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pour l’obtention du
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Laboratoire d’Informatique de l’Université de Pau et des Pays de l’Adour — EA 3000



Mis en page avec la classe thloria.



Remerciements
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porter cette thèse et d’avoir contribué à sa amélioration par leur remarques. Je remercie
aussi Monsieur Mourad Oussalah pour avoir accepté de présider ce jury. Merci pour
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pour votre aide précieuse dans toutes les occasions. Je suis ravi d’avoir travaillé à vos
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Every new beginning comes from
some other beginning’s end

Seneca Roman philosopher, mid-1st
century AD
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Introduction
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1.1 Context and Problematic

Twenty years ago, information systems were homogeneous, monolithic and centralized,
traditional mature approaches such as object-oriented software engineering were suffi-
cient. Nowadays, information systems are distributed, large-scaled, heterogeneous, open
and complex. This leads to the emergence of more high-level technologies that inter-
operate between each other and break the software’s isolation [PCW98]. We can cite
here MultiAgent Systems (MAS) [JSW98] in artificial intelligence domain, component-
based approaches [Szy02] and Service Oriented Architecture (SOA) [PH07] in software
engineering domain. These abstract approaches reduce both development time and com-
plexity on one hand, and increase the quality, reliability and reusability of the developed
systems, on the other hand. Figure 1.1 presents the evolution of software engineering
inspired from [Som04], where we can see the progress from lines of code in structured
programming to the current trends or approaches like service orientation and model
based ones.

Our research is related to the development of distributed systems, for which, we
aim providing more efficient paradigms. We share the same point of view of Braubach
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Chapter 1. Introduction

Figure 1.1: The software evolution.

et al. [BP11] which states that the existing approaches like object, component, agent
and service may not be surely sufficient to describe effectively all kinds of distributed
systems. We must never forget that these approaches inherit conceptual limitations.
Therefore, we need to integrate these approaches or to combine them, in order to raise
their levels of efficiency. Figure 1.2 highlights the challenges of each paradigm. Objects
represent the abstraction of real world ones using Remote Method Invocation (RMI)1 to
ensure their interactions in distributed systems. The component-based approach extends
the object-oriented paradigm by focusing on the separation of concerns and reusability
interests. A component provides or uses functionalities to (from) other components
through well-defined interfaces and most components use the RMI for interactions in
a distributed environment. Service Oriented Architecture (SOA) attempts to ensure
the interoperability between distributed systems using registries to find and publish
services. The autonomy, concurrency and ability to take decisions are key properties of
the agent oriented approach relatively to the previous ones, where agents can coordinate
and negotiate with each other in a distributed environment.

We start by reviewing briefly the history of Service Oriented Architectures, Component-
based approaches, and MultiAgent approaches.

1.1.1 Service Oriented Architecture (SOA)

The SOA paradigm appeared at the late nineties. Nevertheless, its architecture style
and the logic behind it have been existing since the eighties [Tow08]. SOA is based
on service definitions and actors that use or provide them. The registry (where we
find and publish services) is a key element in SOA approaches. Since it is related to

1http://docs.oracle.com/javase/1.4.2/docs/guide/rmi/
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Figure 1.2: The challenges and contributions of current paradigms [BP11].

specific technologies, we consider it in a lower level of design (i.e., Universal Description,
Discovery and Integration (UDDI)2 for web services). The interactions between these
actors to use or provide services is a key concept in this paradigm. This architecture
responds to the needs of open, interoperable and complex information systems.

In other words, SOA views applications as sets of interacting services according to
their roles and independently of their locations, in order to satisfy heterogeneous and
loose-coupled software systems.

1.1.2 Component-based approach

The Architecture Description Language (ADL) is the historical base of the component-
based approaches and appeared in the mid nineties [MDEK95]. This approach offers
the main interest of reusing blocks of code, which implement certain services without
knowing details about their implementations. These black boxes associated with well-
specified interfaces present solutions to reduce the cost of development and redundancy of
codes. It provides efficient solutions for defining well-structured and robust applications
by composing and reusing existing components (following for instance the Commercial
Off the Shelf (COTS) approach [CL00]). A component interface defines the services
of this component. We can consider service-based approaches as a logical extension of
component ones since both of them meet reusability and composition purposes.

1.1.3 MultiAgent Systems (MAS)

The agent approach appeared at the late seventies under the form of Distributed Ar-
tificial Intelligence (DAI) where Hewitt [Hew77] proposed the concept of Actor which
is a self-contained, interactive and concurrently executing object. In the mid nineties,
the collective MAS models appeared. In these models, agents interoperate to achieve
common activities. Organizational MultiAgent Systems (OMAS) are among these new
models. MAS is a paradigm for understanding and building distributed systems, where

2http://uddi.nic.go.th/uddipublic/help/1033/intro.whatisuddi.aspx
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it is assumed that the computational elements, i.e., the agents are able to perform au-
tonomous actions in some environment. The social abilities of cooperation, coordination,
and negotiation between agents [Woo09] is one of their main characteristics. There are
two main types of agents:

• Reactive agents wait until an action happens to respond to the changes in their
environment.

• Proactive agents take the initiative and make decisions in their environment thanks
to goal-directed behaviours characteristic.

Organizational MultiAgent Systems are effective paradigms for addressing the design
challenges of large and complex MAS. Organizations are emergent whenever agents work
together in a shared environment. Many similarities exist between OMAS and service
oriented approaches. They both meet the flexibility and dynamicity features. Organiza-
tions are ways to makeup systems of collaborative services [SH05]. The nature of agents,
as autonomous entities with auto-organized capabilities and high-level interactions, fa-
cilitates the automatic service discovery. For all these reasons, we restrict our research
in OMAS models; then, whenever we refer to agent models in the rest of this document,
we refer to OMAS ones implicitly.

1.1.4 Complementarities between components, agents and services

Component and agent approaches are complementary. They have common points where
a reactive agent is equivalent to a component and they both represent service providers
or consumers in SOA. However, at the same time, they own their key features, which
are not shared between them.

The lack of reutilization is one of the limitation of the agent approach [SA04a,Lin01],
in addition to the risk of losing control related to the autonomy property of agent. These
limitations reflect the need of adding reutilization and robust properties to the models
of agents (which are already key properties of the component approach). However,
the component approach suffers from the lack of high-level interactions [BGZ06], in
addition to its disability to make decisions for repeatable scenarios. Components need
more open and abstract types of interactions since they depend on provided services of
heterogeneous entities to accomplish composition requirements, they also need reasoning
capabilities (which are already key properties of agent approaches).

Figure 1.3 presents the properties of service, agent and component approaches.
Agents offer high-level interactions and behavioural features versus reusability and com-
position ones of components. One of the key features of service-oriented approach is
the interoperability; then, services present pivots of interoperability between agents and
components and it presents business abstraction of agents and components.
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Figure 1.3: Properties of components, agents and services.

1.2 Objective

We already saw that agent and component approaches have their own features and
drawbacks. There is a nice complement between the drawbacks of one approach and
the interests of the other; therefore we aim to provide an approach that integrates these
two paradigms. In other words, our goal is to implement the triangle presented in fig-
ure 1.3 to reach making interacting agents and components via services. Most of the
current applications are designed according to a single paradigm, i.e., only agents, only
components or only services. It would be interesting to use these approaches together to
provide an effective paradigm for the development of more efficient distributed applica-
tions using interoperable agents and components (through services). The service is the
business abstraction of a component or an agent, it represents a pivot to support their
interaction in order to integrate their advantages. Therefore, we focus on the concepts
of service and interaction as key points, notably regarding cooperation between agents
and components.

We can say that the feasibility of specifying an application by interoperable agents
and components via services is our main objective. However, we can always specify
this application with only services, with only components or with only agents along this
research according to the system requirements. A global view of basic elements in this
research is provided in our proposed framework [ACG11]. This framework relates the
three considered domains (service, agent and component) with the domain allowing the
interoperability between components and agents via services (see figure 1.4).

We can recognize the following main elements in figure 1.4:

1. Each domain is represented by a general model, i.e., service, component and agent
models. An additional model named Component Agent Service Oriented Model
(CASOM) is also a part of this framework. This last model allows interoperable
agents and components via services in the same application specification.

2. There is a kind of hierarchy between the four models (service, component, agent
and CASOM). The service model belongs to a higher level of conception than the
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Figure 1.4: Integration framework of service, component and agent approaches.

other three models, although all of them are abstract models as they are not based
on any technological platform.

3. The relations between models represented by arrows allow to transform an appli-
cation specification according to a model to another one. Among these structural
transformations, we introduce here the direct arrows between component and agent
models Agentification and Componentification ones. They are inspired from the
two methods of combining agents and components in [KMW03]. The Agentifi-
cation (resp. Componentification) is the transformation of an application based
on components (resp. agents) to an application based on the target agent (resp.
component) model. They can also be indirect towards the intermediate model
CASOM, by adding agents (resp. components) to the original components (resp.
agents).

4. A layer of concrete models exists in each domain (technological targets for each
domain), like Enterprise JavaBeans (EJB) of component models, Agent Group
Role (AGR) of agent models and AgentComponent (AC)3 of works allowing mixing
components and agents together.

We design our models with the aim of developing an application structured around
the concepts of service and interaction implemented by agents and / or components.
Therefore , this work addresses the analysis of concepts of the different domains and their
mappings according to the structural dimension of an application. The concepts related
to the behavioural dimension are present (e.g. interaction protocol, task, operation ...),
but their study in behavioural terms is beyond the scope of this thesis which represents
a first step towards the integration of service, agent and component paradigms.

3These specific models will be detailed lately in the dedicated chapters for each domain in the state
of the art part.
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1.3 Contribution

In order to realize our objective by implementing this framework, we provide the follow-
ing contributions.

• We study firstly several existing models of components, agents and services. The
originality of this study is by focusing on the two concepts of service and interaction
(since the interoperability between components and agents via services is our goal).
Then, we extract shared concepts between studied models in each domain and
how the two key concepts of interaction and service exist. We also study several
approaches that try to integrate and add values between possible permutation pair
of component, agent and service domains or all of them together.

• We also defined the presented framework in figure 1.4. It groups the four studied
domains (service, component, agent and the domain mixing the previous three
domains) and defines the relation between them, this contribution was presented
in [ACG11].

• From the two previous points, we decide to define our unified models of component
and agent where the concepts of service and interaction are explicit and central. We
also define our own abstract service model, where elements implementing services
(participants) are not considered. Our service model specifies an application as
sets of interacted services, this contribution was presented in [ACGA11].

• The third part of our contribution is related to the integration of these approaches
through the definition of the intermediate model CASOM. CASOM allows the
application specification by interacting components and agents using services.

• After the definitions of the four models, we define mapping rules between their
concepts. These rules define the required transformations (arrows in figure 1.4)
to move from one model towards another, this contribution except the mappings
towards CASOM was presented in [ACGA12,ACG12].

• A design guide is proposed to help the designer in the cases of transformations or
application specifications by CASOM requiring his intervention. It contains hints
to help a designer in specifying applications by CASOM, in order to choose suitable
entities. Moreover, it contains possible variants of transformations from one model
to another.

• The implementation of our framework with its models is the last part of our con-
tribution. We implement our models and the transformations between them in an
environment supporting the Model Driven Engineering (MDE) [Ken02] principles
using the Eclipse Modeling Framework (EMF) [SBPM09].
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1.4 Thesis Outline

The second part of this document presents the state of the art of the existing models of
each domain with focusing on the two concepts of service and interaction. Component
models in chapter 2, agent models in chapter 3 and service models in chapter 4. Lately,
we present the approaches that already mix these three domains or at least two of them
in chapter 5. This chapter contains the works that consider service and component
approaches simultaneously. Then, the approaches that consider service and the agent
together before presenting works that consider component, agent and possibly service
approaches simultaneously.

The third part of this dissertation proposes our contribution. We start by presenting
our framework which defines and introduces the relations between the other parts of the
contribution in chapter 6. Then, we give a short presentation of the MDE principles that
we use along the contribution. This chapter introduces also our case study of a holiday
reservation system as a running example to illustrate all our contribution. We propose
our general unified models of service, component and agent in chapter 7. CASOM
model that integrates the approaches of component, agent and service is proposed in
chapter 8. The definitions of the mappings between the four models are presented in
chapter 9. Chapter 10 presents our design guide to help the designer in choosing suitable
concepts and mapping variants. The concrete implementation of these models and their
transformations are provided in chapter 11.

At the end of this document, we provide a general conclusion and we propose sets of
our main perspectives.
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The more things change, the more
they are the same

Alphonse Karr, French writer
(1808-1890)

Overview

Since our objective is the integration of component and agent approaches by considering
services as a pivot of interoperability and interaction, we need to put the light on already
existed models in each domain, with focusing on the two main concepts of interaction
and service. We need also to study works that already integrate these approaches jointly
or partially.

Many models exist for each domain, however we choose to consider the most repre-
sentative ones, we extract common concepts between the models, subject of the study in
each domain, and the form of the existence of service and interaction concepts (explicit
or implicit).

This part starts by presenting some component models in chapter 2 then we browse
organizational agent models in chapter 3 and we present service models in chapter 4.
Finally, we put the light on the existing works that consider these three approaches
jointly or partially in chapter 5.
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Like a jigsaw puzzle: you have to
make the pieces fit without getting
out the scissors.

Dr. Karl Maurer

Chapter 2
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2.1 Introduction

The term component was proposed by McIlroy in [McI68] where he implemented an
infrastructure of the component idea in UNIX using pipelines and filters. Component-
based development appeared in the early nineties, where the object-oriented approach
failed to cover reusability needs.

Reading and understanding an existing code is always an annoying task for devel-
opers, but reusing an existing code on the form of a component is of great interests.
In this case, a developer just needs to know what a component does, not how it was
developed (done). In component-based approach, we distinguish clearly between com-
ponent and system developments, where a system development presents the assembly
and composition of compatible components, and component development presents how
this component is built.

In this chapter, we present some general definitions related to the component-based
approaches and we study several component models focusing on the two key elements
of interaction and service. The main aim of this chapter and the two following ones
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(chapters 3 and 4) is to extract shared concepts between the studied models and the
form of the existence of the concepts of service and interaction (i.e., explicit or implicit).

We start this chapter by presenting some component definitions.

2.2 What is a component?

Components do not have yet a unified standard definition. Table 2.1 lists some of existing
definitions.

Szyperski [Szy02] A software component is a unit of composition with contrac-
tually specified interfaces and explicit context dependencies
only. A software component can be deployed independently
and is subject to composition by third parties.

Councill and
Heinmann
[CT01]

A software component is a software element that conforms to
a component model and can be independently deployed and
composed without modification according to a composition
standard.

Meyer [Mey03] A component is a software element (modular unit) satisfying
the following conditions:

1. It can be used by other software elements, its clients.

2. It possesses an official usage description, which is suf-
ficient for a client author to use it.

3. It is not tied to any fixed set of clients.

[OMG05] A component represents a modular, deployable, and replace-
able part of a system that encapsulates implementation and
exposes a set of interfaces. A component conforms to the
interfaces that it exposes, where the interfaces represent ser-
vices provided by elements that reside on the component.

Table 2.1: Component definitions

From the previous definitions, we define component as a black box with well-specified
interfaces. These interfaces are its communication points with the other parts of the sys-
tem. A component is a reusable and replaceable part in a system. The interfaces describe
the services used and provided by a component. A well-defined component allows us to
understand its functionality from the specification of its interfaces. Figure 2.1 presents
an example of a simple component named ContactFinder to find someone contacts. We
can use this component ContactFinder in different contexts like mobile phones, yellow
pages, emails address book or Human Resource systems.

Component-based approach is looking ahead towards the Commercial Off The Shelf
component (COTS) [DYC+05, CL00] and their atomic assembly, and atomic substi-
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Figure 2.1: A contact finder component.

tutability. Here, the cost of the system and its quality depends on the cost and quality
of its COTS.

2.3 What is a component model?

A component model defines standards for defining properties those individual
components must satisfy. It defines methods, and possible mechanisms for composing

components according to [CCSV07].

A component must conform to a component model according to [CT01]. The component
model defines how to build a component itself and how to interact and communicate
with other components in component-based systems. Figure 2.2 presents the component
model in [Som04]. It contains three main sub models or three parts. The first part
defines the interfaces and their compositions. Usage information and parameters are
defined in the second part and the information related to the components deployment and
packaging are defined in the third part. We notice that the concept of interaction does
not appear explicitly in this model whereas it might be implicit under the composition
concept of the interface part.

Figure 2.2: The component model in [Som04].

Component models provide ideal choice to build complete systems from the assem-
blage of reusable blocks. The reusability of component in a changed context is a key
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property, as components are black boxes and their only visible parts are their inter-
faces. This property implies the well-defined specification of the component interfaces.
The interface describes services/operations provided by a component and needed ones
to accomplish the component functionalities.

Components within their models are easy to maintain, support, and modify for future
requirements. However, one of their weaknesses is the lack of dynamicity either in
component’s composition or in its substitution. Then, it is interesting to have different
distributed access point for a component since its interfaces are sited in one location
as proposed in [Car03]. The interaction between components exists in different ways:
by Remote Method Invocation (RMI) which is an extension of Remote Procedure Calls
(RPCs) [BN84] or by defining network protocols, which support communications between
different components. We may find a connector entity in some component model like
WRIGHT [AG97] to assemble the components. A well-defined component can be easily
connected to other components to build a composite component that leads in its turn to
complex systems. This guides us to another kind of interaction between the composite
component and its internal ones that is named delegation. A component delegates task
to another internal component. The sender component is responsible for the possible
outcomes of the receiver component. Then, the encapsulation aspect is well respected
in component-based approaches [BGZ06].

2.4 Component models

We introduce the component models through a simplified classification based on their
types of applications. Many works presents component models through classification
like [LW07] and [CCSV07]. In [LW07], the authors categorize component models ac-
cording to their semantic, syntax and component’s composition during the component’s
life cycle. In [CCSV07], the authors classify component models according to their Lifecy-
cle, Construction and Extra-Functional Properties. Since these concepts are not essential
in the concerns of our research; we choose to present the component models through a
simplified classification related to their domains of applications. The kinds of service
and types of interaction between components differ according to the component model
domains of application.

Table 2.2 groups the component models according to the domains using it in addition
to their types of application. We find four main categories: Architectural Description
Languages (ADLs), industrial, conceptual and academicals models.

Category Models

ADLs WRIGHT, RAPIDE,. . .

Industrial EJB, CCM,. . .

Conceptual UML 2.0, EDOC,. . .

Academicals Fractal, SOFA, . . .

Table 2.2: Our component model categories
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There are many other component models related to ADL and categorized in [LW07]
as ADL-like languages such as Koala [OLKM00] and PECOS [WZ02]. There are also
many models extending UML by defining specific profiles such as Kobra [ABB+02] and
Palladio [BKR07]. However, we choose to represent two different, most representative
and well-defined models of each category to extract main concept from this category,
then in ADLs and conceptual models, we consider implicitly the concepts of the ADL-
like models and the UML profile ones respectively.

In the following section, we provide a simple summary of the main properties of
our component model categories by studying two models of each category. We need to
integrate these models to reach a unified component model. This model must meet our
requirements (i.e., the concepts of service and interaction are explicit and central) to
precede this research and it must represent all the models that were studied.

2.4.1 Architectural Description Language (ADL)

The early ADLs produced before 1990s [KM85]. ADLs explored ways to model different
aspects of software architecture. There are many ADLs, each one is devoted to certain
issues and has its ways to solve it. Nevertheless, there are definitely many common
points between them. We provide here the most common definition of architecture in
software engineering.

Software architecture is a level of design that involves the description of elements
from which systems are built, interactions among those elements, patterns that guide

their composition, and constraints on these patterns according to [SG96].

From this definition, we can see an ADL as a language used to model software systems
conceptual architecture. According to Medvidovic and Taylor [MT00], the ADLs com-
mon concepts are: components, connectors, and architectural configurations or systems.
In many ADLs, it is hard to distinguish between the specification and the architecture
description (there is usually a direct relation with the code).

Different types of ADL already exist like Darwin [MDEK95], Acme [GMW97], C2
[MRT99], UniCon4, WRIGHT [AG97] and RAPIDE [LKA+95]. We choose to present
the last two models because they represent the difference between ADLs, where some
ADLs concentrate on the dynamic aspect just like RAPIDE and Darwin, other ADLs
concentrate on the structural aspect, where there is no dynamic reconfiguration, such as
WRIGHT, Acme, C2.

We present here WRIGHT and RAPIDE models respectively as examples for ADLs.
They both belong to a high-level of abstraction and do not suppose a particular rela-
tionship between an architectural description and an implementation.

• WRIGHT is proposed by Allen and Garlan in [AG97]. It is an ADL specifies
structure and formal behavioural specifications for interfaces between components
and connectors. The three main concepts in WRIGHT are:

4http://www.cs.cmu.edu/ UniCon/referencemanual/Reference Manual 1.html
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– Component - It represents an abstract localized, independent computation
unit. A WRIGHT component has its port and its computation. The ports
(interfaces) are the component interaction points. The complete description
of what the component does is presented in its computation that clarifies the
relationship between the ports.

– Connectors - It signifies composition of behaviours for interaction among com-
ponents. A component can behave differently in interactions according to its
role (its responsibilities through an interaction), while the description of the
interaction between roles is available in the glue of a connector. The glue
itself describes the coordination between the roles activities.

– Configuration - It views the whole system with its interacted components
through connectors. It provides a general view of the system structure (in-
stances of components and connectors and attachments between components
ports and connector’s roles).

A main feature in WRIGHT is the use of Communicating Sequential Process
(CSP) [Hoa78] notation to specify patterns of behaviour for the component, con-
nector and system as it distinguishes between internal and external choice. An
essential advantage of WRIGHT is the translation of the formal interface specifi-
cations automatically into CSP. WRIGHT has not direct mappings to implemented
systems, it does not support the execution or the code generation.

The interaction aspect is presented under the connectors to define interacted com-
ponents in a system and to precise the role of each one. The concept of role exists
explicitly, while the service one does not exist.

• RAPIDE is developed by David Luckham at Stanford university [LKA+95]. RAPIDE
is designed with highlighting the simulation yielding Partially Ordered Sets of
Events (POSET) [Pra86]. This ADL language does not have connectors explic-
itly. The components communicate through events by calling actions or functions
in their interfaces in order to explore the dynamicity of the system. The main
concepts in RAPIDE are:

– Component - It specifies its internal behaviour by an abstraction of the code
(the behaviour described by the formalism of POSET (event-based execution
model)). The component in RAPIDE consists of two essential parts, an inter-
face and a module. The interface is composed of sets of services that define
interactions, a service can be provided or required by a component. The in-
terface has also five elements: (a) type, (b) defined functions by synchronous
communication, (c) defined actions by the asynchronous communication, (d)
a behavioural part which represents the constraints on execution of the mod-
ule and (e) constraints to check the validity and conformity of interfaces with
the module through the execution. The second part in the component is the
module that implements an interface and represents an executable prototype
for the component.
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– Events - It is generated by action calls. These calls can ask for services or
information which specify application behaviour. An event pattern defines
the feature of events round between components using types of connection
patterns like causality, dependency or independency.

– Configuration - It contains the component instances with connection rules
between these instances that allow the verification of events patterns.

A main advantage of RAPIDE is the dynamic reconfiguration. It represents a
unique and expressive language for describing asynchronously communicating com-
ponents.

The interaction is somehow implicit under the communication by events through
action calls, at the same time, the concept of role does not exist explicitly since
the pattern of events describes how events can be related then how components
are related. The concept of service is also implicit in the provided or required
interfaces.

Summary: as we saw previously, the main concepts in ADLs are components, con-
nectors and configurations. The component concept in ADLs is treated from an internal
view (its functionality) and from an external view (how does it interact with its envi-
ronment?). ADLs define a component as an architectural unit that represents a primary
computational element and data store of a system. The hierarchical composition exists
explicitly in lots of ADLs except RAPIDE. The composition is achieved by correspon-
dences between the POSETs in the system interfaces and the component interfaces in
RAPIDE.

The connector concept is a first-class concept in most of ADLs but it disappears
in some ADLs like RAPIDE and Darwin. The role concept has the same analysis of
the connector one, since it is usually related to it or exists implicitly within it in most
ADLs. However, it disappears in RAPIDE. The concept of service exists implicitly in
the component interface in RAPIDE model but not in the port of WRIGHT model.
The last concept of configuration or architecture exists in all ADLs where it allows the
reutilization in complex systems.

2.4.2 Industrial component models

The industrial models allow the development, assembly and deployment of software prod-
ucts based on component approach. In this section, we present two industrial models,
i.e., EJB (Enterprise Java Beans) 5 and CCM (CORBA Component Model)6.

• Enterprise JavaBeans (EJB) is a server side component that simplifies the devel-
opment of java applications based on a multi-tier distributed object architecture.
This architecture defines the interactions between the entities (EJB clients, EJB
servers, EJB containers and enterprise beans).

