in a complete 

electro-thermo-hydrodynamics system, especially when the fluid properties, charge mobility 

and dielectric constant are temperature-dependent. Some extra studies are required to 

establish the influence of different non-dimensional parameters, especially on the flow 

stability.  

This present study mainly concerns about the numerical aspect and the research problem is classic 

but simple. Some related physical problems may be taken into account in the coming future,  

1. Direct numerical simulation of dielectric electrohydrodynamic convection in a blade-plane 



237 

 

configuration and coaxial wire cylinder geometry. 

2. Numerical studies of double injection with recombination.  

3. Numerical studies of linear and nonlinear electroconvection under AC electric field.  

4. Dissociation-injection conductivity model for pure electro-convection and electrothermal 

convection.  

5. Instability at the interface between two immiscible dielectric fluid layers subjected to 

charge injection and stability of a droplet subject to an electric field.  

6. Rose-window instability in a low conducting liquid.  

7. Plasma discharge numerical simulation. Our tools may be easily extended to deal with 

numerical simulation of plasma discharge phenomena.   

 

Some numerical improvements and extensions have to be performed to improve the capability of 

the solvers.  

1. To deal with fine meshes and large computational domain in 3D situation, the code must 

be parallelized.  

2. Turbulence modeling. It has been shown that full 3D electroconvection is more chaotic in 

two dimensions and a length scale distribution exists. Thus some turbulence model should 

be taken into account to compute turbulent 3D electro- and electro-thermo- convection in 

dielectric liquid. Large eddy simulation (LES) approach should be attempted.  

 

So far direct numerical simulation technique has not been extensively applied to the numerical 

simulation of many complex EHD and ETHD phenomena. Numerical studies are necessary to 

obtain insight into the applicability and usefulness of direct simulation approach for these classes 

of problems,.  
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Appendix A 

Limiter function for TVD-type High-Resolution schemes 

 

In this section, we listed all the TVD schemes we summarized. It should be stressed here that the 

expressions of various schemes in the following table are not entirely the same with the schemes in 

Appendix A of [84]. The reason is the definitions of the gradient ratio r  are different (in a 

reciprocal relationship). However, the expressions of the five classical limiter functions: Minmod 

[A6], Superbee [A7], MUSCL [A2], van Leer [A1] and van Albada [A3], are the same because of 

their symmetric property.  

Table A-1. Limiter functions of various TVD-type HR schemes 

Scheme Limiter function Author & Year 

 

Van Leer 
1



r

rr
 

 

van Leer, 1974 [A1] 

MUSCL )]2,,2min(,0max[
2
1

2
1 rr  van Leer, 1977 [A2] 

 

Van Albada-1 

12

2





r

rr
 

 

van Albada, et al., 1982 [A3]  

Osher max[0,min( , )],(1 2)r     Chatkravathy and Osher, 1983 

[A4]  

Sweby max[0,min( ,1),min( , )],(1 2)r r     Sweby, 1984 [A5]  

Min-mod )]1,min(,0max[ r  Roe, 1986 [A6]  

Superbee max[0,min(2 ,1),min( ,2)]r r  Roe, 1986 [A7] 

SMART )]2,,4min(,0max[
4
3

4
1 rr  Gaskell & Lau, 1988 [A8] 

UMIST )]2,,,2min(,0max[
4
3

4
1

4
1

4
3  rrr  Lien & Leschziner, 1994 [A9] 

 

CHARM  2
1

3

2 



r

rrr
 

 

Zhou, 1995 [A10] 

OSPRE 

12

3
2

2





rr

rr
 

Waterson & Deconinck, 1995 [A11] 

SPL-1/3 1 2 1 2
3 3 3 3

max[0,min(2 , , ,2)]r r r   Waterson& Deconinck, 1995 [A11] 

Gamma 1 1 1
1 10 2

max[0,min(1, )],
m

r
mr




   H. Jasak,, 1999 [A12] 
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1
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1
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0

0

1

1 5
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r

r

r

r

r



 

 

 



 

 

 

Lin & Lin, 1997 [A13] 

 

Van Albada-2 
1

2
2 r

r
 

 