5Enterprise JavaBeans: http://www.oracle.com/technetwork/java/javaee/ejb/index.html
6http://www.omg.org/spec/CCM/3.0/PDF/
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EJB allows the developer to concentrate on writing business logic where its archi-
tecture defines a standard model for java application servers to support portability
(Write Once, Run Anywhere) “WORA”7.

Figure 2.3: Enterprise JavaBeans.

Figure 2.3 presents the main concepts in EJB, which are the bean (component),
the remote and home interfaces and the container. Here, we detail these concepts.

The beans are java classes that represent the component and they have three
main types: session beans, entity beans and message driven beans. A session bean
is created for each client to execute his tasks. It is the first to access, while the
entity beans represents underlying data object or context like databases and many
clients can share one. Message driven bean represents a business process that can
be triggered only by receiving messages from other beans.

The EJB components have two interfaces, home and remote ones. Home interface
provides remote access to create, find, and remove beans. In other words, all
operations related to the bean life cycle. Remote interface provides access to the
tasks and business methods of a bean.

The EJB containers host the beans and provide services related to its life cycle,
like Java Naming and Directory Interface (JNDI)8, life cycle management, lookups,
remote connectivity and security, etc. The major importance of the containers
comes from supplying run-time environment for an EJB. The client usually accesses
the EJB component by the use of Remote Method Invocation (RMI) in a special
type of beans like session bean. This reflects implicitly the notion of interaction,
as the first connection starts with the session beans, then the session bean access

7http://www.interhack.net/people/cmcurtin/rants/write-once-run-anywhere/
8http://docs.oracle.com/cd/B14099 19/web.1012/b14012/jndi.htm#i1084314
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the entity bean. The containers provide some services to ensure the deployment
of the bean. The concept of role does not exist since there are specific types of
beans for specific responsibilities, while the bean itself does not define its services
explicitly where they are presented implicitly within the bean’s interfaces, there
are no provided or required types for the interfaces but home and remote ones.

• CORBA Component Model (CCM)9 is also a server side component model. It
defines distributed components and their interactions. Its components are meta
types according to [LW07] which are the extension of the object in Corba [BN95]
provided by OMG10. The main concepts in CCM are the component, port and
component’s factory. A CCM component has four ports types (interfaces) (fig-
ure 2.4)

– Facet: The provided port (interface) that exposes component services.

– Receptacle: The required port and connection point that allows components
to ”hook” themselves together.

– Event source: It is a connection point for event production, in other words,
it works when a component declares its interest to publish an event.

– Event sink: The components become consumers of the ones that produced
events by declaring events sinks.

CORBA components are assembled by method and event delegations by the match-
ing between facets and receptacles from one side and event sources and sinks from
the other side. We can see that CCMs and EJB are very much similar and they
are interoperable between each other.

Each component has a home or a factory which manages the component type’s life
cycle. It has its attributes, which are their configurable properties.

Figure 2.4: A CCM component.

In CCM, we find both deployment and execution models. Deployment model
consists of four XML files: a software package descriptor, CORBA component
descriptor, component assembly descriptor and property file descriptor. The ex-
ecutable component model consists of component containers, which provide the
runtime environment for CCM component instances.

As presented above, the notion of interaction is implicit under the event calls of
component’s ports. The service concept is also implicit within the provided and
required ports (Facets and receptacle).

9http://www.omg.org/spec/CCM/3.0/PDF/
10http://www.omg.org/
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Summary: we browsed industrial component models through a briefly view of the
two component models of EJB and CCM. There are other models under this category
like COM/.NET [WSW+02]. Component Object Model (COM) have several input and
output interfaces with both synchronous operations and asynchronous events. An es-
sential property of COM is the ability of being implemented by different programming
languages, in addition to the packaging ability for distributed purposes.

There are many common points between both EJB and CCM models. In fact, both
of them are created and managed by homes, run in containers and hosted by compo-
nent servers. The main concepts in the industrial component models are components,
interfaces (ports), homes and containers. The notion of interaction is not explicit here,
it exists in low-level technologies like RMI in EJB and method and event calls in CCM.
The notion of service in EJB and CCM is implicit within their interfaces nevertheless,
we can say that it is more obvious in the CCM model under the ports.

2.4.3 Conceptual component models

These models allow designing the system’s architecture. Most of conceptual components
are related to patterns [PLR+99] but they can be implemented in different technologies
such as EJB, CCM or any programming language. UML 2.0 11 [CD01] and EDOC
[EDO04] are among these conceptual models.

• Unified Modelling Language (UML 2.0) is a modelling language, which respects the
methodologies of Booch [Boo95], Rumbaugh [RBP+91] and Jacobson [JCJÖ92].
UML is widely spread because of the large use of its essential diagrams (use case,
class, instance, sequential, collaboration, state, activity and deployment diagram)
in design phases. A simple component model is defined in UML. A component de-
fines its behaviour through their provided or required interfaces, which implement
its services. The ports are the interaction points of the components. A connector
is the notion that presents the communication between component instances in the
design time. UML contains two types of connectors assembly and delegation. The
assembly connector relates required to provided interfaces. The delegation connec-
tor forwards operations between interfaces of the same type (two required or two
provided ones). The delegation exists usually between the composite components
and their internal ones. The designed component in UML can be implemented by
any other language.

As a result of this short review, components (primitive or composite), ports, re-
quired or provided interfaces and connectors (assembly or delegation) are main
concepts in UML component model. Here the service notion is implicit within the
interface and the interaction notion is explicit in connectors. These connectors are
generally the lines between two interfaces of the same type (delegation) or between
two interfaces of different types (assembly).

11http://www.omg.org/cgi-bin/doc?ptc/2003-08-02
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• Enterprise Distributed Object Computing (EDOC) is a UML profile proposed by
the OMG [EDO04]. This profile simplifies the development of component-based
distributed systems by means of a modelling framework. It embraces Model Driven
Architectures (MDA) [OMG03], which provides design, infrastructure models and
mappings. EDOC is composed of many sub profiles, such as Component Col-
laboration Architecture (CCA)12 which allows specifying the hierarchical levels of
composition, Entity Profile describes the concepts for domain application, Event
Profile specifies the system events and Process Profile attaches system’s function-
ality to a specified domain. The component is presented as a process in a business
logic design, it is viewed as a ProcessComponent in the CCA. Each ProcessCom-
ponent owns its activities, the flow of activities is specified by the choreography of
a protocol. The choreography defines a sequence of actions (nodes and transitions)
in a state machine. The notion of composition is also attached to choreography to
define ways to assemble the components in order to reach certain objectives.

The port is an abstraction of component interface, it can be either simple flow ports
or composites protocol port by attaching a role for each port, we can distinguish if
this port is an initiator or a responder to business functions.

The cooperation between components is realized by their connection. A connec-
tion connects the compatible interfaces to define a data flow as a logical canal of
events. This connection is unidirectional for the simple port and bidirectional for
the composite ones. Another type of communication between components is pre-
sented by the PortConnector, which is the connection point between components
and it is defined by its role.

As we saw above, components (ProcessComponents), ports (simple or composite),
choreography, connections and portConnectors represented by roles are from the
main concepts of EDOC. The notion interaction is explicit in the choreography,
connection and the portConnector, while the notion of service is implicit within
component ports.

Summary: from the previous overview, we can see that UML is interesting for a gen-
eral design purposes for component based systems. The interaction concept (connection)
between components was presented as assembly or delegating connectors between inter-
faces, which are general types of interaction. Contrary to EDOC model, the notion of
interaction is more detailed with attached roles. The notion of service is implicit in the
component interfaces in both UML and EDOC models.

2.4.4 Academicals component models

The academicals models provide an open structural frame for component model by pro-
viding a hierarchical composition and assuring the system control and dynamicity. They

12http://www.synsyta.com/readings/docs/dat/EDOC-CCA-summary.pdf
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are generally used and resulted of academic researches in universities. We list here the
two models of Fractal13 [BCS04] and SOFA [PBJ98].

• Fractal is a component model resulted of the collaboration of INRIA and France
Telecom in 2002 [BCS04]. It can be viewed as three different models: abstract, con-
crete and implemented models. In the abstract model, the main concepts are con-
tent and controllers. The component in its turn consists of a functional part named
the content; it consists generally from the sub components and a non-functional
part named the controller that provides external interfaces to (re)configure internal
features. The component with no sub internal components is a base one and it
behaves like an object.

Fractal concrete model represents the condition of creating and binding the com-
ponent instances such as Fractal ADL14 where a component is a black box with
well-defined interfaces. These interfaces can play server roles that provide services
or client roles that describe the services needed for a component. Each interface
has its signature which is a file written in the same programming language as the
implemented component. A reference for the connection of these two types of in-
terfaces is done by binding server and client interfaces. This type of connection can
be considered as a simple implicit interaction. Delegation is the communication
between two interfaces of the same type in a composite component. The import
delegation is from an external interface towards an internal interface, the export
delegation works in the reverse order.

Fractal implemented model in Java is named Julia platform15, it can be imple-
mented also in C on Cecilia platform16, it is constructed in a programming envi-
ronment.

In a general view, the main concepts of Fractal model are components (content
and controller) and they can be primitive or composite, interfaces (server or client),
communications (binding or delegating). The notion of interaction is implicit under
the binding and delegation and there are no connectors. The service notion is also
implicit in the components interface which exposes the service provided through the
component (server interface) or service used by the component (client interface).

• SOFtware Appliance (SOFA) is a component model proposed as an implementa-
tion for distributed system at Charles university of Prague. We view applications
realized in SOFA as a nested component hierarchy. A Dynamic Component UP-
dating (DCUP) is a key propriety in SOFA [PBJ98] that allows changes at run
time. The main concepts in SOFA are components, connectors and protocols.
A component is an entity that has an implementation and specifications. SOFA
represents a component by a frame and architecture. The frame defines the compo-
nent interfaces with their types provided or required for providing or using services.

13http://fractal.ow2.org
14http://fractal.ow2.org/fractaladl/index.html
15http://fractal.ow2.org/java.html
16http://fractal.ow2.org/cecilia-site/current/index.html.
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The architecture describes how to make composite components and the component
architecture.

SOFA components are defined in an ADL-like language named Component Descrip-
tion Language (CDL) derived from the Interface Description Languages (IDL)17.
A connector is an entity that achieves the interaction between components, it is
defined in the same way as a component, this means that it consists of two parts
frame and architecture. The connector frame is defined by a set of roles, each role
is a connector interface, which may be attached to a component interface. The
connector architecture describes its internal structure (primitive or composite).

There are four connector types: binding between required-provided interfaces of
two sub components, delegating between provided interfaces of a composite com-
ponent and its sub components, subsuming from required sub component interface
to the required component one (composite) and exempting an interface of a sub
component from any type. SOFA has also a behavioural protocol that gathers
all the traces (events) made by a component. The interface protocol generates a
behaviour of an interface, when it generates behaviour of its frame called frame
protocol. Another type of protocol is named architecture one which is defined by
CDLs.

There are two ways to view the interaction in SOFA. The first one is within a
connector where the interaction is presented in the same level as a component and
the second one is a protocol. The notion of service is implicit in this model through
the component’s provided and required interfaces.

Summary: we can see that SOFA component model is more general than Fractal,
because it describes the component from internal and external views. In addition to the
explicit existence of connectors, SOFA helps to reach a good level of interaction between
the primitive and composite components using its defined behavioural protocols. We
can see that the notion of service is implicit in these two models. A high level of
interoperability exists between Fractal and SOFA components, where SOFA application
views Fractal components as primitive ones.

2.5 Comparison

Table 2.3 provides a comparison between the basic elements in component models, where
the ’-’ symbol refers to not available concepts.

Components, interfaces (provided, required), compositions and low-level interactions
are the most shared explicit concepts between the studied models. There are also many
shared implicit concepts between these models, like services through provided or re-
quested interfaces and roles. The separation of component types (primitive and compos-
ite) is not clearly defined in all component models, but it exists surely, as the composition

17OMG: OMG IDL Syntax and Semantics, ftp://www.omg.org/pub/docs/formal/98-02-08.ps

33



Chapter 2. Component-based Models

is a key property in all component models. It may have different forms like in ADLs
where composition is presented in system architecture or configuration. The compo-
nent life cycle is not a central concept in our research although this concept determines
whether this component is just for design purposes or it goes further and it has its own
implementation.

Figure 2.5 presents all types of interactions in the studied models depending on
[CCSV07]. It shows the aggregation as an architectural style of interaction, it may be a
horizontal (components assembly) or vertical (here we have a new component resulted
from the component composition). These two types share the implicit / explicit bind-
ing between different interfaces. However, in the vertical interaction we find also the
delegation between composite components and its internal one (import) or the reverse
(export).

Figure 2.5: Interaction types in component models

Although many models consider exposing and requiring services through component
interfaces, we can find in the table 2.3, that the concept of service is implicit in most of
the studied models.

We find that the interaction between components is usually done through their in-
terfaces. This interaction allows the exchange of services between components. We can
see that the interaction is not presented at the same level of components (not a first-
class concept) except in WRIGHT, EDOC and SOFA. In the last three models, we find
connectors performing component interactions that can be considered as high-level ones.
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Chapter 2. Component-based Models

In several component models, low-level interactions are presented using some tech-
nologies like events’ calling, RMI or RPC. Other component models may specify the
interaction by protocols.

Unfortunately, whenever the concept of interaction (resp. service) is considered as a
first-class element in a component model, the definition of service (resp. interaction) is
implicit and ambiguous. We take SOFA model for example, we find connectors with the
same structure of components, in addition to protocols for interaction, but the concept of
service is implicit under its interfaces. This justifies our need to define a general compo-
nent model lately proposed in chapter 7.3 where the concepts of service and interaction
are considered as first-class ones at the same time.

Next chapter browses background in MultiAgent system and main concepts in some
studied models of organizational MultiAgent models.
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An ideal agent should have a good
mixture of autonomy and sociability;
Autonomous enough to do things
properly even without specific
commands. Sociable enough to
communicate properly with you and
help you do arbitrary tasks.

Pr. Yasuo Kuniyoshi

Chapter 3

Organizational MultiAgent
Models
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Chapter 3. Organizational MultiAgent Models

3.1 Introduction

The agent technology started in the Artificial Intelligence (AI) domain, more precisely in
Distributed Artificial Intelligence (DAI) [Nwa96]. The first form of agent was an object
that encapsulates its internal states and receives (sends) messages from other objects
of the same types named (actors) [Hew77]. In mid nineties, the collective MultiAgent
models appeared where agents interoperate to achieve common activities. These models
facilitate the build of distributed systems because of the agents’ capabilities of perceiv-
ing their environments and responding autonomously to their environments changes.
Since we focus on the concepts of interaction and service along this research, we choose
to concentrate on a specific type of MultiAgent systems, which is the Organizational
MultiAgent System (OMAS) [FGM04]. OMAS is viewed as an effective paradigm for
addressing the design challenges of large and complex MAS, where organizations are
emergent whenever agents work together in a shared environment. Many similarities ex-
ist between OMAS and service oriented approaches. They both meet the loose-coupled,
flexibility and dynamicity features. Organizations are ways to makeup systems of col-
laborative services [SH05]. The agent itself can be from different types like interface,
information, mobile, collaborative, reactive, etc.

In this chapter, we present some general definitions and models that deal specifically
with the organization (models and methodologies) and interaction dimensions. We start
by presenting some definitions of agents and MultiAgent systems.

3.2 What is an agent?

Agents like components do not have yet a unified standard definition. We list some of
the existing definitions in table 3.1.

From our point of view, an agent is an autonomous entity, which owns certain capa-
bilities that help to achieve its services or to use the services of another agent through
an interaction. The agent interacts with other agents and plays certain roles in its or-
ganization to achieve a common or an individual goal autonomously or by executing
defined tasks. Agents are characterized by the social ability to cooperate, coordinate,
and negotiate with each other [Woo09].

The autonomy and high-level interactions are the main points of difference between
agents and both component and object approaches. Components (resp. objects) interact
between each other by calling methods (RMI) or by sending messages between interfaces
via a protocol. These messages may be interpreted in basic ways while Agent Com-
munication Languages (ACL)18 enables agents to talk the same language with different
interpretation.

18FIPA-ACL message structure specification. December 2002. http://www.fipa.org/specs/fipa00061/
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3.2. What is an agent?

Shoham [Sho93] An entity whose state is viewed consisting of mental compo-
nent such as beliefs, capabilities, choices and commitment.
What make any hardware or software an agent is precisely
the fact that one has chosen analysis and control it in its
mental state.

Russell and
Norvig [RNC+96]

An agent is anything that can be viewed as perceiving its en-
vironment through sensors and acting upon that environment
through effectors.

Wooldridge and
Jennings [WJ95,
Woo09]

An agent is a hardware or (more usually) software-based
computer system that enjoys the following properties :

• autonomy agents operate without the direct interven-
tion of humans or others, and have some kind of con-
trol over their actions and internal state;

• social ability agents interact with each other
(and possibly humans) via some kind of agent-
communication language.

• reactivity agents perceive their environment, (which
may be the physical world, a user via a graphical user
interface, a collection of other agents, the INTER-
NET, or perhaps all of these combined), and respond
in a timely fashion to changes that occur in it.

• pro-activeness agents does not simply act in re-
sponse to their environment, they are able to exhibit
goal-directed behaviour by taking the initiative.

Ferber in [Fer95] A real or virtual entity, operating in an environment capable
to perceive and act on it, it can communicate with other
agents, which exhibits an autonomous behaviour, which can
be seen as the consequence of its knowledge, its interactions
with other agents and goals it pursues.

Luck et
al. [LMSW05]

An agent is a computer system that is capable of flexible au-
tonomous action in dynamic, unpredictable, typically multi-
agent domains.

Table 3.1: Agent definitions

3.2.1 Typical agent view

The agent from an external point of view is an autonomous, reactive, pro-active and
social entity that interacts with other agents (MAS) and with its environment. From an
internal point of view, it is a software or hardware entity capable of taking decisions and
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Chapter 3. Organizational MultiAgent Models

managing its relationships with other agents. It is also able to control its actions and
perceptions from its environment.

The typical agent elements are presented in figure 3.1, where an agent consists of
action, perception, communication and reasoning elements. Some elements disappear in
certain types of agents. for example, in reactive agent, there are no beliefs neither goals,
whereas in Believe Desire and Intention (BDI) agents [RG95], all the elements exist.

Figure 3.1: Typical agent elements [MT07].

3.2.2 An example of agent architecture

The BDI type of agent views system as a rational agent with certain mental attitude rep-
resenting the information, motivation and deliberative states of this agent. The system
behaviour or performance is determined by the agent mental state [Bra87,RG95,KG91].
This model can be viewed as an agent centered approach, where a system is an agent
who owns its believes, desires and intentions. Beliefs can be viewed as the informative
block in the state of the system. Desires can be viewed as the motivational block of
the system state. It represents information about the objectives to be accomplished or
more generally, what priorities or payoffs are associated with the various current objec-
tives. Intentions can be viewed as the deliberative part of the system state. The BDI
agent model is represented in formal ways where it consists of five essential sets (be-
lieve, desire, intention, events with plan libraries). Figure 3.2 represents a part of BDI
meta-model presented in [HMMF+06], where the agent (abstract type of team), role,
plan and event are the main concepts. There is a platform dedicated for the BDI model
named Jack [HRHL01]. We can see that the BDI model is far from our interests as it
focuses on the internal structure of the agent and not on its communication with others
to provide or use services. However, we present it since it is considered in the interaction
dimension between agents and in a related work considering agents (this model) and
services jointly [HJR10].
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3.3. What is a MultiAgent System?

Figure 3.2: The BDI agent architecture [Woo00].

3.3 What is a MultiAgent System?

MultiAgent System (MAS) is resulted from the need of new technologies to build com-
plex distributed cooperative systems in the artificial intelligence domain [Fer95]. MAS
contains sets of agents interacting with each other in a common environment possibly
forming an organization. A typical view of MultiAgent System is presented in figure 3.3
where we can see, agents perceive and act on their environment and interact with each
other. Here is another interesting definition of MASs.

A MAS is a software system made up of multiple independent and encapsulated loci of
control (i.e., the agents) interacting with each other in the context of a specific

application viewpoint according to [Cos05].

Ferber defines MultiAgent system as a population of interacting autonomous agents.
He focuses on the two aspects of organization and interaction [Fer95].

Demazeau finds that a MAS approach consists of four essential modules Agent,
Environment, Interaction, Organization (AEIO) representing the “Vowels approach”
in [Dem95,HSB02a].

• A defines agent with its internal reasoning capabilities as the core of the MAS.

• E is for the environment where the agent interacts and preserves with and from it.

• I is for the interaction, it exists between agents and between agents with their
environment.

• O is for the organization that provides a structure for MAS based on functionality,
behaviour and interaction between agents.

In OMASs, the notion of role is also important because it clarifies the participants in
an interaction from one side and it specifies agent behaviours and capabilities from the
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Chapter 3. Organizational MultiAgent Models

Figure 3.3: The typical structure of MultiAgent system [Woo09].

other side. An agent with the A and E modules would be called an autonomous agent,
with the A, E, I modules is a communicative agent and the agent, with the four modules
is a social one.

Organization MultiAgent systems are collective where a problem is divided and dis-
tributed between many collective agents. However, there are types of MAS called cen-
tered agent. This kind of individual agents can take their decisions independently when
solving certain problems.

These two types of MAS can be viewed from internal and external views according
to Ferber19. We have four essential types of MultiAgent systems (see table 3.2): The
individual intern that considers the mental states and the architecture of an agent. The
individual extern view defines the agent behaviour. Collective MASs from the internal
view defines their ontology’s, common knowledge and social norms and it represents the
organization from the external view.

MASs respond to many questions like how to allocate, decompose defended problems,
and how to gather the divided solution? How to reach a high level of connectivity
and interoperability between agents? How to maintain coherence in different agent
behaviours? How to allow individual agents to represent actions of other agents? How
to manage the sharing of limited resource?

Along this research, we consider the two dimensions of interaction and organization
in the studied MultiAgent models.

19Introduction aux systèmes multiagents: un point de vue intégral, Jacques Ferber, cours/LIRMM,
2005.
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3.4. Categories of agent technologies

Intern Extern

Individual Mental states and agent architec-
ture

Agent’s behaviour

Collective Ontology, common knowledge and
social norms

Organization and institutions

Table 3.2: Internal and external views of MASs

3.4 Categories of agent technologies

There is a lack of standardization in MASs classification, it may change according to
the context. However, we can always distinguish the two main categories individual and
collective ones. It seems to be difficult to define the boundaries between MAS types,
there will be always cognitive and reactive agents in each category, which can be viewed
by functional or decisional views.

Then, we chose to introduce the studied agent models through a classification that
respects our objective of focusing on service and interaction concepts along this research
in the organizational and interactional dimensions of MultiAgent systems. This classifi-
cation contains an organization or structural dimension of MAS that allows building sys-
tems of collective services. This dimension contains organizational models and abstract
level of OMAS in the meta-models of the methodologies categories. The interaction
dimension lists existing types of interactions between agents, (see table 3.3).

Category Models

Organizational AGR, MOCA , MOISE/-
MOISE+,GORMAS, OMNI,. . .

Methodologies
and General
models

Gaia, PASSI, Tropos, FAML,. . .

Interaction ACL, Speech act, KQML,. . .

Table 3.3: Agent technologies

We start by presenting the models of MASs that belong to the organizational cate-
gory.

3.5 Organizational models

Agents need to be grouped in social groups or grids in order to gain advantages in their
current environments to deliver or to use services. The organization notion, that is pre-
sented in collective MAS and in the individual ones under the form of self-organization,
helps to decide how, when and where to modify the system’s structure and functionality.
The three modules of the Vowels approach “AIO” exist in the Organization MultiAgent
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Chapter 3. Organizational MultiAgent Models

System (OMAS), while the E module exists in different ways.

Many models exist for OMAS like the Model for Organizational and Componential
for MultiAgent (MOCA), this name stands for the name of the model in French (Mod-
èle Organisationnel et Componentiel pour les systémes multi-Agents) [Ami03]. This
model separates clearly between the design and implementation levels like the work
in [BLHS+09] (that will be present lately), where there are correspondences between the
concepts of these two levels such as organization/ group, type of Agent/Agent, capability
description/ capability, etc.

OMG and Foundation for Intelligent Physical Agents (FIPA)20 collaborate to extend
UML static models to define dynamic model named Agent UML (AUML) [BMO01].
AUML specifies agent interaction protocols, and represents the agent internal behaviours,
but this research was stopped in 2008 due to changes in UML. In this section, we present
models that consider agent, group and role concepts as first-class elements in [FG98] and
[ONL05], Model of Organization for MultiAgent SystEms [HBSS00] and Organizational
Model for Normative Institutions [VSDD05] and Guidelines for ORganizational Multi-
Agent Systems [ABJ09], as they are general and well-developed ones.

3.5.1 Agent Group Role (AGR)

AGR is a general model based on the three primitive concepts of agent, group, and role.
A group contains defined roles, which can be played by agents. Ferber provides this
model [FGM04] as a formal semantic for the Aalaadin model proposed in [FG98]. The
core model of AGR is presented in figure 3.4. We can see that an agent can belong to
different groups and play different roles.

Here, We detail some characteristics of each concept.

• Agent: there are no constraints on agent internal and external architectures or on
its capabilities in AGR model. This enables the designer to adopt it according to
the application requirements. An agent plays different roles within any group and
it may be either cognitive or reactive.

• Group: the group is an atomic set of agents with common properties that interact
with each other according to their assigned roles. An agent is a group member
when it plays a role within the group. An agent can belong to many groups
simultaneously. Groups can overlap and two agents can interact with each other if
they belong to the same group [FG98].

• Role: the role is an abstraction of agent functions or services or even its iden-
tification within a group. The relation between an agent and a group is defined
by its roles. A role can be handled by one agent while an agent may play many
roles. According to [FMBB04], a role is an instance of a role type which is a part
of the group description structure and it describes agent behaviour. The role type

20The Foundation for Intelligent Physical Agents (FIPA) is a non-profit association concerned with
specifying standards for heterogeneous, interoperating MAS.
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3.5. Organizational models

Figure 3.4: The AGR core model [FGM04].

is defined either by the attributes or by the interaction protocols description and
structural constraints between roles. The roles ensure the build of social systems
based on agents by providing the requirements for agent interactions.

The AGR model has its independent platform named Madkit [GF01]. This platform
is quite interesting because of the wide space provided for the designer to determine
the agent internal architecture as there is no constraints on it to be violated. This
platform is also efficient in distributed MultiAgent systems development [GF01]. At the
organizational level in MAS, the designer describes the “what” not the “how”, because of
the activities patterns structure that the model provides without specifying the agent’s
behaviour. In other words, the organizational level provides the specification limits of
the agent behaviour based on specific rules; it does not define the agent mental state.
The organization provides a way to portion the system into groups (parts), which is an
organizational unit where its entire members can interact without constraints.

The concept of service exists in implicit way under the role concept, where an agent
with a specific role can be a provider or consumer to certain services. The interaction
concept is also related to the role, which describes the patterns of interactions and the
interaction protocols that relate the elements in an organization.

The role is seen as a border agents performing and using services in Agent Group
Role Service (AGRS) in [MF07].
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Chapter 3. Organizational MultiAgent Models

3.5.2 A meta-model of Agents, Roles and Groups

A meta-model of MAS is proposed in [ONL05] where the concepts of agent, group and
role are key ones like in [FG98]. Many meta-types exist in this meta-model, for example
an agent classifier class appears in addition to the concrete agent one. This classifier
classifies agents with common features together. The importance of the classification
comes from the ability of defining a set of entities that share one or more capabilities.
The agent concept contains features that are not common between most of agents and
specific provided services.

In this meta-model, a group can be viewed as an agent, there are two types of
groups: agentified if a group is addressable and act as an agent and non agentified. The
group represents a certain level of an organization that defines the roles, communication
languages and the norms that may be applicable to it. The agentified group contains
interaction points to be like agents.

Each agent is linked to other agents by the roles it plays in the application functional
requirements. The notion of role appears under the agent role classifier which is a
specialization of agent classifier, this classifier groups the agents according to their roles.
Figure 3.5 presents the meta-model of agent, group and role proposed in [ONL05] where
we can find the three concepts of group and agent, which are instances of their classifier,
and we can see that a group can be a specialization of an agent.

Figure 3.5: The Agent Group Role abstract syntax proposed in [ONL05].

The provided service is implicit under the agent concept, the interaction concept is
also implicit and related to the role of agents within a group or the role of agentified
group.
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3.5. Organizational models

3.5.3 Model of Organization for multIagent SystEms(MOISE/MOISE+)

MOISE [HBSS00] is an organizational model that combines architectures that focus on
agents with ones that focus on organizations.

MOISE model is formed of two important levels: Organizational Structure (OS)
and Organizational Entity (OE). An OS is a set of roles, groups and all the lines that
participate in defining the system structure independently of its included agent. Agents’
population that function under the OS constraints are the OE. These two levels facilitate
the representation from the design point of view, even if the dynamic control of the
organization or the exact semantics of a role instance or group is not defined, but we
can see the OE as an instance of an OS for a set of agents.

Figure 3.6 presents both of OS and OE, we find in the OS types of groups with their
roles related to schemas. A schema is a tree of goals and missions to be reached. In
the OE level, we find the instances of group and schema, with the missions, role players
related to agents.

Figure 3.6: The organizational specification and entity [HBSS00].

MOISE+ [HSB02b] is an extension of MOISE model with many contributions, such
as the reorganization process and the appearance of role inheritance. The main concepts
in MOISE/MOISE+ are: roles, organizational lines which represent the relation between
roles and groups. Here, we detail some of these concepts.

• Organization acts as a system of rules which constrain the activity of agents,
or more precisely their individual possible actions. The expression of the rules is
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Chapter 3. Organizational MultiAgent Models

made by the concept of role, which defines expected behaviours of an agent in its
social structure.

• Group is simply defined as an aggregation of roles, i.e., a set of consistent rules.
This consistency is provided by specified links between roles, which express possible
communications, expected acquaintances or relations of authority between roles.

• Agent is specified as a responsible for a part of the whole task of the application
and it owns its resources to achieve some actions.

• Role defines agent’s behaviour and the provided or required services of an agent.
The originality of MOISE model for this concept is by the ability of considering the
role as a set of missions, and the agent that plays a role must follow its missions.

• Mission is a sub concept related to the role one, an agent that plays certain
roles must archive certain missions. These missions define the constraints and
behaviours to achieve a task. They contain the authorization for the four element
of any behaviour (objective, plan, action and resource)

• Organizational line structures social exchanges between roles. This relational
line has its source and target roles and it is labeled by N elements (set of con-
straints, set of missions of the source and the target roles, which define the context
of a mission). In MOISE, the organizational line can have one of these types: com-
munication lines, authority lines and acquaintance lines. The communication lines
structure information exchanges; it defines also the interaction protocols, while the
authority line defines the control and the sequence from one role to another, the ac-
quaintance line defines the agent view for the other agents in the same organization
to use it in its justification.

We find the concept of interaction explicitly in the organizational lines between the
roles that may define protocols while the service concept exists implicitly under the role,
agent behaviour and mission concepts.

3.5.4 Organizational Model for Normative Institutions (OMNI)

This model balances the organization needs and the agent autonomy.

There are three essential dimensions for this model: organizational, normative and
ontological [VSDD05]. Figure 3.7 represents the different levels and dimensions of OMNI.

• Organizational dimension contains the organizational model, which specifies
the organizational characteristics of agents society, in terms of social structures
(roles) and interaction ones. It contains two models social and interaction models.
It has the same main concepts of group, role, agent and interaction like previously
presented models. It contains additional concepts like norms.
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3.5. Organizational models

Figure 3.7: Levels and dimensions in the OMNI framework [VSDD05].

The agreements between agents are described in an interaction contract. The
contract defines the activities of agents which play roles in the society, the period
of the contract validation, the condition and what are the sequences in case of
violation.

• Normative dimension specifies the mechanisms of social order, in terms of com-
mon norms and rules that the members are expected to adhere to. The standards
set at the organizational rules are transformed into interpretable by agents through
mechanisms of interpretation. There are two ways to define the interpreter: either
we create an interpreter that all agents should possess, or we transform the rules
into protocols which will be part of contracts of interaction.

• Ontological dimension defines environmental and contextual relations and com-
munication aspects in organizations. By defining the entire concepts according to
the norms: rules, roles, groups, violations and penalties. It defines the act of the
languages in ACL in order to clarify the content of the interaction.

Our interests is more restrictive in the organizational dimension, we can see from the
figure that this last dimension contains objectives in its abstract level, the organizational
model in its concrete level and the agent with the interaction model in its implementation
level. The concept of service exists implicitly in the organization dimension under the
role concept. The interaction has a dedicated model with explicit contract concept,
this contract contains all what we need to deal with other peers by providing or using
services over agent interactions. The ACL language is also used in this model and it is
more clarified in the ontological dimension.
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3.5.5 Guidelines for ORganizational Multi-Agent Systems (GORMAS)

GORMAS [ABJ09] extends the ANEMONA meta-model [BG08] in order to contain the
concepts of organization unit, service and norm. The organization meta-model of
this model defines the entities of the system (agents, organizational units, roles, norms,
resources, applications) in its structural view. In this view, we find the static elements of
an organization like the ”A-Agent” concept (abstract agent). This concept is extended
by the new concept named “Organizational Unit” in addition to be specialized by an
agent. The organization meta-model defines also how the previous static entities are
related (roles and A-Agent social relationships) in its social view. This meta-model
defines in its functional view, the internal and external behaviour of the organizational
unit. The last view of this model is the dynamic one, where it defines the services of the
organizational units that manage all structural and dynamic elements.

In addition to the organizational meta-model, there are five other meta-models, the
activity meta-model focuses on the system functionality by defining service profiles. The
interactions for the usage of the services are detailed in the interaction meta-model .
The resources and the permission of their usage are detailed in the environment meta-
model . The concrete agents, their responsibilities, objectives, services, tasks and played
roles are detailed in the agent meta-model . The normative objectives that agents
and roles must follow are defined in the last normative meta-model including the
permission, prohibition, obligation and rewards. A dedicated meta-model to describe
the interactions and service exist in GORMAS.

Figure 3.8 presents a unified and simplified view of GORMAS meta-model. We can
see the concept of service explicitly where each service owns its profiles and ports. The
service is specified by tasks and service implementation. The interaction concept is also
explicit and it contains an attribute named protocol.

After the short presentation of various organizational models, we present main con-
cepts of meta-models of some agent-oriented methodologies.

3.6 Methodologies and general models

We browse here some meta-models of well-known methodologies. Most of these meta-
models contain the same main concepts as the previously presented organizational mod-
els. We start by defining the methodologies.

A methodology is a collection of methods covering and connecting different stages in
a process. The purpose of a methodology is to prescribe a certain coherent approach to
solve a problem in the context of software process by preselecting and putting in relation

a number of methods according to [GJM91].
A method prescribes a way of performing some kind of activity within a process, in
order to properly produce a specific output, i.e., an artefact or a document starting

from a specific input according to [CCZ05].

A methodology has two important components: the first one describes the process el-
ements of the approach, and the second one focuses on the work products and their
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Figure 3.8: The unified and simplified meta-model of GORMAS.
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documentation.
Most methodologies define meta-models to clarify and unify different abstraction

in MultiAgent system. Here, we browse briefly some well-known methodologies meta-
models of Gaia [ZJW03], Passi [Cos05], Tropos [BCP05] and INGENIAS [GSP02] before
presenting a general FAML model [BLHS+09] that is based on these methodologies.

3.6.1 Gaia

Gaia methodology appeared in [WJK00] for the analysis and design of closed MultiAgent
systems. However, it is extended in [ZJW03] to consider open MultiAgent systems. The
Gaia methodology builds the MAS of organization/society that consists of set of roles
that are later assigned to agents. These roles define patterns of interactions.

The organization defines the organizational abstraction like the environment in all
its entities and resources that are used whenever agents interact to achieve the orga-
nizational goals. Roles and interactions are detailed lately in their dedicated models.
The organization defines also the organizational rules that define the functionalities and
capabilities required by an organization.

It relies on two modeling levels from abstract to increasingly concrete concepts, in
the more abstract level, corresponding to the analysis step that allows the specification
of role and interaction models. The concrete level corresponds to the design time,
which defines the models of agent, service and acquaintance.

• The role model describes different roles of a system. A role in Gaia is an abstract
description of a function. It is defined by four elements:

– Responsibilities that define the role and its functionalities;

– Permissions that are the affected rights to a role;

– Activities that perform the need calculations to realize the responsibilities;

– Protocols that symbolize the relationships between the roles. They are defined
in a model of interaction.

• The interaction model is composed of protocol with inter-role interaction defini-
tions. The protocols account for patterns of interaction. The protocols are defined
by initiators, interlocutors, the inflows, outflows and a textual description to ensure
an interaction.

• The agent model consists of identifying the types of agents and the instances of
agents that will realize these types in the execution phases. The type of agent is
the set of roles that can be played by this agent.

• The service model describes the services provided by each type of agents, by
describing the activity associated to each agent role. A service corresponds to a
function in Gaia.

• The acquaintance model defines simply the acquaintance of the existing com-
munication links between types of agents in the form of directed graph.
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Figure 3.9: Gaia meta-model [BCP05].

Figure 3.9 shows that an organization in Gaia is an aggregation of agents and it is a
part of an organizational structure. The agent provides services and plays roles through
its interactions. The service concept is explicit in this methodology and it is a single
and coherent block of activity in which an agent may engage. The interaction concept
is also explicit by defining the dependency and relationships between roles in terms of
protocol definitions. This methodology does not deal with implementation level at all,
it can be implemented by any agent platform.

3.6.2 PASSI

Process for Agent Societies Specification and Implementation (PASSI) [Cos05] covers all
the phases of an application development from requirement-to-code and testing method-
ology. It extends UML concepts to fit to agent designs, and it uses FIPA platform for
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Figure 3.10: PASSI meta-model [BCP05].
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the implementation of the agents.

This methodology contains three domains (see figure 3.10).

• The problem domain, which is related to the requirement and analysis phase.
In this domain we find the context related information like scenarios, resources,
requirements and ontology;

• the agency domain that defines the concepts of the agent model related to the
requirement which is related to concepts in the solution domain;

• the solution domain or the implementation in FIPA agent platform.

The core of the meta-model of this methodology exists in the agency domain. We
can find here the concepts of agent, role, service, goal, task, communication and agent
interaction protocol.

The service in this model has the same signification of service in Gaia, it is associated
with each agent role. The interaction is a pattern of conversations used to perform
some general useful tasks. It is a dialogue patterns and networking protocol to refer to
underlying transport mechanisms such as TCP/IP by sending messages.

3.6.3 Tropos

Tropos [BPG+04] methodology covers also all phases of a software development process.
It focuses on the interactions of agents and their environments.

The originality of this methodology is the use of actor concept as a generalization of
the agent [BPG+04]. An actor can be physical or a software agent as well as a role or a
position. The position concept reflects the earlier identified positions as agents occupy
the same one. An actor can reach its goals by agreeing a plan and/or by the use of the
resources in an environment. There is a dependency relation between agents in order to
satisfy their own goal or to access a resource (see figure 3.11).

The concept of service does not exist explicitly in this methodology, while it contains
social patterns in considering the social and intentional aspects.

Another interesting methodology named INGENIAS is proposed in [GSP02].The
meta-model of this methodology contains the most shared concepts in the previously
presented models and methodologies like organizations, groups, agents, tasks, inter-
actions and goals. It also contains other concepts like workflow, application and re-
source [BCP05]. The main particularity of this model from our point of view is the
ability of having groups containing other groups, which represents the composition of
groups. We did not find such ability of groups’ compositions in the earlier studied
models.
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Figure 3.11: Tropos meta-model [BCP05].

3.6.4 FAME Agent-oriented Modeling Language (FAML)

The main objective of [BLHS+09] is to provide a unified meta-model from a combination
of existing meta-models in FAML21 (see figure 3.12).

The FAML meta-model is built in incremental way after studying several method-
ologies. There was a first version without the concept of service, then this meta-model
is refined by considering Gaia and PASSI to include the service concept explicitly in its
current version. This meta-model considers both of design and run times. In the design
time, we find the organization concept that is a collection of the autonomous rational
agents. These agents play certain roles that specify their behaviours. These behaviours
are more detailed through defined tasks. The service concept is explicit in this model.
It has also the same signification in Gaia as a coherent block of activity of an agent.

The interaction concept exists explicitly in this model in the design time under the
Interaction Protocol concept which defines the possible pattern of communication in the
system. Then the two key concepts of service and interaction exist explicitly in the
design time model.

3.7 Interactional dimension

Agents need to speak a unified language to increase their social ability and to interact be-
tween each others. The interaction between agents is always a benefit for this approach.

21Framework for Agent-Oriented Method Engineering (FAME) is the project name under which FAML
has been developed.
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Figure 3.12: Design-time agent-external classes of FAML meta-model [BLHS+09].
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Figure 3.13 represents the essential types of interaction in MAS, which are communi-
cation, like MTP, Speech act, KQML, FIPA ACL. Coordinations are like contracting,
planning and organization structure and negotiations are like dialogue and market place
protocols.

Figure 3.13: Interactions types in agent models.

3.7.1 Communication

The most basic type of communication is proposed by FIPA that specifies Message
Transport Protocol (MTP) 22 over HTTP23 protocol. In this protocol, the sender agent
sends HTTP request, which contains agent message including the message envelope.
The receiver agent sends HTTP response after parsing the message according to the
information in the message envelope.

However, the ideal mode of interaction between entities is reached when these entities
talk the same language. Any language consists of three main parts: syntax, semantics
and pragmatics. Agent communication language has passed through different forms to
reach its final stage. Here, we represent a brief view of Speech act, KQML and FIPA
ACL languages.

3.7.1.1 Speech act

Speech act theory is the pragmatic theory of language that views human natural lan-
guage as actions like requests, suggestions, commitments, and replies. This theory is
also related to the theory of Austin in [Aus62] where the communication is an action,
and everything we utter is in order to satisfy certain goals. It is the base for almost all
agent communication languages and it depends on primitives. Speech act message is a
tuple like the following:

<i, act (r, C)>

22http://www.fipa.org/specs/fipa00084/SC00084F.html
23http://www.w3.org/Protocols/rfc2616/rfc2616.html

58



3.7. Interactional dimension

Where i is the initiator of the speech act, act is the name of the act (like confirm,
send, receive, etc.), r is the receiver and C is the semantic content. The Speech act
considers three aspects in its message:

• Locution statement with context and reference of the sound of the speaker, i.e.,
who said what to who.

• Illocution act of conveying intentions, i.e., what the speaker wants from the
listener.

• Perlocution actions that occur as a result of the illocution. It is not always clear
to recognize the intention of the speaker.

There is a strong relation between the BDI model of agent and Speech acts where all the
acts are uttered to achieve a goal. They respect some expression rules and they reflect
a certain mental or psychological state of the speaker [RL90]. The Speech act defines
the type of message by using the illocutionary force but the message content may be
ambiguous.

3.7.1.2 Knowledge Query and Manipulation Language (KQML)

The KQML is the first try to standardize Agent Communication Language (ACL) [LF97]
and it is based on Speech act. It is developed by the Defence Advanced Research Projects
Agency (DARPA) for knowledge sharing initiative in 1990s. It is a language and we can
say that it is a high-level communication message-driven protocol. It is independent of
the semantics (ontology) and of the content (there are many languages dedicated for
expressing the message content such as: FIPA SL24, KIF25,. . . ).

KQML defines different acceptable performatives. Each performative represents a
speech act associated to semantics, protocols and a list of attributes. These performa-
tives can be classified in seven basic categories: basic query performatives (evaluate),
multi response query performatives (stream-in), response performatives (reply), generic
information performatives (tell), generator performatives (standby), capability-definition
performatives (advertise), networking performatives (register).

KQML is written in Lisp syntax. The key property of KQML is that all information
for understanding the content of a message are included in the communication itself.
Here is an example of a general KQML message.

24http://www.fipa.org/specs/fipa00008/SC00008I.html
25http://www.fipa.org/specs/fipa00010/XC00010C.pdf
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(KQML-performative
:sender <word>
:receiver <word>
:language <word>
:ontology <word>
:content <expression>
. . . )

This example can be instanced like,
(stream-about
:sender agent1
:receiver agent2
:language KIF
:ontology motors
:reply-to q1
:content m1)
where reply-to is a label to show that the message m1 is the response of agent agent1
to agent2. This message is written by KIF language in an ontology related to motors.

3.7.1.3 FIPA ACL

It is the standardization of FIPA for Agent Communication Language [fip02b,fip02a]. It
has almost the same syntax of KQML. It can be considered as an extension of KQML as
it contains more performatives. The FIPA defined a Semantic Language FIPA SL, but
there is no commitment with it (in other words, it may use KIF or any semantic dedi-
cated language for the message content). The message in FIPA ACL separates between
the messages and envelopes. Each FIPA ACL message can be mapped to a formula of
“Semantic Language” which defines constraints that the sender must satisfy and pur-
poses of the action. Here is a simple example of an ACL message in an auction, agent1
proposes 150 dollars as a price for the product good02 in the fourth round of the auction.

(inform
:sender agent1
:receiver auction-server
:content (price (bid good02) 150)
:in-reply-to round-4
:language SL
:ontology auction)

After presenting communication types of interactions, we present in the following section,
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the coordination types.

3.7.2 Coordination

The coordination is a kind of interaction between agents performing some activity in a
shared state to ensure the coherency of their community. The degree of coordination is
the extent to which they avoid irrelevant activity like deadlocks and conflicts. Nwana et
al., in [NLJ96] overview the coordination in three main categories: contracting, organi-
zational structure and planning. Here, we present these kinds of coordination.

3.7.2.1 Contracting

It determines the tasks allocation for agents. Contract Net is a well-specified protocol
that represents this type of coordination.

Contract Net Protocol (CNP) is defined for the coordination and negotiation be-
tween agents in [DS83]. FIPA specified this protocol [fip02c], where it contains two
essential roles for agent (manager and contractor). The manager requests persistently
from other agents by sending call for proposals (cfp) associated to a defined deadline in
case of no answers received. These calls contain the conditions and the task specification
by the manager.

The participant agents that receive these proposals can be considered as potential
contractors, which are able to achieve the proposed task as acts. As the agents are
autonomous object, the potential contractor may refuse to propose a proposal or it may
define its own precondition to achieve the specified task.

The manager receives back and evaluates proposals of entire contractors. Then, it
chooses the agent(s), which are going to achieve this task by sending them an acceptance
message, while a rejection message is also sent to the non-chosen agents.

The accepted agents ask for a commitment by contract to perform the task, and after
accomplishing it, they send a message to the manager to inform it. Figure 3.14 represents
the principle steps in the interaction using this protocol. Huhns and Singh [HS94] note
that the contract net is a high-level coordination strategy, which also provides a way of
distributing tasks and a mean for self-organizing groups of agents.

3.7.2.2 Organizational structure

The definition of agent responsibilities and capabilities exist implicitly in the organiza-
tion, where the role concept is a key one in defining the activities and interactions be-
tween agents. The organization identifies the authority between the roles of its elements.
The authors in [NLJ96] discuss the coordination through organizational structure in two
main organizations. The hierarchical structure defines master/slave relationships be-
tween its agents for resource allocation. Master agents are fully autonomous contrary to
slave agents which are partially autonomous, this is against the principle of autonomous
agents where the slave agents are controlled. The second organization structure is based
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Figure 3.14: FIPA Contract Net Interaction Protocol [fip02c].

on blackboard architectures [HR85], where there are scheduling agents to schedule the
write or read processes to / from the blackboard for resources or tasks allocation.

This kind of coordination exists explicitly or implicitly in most of the studied models
since they belong to the organizational MultiAgent systems. The organization defines
the authority between agents within groups and between groups.

3.7.2.3 Agent planning

Agents in MAS can design a detailed plan that may covers the possible action and
required interaction to achieve certain goals. There are two essential types of planning:

• Centralized planning where agents have one goal with several partial plans, then
there is a coordinating agent that tries to modify the partial plans and combine
them to resolve conflicts.
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• Distributed planning where agents have individual plans with models of other
agents plans, and here the agents communicate to avoid conflicting where they can
update and rebuild their plans during the communications.

Contrary to the previous types of coordination, the coordination by planning is restricted
in the model of agents where the concept of plan is explicit and central such as in the
BDI models and Tropos methodology meta-model. However, we cannot say agents can
coordinate by planning when the concept of plan is implicit under the goal or intention.

3.7.3 Negotiation

Conflicts may occur whenever autonomous entities share resources to achieve their own
objectives; looking towards an agreement to resolve these conflicts and convince the
participants is needed.

In our case, these autonomous entities are agents that share the same environment
resource. They have their own intentions and goals, which may be contradictory with
the other agent goals. These agents have to negotiate to reach an agreement that makes
them satisfied.

Many famous ways exist for negotiation, for example, there are different defined
protocols of negotiation in market places (agents simulate customers and vendors be-
haviours), we can take for example Fish market26 protocol and auction [fip01].

We detail here FIPA auction protocol, where two principal roles of agents exist in its
specification, the auctioneer and the participant (see figure 3.15). The auctioneer or the
initiator of the auction starts the auction by proposing a price, this act of proposition
is named a call for proposal (cfp) that is broadcast for all participants. At the same
time, any acceptance of a bid is simultaneously broadcast to all participants and not
just the auctioneer. The bidder agents know if their bid (propose) has been accepted.
Hence this protocol contains the two acts of accept-proposal and reject-proposal. In
order to complete the auction transaction, this protocol ends by sending a request of the
auctioneer for the winning bidder to reach this end.