Kermani, 2003 [A14]  

 

 

HOAB 

1 1
2 2

0
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1

2

r

r





 



1
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1
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0

0

1

1 3

3

r

r

r

r
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J. J. W, et al., 2003 [A15] 

SPL-max-
2
1   )2),,max(,2min(,0max

4
3

4
1

4
1

4
3  rrr  Waterson& Deconinck, 2007[A16] 

SPL-max-
3
1   )2),,max(,2min(,0max

3
2

3
1

3
1

3
2  rrr  Waterson& Deconinck, 2007 [A16] 

M. Cada & M. 

Torrihon 
   


















  6.1,,2min,5.0max,
3

2
min,0max

3

2 rrr
r  M. Cada & M. Torrihon, 2009 

[A17] 
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Appendix B 

Various gradient evaluation methods 

 

One important contribution of present study is the highlighting of the importance of appropriate 

gradient evaluation methods for both high-resolution convection schemes and improved deferred 

correction (DFC) diffusion scheme. Several widely used gradient evaluation methods have been 

incorporated in our numerical solvers. The algorithms of these evaluation methods are explained in 



262 

 

details in the following which will be helpful to understand their performance on different 

non-orthogonal grid systems. 

Method 1: Simple Gauss Formula 

One of the simplest methods can be expressed by the simple Gauss formula,  

 
1

fP
fP

S
V

                                            (B-1a) 

(1 )f x P x Kf f                                           (B-1b) 

where PV indicates the volume of the control volume P and S is the outward-pointing surface area 

vector.  

It is worth pointing out that the above simple Gauss formula is only first order when there is 

skewness on the surfaces, as Eqn. (B-1b) couldn’t ensure the value at surfaces is evaluated at the 

surface centroid. If strict second-order accuracy is to be maintained, some corrections must be 

introduced, see method 2 and method 3.  

Method 2: Two-Step Gauss Formula 

A second order method for Gradient computation can be developed basing on the modification of 

the simple Gauss formula. It contains two steps. Firstly, the same equation as Eqn. (B-1b) is used 

to get the approximation of f . Then a correction is applied to obtain the improved value 

of
f  from

f , 

            f f f
ff  
                                    (B-2a) 

where a simple interpolation expression can be used to decide gradient at surface, 

                  ( 1 )x xf P K
f f                           (B-2b) 

Then the new value of f  is used for gradient computation,   

              
1

fP
fPV

    S                                   (B-2c) 

Method 3: One-step Gauss Formula  

A one-step method is reported in [B1]. In this approach, the value of f  is directly computed by a 

single equation,  

               
1 1

2 2
f P K P K

Pf Kf    
                         (B-3) 
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After getting the estimation of
f  , Eqn. (B-2c) can be used for gradient calculation.  

For method 2 and method 3, the gradients at CV nodes are unknown at the beginning and to be 

decided by
f  . Thus, an extra iteration loop is necessary for better accuracy. We name the new 

iteration Gradient Iteration Loop. And the initial estimation of the cell gradients can be obtained by 

some symmetric schemes, like 

               1
2f P K                                         (B-4a) 

and 

              
' '

' ' ' '

Kf Pf

f P KPf Kf Pf Kf
    

                              (B-4b) 

Both Eqn. (B-4a) and Eqn.(B-4b) were applied to the numerical test cases, little difference was 

found. For simplicity, only the numerical results with Eqn. (B-4b) will be present in all test cases.  

By observing Eqn.(B-2a), (B-2b) and (B-3), there is gradient value in the final expressions, which 

means an extra loop may be needed to improve the accuracy for both one-step and two-step Gauss 

Formula. However, from the numerical tests, the effect of the addition of the extra loop for 

one-step and two-step Gauss Formula are completely different, which is an interesting finding.  

Both Method 2 and Method 3 are based on simple Gauss formula, but with correction to obtain a 

better approximation of values at the surfaces’ centroids. In addition, the method which plays no 

restrictions on cell irregularity could also be effective to overcome the difficulty mentioned in 

Method 1. The Least-squares approach belongs to this method. 