The dialogue based on the exchange of messages is another way to reach agreements
by negotiation inspired from human-like dialogue [BM93, JC05]. Cerri and Jonquet
[JC05] propose STROBE model (STReams of messages exchanged by agents represented
as OBjects and interpreted in multiple Environments) for negotiation between agents in
the context of Dynamic Service Generation (DSG). The principal idea of this model is
the interpretation of messages between agents according to the environment. Messages
interpretation in STROBE is done in a given environment and with a given interpreter
where both elements are dedicated to the interlocutor and they can be changed.

As a summary of this section, two essential types of interactions between agents
exist. The first one is when agents communicate with each other to exchange messages
to achieve certain goal or to resolve certain problem. The second type is when agents
share certain resources and they need to coordinate and negotiate to avoid conflicts. We

26http //www.iiia.csic.esProjects shmarket 04011999
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Figure 3.15: FIPA English Auction Interaction Protocol [fip01].

can see that we cannot define borders between these types of interactions because they
can overlap.

3.8 Comparison

Here, we provide a short comparison between the presented agent and methodologies
models with their interaction types in table 3.4. The ’-’ symbol refers to a non available
concept, while ”ok” refers to an existing explicit one. We may add text to clarify specific
types and issues in table cells that need to precise a defined type of many other possible
ones (e.g., the coordination cell of interaction can be from planning, organizational
structure and contracting types).

The most shared explicit concepts between the studied models are agents, roles,
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organizations and ACL interactions. Other concepts like group, service, goal, task,
resource and capability are explicit in some models and implicit or not available in others.
Many concepts related to agent’s autonomy property like plan, goal and intention exist
in the studied models. However, we choose to use the concept of goal as a representation
for the others in this table, since we do not consider the internal architecture of agents
and we are more interested in their external view and how they interact with each others.

65



Chapter 3. Organizational MultiAgent Models
C
o
n
c
e
p
t
s

M
o
d
e
l

A
g
e
n
t

G
r
o
u
p

R
o
l
e

O
r
g
a
n
i
z
a
t
i
o
n

E
n
v
i
r
o
n
m
e
n
t

I
n
t
e
r
a
c
t
i
o
n

S
e
r
v
i
c
e

G
o
a
l

C
a
p
a
b
i
l
i
t
y

T
a
s
k

G
e
n
e
r
a
l

A
C
L

C
o
o
r
d
i
n
.

N
e
g
o
t
i
.

A
G
R

[F
G

98
]

ok
ok

ok
im

p
li
ci

t
im

p
li
ci

t
in

te
ra

ct
io

n
p
ro

to
co

ls
ok

or
ga

n
iz

a
ti

o
n
a
l

st
ru

ct
u
re

-
im

p
li
ci

t
u
n
d
er

ro
le

-
-

-

A
.
R
.
G
.

m
e
t
a
-

m
o
d
e
l

[O
N

L
05

]
ok

ok
ok

-
im

p
li
ci

t
im

p
li
ci

t
u
n
-

d
er

ro
le

ok
or

ga
n
iz

a
ti

o
n
a
l

st
ru

ct
u
re

-
im

p
li
ci

t
u
n
d
er

ag
en

t
-

-
-

M
O
I
S
E

[H
B

S
S
00

]
ok

ok
ok

ok
-

p
ro

to
co

ls
ok

or
ga

n
iz

a
ti

o
n
a
l

li
n
es

-
im

p
li
ci

t
u
n
d
er

ro
le

o
k

-
-

O
M
N
I

[V
S
D

D
05

]
ok

ok
ok

ok
-

d
ed

ic
at

ed
m

o
d
el

ok
co

n
tr

ac
ti

n
g

o
k

im
p
li
ci

t
u
n
d
er

ro
le

-
-

-

G
o
r
m
a
s

[A
B

J
09

]
ok

-
ok

ok
im

p
li
ci

t
u
n
-

d
er

re
so

u
rc

e

d
ed

ic
at

ed
m

et
a

m
o
d
el

+
p
ro

to
co

lok
or

ga
n
iz

a
ti

o
n
a
l

st
ru

ct
u
re

-

ok
w

it
h

se
rv

ic
e

p
ro

fi
le

&
p

o
rt

o
k

-
o
k

B
D
I

[R
G

95
]

ok
-

-
-

im
p
li
ci

t
ev

en
ts

ok
co

or
d
in

a
ti

o
n
s

ex
is

t
in

ge
n
-

er
al

w
ay

s
-

-
o
k

im
p
li
ci

t
-

G
a
i
a

[Z
J
W

03
]

ok u
n
d
er

ag
en

t
ty

p
e

-
ok

ok
ok

w
it

h
re

-
so

u
rc

e
p
ro

to
co

l
d
efi

n
it

io
n
s

ok
or

ga
n
iz

a
ti

o
n
a
l

st
ru

ct
u
re

-
ok

o
k

-
a
ct

iv
it

y

P
A
S
S
I

[C
os

05
]

ok
-

ok
-

im
p
li
ci

t
u
n
-

d
er

re
so

u
rc

e

d
ia

lo
gu

e
p
at

te
rn

s
an

d
n
et

-
w

or
k
in

g
p
ro

to
co

l

ok
-

-
ok

o
k

-
o
k

T
R
O
P
O
S

[B
P

G
+

04
]

ac
to

r
-

ok
-

im
p
li
ci

t
u
n
-

d
er

re
so

u
rc

e
so

ci
al

p
at

-
te

rn
ok

-
-

-
o
k

-
o
k

u
n
d
er

P
la

n

F
A
M
L

[B
L

H
S
+

0
9]

ok
-

-
ok

ok
In

te
ra

ct
io

n
P

ro
to

co
l

ok
or

ga
n
iz

a
ti

o
n
a
l

st
ru

ct
u
re

-
ok

sy
st

em
g
o
a
l

im
p
li
ci

t
o
k

T
ab

le
3.

4:
A

co
m

p
ar

is
on

to
ex

tr
ac

t
sh

ar
ed

co
n

ce
p
ts

b
et

w
ee

n
ag

en
t

m
o
d
el

s

66



3.8. Comparison

Our objective is the integration of the two approaches of component and agent to
overcome their weaknesses points by focusing on the interoperability via the two concepts
of interaction and service. Then, we need to focus on these concepts in advance in the
studied models.

We detail the types of interactions in table 3.4 according to their related concepts.
Contract concept represents coordination by contracting and negotiation, like in OMNI
model. We have coordination by organizational structure whenever the concept of orga-
nization is explicit. ACL communication language can be used in all agent models and
methodologies, although it may not be explicitly stated in the studied models. Although,
the interaction concept is a first-class element and a key property of agent models, it
is not detailed sufficiently from our point of view in the studied model (i.e., we cannot
find the three main types of interaction of communication, coordination and negotiation
simultaneously in most of the studied models). We may find interactions by protocols
to avoid details.

The concept of service is explicit in recently defined models like FAML [BLHS+09]
and GORMAS [ABJ09]. It exits also explicitly in Gaia [WJK00, ZJW03] and PASSI
[Cos05] methodologies, the service defines business activity that an agent is engaged to
do. Service concept is implicit in other models under the role concept that defines the
agent behaviour. GORMAS model is the only model that details the concept related to
a service like port and service profile concepts.

Unfortunately, in the studied models, whenever the interaction concept is well de-
tailed, the service one is implicit, for example, the model OMNI contains all types of
interactions but it does not contain the concept of service explicitly. Moreover, when the
concept of service is explicit there is an absence of detailed types of interaction like in
PASSI meta-model. The two concepts of service and interaction are explicit in FAML,
GORMAS, Gaia and PASSI models, but the interaction types are not detailed enough
from our point of view. These models consider also other aspects like focusing on differ-
ences and relations between design and runtime concepts. However, our research does
not consider models lifecycles, where we consider all the concepts in the design time
except the concept of interaction, which may be related directly to low-level concepts.
This reason (absence of the existence of detailed types of interaction and service concept
simultaneously) justifies our need to define our general agent model lately proposed in
chapter 7.4. In the defined model, the concepts of service and interaction will be detailed
and considered as first-class concepts.

Next chapter provides a study of some service-oriented models with focusing on their
level of abstraction.
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4.1 Introduction

Lately, companies realized the interests of exposing and exchanging their services with
each other. Then, their relationships become automated, flexible, fast and secure. This
increases the business specification of each enterprise in addition to the augmentation of
the cooperation level between them. A totally connected, loosely coupled systems will
be the result, and the service is a key concept to reach such properties. Then, we have
to understand the used architecture to realize such systems that is, the Service Oriented
Architecture (SOA). This chapter presents some key definitions in service-oriented ap-
proaches and browse some already defined models of service oriented architecture. We
focus on the level of abstraction of these models (i.e., if the concepts implementing the
services exist or not) and the existence of the two concepts of service and interaction.

The following section presents interesting definitions of the service concept.
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4.2 What is a service?

Service orientation is an emergency to overcome the continual changes in systems because
of business requirement changes. It enables loosely coupling feature between distributed
systems and it covers also the heterogeneity of these systems. There is no agreed defini-
tion for service yet as presented in [Jon05]. We list some of service existing definitions
in table 4.1.

WESOA [Bar] A service is a system function, which is well-defined, self-
contained, and does not depend on the context or state of
other services.

OMG [OMG05] A service is a capability provided by entities through ports,
these entities named Participant which may be person, orga-
nization or system.

Papazoglou et al.
[PTDL08]

Services are autonomous, platform-independent computa-
tional entities that can be used in a platform in indepen-
dent ways. It can be described, published, discovered, and
dynamically assembled for developing massively distributed,
interoperable, evolvable systems.

SSOA [CLG+12] A service is a unit of work to be performed on behalf of some
computing entity, such as a human user or another program.

W3C [HB02] A service is an abstract resource that represents a capability
of performing tasks that form a coherent functionality from
the point of view of provider’s entities and requester’s en-
tities. To be used, a service must be realized by a concrete
provider agent.

Table 4.1: Service definitions

From the previously presented definitions, we define a service as an independent ab-
stract business activity. It facilitates interoperability between distributed heterogeneous
systems, since their elements provide or use services to reach cooperative and loosely
coupled software systems.

4.3 What are SOA and SOC about?

We already viewed the general definition of architecture provided by Shaw and Gar-
lan [SG96] in section 2.4.1. According to this definition the service is the basic element
in building the SOA based systems. SOA views a distributed system as a collection of
interactive services. In other words, SOA architectural style organizes software applica-
tions as a set of interoperable services [Har07,Blo03].
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Service Oriented Architecture Reference Model (SOARM)27 defines SOA as a paradigm
for organizing and utilizing distributed capabilities that may be under the control of dif-
ferent domain ownerships. SOA can be viewed as a framework where enterprises build,
deploy, and manage services. SOA is not a brand-new revolution while it is an evolution
in computer science [Tow08].

The conceptual model of SOA consists of two main actors, service provider and
consumer. An additional actor may be added to this model to facilitate the service
discovery which is the repository (see figure 4.1). However, we believe that the registry
is more related to technologies than to the conceptual model of SOA, i.e., Universal
Description Discovery & Integration (UDDI)28 registry allows to discover web services
defined by Web Service Description Language (WSDL).

Service Oriented Computing (SOC) is a new computing paradigm that depends on
SOA, where the service is the basic constructs to support fast, low-cost and easy compo-
sition features in the improvement of distributed applications [PTDL08]. It was somehow
difficult to distinguish between these two terms (SOA and SOC), since they are not well
separated.

As a summary for different points of view, SOA is about basic entities (services) and
their interactions in software architecture. SOC is about service composition, where in
services orchestration, the recursive composition of services defines a new service that
has central control over the whole composition. However, there is no such control service
in services aggregation known as choreograph.

Figure 4.1: The conceptual model of service oriented architecture.

SOA provides many benefits on both business and technical levels, where it focuses
on business domain solutions to cover frequently changes in business requirements. Next
section browses some existing service models.

27http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf
28http://uddi.org/pubs/uddi-v3.0.2-20041019.htm
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4.4 Service oriented models

Many models exist for service oriented architectures or for modeling the service it-
self. Differently from the component and agent approaches, we do not have categories
to classify these models; for this reason, we list the studied models here and we de-
tail them lately. Although the web services belong to a low-level of conception, we
start by presenting the model of Web Service Description Language. The OMG pro-
posed the SoaML [OMG09] for Service Oriented Architectures Modeling Languages.
OASIS proposed SOARM for designing any service oriented application. Many other
models are proposed by researchers like works that use the Model-Driven Engineering
(MDE) [Ken02] for designing service oriented architecture models in [EKLM07,RRSA06]
and the SOA models based on UML profiles like [EKLM07,BHTV03,Joh05].

4.4.1 The model of Web Service Description Language

Web services are the most used technology for implementing SOA. We present here
the general model of the Web Service Description Language (WSDL). Figure 4.2 shows
the basic elements in WSDL 1.1 (a portType class becomes interface in WSDL 2.0).
This model focuses on the service itself regardless of the service provider or consumer
[CBZ+04]. The service aggregates the ports which itself aggregates the service’s opera-
tions. These operations contain messages which are the parameters of service bindings.
Each message contains an envelope and it has a header and a body. The message header
may contain specific aspects of the message, which can be related to its role. The message
parts are the parameters with their types.

Figure 4.2: The Web Service Description Language model [CBZ+04].
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4.4.2 Service Oriented Architecture Modeling Language

The OMG asked for Request For Proposal (RFP) and solicited submissions for a UML
Profile and Meta-model for Service (UPMS) [OMG09]. Enabling the interoperability,
integration at the model level and the flexibility of platform choices are among the main
objectives of this meta-model.

SoaML previously named SOA-pro is based on UML2.0 meta-model, it meets the
mandatory requirements of the UPMS RFP. It supports bottom-up and top-down ar-
chitecture design of services. In SoaML, a service is a capability provided by entities
through ports, these entities named participants which may be person, organization, sys-
tem or agent. The ports can be a simple UML interface or a ServiceInterface. The Ser-
viceInterface is defined from a service provider viewpoint; it may expose the participant
capabilities. The composition of service can be achieved through their serviceInterface
where it may have itself service points or request points that define more granular ser-
vices. The capability specifies the capacities of a participant and represents the provided
operations. All the information about the service, choreography and any other terms and
conditions are specified in the ServiceContract which specifies the collaboration between
the participants (see figure 4.3) since it extends the collaboration meta-class of UML.
The concept of role appears also within this contract. The behaviour in SoaML can be
achieved by activity diagrams of UML2.0 or by a state machine. The communication
between request and service points is done through service channels which extend con-
nectors in UML2.0. Protocols are used whenever a conversation is involved between a
service provider and consumer instead of method calls.

Many concepts exist in this model, but we are interested in following main ones:
service provider, service requester that are represented in the participant concept, service
points (provide service) and request point (require service) which are the interfaces
and the interaction by contract between service providers and requesters, the contract
contains roles of participants.

4.4.3 SOARM

The Organization for the Advancement of Structured Information Standards (OASIS)29

proposed a reference model for service oriented architecture30. This general SOARM
model defines main concepts that should be considered in the design of any system
adopting a SOA approach. The main concepts in this model are presented in figure 4.4:

• Service that allows to access or use the capabilities through the service interface.
There are some concepts in the SOARM model that describe the involved concepts
for dynamic perspectives of a service, such as the visibility, interaction and real
world effects.

29http://www.oasis-open.org/
30http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf
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Figure 4.3: The SoaML profile.
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Figure 4.4: Main concepts and relations in the SOARM.

• Visibility which enables the service provider/consumer to see the service. It must
satisfy the awareness, readiness and reachability between the provider and the
consumer.

• Interaction that shows the exchanges between services either by sending, receiving
messages or by changing the state of a shared resource. The format of the ex-
changed information is defined by an information model. A behavioural model is
defined to ensure a successful interaction through the definition of the sequences
of actions and process involved in a service by a protocol.

• Real world effects which are many for using a service. They affect the way of using
provided services by a consumer.

• Service description defines the needed elements to be respected for using a ser-
vice. It contains the service functionality and its interfaces. The service interface
includes the protocols, commands, and information exchange to allow the interac-
tions with other services.

• Execution concept which permits to differentiate services (different instances of the
same service). According to this concept we can interpret the exchanged date of a
service interaction.
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• Contract & Policy where a contract defines the agreement between two participants
(parties). A policy defines how to use, deploy or describe a service by identifying
the constraints or the conditions to a participant.

The SOARM model defined the norms and aspects that may be considered in the devel-
opment of any service-based application. It does not specify the concepts literary but it
mentions the needed issues that must be respected like the description of the services, the
visibility, etc. We mention that the concept of service, service interface and interaction
should be explicitly available.

4.4.4 Model Driven Architecture (MDA) and SOA models

Emig et al. [EKLM07] proposed the SOA model presented in figure 4.5. This model
consists of two essential parts: conceptual and the deployable parts according to the
MDA principles with a formal definition using UML profile. The main concept of service
extends the port concept in UML, however the service interface extends the interface
concept and the service providing component extends the component concept in UML.

Figure 4.5: The conceptual part of the SOA service meta-model [EKLM07].

In the conceptual model the Service represents the central element of the meta-
model. It provides a set of Service Interfaces each of them consists of Service Operations.
This containment relation is strictly enforced. The provision of Service Interfaces is
modeled using the association Provided Service Interface. The usage view on a service
is defined via the signatures of its Service Operations and the corresponding Service
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Messages which can be of the Request Message type (Incoming) or the Response Message
(outgoing). The service parameters correspond to the service messages part in WSDL.

We can find the composition on the Service Providing Component not on the service
itself (only primitive services), the service providing Component can be a Composition
Component or Atomic Service Component. Then, the orchestration is related to the com-
posite provider, it is achieved by the Service Interaction Protocol which defines also the
order of the operations calls. The deployable service model extends the conceptual one
by the deployment of specific information, like for instance the actual service endpoints.

Another work that respects MDA principles for modeling SOA, is proposed by Rah-
mani et al. in [RRSA06]. The main principle of MDA [Sol05] is to separate the Platform
Independent Model (PIM) from the Platform Specific Model (PSM) and to use tools to
make transformations between them. The proposed approach contains two PIMs and
one PSM. The first PIM is designed from system components without the need to iden-
tify the services, they use here standard UML to define the class diagram. Then, they
define a SOA based PIM (which is a PIM of next level) developed using UML to model
the system based on SOA. The SOA based PIM is generated by adding interfaces on
previous defined component which represent the services and manage all the attached
components lifecycles; then they generate the PSM for specific technologies like web
services.

4.4.5 UML Profiles and SOA models

Similarly to SoaML, the proposed SOA model in [BHTV03] is actually a UML profile.

It defines many stereotypes presented in (figure 4.6), we can see that a service is
considered as a special type of component. It is published and found through ports
and it has its interfaces which can be provided or required. These interfaces contain
operations. We can see also that the service providers or consumers are components.
The interaction concept is defined through the UML collaboration diagram by assigning
messages.

Another service modeling approach based on UML profile is proposed in [Joh05]. We
can see in figure 4.7 that there are new concepts such as: partition, which represents the
logical or physical boundary in the system. These boundaries are strict where there must
be a gateway to access each partition. A gateway represents a service proxy where it
may be used to arbitrate protocols to allow access to a partition, service channel extends
the connector class of the UML 2.0 profile just as in the case of SoaML, it represents
the communication between services. The central concepts of service, service provider,
service consumer, interface, protocol, message and operation are explicit with the same
semantics as in the previously presented models. An additional concept related to the
service and the protocol is named service specification that acts like contract between
providers and clients.
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Figure 4.6: Stereotypes in a SOA model [BHTV03].

4.5 Comparison

Because of the lack in the standardization of service oriented model, we can find many
proposed models, with different aspects, like considering the composition on the service
level or on the element that provides it. Most of these works have agreed on the presence
of the elements providing or using the services. However, in WSDL meta-model, this
element is not considered as it models the service itself. Here, we provide a short com-
parison between the presented service-oriented models (see table 4.2). The ”-” symbol
refers to non available or ambiguous concepts while ”ok” refers to existing explicit ones.
We may add text to clarify specific issues.

Primitive services or services in general (some models do not distinguish between
primitive and composite), protocols, participants, interfaces, operations and messages
are of the most common explicit concepts between these models. The type of interface
(required or provided) is not distinguished in all these models. Also, we can see that the
composition of service is not well-defined in most of these models. It may be defined on
participants level like in [EKLM07], it may be done through protocols for choreography
or orchestration like in [OMG09] or it may be ignored. The concept of role in service-
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Figure 4.7: Modeling services [Joh05].

oriented model is usually restricted to provider and consumer types. For this reason, this
concept is not available or implicit in most of these models. From our point of view, this
concept must be explicit according to the need to precise the service roles in different
interactions which are surely not the same. In [OMG09], we can find different roles of
participants in a service contract.

The interaction between services is achieved usually by basic types of communication
like method calls, binding and service channels between service providers and consumers.
In some cases, the basic interaction is not sufficient; then, using a protocol specified in
the services or participants is possible. The interaction can be specified through activity
or collaboration diagrams in the cases of SOA models based on UML like in [EKLM07]
and [Joh05].
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4.5. Comparison

The participant is a first-class concept in most of the previously viewed models except
in the WSDL meta-model. We consider any application as a set of interacting services,
then we prefer to precise participants lately in more concrete level. These participants
will be components or agents implementing services (as we explained previously in the
introduction). For these reasons (the implicit existence of roles and explicit one of
participants), we choose to define our own abstract service model where the concept of
role is explicit and the one of participant is implicit.

After the presentation of the several models in component, agent and service ap-
proaches, we need to put the light on the works that already have been interested in the
integration of these approaches or at least two of them. These works are the subject of
the next chapter.
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This is a tricky domain because,
unlike simple arithmetic, to solve a
calculus problem - and in particular
to perform integration - you have to
be smart about which integration
technique should be used: integration
by partial fractions, integration by
parts, and so on.

Marvin Minsky

Chapter 5

Works integrating components,
agents and services

simultaneously
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5.1 Introduction

In this chapter, we browse the most representative works that already consider simulta-
neously the three approaches of component, agent and service or at least two of them.
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We start by browsing works that integrate component and service approaches followed by
the ones that consider agent and service together. Then, we present works that consider
both of component and agent approaches through two main categories: The Agentifi-
cation (resp. Componentification) is the added values of the agent (resp. component)
approach to the existing components (resp. agents) approach.

5.2 Component-based approach and service oriented ar-
chitecture

A service can be viewed as a logical extension for a component and a component can
implement a service, since they both have the main interest of reusability. The web
service, which is the most used technology for implementing services, is considered as a
special type of components in [LW07,BL07]. A component itself can implement abstract
business services.

The authors in [BL07] consider services as a special type of component with a major
difference that the services focus on run-time retrieval and run-time deployment, while
components focus on design time.

The authors provide a detailed comparison between Component Based Software En-
gineering (CBSE) and Service Oriented Software Engineering (SOSE) according to prin-
ciples, process concerns, technology concerns and composition. A component is a tightly
coupled entity because it exists always in the frame of a component model and it has to
be conformed to its rules.

The service description and implementation are well separated (black boxes) in
service-based approaches, while there may be different degree of the component speci-
fication (gray, white and black boxes) in component-based approaches. Regarding the
composition level, it is always between homogeneous static component in CBSE, which
is not the case for SOSE where it composes dynamic heterogeneous services.

Figure 5.1 presents main differences between CBSE and SOSE during their develop-
ment process. We can see that the SOSE focuses on both specification and run times
rather than design and implementation ones, while CBSE consider them all through its
development process.

Another interesting comparison between components and services exists in [BCM+07].
The authors view services in a higher level of aggregation. It can be implemented by
one or more components. The authors view components as compiled blocks of code
that can be reused and assembled in homogenous application. The services overcome
the homogeneity limits, they access to heterogeneous environments and they cover the
components limitation when they aggregate different components that belong to hetero-
geneous environments.

The work of [HkO11] provides also a detailed comparison between CBSE and SOSE.
On one side, the authors compare quantitative criteria like product and process. They
also map the concepts of the two approaches along their lifecycles (i.e., component and
connector types correspond to an abstract service in the design time). On the other
side, they compare the two approaches according to quality criteria. They found that
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Figure 5.1: Comparison of typical activities during development process in CBSE and
SOSE [BL07].

components are more reusable and composable than services while services are better at
the dynamicity level.

In the following sections, we present works that already merge services and com-
ponents in a new entity [ZYCZ08], define a new architecture [CA07] based on the two
approaches, or the works that use one approach to enhance the reusability and compo-
sition ability of the other approach [Zhu05] and [YP04].

5.2.1 ServiceComponent

Zhang et al. propose a service oriented architecture model based on a traditional ar-
chitecture description technique (an ADL) named SO-ADL [ZYCZ08]. Like any ADL
model, there are the three main concepts of component, connector and configuration.
This model proposes a new concept named ServiceComponent (SC) instead of the com-
ponent one. A SC differs from traditional ADL’s component as it does not present
business requirement and it is not the same as the service, since it is a functional unit
rather than a business service. The SC entity is defined via four main aspects of the iden-
tification, interfaces (provision and request), specification and (pre and post) condition.
The second important concept in this model is the connector. Connectors are defined
in explicit manner between different services, their main aspects are the identification,
role (provider or requester), specification that defines the protocol glue between roles
and coordinator that ensures compatibility between connectors and ServiceComponents
(see figure 5.2).

The concept of configuration is composed of the declaration of ServiceComponent and
connector instances. At the same time, the composition of both of SC and connector
is achieved by declaring their constituent instances. This approach supports dynamic
changes from dynamic configuration, composition and recompilation. This work is quite
interesting but it was not fairly detailed. A similar work was provided by a group of
vendors named Service Component Architecture is presented in the following section.
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Figure 5.2: Service component (a) and connector types (b) [ZYCZ08].

5.2.2 Service Component Architecture (SCA)

BEA, IBM, Oracle, SAP, and others proposed Service Component Architecture31. Here,
we have the new term of “SCA component” that implements the service. Figure 5.3
represents a SCA component, we can see the three main elements in a SCA component :
Service, reference and property.

Figure 5.3: SCA component and specification for a calculator [CA07].

SCA component exposes services while it requires the references, which are the ser-
vices that a component needs to accomplish its tasks. The property is a value that helps
to access this component like the component location. This is important in the case of
composition. The provided service interface is on the outside of the service component,
it is visible to service consumers. The SCA component and references (required service
interfaces) are part of the internal view. Thus, they are not visible for service con-
sumers. However, this information conflicts the transparency characteristics of services.
The main originality of SCA is in providing an assembly mechanism for components im-
plemented over heterogeneous environments. Then, it overcomes one of the component
drawbacks (being aggregated in homogeneous environment) [MR09].

31http://www.osoa.org/display/Main/Service+Component+Architecture+Home
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The work of [HLD04] belongs to the same category, where the service is always in
a higher level of abstraction than a component. It focuses on special types of service:
non-functional services (security, management, transition, etc.) as a composition of
components to allow the modularity and the adaptation to all application specificities.
These non-functional services can be decomposed to sub tasks. Each one of these tasks
is implemented by a component. They use the Fractal component model because it
allows to change easily the non-functional service version for a specified environment.
The component model allows the easy substitution of a component by another one to
adapt the application in a defined context. Here, the non-functional services allow
the reconfiguration of the application in deployment time; they present an example for
researching services which need a high level of adaptability.

5.2.3 Service for more reusable components

Another study is done by Zhu in [Zhu05], where he finds that SOA provides more chances
for the development of reusable components. A service is more proper for reusing soft-
ware since we are not interested in its implementation. The author shows that “register,
find, bind and execute” actions help to reach more reusable components.

The author defines the service in the registry by a tuple S::=<N, P, I, R, M>.

• N is the service provider; it can be a URL,

• P is a pattern of service and it defines the name of service,

• I is the format of inputs of the service,

• R is the format of returned results,

• M is the services implementation.

This definition can be extended to consider the semantic description of the service. The
author finds that it is easier to the service requesters to understand the contract of
the provider than to implement complicated logic of the service by themselves. Then,
he defines the contract for using a service including performance requirement, cost of
a service; and the penalty to the service provider’s failing to meet the performance
requirement.

This work presents different ways to reach service binding in different service oriented
architectures (centralized, distributed service centres and distributed providers with a
centralized and distributed registry).

5.2.4 Service components for managing the life-cycle of service com-
positions

A methodological framework for services composition and managing their life-cycle is
proposed in [YP04]. The authors use the concept of service component to package the
composition of services (complex services) and expose their interfaces and operations
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in a consistent and uniform manner. This service component can be considered as an
abstraction of web services although it is a web service itself and it can be published,
reused and extended. Since service components are published, they can be invoked by
any service-based application.

After browsing the works that consider component and service together, we present
the works considering service and agent approaches together in the next section.

5.3 MultiAgent systems and service oriented architecture

We need to distinguish two main directions of researches considering theses two ap-
proaches. Either we make use of the agent approach in the context of SOA or we make
use of the interests of SOA in the context of MAS.

5.3.1 Service-oriented computing and software agents

Figure 5.4 presents an Extended Service Oriented Architecture (ESOA) provided by
Papazoglou et al. in [PAG04]. This architecture consists of three main layers: basic,
composite and managed services.

Figure 5.4: The Extended Service Oriented Architecture [PAG04].

This layered architecture uses the SOA in its basic layer. The service composition
layer aims to consolidate several services into a single composite service. The aim of
ESOA’s service management layer is to provide support for open service marketplaces.
The authors use Grid Service Bus (GSB), which is the infrastructure to allow services
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interaction, coordination and aggregation. Then GSB helps to reach an end to end
quality of service and other goals. Papazoglou et al. suggest using agent technology
with ESOA, which could be used to provide two types of coarse agents: agents as service
providers and clients. These two types of agents could be combined when a coarse agent
behaves as a service aggregator (or market maker) in order to provide services added
value to other agents. They identify four types of agents: coordination, monitoring, QoS
composition and policy enforcement agents in addition to the deployment and service
selection agents in the service grid.

Another work that uses agent interests in the context of service approach is presented
in the following section.

5.3.2 Agents for service composition by negotiation

The authors in [PBBP01] explore the future of bundling service on the fly to respond
to the requirements of a customer by negotiation. This approach claims that the agent
technology is the best practice to bundle services and to reach to composite ones because
of its ability to automate sophisticated negotiation. Then, the resulted composite services
respond to the customer needs and do not contain useless services.

Framing the intelligent agent with an overall of SOA and expected benefits of such
approach is presented in [ITS+08]. Since the SOA cannot help to reach rational (semi)
automated selections in the creation of Virtual Organizations (VO) [DM92]; agents au-
tomate such processes of finding collaborative partners for the creation of these VOs
based on services and business rules through negotiation.

In the two previous sections, the authors use agents to manage their extended SOA or
to facilitate the composition of services, while we find a reverse example in the following
work.

5.3.3 Service-oriented approach for MultiAgent system designs

The work in [ODS09] proposes an approach that combines service-oriented principles
with organizational based MultiAgent concepts. The aim of this work is to facilitate the
design of complex MultiAgent systems by composing predefined reusable MultiAgent or-
ganizations. Figure 5.5 presents the proposed organizational service meta-model, where
we can find that a service is used or provided by an organization (a service consumer or
provider is an organization). A service is coarse-grained MultiAgent functionality while
the operation is a fine-grained one. The binding is initialized at design time between
the consumer organization and the provider one in order to create a single composite
organization. The connection point is a pair of goal-role of an organization and it pro-
vides or uses operations (then services). In some way, the services help to reach reusable
organizations (service providers).
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Figure 5.5: Organizational service meta-model [ODS09].

5.3.4 SoaML and an agent meta-model

The work in [HJR10] provides a model driven approach for the integration of agents
and services. It shows the possibility of the transformation between SoaML and a de-
fined platform independent (meta-)model of agents (PIM4AGENT). This work has been
previously started in [HMMF+06] where the authors studied the Believe Desire Inten-
tion (BDI) models of agents [RG95]. The work in [HJR10] integrates the organizational
dimension. The SoaML (figure 4.3) is chosen to represent the SOA model where it
contains the notion of agent for concretely representing a participant in an application
specification.

The authors in [HMMF+06] provide mapping rules between the concepts of the agent
meta-model (PIM4AGENT) and the SoaML (PIM4SOA) model (i.e., direct mappings
between the agent of the SoaML model of service and the agent concept of their agent
meta-model). They use ATL32 for implementing the mapping rules. This work ensures
the possibility of interoperability between MAS and other application technologies. This
PIM4AGENT must be able to incorporate all relevant high-level concepts of the target
agent platforms then they can ensure to generate a PSM4AGENT according to the
agent technology. The mappings between the models of SOA (PIM4SOA) and the agent
meta-model ensure the feasibility of this approach.

After browsing works considering service and component together then service and
agent together, works that consider both of agent and component approaches together
remain to browse.

32http://www.eclipse.org/m2m/atl/

90



5.4. MultiAgent systems and component-based approach

5.4 MultiAgent systems and component-based approach

Lind compares component and agent approaches through three categories: entities, in-
teraction, and problem solving [Lin01]. This comparison aims at showing that agents
may extend components to facilitate the building of complex distributed systems.

The work in [BGZ06] cites benefits of each approach, such as reusability, composi-
tions, Component Of The Shelf (COTS) properties of component approach. The key
properties of MultiAgent approach are such as autonomy, social ability, auto learning
and reasoning capability. Then, an interesting comparison is also provided in [BGZ06].
It compares the two approaches according to their state, their communication, delega-
tions of responsibilities and communication with other parties or with their environment
in table 5.1.

Feature Agent Component

State Mental attitudes Attributes & relations

Communication ACL Metaobject protocol

Delegation of responsibility Task and goal delegation Task delegation

Interaction between Parties Capability descriptors Interfaces

Interaction with the environment New beliefs Events

Table 5.1: Adapted features of the agent meta-model and their counter parts of the
component meta-model [BGZ06]

Component state is a set of attributes and relations that can be changed by relations
with other components, while agent mental state can be manipulated by other agents.
The communication in components is realized by method calling or protocols, which
force the receiver components to execute methods. However, agents use declarative lan-
guage like ACL that helps to convey the mental state of a sender agent to the receiver
one to convince it to do certain messages. Considering tasks delegation; a sender com-
ponent does not explain anything to the receiver one. Then, all outcomes are from the
sender responsibilities. Agents may delegate part of their goals to other agents; through
the tasks delegating, then both of them share the responsibility of the resulted outcomes.
The component uses its interfaces to interact with other parties while agent does
not have interfaces but it describes its capabilities to show what it can do through its
roles. This work finds also that agents are more efficient in semantic interoperability
than components while the components are more powerful in the syntactic interoper-
ability. The environment communicates with components through events while it is
an essential concept in the agent approach as any change in it may affect the mental
state of an agent.

The authors in [KMW03] present two different ways of combining agent and com-
ponent approaches. The first one, is called agentifying , which starts from component
technology with Added value by agent properties into existing components. The re-
verse definition is for componentifying which considers agent technology as starting
point and add component features to it. We borrow these two approaches with adapting
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their names into Agentification and Componentification to represent the transfor-
mation from component to agent model in the Agentification and the reverse in the
Componentification .

We use these terms in defining relations between component and agent models in
chapter 6. They also help us to classify works that consider the two approaches of
components added value to agents or the reverse in the following section.

5.4.1 Agentification

Many works try to add agent properties to component model, to reach auto adapt-
able, well managed and intelligent components like the works of CompAA [AL08],
SoSAA [DLCO09] and ActiveComponent [BP11].

5.4.1.1 CompAA

The main objective of this work is to adapt the components automatically by attaching
them to agents [AL08]. This is not literally what the Agentification is about; but
it can be viewed as the gain of the dynamicity feature of agent approach to adapt
components in a model named CompAA (Component Automatic Adaptation). The
component conforms to a specific model named Ugatze [SA04b], it differentiates the
input and output of data and control (data input (DI), data output (DO), control input
(CI), control output (CO)) and it has adjustment points to reach its services (the required
input service SI0.. SIn or provided output service SO0.. SOn) (see figure 5.6 (a)). For
each component there is an assigned agent responsible for its adaptation (see figure 5.6
(b)). Then, the component makes use of the agent properties (dynamicity) to be auto
adapted [LGA06].

Figure 5.6: An Ugatze component (a) and assigning an agent for each component (b).

5.4.1.2 SoSAA

[DLCO09] provides a framework named Socially Situated Agent Architecture (SoSAA)
that aims at integrating the advantages of CBSE and the Agent Oriented Software En-
gineering (AOSE). This framework requires wrapping functional skills within low-level
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components before the deliberative component agents manage it in a higher-level (the
SoSAA intentional layer). This is achieved through the intermediate layer containing
SoSAA adapters. These adapters are agents that interact with the underlying compo-
nents through defined ways like loading components (load), binding components (wire),
changing component parameters (configure), etc. Agents that access to the components
are named intentional agents, they can communicate via ACL. Figure 5.7 illustrates
the combination between component-based infrastructure framework and a MAS-based
high-level infrastructure one.

Figure 5.7: SoSAA’s hybrid framework strategy [DLCO09].

This work is also listed under the Agentification , since we add agent features to
components belonging to a lower level to reach deliberative component agents.

5.4.1.3 ActiveComponent

Braubach and Pokahr propose an intelligent entity named ActiveComponent in [BP11]. It
facilitates the design of distributed applications. It is based on SCA approach previously
viewed in section 5.3 and it integrates the intelligence of BDI agents with it.

The aim of this work is to reach autonomous acting service providers or consumers
from passive SCA components. This helps to simulate real world scenarios where there
are different active stakeholders.

We choose to list this work under the Agentification approaches, since it starts by
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special kind of components communicating by services according to the SCA architecture
named SCA components. These SCA components make use of the agents properties
like autonomy in a new entity named textitActiveComponent. Figure 5.8 presents an
overview of the ActiveComponent. The ActiveComponent merges autonomous agents
with passive components. The agent perceives its environment with its sensors and
influences it by its effectors; it owns its goals and internal capabilities. The passive
component describes its dependencies with the environment through the services that
it requires or the ones that it exposes. The ActiveComponent owns agent sensors and
effectors and also component required and provided interfaces.

Figure 5.8: An ActiveComponent structure [BP11].

5.4.2 Componentification

Here, we list some works that are based on the agent approach and gain interests of
the component one to reach reusable agents, like AgentComponent by [KMW03] and
another work which does not fully correspond to the definition of the Componentification
in MaDcAr [GBV06] but it uses components to build agents.

5.4.2.1 AgentComponent

The work of [KMW03] classifies itself under the componentifying approach. The
authors introduce an entity named AgentComponent (AC). This entity combines the
features of agents and components (see figure 5.9), like reusability and parameterisation
of components and communication/interaction and processing complex tasks of agents.
An AC has all agent properties like autonomy, reactivity, proactively and interaction
because it is an agent in basic but it gains component features.

The authors started from agents with their communication ability and make use of the
reusability and parameterization/customization aspects of the component approach. To
build an agent, we initialize or reuse ACs. The main parts in an AC are: the Knowledge
base which defines the services to add, remove or use information from this base to other
agents, Slots which are communication partners, Ontology’s, ProcessComponents PC
which are the processes that define the behaviour of AC instances, they can be added
or removed to and from ACs.
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Figure 5.9: The features combination of agent and component approaches [KMW03].

All the services that define the appearance of an AC like add / remove (PC, AC
instances, slot, ontology) are defined in an interface named StructuralInterface. This
interface enables to reach reusable and customizable agents by changing its ontology,
slots or behaviours through the process components (PCs).

5.4.2.2 MaDcAr

Another interesting work is named MaDcAr which stands for Model for automatic and
Dynamic component Assembly reconfiguration [GBV06]. It is an abstract model auto-
mates the construction of agent (engine) by the component-based approach thanks for
its (re-)assembly mechanism. This work cannot be classified under Agentification or
Componentification because it actually does not add agent or component features
but it uses components to build an agent. We have chosen to list it here because MaD-
cAr profits from the component properties to create an agent. MaDcAr configuration
describes a family of similar assemblies as having the same structural constraints. In
fact, each configuration consists of a graph of component roles and a set of character-
ization functions, as shown in figure 5.10. According to the functions definitions, each
configuration is more or less appropriate to different contextual situations that may arise
during the execution of an application. Then, here we have reusable agents in different
contexts.

After presenting works integrating pairs or triples of service, component and agent
approaches, we summarize headlines of the presented ways of their integrations in the
following section.

5.5 Summary

In this chapter, we browsed most representative works that consider the integration
of pair of component, agent and service approaches. Some works consider service and
component approaches together. Some works compare the characteristics of the two
approaches (reusability composition, dynamicity, loosely and tightly coupled, location
transparency) in [LW07], [BL07], [BCM+07] and [HkO11].

Other works interest in mixing components and services. Authors in [MR09] reach to
communicate components by services. They combine service oriented architecture and
the component approach in a Service Component Architecture. In [Zhu05], authors use
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Figure 5.10: Agent Structure in MaDcAr [GBV06].
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services to reach more reusable components. Other researches use components to add
value for services approaches like in [YP04], the authors provide a service component
entity for managing the services lifecycles. A similar entity with the same name of
ServiceComponent is also proposed in [ZYCZ08]; while this intermediate entity is based
on ADL models and it owns properties of both component and service.

Services and agents are also key concepts for many researches. Agents are used to
add values for service approaches like in ESOA [PAG04] where the authors extend the
SOA by adding specific types of agents. The work in [PBBP01] profits from agents
ability of negotiation in service composition. The reverse view exists in [ODS09] where
the authors make use of service to create reusable organizations of agents which help to
build complex systems. [HJR10] browses feasible mappings between service and agent
models.

Few works consider agent and component simultaneously. The works of [Lin01,
BGZ06] compare the characteristics of these approaches from reusability, autonomy,
levels of interaction, etc. We choose to represent the works mixing component and agent
through two main categories of Agentification and Componentification.

Under the Agentification category, we find CompAA [AL08] model that attaches an
agent for each component to reach auto adaptable components based on the interest of
high-level communication of the agents. The work of SoSAA [DLCO09] belongs also to
this category where it defines deliberative component agents via controlling functional
low-level components by deliberative agents.

Under the Componentification category, we find the work of [KMW03] that defines
AgentComponent, which encapsulates agents in components.

In [GBV06], the authors automate the construction of agents by a component-based
approach thanks for its (re-)assembly mechanisms through the MaDcAr model. This
work does not fully correspond to this category but it makes use of the assembly property
of the component approach to build agents. A similar model named MALEVA [BMP06]
allows building complex agents behaviours via composite components.

We can already see that many works are already interested in integrating benefits
(adding values) of two or three of these approaches in different ways. Their main way
to realize this integration is to consider one approach as the specification base and to
add features from the other domain on the elements of this base. In other words, they
consider that one approach (agent, component or service) is at a higher level or is more
preponderant than the other one for the specification of applications. Contrary to these
works, we consider component and agent approaches at the same level and with equity.

Lastly, the work in [BP11] integrates the three approaches of component, agent and
service in an entity named ActiveComponent. This entity is based on SCA architec-
ture that defines passive components communicating via service and adds the autonomy
feature of agents to reach active components. This work owns the same objective as
ours (integrating the three approaches of component, agent and service), but it merges
their interests in a single entity named ActiveComponent. However, we aim to provide
a model offering wide choices to the designer to use components and agents with their
classical interests or with new ones.
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Most of presented works belong to low levels of conception (mostly related to a
specific technology or model). This makes the reusability and the adaptation of these
works restricted in special contexts. Our objective is to provide a unified integral model,
which can be reused easily in different contexts. This model provides a palette with the
widest possibility of conception that allows the designer to choose the suitable elements
according to its requirements in the applications specification.
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This part started by browsing models under each approach of component, agent and
service. We concentrate on the existence of two main concepts of interaction and service
(how they exist), in chapters 2, 3 and 4. We ended these three chapters with tables
to extract the shared concepts between the studied models in each domain. Then, we
browsed in chapter 5, works that already mix two or three of these domains in different
ways with clarifying the added value of each domain to the other.

Figure 1 summarizes this state of the art and related work part by representing three
circles for each domain (i.e., component, agent and service approaches circles). Each
circle contains the main studied models in a domain. We studied more than thirty
models, about 10 models for each domain, we cited along this chapter the works that
we reuse in some how to achieve our objective. The intersections between these three
circles represent main works that belong to two or three approaches jointly. We can find
at least four models between pairs of circles (i.e., the intersection between component
and agent circles contains five models, the intersection between component and service
circles contains five models and the intersection between service and agent circles con-
tains six models). However, the intersection between the three circles of component,
agent and service approaches contains only two models ActiveComponent [BP11] and
CompAA [AL08]. ActiveComponent is a new single entity that merges the interests of
the three approaches. However, in CompAA, we have a model enabling auto adaptable
components that makes use of the agent and service approach interests.

In this research, we consider the approaches of component and agent with equity.
We aim to overcome the shortages of one approach component (resp. agent) by profiting
of the interests of the other approach agent (resp. component) with keeping at the same
time the possibility of using the original approaches in their current state.

The next part of this thesis presents our contribution with the help of a running
illustrating example. The tables, with the shared concepts of each domain, are the base
in designing the general models of each domain respecting our objective.
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Figure 1: A general view of the related works.
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Overview

As we saw previously in the introduction, our contribution consists of several parts, the
first part is already presented in the state of the art. We already studied existing models
of component, agent and service with the focus on the existence of the two key concepts
of service and interaction.

The second part of our contribution is related to the integration of these three do-
mains. This implies to define our own models (Domain Specific Languages (DSLs)
[Spi01]) for each domain, since none of the studied models of component, agent and ser-
vice completely fulfils our requirements. Indeed, we aim to highlight the interaction and
service specifications in an application through components, agents or both entities. The
need of an abstract service model does not contain the concept of participant explicitly
is also from our requirements. These DSLs will be extracted from the already presented
comparison tables of each approach (tables 2.3, 3.4, 4.2). We unify the concepts of the
studied models in each domain and we consider the two concepts of interaction and ser-
vice as first-class ones. An additional model named Component Agent Service Oriented
Model will be defined to reach our objective of integration, where this model enables
the application specifications through interacting agents and components.

We start this part by defining a kind of hierarchy between these models depending
on MDE principles; we call it our framework. This framework defines all kinds of rela-
tions (projections and transformations) between component, agent, service and CASOM
models. We use a holiday reservation system as an example of application to illustrate
our models. Then, we propose our three unified models of component, agent and service
with their main concepts before the presentation of CASOM one, which allows the ap-
plication specification with both components and agents. Lately, we provide mappings
between the concepts of these models to ensure the feasibility of the transformations
from one model to another. Possible variants of mappings and application specification
in CASOM are presented in a dedicated chapter named design guide. This design guide
chapter groups all the cases needing the designer interventions. Then, we provide the
implementation of our contribution in a MDE environment in a dedicated chapter.
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Starting point: Framework and
Case study
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6.1 Introduction

This chapter is the gateway of our contribution. It provides a global view of the consid-
ered domains (i.e., general models represent each domain) along this research in a single
framework. This framework defines also the relations between these domains. It can be
interpreted by different entries according to our view (top-down, bottom-up and middle-
out). The Model-Driven Engineering approach allows implementing this framework. For
this reason, we recall the basic principles of the MDE. A general representation of the
used case study to differentiate the application examples conforming to each model is
provided at the end of this chapter.

6.2 Framework

We start our contribution by presenting our framework [ACG11,ACGA11] that provides
a general view of our models and the relations between them. This framework is a hier-
archy that contains four models as shown in figure 6.1. The abstract model is the service
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Figure 6.1: Integration framework of service, component and agent approaches.

one; this model defines only the services of an application without requiring to detail
which elements (agent and/or components) are implementing them. The models of com-
ponent, agent and CASOM are at the same level of design. They are the projection of the
abstract service model towards agent, component or CASOM models. These four models
specify an application in several ways: with only services, with only components, with
only agents or with a mix of agents and components. In addition to the four models, we
can see the relations between them. The arrows of Projection/ Abstraction, Componen-
tification and Agentification represent these relations in figure 6.1. The Projection arrow
enables to project any application conforming to our service model towards component,
agent and mixed of component agent based applications. The reverse arrow is the Ab-
straction one. The direct Agentification (resp. Componentification) arrow enables the
transformation of any application specification into agents only (resp. components only)
conforming our agent (resp. component) model. Arrows between agent and component
models towards CASOM one are also named Agentification (resp. Componentification)
according to the model that we start from component (resp. agent) respectively (i.e.,
the arrow from the component model to CASOM is named Agentification since we may
add agents to existing components in the application specification via CASOM). This
enables to enhance easily any existing component or agent application specification.

Our framework can be interpreted by the following different entry points:

• A top-down approach: we can project any application viewed as sets of collabora-
tive services corresponding to our abstract service model into another specification
conforming to one of the three other models (component, agent or CASOM). More
details on the implementation can further be added by projecting a specification
conforming to one of these three models to a specification conforming to con-
crete implementation models such as EJB and Fractal for components, AGR and
OMNI for agent models and AgentComponent (AC) for a mixed agent/compo-
nent approach (see figure 6.1). The Projection arrow corresponds to this view of
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framework.

• A bottom-up approach: any application implemented by any existing component
or agent model or mix of them can be abstracted and viewed as a service-oriented
application. For example, we can start from an application implemented by Fractal
component model, we adapt it to make it conforming to our component model,
and then it can be abstracted as only formed of collaborated services conforming
to our abstract service model. It is a kind of reverse engineering process. The
Abstraction arrow corresponds to this view of framework.

• A middle-out approach: the emphasis here is on the interaction aspects between
components and agents of a system to reach their integration. Services play key
roles in their interoperability, as services clarify the specification of what agents or
components do. The Agentification and Componentification arrows correspond to
this view of framework.