Method 4: The Simple Least-squares approach  

The Least-squares approach is very attractive when skewness is distinct, as the estimation of values 

on the surfaces is avoided. The key idea of the Least-squares approach is to reconstructs the 

solution in the neighborhood of the cell in a least-squares sense [B2].  

For example, by assuming a locally linear variation of , each neighboring element cell centre 

value may be expressed as,  

KPPK r                                         (B-5a) 

where Kr is the vector from the centroid of cell P to the centroid of neighboring cell, see Figure 

B-a.  
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Figure B-a. Nodal notation and locations used in the Least-squares calculation of CV gradient 

Substituting coordinate position expression of Kr for all cells around P , an overdetermined 

system of linear equations is obtained,  

Md                                          (B-5b) 

where M  is the 24 matrix for quadrilateral meshes, d  is the vector of the components of 

gradients of at nodal P and  is the vector of the difference of , 
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The overdetermined system may be solved in a least square sense, which means the sum of the 

squares of the errors over all neighboring cells,  

  
K

KRR 2  

 PKKPKR   r  

is minimized.  

By differencing R with respect to 
Px


 and 

P
y


and equating to zero, we obtain 

 TT
MMdM                                         (B-5c) 

Then by inverting MM T , the final expression for gradient  evaluation is obtained as,  

  
 TT

MMMd
1

                                      (B-5d) 

Method 5: The Improved Least-squares approach [B3][B4]  
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In terms of one-dimensional Taylor Series Truncation Error, the gradient computed by simple 

Least-squares approach is second-order accurate on a uniform grid only. In order to achieve an 

approximation of second-order on a non-uniform grid, then the influence of the distance vector 

modulus has to be taken into account, and then an improved version of the simple Least-squares 

approach is obtained.  

  
2

1
 


























K K

K
P

K

PK

K

R
r

r

rr



               (B-6a) 

The above expression is equivalent to the requirement that the projection of  P onto Kr fits the 

gradient based on the values of variable in that direction and the influence of neighboring 

point K on the gradient is weighted by the modulus of the distance vector.  

By differencing R with respect to 
Px


 and 

P
y


and equating to zero, we obtain,  

HGd                       (B-6b) 

where H  is a 12 matrix and G is a 22 matrix with the members expressed as,  

2

K

i

K

K K

PK
ih

r

r

r 









         2,1i          (B-6c) 







K K

j

K

i

K
ijg

3
r

rr
     2,1i   2,1j          (B-6d) 

where 
i

Kr is the i
th

 Cartesian component of vector Kr .  

For 2D problems with different types of meshes, MM T and G are always 22 matrix, they can 

easily be inverted analytically, which brought convenience for programming. While for 3D 

problems, MM T  and G are become 33 matrix, a special subroutine for matrix inverting is 

inevitable.  

It should be pointed out that the members of matrix MM T and G are concerned with positions of 

CV nodes, thus it is enough to calculate   1
MM T and 1G once.  

Some more accurate but complicated methods for gradient computation are available, see [B5][B6]. 

All these methods utilize more CV nodes, or vertexes points, or extra constructed points’ 

information, which require more storage and introduce difficulties for programming procedure.  
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Appendix C 

Coordinate Transformation Method and Direct Gradient Evaluation Method 

In this appendix, we try to deduce the final formulae for diffusive flux estimation with 

thecoordinate transformation method (CTM) and the direct gradient evaluation method (DGEM) 

using available information such as values of adjacent nodes and geometry information.  

C.1 Coordinate Transformation Method 
 

For two-dimensional problem, the outward-pointing face area vector, f f fS S n  can be 

determined as,  

   , ,   f x y b a a bS S S y y x x                                (C-1) 

And the diffusion flux at the cell face can be directly expressed as,  

      f f x x y yf
S n S S                                    (C-2) 

where  


x x

 and 
 


y y

. The difficulty is that the x , y directional derivatives cannot be 

explicitly expressed in terms of  nodal values P and K. 