Our framework respects the principles of the Model Driven Engineering (MDE) [Ken02],
then we can call it a MDE framework. Next section puts the light on the MDE approach
with its main key concepts that we use along this research.

6.3 Model-Driven Engineering

We present here the basic principles of the MDE that we use to reach our objective along
this research. One of the main concerns of MDE is to separate the specification of a sys-
tem from its implementation. This specification independently of any technology helps
to define many platforms for a system. MDE enables also the transformation of system
specification in one particular platform to another one. Portability, interoperability and
reusability through architectural ways are from the main properties of systems based on
MDE approaches [OMG03]. Platform Independent Model (PIM) and Platform Specific
Model (PSM) are from the main models in the Model-Driven Architecture (MDA). The
MDA is the vision of the MDE using the OMG standards (UML, OCL, MOF . . . ). In
the PIM, we find the specification of the fixed functionalities of a system that do not
change according to the platform. However, the PSM presents the system functionalities
in a particular platform.

Figure 6.2 shows a MDE view of the three approaches of component, agent and ser-
vice. We can see that component and agent models are PIMs, the service model belongs
to a higher level of abstraction, it describes the system behaviour and requirement.
Therefore, it represents the requirement model, which is a Computation Independent
Model (CIM) but this service model can be viewed also as a PIM. These models can be
projected to PSMs related to specific models or technologies like EJB for components
and AGR on Madkit platform for agents.
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Figure 6.2: A MDE view of the three approaches of component, agent and service.

6.3.1 Main concepts

Figure 6.1 shows our framework with its four models which are actually four PIMs of ser-
vice, component, agent and mixed of all these domains according to the MDE approach.
We present some definitions of MDE concepts that are essential in our framework like
models, meta-models and transformations.

6.3.1.1 Model and meta-model

The concept of model is central in MDE, where a model can be projected or transformed
to other models. The model itself should conform to a more abstract model named meta-
model. Many definitions exist for a model [MFBC10]. For example,

A model is a simplification of a system built with an intended goal in mind. The model
should be able to answer questions in place of the actual system according to [BG01].

We must also cite the famous phrase of [Lud03] that says nobody can just define what
a model is, and expect that other people will accept this definition; endless discussions
have proven that there is no consistent common understanding of models.

A model modeling is relations of representation between modeling concepts, without
actually trying to understand the nature of these concepts according to [MFBC10].

A model itself conforms to a meta-model, which is also a model that defines the concepts
used in its conforming models and their relations. The meta-model describes models and
the meta-model itself is an instance of a meta-meta-model. We can also say that a meta-
model is a model for modeling language.
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The OMG [OMG00] provides a hierarchy of four level of meta-modeling (figure 6.3).
It contains the real world system in M0 level, the model according to a general modeling
language in M1 like UML. It also includes the UML meta-model that defines the used
language to describe the model in M2 and the meta-meta model that describes the
UML meta-model in M3, which is Meta Object Facility (MOF) [OMG00]. Most of the
models in different levels need to be supported with Object Constraint Language (OCL)
[OMG10] to remove possible ambiguity.

Figure 6.3: Hierarchy levels of meta-modeling.

A Domain Specific Languages (DSL) is a modeling language; it belongs to the M2
level of the previous hierarchy.

A DSL is a language that closely models a certain domain of knowledge or expertise,
where the concepts are tied to the constructs of the language33.

If we know the domain, a DSL allows us to have more expressive language than a general
modeling language like UML; it guides to define common metaphor in specific domains.
DSLs help also to separate business logic from application code.

We profit of this short presentation of MDE main concepts to avoid possible ambi-
guities and to be clear along this document. Our component, agent, service or CASOM
models are actually meta-models defining DSLs. They are not model in the sense that
are at the M1 level but model in the sense that they define the concepts of a domain.

6.3.1.2 Transformation

Kleppe et al. [KWB03] define as follows:

A transformation is the automatic generation of a target model from a source one,
according to a transformation definition. While a transformation definition is a set

of transformation rules that describes how a model in the source language can be
transformed into a model in the target language.
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Figure 6.4: MDA transformation process (a). General transformation in MDA (b).

The transformation definition proposed in [KWB03] corresponds to our defined map-
pings rules between chosen source and target models of component, agent, service and
CASOM ones. Transformations34 can be achieved between different types of models
in a model driven architecture like PIMs, PSMs. Figure 6.4 presents a general view
of transformations in MDA. Transformations can be vertical according to the level of
abstraction and it can be horizontal between models of the same level. The source and
target model may have the same meta-model in an endogenous transformation, or differ-
ent meta-models in exogenous transformation. The arrows of correspondence between
the four models according to our framework are actually the transformations between
them (see figure 6.1). The Projection transformation between service model and the
other three models of component, agent and CASOM is vertical one, since our service
model belongs to a higher level of abstraction than the other models. The Agentification
and Componentification transformations are exogenous one, since our models represent
different languages (DSLs).

In order to realize our objectives, we started by designing general well-defined model
for each domain using UML class diagrams. However, UML is not sufficient to realize
the parts (models and relations) of our framework. Therefore, we need a framework
that supports MDE principles like Eclipse Modeling Framework (EMF) to facilitate the
implementation of our framework.

6.3.2 Eclipse Modeling Framework (EMF)

EMF [SBPM09] is a complete open source environment. It supports the MDE principles
of models design, transformations, interoperability and code generation. EMF contains a
principle meta-meta-model named Ecore. All the information about defined classes and
their relations are available in Ecore meta-model. We can implement our DSLs using
Ecore meta-meta-model, and the transformations can be defined using Atlas Transforma-

33http://www.grails-exchange.com/files/Guilliaume%20LaForge%20-%20DomainSpecificLanguages.pdf.
34http://www.theenterprisearchitect.eu/archive/2008/02/18/mda-and-model-transformation
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tion Language (ATL) [Gro08]. ATL is a hybrid language mixing declarative (relational)
and imperative (operational) constructs that defines the rules of transformations from a
source model to a target one. What is an Ecore model?

Ecore model
Ecore meta-meta-model is a general model from which any meta-model can be de-

fined. Figure 6.5 presents a simplified view of Ecore model. We define any meta-model
in Ecore by describing its class using EClass element that owns attributes and rela-
tions with other classes. The attributes are defined by EAttribute classes, their types
are defined by EDataType and the relations between classes are defined by EReference
classes.

Figure 6.5: Simplified view of Ecore meta-model [MS05].

After presenting our framework in its parts and implementation tool, we browse in
the next section the running illustration example that we use along the contribution part
to define the applications (models) conforming to our DSLs.

6.4 Case study

Our case study is a typical holiday reservation system. A client addresses a travel agency
to find appropriate vacation according to some criteria like number of persons, dates,
prices, places and themes (see figures 6.6, 6.7). This travel agency has networks of hotels
and airline companies according to geographical zones. In this example, we choose
to ignore the payment and bank related issues. A special case of this system will be
considered along our contribution part to facilitate the representation of any application
specification. It considers only one instance of each actor (client, travel agency, airline
company and hotel chain) but for the internal hotels in the hotel chain, they may be
multiple.

Figure 6.6 presents the collaboration diagram (the sequence of communications) be-
tween instances of main actors in this example. Our proposed scenario is as follows: a
client needs to know the possibilities to spend his vacation with defined price VP for
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Figure 6.6: The collaboration diagram of our holiday reservation system.

certain period P (e.g., Christmas vacation), in a chosen country C, number of person
NB with a desired theme T (e.g., to the mountain for skiing). The main steps of the
proposed scenario in the collaboration diagram figure 6.6 are the following:

• Step 1: a client addresses the travel agency to find vacation offers. For example,
he is looking to spend his vacation in France with budget of 2000 euro, for 10 days,
for two persons to learn skiing.

• Steps 2 and 3: the travel agency receives the client query. It estimates new prices for
airline company ACP and hotel HP according to previous deals. The travel agency
delegates the query to its partner’s airline company and hotel chain according to
the country and theme criteria (i.e., airline company and hotel chain in the Alps
or Pyrenees mountains).

• Steps 4 and 5: the airline company and the hotel chain provide corresponding
offers for a flight and a room reservation respecting the other criteria.

• Step 6 and 7: the agency coordinates offers of the airline company and the hotel
chain to provide set of possible vacation offers ranked by price (or any criteria
chosen by the client). This agency may need to negotiate some criteria (i.e., price)
with the hotel and (or) airline company as there are lots of deals between them
(business as loyal customer). It manages to change criteria according to the client
ones (if the hotel offered a price higher than the estimated price according to the
customer budget, then the agency makes a compromise with this hotel).

• Step 8, 9, 10 and 11: The client chooses the most suitable and interesting vacation
offer from the proposed ones and he reserves it. This implies the reservation of a
flight and a hotel room.
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6.5 The problematic illustrated by an example

The holiday reservation case study (with its actors) is usually implemented according to
one approach (i.e., only agent approach or only component one). Figure 6.7 represents a
possible architecture of our holiday reservation system. Client and travel agency actors
are based on agent approach, while hotel chain and airline company ones are realized
by components (they can be primitive component (small airline company) or composite
ones (hotel chain X). Travel agency and client actors are based on agent approach, since
they need spaces of autonomy in taking decisions and high-level interactions with other
parties to negotiate and coordinate with them. Hotel chain and airline company actors
are based on component approach, since these actors do not need any mental action in
their activities. They reuse their services and make queries on their databases (or on
their sub branches one). Many interactions between components and agents exist to
exchange their services, like the interaction between the service of VacationReservation
provided by the travel agency agent to pay to the hotel chain service ReserveRoom, that
is required by a hotel component (these services will be detailed lately in chapter 7).

A simple type of interaction can be achieved by basic communication, such as a single
and a basic service call, but this is not sufficient when the parties need to negotiate for
a price or a date to make certain compromise to gain the clients trust.

Figure 6.7: A possible architecture of a holiday reservation system.

Unfortunately, there is no such flexibility in components or services communication
(see tables 2.3 and 4.2). Then, we need to have more complex communication types
such as the existing interaction kinds in the agent approach. At the same time, the
services provided by agents could be useful in other contexts (i.e., the travel agency
service, that provides the vacation offers for clients, may provide special offers for local
product in the target country in addition to the provided vacation offers). However, we
cannot reuse agents’ services in different contexts because these services are not specified
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explicitly. The agent services are defined implicitly in its behaviour (more precisely in
the functional role of the agent); then, we cannot modify its service due to the absence
of the service specification concept (see table 3.4).

These two limitations reflect the need to raise interaction levels between agents and
components and to have reusable agents through their well-defined services. In other
words, we need to offer component features to agents and conversely.

In the following chapter, we present this case study conforming to DSLs of each
domain of service, component and agent separately. The proposed architecture in figure
6.7 can be realized conforming to CASOM model, which allows applications specification
with both agents and components and which will be presented lately.
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Our proposed general DSLs of
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7.1 Introduction

In this chapter, we propose general models for each domain of service, component and
agent. These models are derived from the comparison between the studied models of
each domain (already presented in chapters 2, 3 and 4). We use UML class diagram
notation along this chapter to provide the graphical representation of our proposed
models [ACGA11]. We designed these models from the common concepts in the studied
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models of each domain. The explicit existence of the two key concepts of interaction and
service with considering them as first-class elements are central in these models. They
are the main reasons that stand behind our choice to define new representing models for
each domain instead of using existing ones. We start this chapter by the representation
of our abstract service model.

7.2 The general service model

We start this chapter by the presentation of our unified abstract service model; because
it represents a view towards the upcoming models of component, agent and CASOM.
This model belongs to a higher level of conception than the last three models and it can
be projected towards any of them (see figure 6.1 on page 106). We defined our abstract
service model standing on the presented comparison in table 4.2 on page 80. As we stated
previously, the SOA views any application as sets of interacted services independently
of their locations to satisfy heterogeneous software systems (implemented by different
programming languages). From this point of view, we can interpret our proposed model
and define its concepts (see figure 7.1).

7.2.1 Main concepts

The main shared concepts between the studied models in chapter 4 are composite and
general services, participants, service specifications, operations, messages and interaction
via basic types or protocols. Our general service model keeps most of these concepts
with slightly changes in their names (to unify the shared concepts name between the
four domains) as the service specification concept is named service point, messages are
named parameters. We also added the concept of role to our proposed model although it
is not of the most shared concept, because we believe in the necessity of defining service
responsibilities in the interactions with other services via their service points. Since our
service model is abstract and it can be projected to lower-level designed models; we
choose to hide the concept of participant, as it will be added in these lower-level models.
Table 7.1 provides the definitions of the main concepts in our service model:

A service is composed of operations through service points. A service point regroups
operations in a required or a provided mode. Then, a service is the logical assembly
of sets of operations. Some sets are provided and others are required (this is done
according to the service definition in WSDL for instance). A service can be composite
that is structurally composed of other services, or it can be a leaf primitive. Different
services interact between each other via interactions associated with their service points.
A service plays a given role in an interaction. There are three main types of basic
interaction: function calls (RPC / RMI) between a required service point and a provided
one or a delegation between a service point of a composite service and another service
point of the same type of one of its internal services or sending messages between a sender
service point to a receiver one. If an interaction is complex, we use a protocol to define
it. A protocol allows for instance the definition of orchestrations and choreographies
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Figure 7.1: Our abstract service oriented model.

between services35.

Finally, the concept of application corresponds to a global application or system.
Since an application is formed of interacting services, it is viewed as a special kind of
composite service that does not have service points.

In order to remove ambiguity in the proposed service model, we need to define some
OCL constraints in the following section.

7.2.2 OCL constraints

In order to reach a well-defined model, we need to define some OCL constraints [WK98]
to control this proposed model.

An application is a special kind of composite service because, as it is the root of the
composition hierarchy, it is not embedded in a composite. Moreover, it does not own
service points:

35http://www.soa-in-practice.com/soa-glossary.htm.
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Concept Definition

Service A logical representation of a repeatable business activity that has a
specified outcome.

Service
Point

An access point of a service. The service specification or interface that
determines the role of service and ways to use it (as provided or required).

Role The responsibilities of a service within an interaction with other services.

Interaction A kind of action or influence in the dynamic relation between services
in order to respond to their needs. It enables services to achieve their
expected results.

Protocol A process flow specification between services. It ensures aggregation
(choreography) or recursive composition (orchestration) of services.

Basic A low-level communication, such as RPC/RMI, message passing or del-
egation between internal and external service points of a composite ser-
vice.

Operation A basic functionality in a service including required pre and post condi-
tions for a service application.

Parameter Inputs parameters of an operation or output ones to expose its results.

Table 7.1: Definitions of the concepts of the abstract service model

context Application inv application:
self.composite.oclIsUndefined() and
self.servicePoint -> isEmpty()

All services, except in the particular case of an application, must own at least one
service point:

context Service inv getServicePoints:
not self.oclIsTypeOf(Application) implies self.servicePoint -> notEmpty()

Basic interactions only connect two service points:

context Basic inv twoBasicServicePoints:
self.servicePoint -> size() = 2

For simplifying the definitions of the constraints dealing with the basic interactions,
we consider that the collection of service points for an interaction is ordered. Here are
the OCL helpers allowing to get each service point in the context of basic interactions:

context Basic def: firstServicePoint : ServicePoint =
self.servicePoint -> first()

context Basic def: secondServicePoint : ServicePoint =
self.servicePoint -> last()
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RPC/RMI interactions connect a provided service point with a required one. The
first service point is the required one and the second is the provided one:

context Basic inv rpcrmiSP:
self.type=#RPC/RMI implies

self.firstServicePoint.oclIsTypeOf(Required) and
self.secondServicePoint.oclIsTypeOf(Provided)

Delegation interactions connect the same type of service points:

context Basic inv delegationSP:
self.type=#delegation implies

self.servicePoint -> forAll ( sp | sp.isTypeOf(Required)) or
self.servicePoint -> forAll ( sp | sp.isTypeOf(Provided))

A RPC/RMI or a message interaction deals with an horizontal assembly, then con-
nects two services embedded directly in the same composite (or application):

context Basic inv rpcrmiConnection:
self.type=#RPC/RMI or self.type=#message implies
self.firstServicePoint.service.composite = self.secondServicePoint.service.composite

A delegation deals with vertical assembly. The first service point is one of a composite
service and the second service point is one of the internal services of this composite:

context Basic inv delegationConnection:
self.type=#delegation implies

self.firstServicePoint.service.oclIsTypeOf(Composite) and
self.secondServicePoint.service.composite = self.firstServicePoint.service

A basic interaction does not have an associated protocol:

context Basic inv noProtocolForBasic:
self.protocol.oclIsUndefined()

A non basic interaction has a protocol and must at least connect one required service
point and one provided service point:

context Interaction nonBasic:
self.oclIsTypeOf(Interaction) implies

not self.protocol.oclIsUndefined() and
self.servicePoint -> exists ( sp | sp.oclIsTypeOf(Required)) and
self.servicePoint -> exists ( sp | sp.oclIsTypeOf(Provided))

Within a composite, the internal components have different names:

context Composite inv uniqueNames:
self.service -> forAll ( s1, s2 | s1 <> s2 implies s1.name <> s2.name)

The holiday reservation system conforming to our service model is presented in next
section.
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7.2.3 Service application example

Let us take the previous case study of the holiday reservation system and represent it
conforming to our service model. This representation is provided in figure 7.2.

Figure 7.2: Another possible specification of the holiday reservation application specified
through our service model.

We choose to present the services (composite or primitive) of each actor with the
name of this actor, then, we have four principle services: the ones of Client, TravelA-
gency, AirlineCompany and HotelChain. The composite service of TravelAgency and
HotelChain contains internal primitive services. Any service contains at least one service
point, the operations of the internal service point are presented in table 7.236, however
the external service points of a composite contains the same list of operations than the
corresponding internal service point. Here we present the main internal services and
service points for each composite, which are the following:

• The client service requires vacation offers after providing his preferences through
the VacationOffer service point. A client orders a reservation offer through the Va-

36In this table, we do not detail the types of parameters, and we need to precise that the names of the
service and service points do not contains spaces, however regarding the size of the table, we add some
spaces where it should not be, e.g., InternalHotelReserve Room is actually InternalHotelReserveRoom.
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cationReservation service point which provides payment information to the travel
agency.

• The travel agency provides a list of vacations offers after requiring offers from
the airline company and hotel chain in its service SearchVacationOffer through
AirlineCompanyOffer and theHotelOffer service points. The travel agency reserves
the chosen vacation offer by a client and it delegates the reservation information
to the considered airline company and hotel chain in its service ReserveVacation
through the ReserveTicket and ReserveRoom service points.

• The airline company provides a list of offers through its service point AirlineCompa-
nyOffer and it requires the payment information to accomplish tickets reservation
through the ReserveTicket one.

• The hotel chain provides offers to reserve rooms in the hotel Management service.
The last service groups all the internal hotels offers provided by InternalHotelOffer
service points to build a list of offers. The Management service also delegates the
payment information to the considered InternalHotel service that requires these
information to accomplish the room reservation.

These services interact with each other’s in an application. We have six main in-
teractions between the services in figure 7.2, the offer interaction communicates travel
agency offers to the client. The client pays to reserve his chosen offer by the payment
interaction. ACOffer and HOffer interactions communicate airline company and hotel
chain offers respectively to the travel agency. payforticket and payforhotel interactions
communicate the travel agency payment information to the airline company and hotel
chain.

Many interactions of delegation type exist between the service points of composite
services and the ones of their internal services. We do not present the name of the
external service points in a composite with their delegation interactions and roles in
figure 7.2 to keep it legible. Most interactions are from the basic type, else when a
service dispatches information over an interaction for other service(s) and receive their
responses. In such case, we use protocol type of interaction, like the case of the interaction
between Management service and the InternalHotel services.

Figure 7.3 presents another possible specification of our holiday reservation system
according to our service model. In this figure, we choose to represent each actor by a
composite service. This choice of representation comes from our choice of abstraction
in ignoring participants that provide or use services in the service model. For example,
the client services exist in a composite service named Client. It contains two primitive
service VacationOffer and VacationReservation, each service has one service points with
the same of name of this service. The service points’ operations are just the same for
the two figures 7.3 and 7.2 as presented in table 7.2. We can find an additional level of
composition in figure 7.3, where the HotelChain composite service contains composite
services of InternalHotels. We precise here the respected mechanism of naming certain
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Figure 7.3: Holiday reservation application specified through our service model.

elements, like service points and services in an application specified using our service
model.

• The primitive service with only one service point has the same name as its service
point name (e.g., the primitive service VacationOffer has one required service point
with the same name VacationOffer).

• The service points of a composite service (external) have the same names as the del-
egated internal service points, but we put the name of the composite service at the
beginning of their names (as prefix before the internal service points’ names). For
example, the names of the external service points of the composite service Client
are ClientVacationOffer and ClientVacationReservation. The ClientVacationOffer
name comes from the concatenation of the name of this composite service Client
and the name of internal service point VacationOffer.

This service model presents a set of core-shared artefacts between the next three
models of component, agent and CASOM; since it can be projected towards any of
them.
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7.3 The general component model

Here we present our general component model that represents the domain of components.
Similarly to the previously proposed service model, we base on the shared concepts in
table 2.3, between studied models in chapter 2 to define our general component model.
The concepts of this model cover almost the ones of studied models with the originality
of the explicit existence of service and interaction concepts.

7.3.1 Main concepts

The main shared concepts among studied models in chapter 2 are general component,
ports, interfaces, composition, connectors and low-level interactions (RMI, events call
and delegation). Our proposed component model keeps most of these concepts with
slightly changes in their names as the general component becomes primitive one, the
composition becomes the composite component, ports become service points and inter-
faces become explicit service (see figure 7.4). These changes in some concept names are
achieved in order to unify the names of concepts in three models (e.g., the concepts of
port and service). The concept of role exists in our general component model, although
it is not from the most shared concepts of the studied component models. But because
it defines the component responsibilities through interactions with other components via
their service points. We added also the concept of component connector to reify possible
high-levels of interaction and to make them reusable. The gap for adding this concept
is tight, since it extends existing connector and component entities. Our model contains
also the concept of protocol to specify possible complex interactions. Table 7.3 provides
the signification of the main concepts in our component model:

A component with well-specified interaction points named service points can be prim-
itive (simplest type of component) or composite when it is structurally composed of other
components. The primitive component is the basic entity in an assembly of components
(horizontal assembly) or their hierarchical composition (vertical assembly). Each service
point is associated to a service in a required or a provided mode. A service is composed of
operations. Different components interact with each other via interactions associated to
their service points. A component plays a given role in an interaction. There are three
main types of basic interaction: functions calls (RMI / RPC) between required and
provided service points of different components, sending messages between sender and
receiver components service points or delegation between a service point of a composite
service and another service point of the same type of one of its internal components. If a
more complex interaction is required between the service points of different components,
it is realized by a connector which implements a protocol. A component connector is a
special kind of component dedicated to the communication between components [CBJ02].
Then, it is also a connector and it implements a protocol.

Finally, the concept of application corresponds to a global application or system.
Since an application is formed of interacting components, it is viewed as a special kind
of composite component.

We can see that the concepts of role, interaction, protocol, operation, parameter
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Figure 7.4: Our unified component model.

and application have almost the same significance as the ones in the already proposed
service model. The concepts of service and service point are slightly modified, where the
operation are related to the service concept in the component model instead of being
related to the service point concept in the service model. In order to remove ambiguity in
our proposed component model, we need to define some OCL constraints in the following
section.

7.3.2 OCL constraints

The OCL constraints of the component model are very similar to the ones of the service
model as these models are very close. Most of the differences deal with modifying the
context or the navigation of the OCL expressions but their goals are the same.

An application is a special kind of composite component because, as it is the root
of the composition hierarchy, it is not embedded in a composite. Moreover, it does not
own service points:

context Application inv application:
self.composite.oclIsUndefined() and
self.servicePoint -> isEmpty()
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Concept Definition

Component A reusable abstract entity with well-specified access points (service
points) to expose or use services

Service point A port of a component either exposing some of its services (provided
specialization) or specifying services it has to use (required specializa-
tion).

Service It is a static unit of functions (a classical component interface).

Role The responsibilities of a component through its service points within an
interaction with other components.

Interaction Communication between components through their service points to ex-
change their services.

Protocol A complex interaction specification between components.

Connector The explicit representation of a complex interaction, its behaviour is
specified by a protocol.

Component
Connector

An interaction at the same level of a component [CBJ02]. It can be
primitive or composite.

Basic A low-level communication, such as RPC/RMI, messages passing or del-
egation between component service points for a component composition.

Operation It is a basic functionality of a service including the required pre and post
conditions for a component application.

Parameter Inputs parameters of an operation or output ones to expose its results.