First, we define a generalized coordinate system with covariant bases  2,1e e  locally on each cell 

face, where 1e and 2e are unit vectors from f  (the cross-section point of PK  and ab ) to K 
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and from f  to b, respectively. By the chain rule, the 1e , 2 e  directional derivatives are 

obtained,  

1 1 1

2 2 2

  

  

 


 

e x e y e

e x e y e

x y

x y
                                        (C-3) 

By simple operation, 

1 2 2 1

2 1 1 2

 


 



 


 

 

e e e e

x

e e e e

y

y y

y x
                                      (C-4) 

where, 
1 2 2 1

  e e e ex y x y .  

So Eqn.(C-2) turns to  

  1 2 2 1 2 1 1 2
   

  
 

     
 

e e e e e e e e

f f x x y y x yf

y y y x
S n S S S S         (C-5) 

Then the key problems switch to compute
1

e
,

2
e

, 
1e

x ,
2ex ,

1e
y and 

2ey with available information. 

The calculation is straightforward through the following expressions,  

1 2

1 2

 

 


 




  


b aK P
e e

b aK P
e e

x xx x
x x

y yy y
y y

                              (C-6.a) 

1 2

  
 

 


  b aK P

e e

 

                              (C-6.b) 

where   and   represent the distances from P to K and a to b, respectively. In fact,   is equal 

to fS . Putting Eqn.(C-1), Eqn.(C-6.a) and Eqn.(C-6.b) into Eqn.(C-5), the final expression is 

obtained,  

  tan
cos

  
 

  


   



b aK P
f f f ff

S n S S                   (C-7) 

where   is the angle between n  and 1e . It should be noted that the right hand side of Eqn.(C-7) 

includes two parts: the first part corresponding to the principal diffusion and the second one to the 

cross diffusion as in the curvilinear coordinate system [c1]. When the mesh is orthogonal, the 

second term vanishes.  

The same or similar derivation processes appeared in [C1][C2]C3].  
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The left problem lies in how to evaluate the values at the nodal points, a and b . The universal 

interpolation approach can be expressed as,  

1

1



 








N

i i

i
n N

i

i

W

W

                                                (C-8) 

where n a  or b , N is the number of the cells sharing the node, i  is the i th cell value, and 

iW  is the weighting factor. The two simplest methods are,  

1
i

i

W
r

 or 
1

i

i

W
A

                                    (C-9) 

where ir  is the distance from the centroid of the i th cell to the nodal point and iA  is the i th cell 

area. In particular, the accuracy of the interpolation method of Eqn.(C-8) and Eqn.(C-9) is limited. 

As pointed out in [C2], this interpolation method is second-order accurate only on “regular” 

triangular grids and is equivalent to the bilinear interpolation on rectangular grids. For common 

grids, some better methods, like Lagrangian multiplier method, need to be incorporated [C4][C5].  

Another potential error comes from the skewness. It is obvious that the above method does not take 

into account this source of error. In fact, this mesh-induced error is not easy to overcome.  

So, the main error of the coordinate transformation method contains two parts: (1) 

Skewness-induced error, (2) nodal value interpolation error.  

C.2 Direct Gradient Evaluation Method: DGEM 
 

The direct gradient evaluation method for diffusion flux computation appeared for the first time in 

[C6]. The core of this method is to construct two virtual points on the mid-perpendicular line of 

surface fS .  

Checking Fig. C-2(a), the point f  is defined as the midpoint of the surface fS . We draw a line 

which passes through f  and is perpendicular to the surface. Then if the location of the two 

virtual points 'P  and 'K , belonging to the mid-perpendicular line is known and if the value of   

at this node can be interpolated, the diffusion flux through the face can be expressed as,  

  ' '

' '

 



   K P

f ff
S n S

K P
                                 (C-10) 

Then the new problem which arises is how to choose the location of the virtual points as infinite 

ways are possible? Different options can be developed. In that sense DGEM can also be seen as a 

family of methods only different in the way the virtual points are chosen.  
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In [C6], for unstructured grids the location of the virtual points is the intersection between the line 

connecting two CV nodes and the mid-perpendicular line, see Figure C-1(b). Then the 

second-order-accurate central differencing scheme can be used to compute the values of virtual 

points from the values of the cell center points. The method is second-order accurate even for 

general meshes. Nevertheless one drawback remains, it is not easy to define the intersection 

locations for general polygon meshes.  

To overcome this difficulty, Peric developed a similar method in [C7] following the same idea of 

virtual point construction. The positions of their virtual points can be seen in Figure C-1(c). The 

virtual point is the orthogonal projection of CV nodes onto the mid-perpendicular line. The idea is 

to choose the point on the mid-perpendicular line which minimizes the distance between the virtual 

point and the CV node. This supposed short distance should help to increase the accuracy of the 

overall algorithm.  

 

 
 

(a) (b) 

 

(c) 

Figure C-1. Detail of the grid and geometric parameters for direct gradient evaluation method (a) the general 

positions of virtual points (b) Virtual points of Kobayashi M [C6] (c) Virtual points of Ferziger and Peric 

[C7] 

Thus, once the locations of the virtual points have been determined, the values of    at these 

nodes can be interpolated using the following second order expression from Taylor series.  

 '     P P P
PP                                        (C-11a) 

 '     K K K
KK                                      (C-11b) 
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Introducing Eqn. (C-11a) and Eqn. (C-11b) into Eqn. (C-10), the following expression is obtained,  

 
   

' ' ' '

K P K P
f f ff

KK PP
S n S S

K P K P

  


   
           (C-12) 

Noting that the relationship between the length of line PK  and line ' ' cosP K   , Eqn.(C-12) 

can be rewritten as,  

 
   

cos cos

  


   

   
   K P K P

f f ff

KK PP
S n S S        (C-13) 

It is interesting to point out that the first term of the right hand side of Eqn.(C-13) is exactly the 

same as the primary-diffusion term in Eqn. (3-24) and that it will also be evaluated implicitly. The 

second one will be explicitly computed from the values of the previous iteration in the source term.  

As the skewness has no impact on this method, the error introduced by DGEM in the interpolation 

process, see Eqn (C-11.a) and (C-11b), becomes the main error source.  
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Appendix D  

Numerical method for the determination of the linear stability criterion 

In the present study, a great many critical values have been computed numerically for stability 

analysis and checking of the accuracy of the developed numerical codes.  The method with an 

example will be explained in details here.  

In the case of the electro-convective instability of a dielectric liquid layer to a strong unipolar 

injection, it is well known that a convective motion of liquid arises at the critical non-dimensional 

T number (Tc) for fixed M and C.  Generally speaking, the numerical diffusion decreases with 

increasing number of control volumes N. For a fixed value of N, tiny numerical fluctuations or an 

asymmetric perturbation introduced artificially can be used to develop the flow. If the value of T 

number is high enough, the fluctuations or perturbation will start growing. The maximal velocity or 

any other physical quantity of convective motion will increase exponentially in time with some 

growth constant.  
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Figure D-1. The non-dimensional maximal vertical convection velocity as a function of dimensionless time 

for four values of T number (170, 180, 190 and 200). Grid: 100×100.  



272 

 

T



160 170 180 190 200 210

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

T
c

 

Figure D-2. Non-dimensional growth constants found by Figure D-1. as a function of T number and the 

critical T number for 100×100 grid system, Tc = 164.9. M=10, C=10. 

In Figure D-1, we plotted the numerical results of a strong injection problem with different T 

number. Note that the complete proof of the method is given in [D1].  

In addition, the true critical T number should be computed with the grid system of indefinitely 

small size. Obviously, as the grid size decrease, the critical value will tend to its true critical value, 

to see Table D1 as an example. Thus, another extrapolation is needed.   

Table D-1. The critical T number versus mesh size 

Grid  The critical T number  

50×50 158.3 

80×80 161.9 

100×100 163.1 

150×150 163.2 
 

It is interesting to note that a very exact value of critical T number Tc = 163.2 is obtained at N = 

100×100, which differs from the theoretical value Tc = 164.1 by more or less 0.55%. In addition, 

there is some tiny manual error when computing growth constant and interpolation error. Thus, in 

practical, we can use the critical value obtained at 100×100 grid system to represent the final 

limiting numerical value. The same strategy will be used throughout present dissertation. Another 

important detail is the selection of T values to compute growth constants. Normally, the selection 

should be close to the final critical values.  
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