Table 7.3: Definitions of the concepts of the general component model

All components, except in the particular case of an application, must own at least
one service point:

context Component inv getServicePoints:
not self.oclIsTypeOf(Application) implies self.servicePoint -> notEmpty()

Basic interactions only connect two service points:

context Basic inv twoBasicServicePoints:
self.servicePoint -> size() = 2

For simplifying the definitions of the constraints dealing with the basic interactions,
we consider that the collection of service points for an interaction is ordered. Here are
the OCL helpers allowing to get each service point in the context of basic interactions:

context Basic def: firstServicePoint : ServicePoint =
self.servicePoint -> first()

context Basic def: secondServicePoint : ServicePoint =
self.servicePoint -> last()
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RPC/RMI interactions connect a provided service point with a required one. The
first service point is the required one and the second is the provided one:

context Basic inv rpcrmiSP:
self.type=#RPC/RMI implies

self.firstServicePoint.oclIsTypeOf(Required) and
self.secondServicePoint.oclIsTypeOf(Provided)

Delegation interactions connect the same type of service points:

context Basic inv delegationSP:
self.type=#delegation implies

self.servicePoint -> forAll ( sp | sp.isTypeOf(Required)) or
self.servicePoint -> forAll ( sp | sp.isTypeOf(Provided))

A RPC/RMI or a message interaction deals with an horizontal assembly, then con-
nects two components embedded directly in the same composite (or application):

context Basic inv rpcrmiConnection:
self.type=#RPC/RMI or self.type=#message implies
self.firstServicePoint.component.composite = self.secondServicePoint.component.composite

A delegation deals with vertical assembly. The first service point is one of a com-
posite component and the second service point is one of the internal components of this
composite:

context Basic inv delegationConnection:
self.type=#delegation implies

self.firstServicePoint.component.oclIsTypeOf(Composite) and
self.secondServicePoint.component.composite = self.firstServicePoint.component

A basic interaction does not have an associated protocol:

context Basic inv noProtocolForBasic:
self.protocol.oclIsUndefined()

A connector has a protocol and must at least connect one required service point and
one provided service point:

context Connector protocolConnector:
not self.protocol.oclIsUndefined() and
self.servicePoint -> exists ( sp | sp.oclIsTypeOf(Required)) and
self.servicePoint -> exists ( sp | sp.oclIsTypeOf(Provided))

Within a composite, the internal components have different names:

context Composite inv uniqueNames:
self.component -> forAll ( c1, c2 | c1 <> c2 implies c1.name <> c2.name)

Our holiday reservation system conforming to our component model is presented in next
section.
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7.3.3 Component application example

Figure 7.5: Holiday reservation application specified through our component model.

We present here our running application example of the holiday reservation system
according to our component model in figure 7.5. Some details are not presented in this
figure to avoid overlapping view, like role names of service points over interactions and
sets of operations associated with service points (these operations are just the same as
the one already presented in 7.2). We can always distinguish the four main actors of
Client, TravelAgency, AirlineCompany and HotelChain in four components. The Client
primitive component requires VacationOffer service and provides VacationReservation
one. This component interacts with the TravelAgency one via two interactions (offer
and payment). The TravelAgency composite components receives the offers from Air-
lineCompany and HotelChain over the ACOffer and HOffer interactions respectively.
The connector appears in the HotelChain under the form of a relation that dispatches
the information from Management component to other InternalHotel ones.

This model is much related to the service one, they share many concepts. The com-
ponent model implements the service one, where the concept of component implements
the one of service in the service model and the concept of connector implements the one
of interaction (it is possible to use a component connector concept instead of connector
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one to raise the interaction level to be at the same one as a component).
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7.4 The general agent model

In this section, we propose our unified organizational MultiAgent model after study-
ing different models and comparing their essential concepts in table 3.4. As we stated
previously, we limit our research in organizational MultiAgent models, since an organi-
zation is needed whenever agents work together in a shared environment [SH05]. This
organization structures the interactions of its participating agents.

7.4.1 Main concepts

Figure 7.6 presents our proposed agent model following the same way as previously
presented models (by keeping common concepts between the studied models in table 3.4
and adding other essential not shared concepts that serve us to reach our objective).

The common concepts according to table 3.4 are agents, organizations, roles, tasks,
interactions by protocols, ACL and coordination, goals, service (implicit under role)
and implicit environment. All these concepts are considered in our proposed model
except environment one (to avoid considering some issues related to agents and resources
interaction). Slightly changes are applied on some of these concepts in our model, we
choose to represent the concept of role by two separated kinds as presented in [Lin01].
The interactional role that defines agent roles through interactions and the functional one
that defines agent behaviours (it describes agent services) within a group. The concept of
service becomes explicit and abstract, it is specialized by functional role concept. Since
we aim to detail all kinds of interaction in our proposed model, we added the negotiation
kind, although it is not from the most shared concepts between studied models. The
concept of capability is also considered in our model to represent specific concept in some
agent model like agent capabilities of perception, taking decision and communication.
Our model contains also the group concept since it provides additional level of agents’
assembly.

Table 7.4 provides the definitions of the main concepts of our agent model.

Concept Definition

Organization The overall architecture of a system organized as collaborative
services, each modeled as an agent, into a coherent whole [SH05].
It defines also the authority between sets of agents in a group or
between groups.

Group A structural entity composed of roles and agents. An agent can
be member of one group, if and only if he plays a role associated
to this group.

Agent An autonomous rational entity that plays a defined role in a group.
It owns capabilities, which enable it to play its roles (functional)
within a group.

Goal It represent functional requirements of an organization. It could
be divided in to sub goals related to agents or groups.
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Concept Definition

Role The responsibilities and tasks that an agent assumes within its
interactions with other agents. It can be of two types: Function-
alRole or InteractionalRole [Lin01].

Service It is what an agent may provide for other agents within a group.
It is an abstract concept extended by the functionalRole one,
which defines itself the agent behaviour.

Interaction The dynamic relation between agents through their played roles.
It has different types: communication, coordination, negotiation.

Protocol A specification of types of interaction between agents from basic
types like Message Transferring Protocol (MTP) to the negotiation
and coordination ones.

FunctionalRole It defines agent behaviours and services within a group, in addition
to the definition of the tasks that must be carried out in the system.

InteractionalRole A classical role used in the definition of interaction protocols. This
role enables an agent to expose or to request the needed services.

Capability The knowledge or capacities that an agent owns to play his roles in
a group or to participate within an interaction. We just consider
the already defined capabilities like perception, communication,
reasoning and taking decision.

Task It is a unit of action that an agent performs. It may be similar to
operation concept, but here we do not need to specify input and
output parameters. Then an operation belongs to a lower level
than a task.

Communication It is used through agent languages like FIPA ACL, KQML and
basic protocols like MTP.

Coordination It is used among agents that share some resources, to avoid con-
flicts, such as coordination by planning, coordination through the
organizational structure or by signing contracts.

Negotiation It is needed when a compromise has to be reached between some
agents to solve occurred conflicts, such as auction and fish market
protocols.

Operation Basic functionality of a service including the required pre and post
condition for the component application.

Parameter Input parameters of an operation or output ones to expose its
results.

Table 7.4: Definitions of the concepts of the general agent model

An organization is associated with a functional goal which can be decomposed to
several sub-goals. These sub-goals are associated with groups that present the structural
entities of an organization and define the actors and their roles within it. In this context,
an agent associated with a sub-goal or individual one plays roles in a group. The agent
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Figure 7.6: Our unified agent model.

individual goals may lead to possible conflicts with the collaborated ones. These conflicts
may be resolved through the interaction specification (i.e., coordination). The functional
role allows the specification of the agent’s tasks or behaviours through services. A service
is a set of operations. An interactional role defines the responsibilities assumed by an
agent in an interaction with other agents. Particularly, it allows to provide or to require
services. Capturing this service will be relatively complex because of the autonomy
characteristic of an agent. An agent may change its behaviour through its interaction
with other agents, this leads to changes in its services. For these reasons, agents must
have an agreement with each other to keep certain services through their interactions (i.e.,
contract). To play a given role, an agent must own certain capabilities like perception,
communication and reasoning.

Generally, the agents interact with each other through their interactional roles by us-
ing high-levels interactions (communication languages (such as FIPA-ACL), negotiation,
coordination) based on protocols.

It is obvious that the agent model is richer in its concepts than the previously pre-
sented models of service and component, since it addresses the design of more open
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systems. However, we can find core shared concepts between the three proposed models
like operations, parameters, roles, interactions, protocols and services (abstract).

Next section provides needed OCL constraints to remove possible ambiguity in this
model.

7.4.2 OCL constraints

An interaction is associated with interactional roles:

context Interaction inv interactionRoles:
self.role -> forAll ( r | r.oclIsTypeOf(InteractionalRole) )

A group is associated with functional roles:

context Group inv groupRoles:
self.role -> forAll ( r | r.oclIsTypeOf(FunctionalRole) )

An interaction connects at least one required and one provided interactionnal roles:

context Interaction inv requiredAndProvided:
self.role -> exists ( r | r.oclAsTypeOf(InteractionalRole).type=#Provided) and
self.role -> exists ( r | r.oclAsTypeOf(InteractionalRole).type=#Required)

Within an organization, the groups have different names:

context Organization inv groupUniqueNames:
self.group -> forAll ( g1, g2 | g1 <> g2 implies g1.name <> g2.name)

Within a group, the agents have different names:

context Agent inv agentUniqueNames:
self.agent -> forAll ( a1, a2 | a1 <> a2 implies a1.name <> a2.name)

For an agent, each of its interactional roles is associated with a service. This service
is actually a functional role and this functional role must belong to the same agent:

context InteractionalRole inv roles:
self.agent -> forAll ( a | (self.service.oclAsTypeOf(FunctionalRole)).task.agent = a)

Next section presents our holiday reservation system conforming to our agent model.

134



7.5. Summary

Figure 7.7: Holiday reservation application specified through our agent model.

7.4.3 Agent application example

Figure 7.7 presents the same holiday reservation system conforming to our agent model.
There are four principle groups in the organization representing our holiday reservation
system, respecting the main actors in this system: Client, TravelAgency, AirlineCom-
pany and HotelChain. Since agents cannot be directly contained in an organization
without belonging to a group, then we may have groups of one agent like Client and
AirlineCompany. Most of defined agents interact with each other via communication
type of interaction like the interaction between the client agent in the client group that
provides the VacationReservation service to the ReserveVacation agent of the TravelA-
gency group. However, we can find an interaction by coordination in the HotelChain
group where the Management agent coordinates all internal hotel offers provided by
InternalHotel agents through provided InternalHotelOffer services which are required
by the Management agent. Interactional role, task and capability instances are not
presented in this figure to keep it legible.

7.5 Summary

After presenting our proposed general models of service, component and agent domains,
we find that there are core common concepts between these models. We think that it
would be interesting to present these three models in a single figure that helps in visu-
alizing common concepts between them to avoid their repetition. Figure 7.8 presents a
unified view of the three previously proposed Models. Role, service, interaction, proto-
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col, operation and parameter concepts are obviously the common ones between the three
models. Some concepts are shared only between service and the component models like
required and provided service point, basic type of interaction and application. Table 7.5
groups the definitions of the concepts in figure 7.8 which are already presented earlier in
this chapter separately according to their models.

We believe that after optimizing the concepts with the same semantic in figure 7.8,
we can achieve to define an additional model. This resulted model will authorize the
application specification using the two concepts of component and agent simultaneously
through interoperable service. It integrates also the interests of these approaches as
it contains their key concept representing key properties of each domain. Next chapter
presents this outcome model, which is named Component Agent Service Oriented Model.

Concept Model Definition

Service Service A logical representation of a repeatable business activity
that has a specified outcome.

Component A static unit of functions (a classical component inter-
face).

Agent It is an abstract concept specified by the functionalRole
concept that defines itself the agent behaviour.

Service Point Service A port of a component either exposing or using services.
Component A static unit of functions (a classical component inter-

face).

Role Service The responsibilities of a service within an interaction with
other services.

Component The responsibilities a component takes through its service
points within an interaction with other components.

Agent The responsibilities and tasks that an agent assumes
within an interaction with other agents. It can be of two
types: FunctionalRole or InteractionalRole [Lin01].

Interaction Service A kind of action or influence in the dynamic relation be-
tween services.

Component Communication between components through their ser-
vice points to exchange their services.

Agent The dynamic relation between agents through their played
roles. It has different types: communication, coordination,
negotiation.

Protocol Service A process flow specification between services that ensures
services choreography or orchestration.

Component A complex interaction specification between components.
Agent A specification of the types of interactions between agents

from basic types like Message Transferring Protocol to the
negotiation and coordination ones.
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Concept Model Definition

Operation Service
Component
Agent

Basic functionality of a service including the required pre
and post condition for the component application.

Parameter Service
Component
Agent

Inputs parameters of an operation or output ones to ex-
pose its results.

Basic Service
Component

A low-level communication, such as RPC/RMI, message
passing or delegation between services/components for a
service/component composition.

Component Component A reusable abstract entity with well-specified access points
(service points) to expose or use services

Connector Component The explicit representation of a complex interaction, its
behaviour is specified by a protocol.

Component
Connector

Component An interaction at the same level of a component [CBJ02].
It can be primitive or composite.

Organization Agent The overall architecture of the system organized as collab-
orative services that defines the authority between sets of
agents in a group or between groups.

Group Agent A structural entity composed of roles and agents. An
agent can be member of one group if and only if he plays
a role associated with this group.

Agent Agent An autonomous rational entity that plays a defined role
in a group.

InteractionalRole Agent A classical role used in the definition of interaction pro-
tocols. This role enables an agent to expose or to request
the needed services.

Capability Agent The knowledge or capacities that an agent owns to play
his role in a group or to participate within an interaction.

Task Agent A unit of action that the agent performs, it may be similar
to the definition of operation concept, but without input
or output parameters.

Communication Agent It is used through an agent language like FIPA ACL,
KQML and basic protocols like MTP.

Coordination Agent It is used among agents that share some resources, to
avoid conflicts.

Negotiation Agent It is needed when a compromise has to be reached between
some agents to solve occurred conflicts.

Table 7.5: Definitions of the concepts of service, component and agent models
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Figure 7.8: Unified view of the three general models (component, agent and service)
[ACGA11].
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8.1 Introduction

Figure 8.1 provides a unified view of the already proposed component and agent models.
This figure excludes the service model from figure 7.8. Indeed, primitive services with
their related concepts exist in both component and agent models, however the compo-
sition is on the component (i.e., composite) and agent (i.e., group)(service providers or
customers) levels. In the global view of figure 8.1, we can see the feasibility of designing
a single model that allows the application specification by interoperable components and
agents through services. We may ask several questions to clarify and analyze how to
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start from the component and agent models to design the new Component Agent Ser-
vice Oriented Model (CASOM). We can find the concepts related to the interests of one
approach available to the other one in CASOM, it provides wide ways to combine and
use these interests (see figure 8.3).

8.2 Main concepts

CASOM is surely based on the contents of component and agent models concurrently.
We ask the following questions in order to design our target model. The answers for
these questions clarify the concepts that we need to add or remove from figure 8.1 to
reach CASOM concepts. The questions are:

• What are the same elements in the three models or which are sufficiently close to
be considered as equivalent?

• What are the elements coming from different models that can be abstracted under
a same general concept in order to express that they are interchangeable?

• What are the elements of a model that are not available in the other one but can
nevertheless be used by its elements?

• What are the elements that are fully specific to a domain? What are the secondary
elements of a model that are not required to be kept?

In the following four sections, we answer to the previously proposed questions to detail
the main concepts in CASOM.

8.2.1 Common or equivalent elements

We can see on the unified view of the component and agent models (figure 8.1) that we
have several common elements, which are Service, Operation Parameter, Role, Interac-
tion and Protocol. This is logical as our key idea of the integration of component and
agent approaches is to consider a service as a business abstraction of an entity (an agent
or a component) and to make interacting entities through their services. Then, we will
retrieve these concepts without any changes in CASOM.

However, there are some differences in the way to manage the services. On the
component side, a component owns service points and a service point, in a provided or
required mode, is associated to a service. A component plays roles in interactions through
its service points. On the agent side, a service is reified through a functional role and an
agent offers or requires such functional roles (service) thanks to the interactional roles
associated to an interaction. We decide to unify these elements in CASOM using the
concepts of the component side: functional and interactional roles of an agent become
services, service points and roles. We choose to use the component view for the service
definition as the service of a component (that is, a component interface) since it is an
essential and mandatory part of its definition whereas the service of an agent is usually
more implicit.
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Figure 8.1: Unified view of the component and agent models.

On the component side, the element representing the application as a whole is the
Application concept and on the agent side, it is the Organization one. These two concepts
are equivalent and we decide in CASOM to use the Organization concept coming from
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the agent approach. This choice results from the fact that an organization is a first-class
entity of OMAS whereas in components, the application as itself is defined usually only
implicitly.

Figure 8.2: Component Agent Service Oriented Model.
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8.2.2 Abstraction and generalization of concepts

8.2.2.1 Structural and Hierarchical Entity

The goal of defining abstract concepts that have different realizations is to be able to
use indifferently any of these concrete realizations in an application specification. This is
what we want to do with agents and components. Then, we define the abstract concept
of StructuralEntity that is specialized in Component and Agent. To limit the number of
elements in CASOM, the Component concept represents now a primitive component.

With the same logic, there exist two hierarchical structures: the composite on the
component side and the group on the agent side. Even if they are not exactly similar
and at the same level because a group is simply a logical combination of agents whereas
the composite is a component, that is a first-class structural entity requiring and offering
services, we decide to unify them under the concept of HierarchicalEntity. It is a special-
ization of StructuralEntity and contains a collection of StructuralEntity elements. These
general specializations and associations offer the widest combinations of agents and com-
ponents: a component or an agent can belong to a group and a composite can contain
components (primitive or composite), groups and agents. The Organization concept
is made specializing the HierarchicalEntity one as an organization/application contains
components, agents or groups. However, not all combinations are allowed. A group or
an organization remains a logical structure and does not offer or require services, that
is, does not own service points. An organization is the only hierarchical entity that does
not have a container as it is the root of the hierarchy. An agent cannot be directly
contained in an organization (it must be contained in a group or in a composite). These
constraints are expressed as OCL invariants as shown in section 8.3.

8.2.2.2 Interaction

Concerning the interactions, we also want to make the interaction elements of a domain
available to the other one. The interaction kinds of agents (Communication, Coordi-
nation and Negotiation) are specializations of the general Interaction concept. These
kinds of interaction can then be used indifferently between components or agents. In
the same way, the Basic and Connector (ComponentConnector and AgentConnector
specialization) elements inherit from the Interaction and can also be used indifferently
between components or agents. Then, any element (agent or component) can interact
with other elements through any of the agent or component based interactions. The
agent interaction classification is directly available to components since it is defined as
specialization of the Interaction element. Then, the agent interaction classification can
be used directly between services points of components. In the same way, an agent can
use a structured and reusable interaction through a connector or a component connector
since they are also specializations of the Interaction element.
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8.2.2.3 Interactional Entity

Concerning high-level interactions, component and agent approaches mainly take two
different ways to manage them. On the component side, a high-level interaction is
defined by a protocol implemented by a connector. A connector is a concept coming
from the ADLs (Architecture Description Languages) [MT00]. It is an architectural
first-class entity structuring and embedding the interactions between components. Some
works go even further, such as the communication components of [CBJ02], in reifying a
protocol in a component, that is a more structured element with well-specified interfaces
(service points and services in our approach) allowing to easily reuse an interaction. Such
components dedicated to an interaction are represented by our ComponentConnector
element. On the agent side, there exists a classification of interactions: negotiation,
communication and coordination with several variants. An agent can then reuse easily
an existing interaction of this classification or build a new one based on them and defined
with a protocol.

However, with the same idea as for the communication components [CBJ02], some
works on protocol engineering emphasis the idea of making a clear separation between
the functional part of an agent and the management of interaction protocols. In [HSB04],
a specific agent, called moderator, is dedicated to enforce the protocol rules during a
conversation between functional agents. According to the authors, this provides solution
to problems in MASs engineering such as the reuse and adaptive maintenance of protocols
and the separation of the aspects in the design and implementation of agents. Actually,
they have the same advantages advocate by [CBJ02] for the communication component
in the component field. In order to support such design approach for agents, and also to
generalize some common features, we decide to define the concept of “agent connector”
which is an agent dedicated to manage an interaction between others elements.

One can now ask a question: the component connector and agent connector concepts
appear rarely in their respective fields; few works are interested in them. So, why having
a component connector directly in the component model and not an agent connector
in the agent one? As we saw previously in section 7.3.1, there already exists a first-
class entity reifying an interaction in many component models: the connector. This is
why the connector is presented in our component model. Then, the gap for adding the
component connector concept is tight: we just need to extend this existing connector
entity, even if it is not a widely shared concept between all existing component models.
However, on the agent side, in almost all agent models, there does not exist such an
entity reifying an interaction. It was then not suitable to add an agent connector as it
will introduce a new first-class entity that is not widely defined in agent models. But
since such an entity reifying an interaction exists in a connector, then, it can be added
in CASOM, for the same reason that we have introduced the component connector in
the component model.

All these entities integrating and realizing a protocol are specified through a hierarchy
of elements in CASOM. At the top, there is the abstract InteractionalEntity specializing
the Interaction element. It is specialized by the Connector element, itself being spe-
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cialized by the ComponentConnector element (inheriting also from Component) and the
AgentConnector element (inheriting also from Agent).

CASOM contains also a class named Entity, which represents the abstraction of both
StructuralEntity and InteractionalEntity.

8.2.3 Extension of concepts to the other domain

8.2.3.1 The goal concept

For an agent, the designer must specify its goal, that is, he must precise what an agent
is doing or which purposes need to be achieved from it. A group of agents has also
a goal. This Goal concept is a first-class feature of agent approaches. Concerning a
component, it has also a goal: it has been designed for a given purpose and is realizing
actions dedicated to this purpose. However, in most of component approaches, this goal
remains implicit within its specification. But as a component has a goal also in principle,
like an agent or a group, we decide in CASOM to attach this Goal concept to the Entity
element. Now, a component has an explicit goal.

8.2.4 Secondary or specific elements

The Task and Capability concepts of agents have no equivalent concepts on the compo-
nent side but they are full part of the specification of an agent. They are then presented
in CASOM and associated with the Agent element. These concepts were the last ones
that have not been analyzed in the above sub-sections.

Therefore, all the concepts and elements of the component and agent models are
presented in CASOM, none has not been taken into account. Table 8.1 groups the
definitions of CASOM concepts.

Concept Definition

Hierarchical
Entity

It is an abstract concept that contains components, agents or groups
with many possible combinations.

Organization The overall architecture of a system, it contains directly primitive com-
ponents, composite components and groups of interacted agents and
components.

Group A logical combination of agents or components.

Composite A hierarchical entity contains components, composites, groups and
agents.

Structural En-
tity

It is an abstract concepts that represents a container of components,
agents and hierarchical entities other than organizations.

Goal A functional requirement of a structural entity that could be divided in
to sub goals related to agents, components, composites or groups.

Component
&Agent

A first-class structural entity that requires and offers services.
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Concept Definition

Entity An abstract concept specified by structural and interactional entities.

Interaction It is the dynamic relation between structural entities through their ser-
vice points else organizations and groups. It has different specification:
Basic, Communication, Coordination, Negotiation and InteractionalEn-
tity.

Interactional
Entity

It is an entity that specializes an interaction. It is specialized by the
Connector element.

Connector The explicit representation of a complex interaction, its behaviour is
specified by a protocol

Component
Connector

A component dedicated for communications. It defines structured and
reusable interaction.

Agent Connec-
tor

An agent dedicated to manage interactions between interacted elements,
like components and agents.

Service point It is a port of structural entities except organizations and groups. It ex-
poses some of its services (provided specialization) or uses other services
(required specialization).

Service It is a static unit of functions (a classical interface definition).

Role The responsibilities of structural entities (except organizations and
groups) through their service points within an interaction.

Table 8.1: Definitions of the concepts of CASOM

The concepts of Protocol, Operation, Parameter, Negotiation, Coordination, Com-
munication, Task and Capability have the same significations as presented in tables 7.5.
Since they have been already presented in the main concepts tables of service, compo-
nent and agent models, then we did not rewrite them in table 8.1 to avoid disagreeable
repetitions.

The base of CASOM is to define a set of general elements that will be specialized
by component and agent concepts (these general elements are represented with a grey
background colour on figure 8.2). A structural entity is providing or requiring services
through service points. Structural entities interact between each other by playing roles
in interactions associated with their service points. Then, the two general concepts of
structural entity and interaction are specialized by all the specific elements of components
and agents, making them available and mixable in most opened-ways in an application
specification. A structural entity can be a component, a composite, an agent or a group.
An interaction can be a basic component interaction, a high-level agent interaction or
an interactional entity, that is, a connector in its agent and component specializations.

8.3 OCL constraints

Similarly to the proposed OCL constraints for the previous models in chapter 7, we
remove the possible ambiguity in CASOM defining the following constraints: An orga-
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nization is the only hierarchical entity that does not have a container as it is the root of
the hierarchy:

context StructuralEntity inv noContainerInOrganization:
if self.oclIsTypeOf(Organization)
then self.container.oclIsUndefined()
else not self.container.oclIsUndefined()
endif

A group or an organization remains a logical structure and does not offer or require
services, that is, does not own service points. Other structural entities own at least one
service point:

context StructuralEntity inv noServicesWithGroupsAndOrganizations:
if self.oclIsTypeOf(Organization) or self.oclIsTypeOf(Group)
then self.servicePoint -> isEmpty()
else self.servicePoint -> notEmpty()
endif

An agent cannot be directly contained in an organization (it must be contained in a
group or in a composite):

context Agent inv notInOrganization:
not self.container.oclIsTypeOf(Organization)

Basic interactions only connect two service points:

context Basic inv twoBasicServicePoints:
self.servicePoint -> size() = 2

For simplifying the definitions of the constraints dealing with the basic interactions,
we consider that the collection of service points for an interaction is ordered. Here are
the OCL helpers allowing to get each service point in the context of basic interactions:

context Basic def: firstServicePoint : ServicePoint =
self.servicePoint -> first()

context Basic def: secondServicePoint : ServicePoint =
self.servicePoint -> last()

RPC/RMI interactions connect a provided service point with a required one. The
first service point is the required one and the second is the provided one:

context Basic inv rpcrmiSP:
self.type=#RPC/RMI implies

self.firstServicePoint.oclIsTypeOf(Required) and
self.secondServicePoint.oclIsTypeOf(Provided)
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Delegation interactions connect the same type of service points:

context Basic inv delegationSP:
self.type=#delegation implies

self.servicePoint -> forAll ( sp | sp.isTypeOf(Required)) or
self.servicePoint -> forAll ( sp | sp.isTypeOf(Provided))

A RPC/RMI or a message interaction deals with an horizontal assembly, then con-
nects two entitiers embedded directly in the same composite (or group or application):

context Basic inv rpcrmiConnection:
self.type=#RPC/RMI or self.type=#message implies
self.firstServicePoint.structuralEntity.container = self.secondServicePoint.structuralEntity.container

A delegation deals with vertical assembly. The first service point is one of a hier-
archical entity that can only be a composite and the second service point is one of the
internal entities:

context Basic inv delegationConnection:
self.type=#delegation implies

self.firstServicePoint.structuralEntity.oclIsTypeOf(Composite) and
self.secondServicePoint.structuralEntity.container =

self.firstServicePoint.structuralEntity

The basic interaction is the only kind of interaction that is not associated with a
protocol:

context Interaction inv noProtocolForBasic:
if self.oclIsTypeOf(Basic)
then self.protocol.oclIsUndefined()
else not self.protocol.oclIsUndefined()
endif

Each kind of interaction must at least connect one required service point and one
provided service point:

context Interaction requiredAndProvidedSP:
self.servicePoint -> exists ( sp | sp.oclIsTypeOf(Required)) and
self.servicePoint -> exists ( sp | sp.oclIsTypeOf(Provided))

Within a hierarchical entity, the internal entities have different names:

context HierarchicalEntity inv uniqueNames:
self.entities -> forAll ( e1, e2 | e1 <> e2 implies e1.name <> e2.name)
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8.4 Mixed of agents and components application example

As we saw previously, our goal is to combine agents and components within the same
application specification. We also want to make characteristics and advantages of one
approach available to the elements of the other one. As an example, figure 8.3 shows such
a specification for our holiday reservation system. Concretely, this specification is based
on our CASOM model. This application example corresponds to the already proposed
possible structure in figure 6.7 on page 113. The elements that are mainly based on agent
concepts are the Client, which is an agent and the TravelAgency element defined by a
group. However, this group does not only contain agents as the ReserveVacation element
is a primitive component. For the component side, the AirlineCompany element is a
primitive component and the HotelChain is a composite one. With the same logic as for
the TravelAgency group, this composite (HotelChain) does not only contain components,
its Management element is an agent. We could have of course combined the agent and
component elements in other ways.

Our choice is based on the idea that agents are more relevant to define elements with
autonomous behaviours such as taking decision or negotiating. This is why the client
and the travel agency are mainly based on agents as the client must take a decision
concerning its reservation and that the travel agency manages all the offers from the
hotels and airline companies.

Independently of the reason of choosing between a component or an agent for a given
element of the application, one can notice that we can indifferently use an agent or a
component. This is made possible because an interaction between elements is only based
on their services (via their services points) and that the same service can be concretely
implemented or required by an agent or by a component. For instance, for the three
versions of our application, the client element is offering the VacationReservation service.
This service is the same in the three specifications (it contains the same set of operations).
In the same way, the agent and component versions of the client element require the same
VacationOffer service. The concrete implementation of the VacationReservation service
can be made with a component (as in figure 7.5) or with an agent (as in figures 7.7
and 8.3).

Concerning our mixed specification, if we decide to transform this agent onto its
component variant, this will have absolutely no impact on the rest of the specification
because this component will still implement the same service and require the same ser-
vice. In other words, we can easily substitute an agent with a component and conversely.

Regarding interactions, those that manage, through the travel agency, the offers
from the airline company and from the hotels for the client are agent-based negotiations.
Indeed, these elements interact to make a choice, which may require negotiation. For
the payment of a reservation, we use basic interactions (component-based basic function
calls or agent-based communication) because no complex interaction is required. Finally,
there are connectors used for dispatching the requests between the Management element
and the InternalHotel elements.

Some concepts like task, role and capability do not appear in the figure to keep it
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Figure 8.3: Holiday reservation application specified through the CASOM model, mixing
agents and components.

legible. Many refinement can be added to this example, for instance we can replace the
Management agent by a primitive component which interacts with the internal hotel
components.

8.5 Summary

CASOM specifies an application (organization) by interacted structural entities with
defined goals. These interactions are done through the required or provided service
points of structural entities to exchange services within an organization. The structural
entities can be specified by components, agents or hierarchical entities of composite and
group that combine agents and components. The interaction can be a basic component
interaction, a high-level agent interaction or an interactional entity, that is, a connector
by its agent and component specializations.

To complete the class diagram defining CASOM (figure 8.2), we added OCL invari-
ants specifying the constraints between the elements that cannot be expressed directly
in the class diagram in section 8.3.

To end this chapter, we need to know if this model does really meet our objectives,
then we ask the following questions:
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• Does component approach makes use of agent characteristic?

Yes it does, as the Entity concept has one or more goals (through the derived
relation). Then a component owns an explicit goal to be achieved. This represents
the gain of goal-directed behaviours feature of agent approaches. A component
can also use the advanced types of interaction related to the agent approach.

• Does the agent approach gain some characteristics of the component approach? Yes
it does, agents become more reusable, since an agent owns provided or required
service points to reuse services, which is a key property of component and service
approaches. An agent can be integrated in a composite structure, where in CASOM
a composite component can contain agents directly. This represents the gain of
the composition feature of component-based approaches.

Many concepts related to the interests of agent approach are available to enhance
component-based approach via CASOM, and the reverse is true for the component.

We already defined in this chapter the CASOM model, which allows mixing the
concepts of component, agent domains through interoperable services in one application
specification. We need to define its relations with the previously presented models and
how to move on smoothly from one model to another in the next chapter.
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9.1 Introduction

In this chapter, we define the main relations between the previously defined models of
service, component, agent and CASOM. These relations are actually the arrows in our
framework in figures 6 on page 105, 6.1 on page 106. They are the transformations in
MDE words to move on from one domain to another. The Projection from service model
towards component, agent and CASOM models are vertical transformations with the
reverse transformation named the Abstraction. The horizontal transformations are the
Agentification and Componentification. The Agentification is the transformation from
the component model to agent one and the reverse transformation is the Componentifi-
cation. They can be direct from the component to the agent model or indirect by adding
components to existing agents to move from the agent model to CASOM one via the
Componentification transformation (reversely by adding agents to existing components
to move from component to CASOM model via the Agentification transformation).

We present here the mappings between the concepts of the four previously proposed
models of service, component, agent and CASOM. Specifically, these mappings allow
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translating a specification of one model to another. Most of the proposed mapping rules
in this section are already presented in [ACGA12,ACG12]

The defined rules of mappings can be applied to the three examples of holiday reser-
vation application specifications via the service / components / agents models (figures
(7.2, 7.5, 7.7 and 8.3)) as each of them can be transformed into another.

Many common concepts exist between the three models of service, component, agent
and CASOM. These concepts are presented with yellow backgrounds in figure 7.8. Oper-
ation, parameter and protocol are from these shared concepts, which are easy to translate
from one domain to another since they are just the same. Then, we do not detail the
mappings related to these concepts, as they are just simple and direct ones. Although,
the concepts of service and interaction belong also to the shared concept but their rela-
tions with other concepts are not the same, then we detail the mappings rules related to
these concepts and to the other unshared ones in this chapter.

9.2 Projection: service and component models

As we saw previously in chapter 7, the service and component models are very close. We
can consider the component model as a direct projection of service one by adding the
elements those implement the services, which are components. As a consequence, there
are direct and bidirectional mapping rules between the two models: a primitive service
is mapped to a primitive component and a composite service is mapped to a composite
component and an interaction is mapped to a similar interaction (RPC|RMI, delegation
and Protocol), etc.

Table 9.1 details the bidirectional mappings between the concepts of the service
model and those of the component. As presented in the table, mappings are written in
the direction from service to component concepts. However, these mappings can directly
be applied in the other direction, from component to service concepts. Then, they are in
effect bidirectional mappings37. There is one major point to take into account concerning
service and service point concepts between the two models. The particularity of our
service model is in not defining explicitly the elements supporting the implementation
of the services (components or agents in other models). In the service model, a service
contains a set of operations, each set is associated with a provided or required service
point. Here, the service acts as a logical link between these sets of operations. On the
component side, this notion of global service disappears since the component becomes
its concrete implementation. Then, each set of operations of a service associated with a
service point in the service model is mapped onto the same set of operations associated
with the service point of the equivalent component. On the component side, we name
“service” this set of operations associated with a service point. A component is then
associated with multiple services – each service is a set of operations – which correspond
to the set of operations of the service points on the service model side. Therefore, the
concept of service, even if consistently associated with operations, is not exactly the same

37Along this chapter all the mappings between service and agent concepts or between component and
agent concepts are also to be understood as bidirectional mappings except if explicitly stated.
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Service side Component side

Primitive service Primitive component with the same
name

Composite service (resp. application)
with internal services

Composite component (resp. appli-
cation) with the same name and internal
components equivalent to internal services

Provided (resp. required) service point
of a service and its set of operations with
a playing role

Service of a component with the same
name and set of operations

Provided (resp. required) service point
of a component with the same name and
playing the same role

Basic interaction of certain type (resp.
related to a protocol) and its roles of
service point through this interaction

Basic interaction of the same type (resp.
related also to a protocol and a connec-
tor) with the same roles of the corre-
sponding service point of the equivalents
components

Table 9.1: Service / component mappings

in both models. Figure 9.1 illustrates an example of the mapping between a primitive
service associated with two service points (and then the set of operations) in part (a)
and a primitive component with the two equivalent services (containing the same set of
operations) in part (b).

The connector is a particular kind of element as it exists only on the component
side. Actually, the connector plays the same kind of role as the component as being the
concrete support for realizing an abstract concept: the component realizes a service and
the connector realizes a protocol.

Regarding the connector component, it has particular mapping rules. In the direction
from the service model to component one, there is no mapping between elements of the
service model and the component connector concept (except the mapping variant that
we propose lately in the design guide). In the other direction, from components towards
services model, the component connector concept is viewed as a regular component by
applying the rules of table 9.1 for primitive or composite component according to the
structure of the component connector. The only difference is that its associated protocol
is then ignored.

9.3 Projection: service and agent models

Similarly to a component, an agent is an element realizing the implementation of a
service. One can see that the service and agent models are relatively distant with many
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Figure 9.1: A primitive service with several service points (a) to a primitive component
with several service points mapping (b).

specific concepts for each domain. However, there are mappings between the main
concepts of each domain.

Figure 9.2: A primitive service with several service points (a) to an agent with associated
functional and interactional roles mapping(b).

The service concept is associated with operations in both models. But this association
cannot be viewed in a similar way, because of the absence of the service point concept
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in the agent model. Actually, in an organizational multi-agent approach, all interactions
between agents are done through roles: the interactional roles allow an agent to provide
or to require services and these services are defined through functional roles. Then a
functional role on the agent side is mapped onto a service point with its associated
operations on the service side.

Service side Agent side

Primitive service Agent of the same name and associated with a
goal by default

Composite service with internal
primitive services

Group of the same name containing corre-
sponding agents to the internal services and with
a goal by default (figure 9.3)

Application Organization of the same name and a goal by
default

Provided (resp. required) service
point of a service and its set of op-
erations with a playing role

Functional role with the same name and set
of operations

Interactional role with the name of the role
associated with the service point (on the service
side) and the type of the service point (provided
or required), see figure 9.2

Interaction with protocol be-
tween service points

Equivalent high-level interaction like Com-
munication, Coordination or Negotiation
associated with an equivalent protocol between
the equivalent interactional roles associated with
functional ones that correspond to the service
points (figure 9.4)

Basic interaction of certain type
between service points

Communication of basic protocol type be-
tween the interactional roles associated with
functional ones corresponding to the service
points

Table 9.2: Service / agent mappings

Table 9.2 presents the bidirectional mappings for the major concepts of the service
and agent models. Regarding “goal by default” for each agent or group when moving on
from service to agent side, it means that the added goal has a description field that is
not specified. The designer has to set it afterwards. In the other direction, from agents
to services, the goal associated with an agent or a group is ignored.

Since service model belong to a different domain with different purposes than the
ones of agent model (service oriented approaches belong to software engineering domain
and MultiAgent systems belong to artificial intelligence domain); there is a large gap
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between their concepts in their numbers and semantics. Here we present some specific
issues when applying transformation from the service model to agent one and via versa.

• We do not find an equivalent concept for composite on the agent side. This concept
must be taken into account at the level of the organizational structure. It raises
then different problems at the structure level itself but also for delegation between
service points. The organizational structure of the agent model offers only two
levels: the group and the agent. This causes problems for hierarchical composition
of more than two levels (for example, a composite service containing composite
services38). One way to overcome this problem is to use shared agents between
different groups to represent the structural levels of an organization. This approach
is used in AGR model for instance [FGM04]. If an agent member of a group of
level n is also member of the group of level n+1, then it can be considered as
the representing element of the group of the lower level and all the interactions
between the two levels must be managed by this agent.

• The second problem deals with the delegation of external service points to internal
ones for a composite service: such a delegation principle does not exist on agent
side. When we transform a composite service to a group of agents, we consider
only the service points of the internal services to create the functional roles of
the agents (the same set of operations is associated with an internal service point
and with its delegated external service point on the composite service). For the
other direction, from agents to services, we must create external service points on
the composite and the required delegations between internal and external service
points with associated roles.

• The absence of the composite concept on the agent model side makes the trans-
formation of an application (on the service model) more complex. Intuitively, one
can consider a mapping between the concept of application of the service model
and the concept of organization of the agent one. As an organization is always
composed of groups, there is no problem to move on from the agent model to the
service one (an organization composed of groups becomes an application consisting
of composite services). However, an application on the service side is not always
composed of only composite services; it can also directly contain primitive services,
which cause a problem. In this case, when moving on from services to agents, each
primitive service of the application is mapped onto a single agent that is contained
in a dedicated group. This group has the same name of the agent it contains.

• When a primitive service interacts with other services via a protocol (e.g., broad-
cast, facilitator, mediator, etc.), the mapped agent must own the required ca-
pabilities in terms of communication (FIPA ACL language and basic protocols),
possibly reasoning and decision making (coordination, negotiation) in order to play
the associated interactional roles through this protocol. For example, the service

38For this reason, the table 9.2 presents the mapping of a composite service containing only primitive
ones. In this case, the mapping is direct and simple: it is a group composed of agents.
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Management in a HotelChain offers a list of available hotels after broadcasting
the request for different hotels and collecting their offers. On the agent side, such
broadcasting and collecting actions require communication and perception capa-
bilities of Management agent (an example of these capabilities are represented by
ovals in figure 9.3 but they are not available in all figures to avoid their over-
loading). Unfortunately, on service side, there are no equivalent concepts for the
capability concept, neither for task or goal ones. Then, when moving on from the
agent model to the service one, all these elements will be “removed”, while in the
other direction, the designer must add or modify these elements manually on the
default specification obtained automatically

Figure 9.3: A composite service (a), a group of agents (b).

Regarding the non-basic interactions, there is a single concept of protocol on the
service side while there is a richer classification on the agent side based on three main
types of interactions (communication, coordination and negotiation). Then, we do not
have the same level of details on each side. When we move on from agent to service
side, a non-basic interaction is systematically associated with a protocol, but in the
other direction, an automatic default choice must be made or the designer must choose
between one of the three types of interactions (see figure 9.4).

9.4 Projection: service and CASOM models

We need to clarify here that most of the mappings related to CASOM model do not
propose systemically rules of transformations. However, we propose at least two possi-
bilities of transformations and the designer must take a decision to precise his choices
in the application specification. In CASOM, we find ourselves in front of two princi-
ple choices to implement system services by components or agents with their originally
related concepts and other acquired ones. Components own high-levels of interactions
with well-defined goals. Agents can be a part of a composite structure with reusable
services via their service points but an agent cannot be composed itself of other agents.
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Figure 9.4: Services and interaction protocols (a), agents interacting by communication
(b), coordination (c) and negotiation (d).

We try with CASOM to enhance the applications based on only one of these two
domains (components or agents) by adding complementary concepts of the other added-
value domain.

This projection groups the two already presented rules of mappings (from the service
model to component and agent ones). It contains some changes related to the names of
the concepts in CASOM (e.g., the functional and interactional roles of agents become
services, service points and roles in CASOM) as presented in chapter 8. The service
concept in the service model can be implemented by an agent or a component according
to the choice of the designer using the coming proposed hints in the design guide chapter.
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For example, when a service interacts with several services by a protocol, it will be
implemented by an agent, however when a service responds to a single interaction like
RMI, implementing it by a component is sufficient. Table 9.3 provides the possible
bidirectional mappings between the concepts of service and CASOM models.

Service side CASOM side

Primitive service Primitive component or Agent with a goal
by default

Composite service with internal
services

Composite component or Group contain-
ing a component or an agent for each internal
service? with a goal by default

Application Organization with a goal by default

Provided (resp. required) service
point of a service and its set of op-
erations and playing a role

Service of a component or an agent with the
same set of operations

Provided (resp. required) service point of a
component or an agent with the same name and
playing the same role

Interaction associated with a pro-
tocol between service points

Connector in its two specialization Compo-
nentConnector and AgentConnector or one
of Communication, Coordination or Ne-
gotiation specialization of Interaction asso-
ciated with an equivalent protocol between the
equivalent service points

Basic interaction of a given type
between service points

Basic interaction or Communication of ba-
sic protocol type† between the equivalent service
points

? Only if these internal services are primitive. See section 9.3 for the explanations.
† Except for the delegation of the service. See section 9.3 for the explanations.

Table 9.3: Service / CASOM mappings

Similarly to the transformation between agent and service models in section 9.3, the
designer also should interfere to define the needed capabilities and tasks when an agent
is chosen to implement a service. However, in the reverse direction these concepts will
be ignored. After presenting the vertical transformations between the service model and
the three other models, we browse in the following sections the horizontal ones.

161



Chapter 9. Semantic Mappings

9.5 Agentification / Componentification: direct mappings
between component and agent models

We saw previously, that the component model is very close to the service one. We
find here some similarities in the mapping rules between component and agent models
except the ones between service and component ones; the agents like the components are
elements that implement services. Whereas, there will be the same limitation regarding
the domain specific concepts, especially the notion of composition on the component
side and the notion of goal on the agent one. In the agent model, the service concept is
perceived in the same way as in the component model except that it is considered as an
abstraction of a functional role. An agent (resp. primitive component) can be associated
with several functional roles (resp. services); each functional role (resp. service) being
composed of operations. An interactional role (resp. service point) is associated with
a functional role (resp. service). Agents (resp. primitive components) interact with
each other through interactions associated with their interactional roles (resp. service
points). In the previous example of figure 9.1, the component part (a) corresponds to
the agent one in figure 9.2 (b), which leads to figure 9.5. We must note that the notion
of interactional role on the agent side groups the two notions of service point and role
on the component side. This requires making the choice of a convention to name the
interactional role to save information. We can use a compound name as <name of
role>.< name of service point>.

Table 9.4 presents the bidirectional mappings between main concepts of component
and agent models.

We find same problems related to the transformation of a composite component
as those encountered for the transformation of a composite service (section 9.3), these
problems are further detailed in section 10.4 which considers special cases of mappings.
As a solution, a similar approach as for the treatment of hierarchies of composition, of
applications and of the delegation mechanism can be taken.

With the same logic as for the mapping between services and components, a com-
ponent connector is managed as follow. From agent to component model, except the
proposed variant in the design guide (next chapter), there is no mapping leading to
the definition of a component connector on the component side. In the direction from
component to agent, a component connector is managed as an ordinary component ig-
noring its protocol. However, a designer must add manually to the mapped agent(s) the
required capabilities to implement this component connector.

Finally, there are no equivalent concepts for the capability, task or goal on the com-
ponent model side. Then, when moving on from the agent model to the component one,
all these elements will be “removed”, while in the other direction, the designer must add
or modify these elements manually on the default specification obtained automatically.
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Component side Agent side

Primitive component Agent of the same name with a goal by
default

Composite component with internal
primitive components

Group of the same name containing an
agent for each internal component with a
goal by default

Application Organization of the same name and with
a goal by default

Service of a component with set of oper-
ations

Functional role of the same name and
with the same set of operations assigned to
the corresponding agent of the component
associated with the service

Required (resp. provided) service point
of a component with an associated role

Interactional role having the name com-
posed of the service point name and its as-
sociated role one. It takes the type of the
service point (provided or required). This
role is assigned to the corresponding agent
of the component

Interaction associated with a protocol
between service points

Equivalent high-level interaction like
Communication, Coordination or
Negotiation associated with an equiv-
alent protocol between the equivalent
interactional roles associated with func-
tional ones that correspond to the
services

Basic interaction of a certain type Basic protocol type of communication

Connector associated with a protocol Interaction associated with an equiva-
lent protocol

Table 9.4: Component / agent mappings

9.6 Agentification / Componentification: mappings between
component, agent models and CASOM

As we presented previously in section 9.4, all CASOM related mappings need the inter-
vention of a designer; we propose at least two possibilities of mapping and a designer
need to precise his choices. In this section, no new mapping rules will be defined because
we can use the already presented mappings between component and agent models in
the previous section except two obligations. These two obligations differ according to
the source model. From component model to CASOM, an application concept becomes
an organization. From agent model to CASOM a functional role becomes a service and
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Figure 9.5: A primitive component with several service points (a), an agent with several
interactional roles (b).

an interactional one becomes a service point with a role. In the transformation towards
CASOM, a designer can keep original concepts whenever he finds that they are sufficient.
He can transform other concepts to the possible mapped concepts when he finds that
they are more efficient in a defined context. For example, conforming to our component
model, we can find primitive and composite components that interact with each other
to provide or use services via basic or advanced interactions. In the transformation of
this application towards CASOM, the designer may decide to keep components without
any changes but he might change other components to agents with the same service
points. Similar decisions may be taken regarding interactions. For example, when a
designer finds that many components using the same service by RMI/RPC methods,
he may use coordination protocols or create a dedicated agent connector to avoid bot-
tleneck problems. This is done through the Agentification via CASOM which adds the
concepts originally from the agent approach to the component-based one. This is also
true for the Componentification via CASOM, where the designer may transform reactive
agents into components (e.g., AirlineCompany presented in figure 9.6), respecting the al-
ready presented rules of mappings in the previous section where the functional roles and
interactional roles become services, service points and roles respectively and an agent
becomes a component. Connectors and component connectors can also be used instead
of the agent connectors or advanced kinds of interaction.

9.7 Summary

In this chapter, we defined the relations between the four defined models of service,
component, agent and CASOM according to our framework in figure 6.1 on page 106.

The component model can be seen as an implementation of the abstract service
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Figure 9.6: Indirect Componentification: reactive agent in agent model (a) to a compo-
nent (b) in CASOM.

model, where a component implements a service and a connector a complex interaction.
Thus, there are bidirectional mappings allowing to move on systematically and totally
from a service specification to a component one and vice versa. Regarding the agent
side, defining the mappings to the service and the component models is a bit more
complicated. The main concepts of interaction and service have systematic bidirectional
mappings but some secondary concepts exist only on the agent side without equivalent
in the other two models. From the point of view of interactions, they are richer on the
agent side compared to the service and component sides. In return, the definition of
the composition is less natural on the agent side. These differences in interaction and
composition are actually quite logical: we retrieve here the strengths and weaknesses
of agent approaches regarding the other two approaches, as stated in the introduction.
CASOM contains the concepts of component and agent models, then the vertical or
horizontal transformations towards it group the already presented ones between the other
three models of service, component and agent. A service can be implemented by an agent
or a component and the interaction can be from agent or component kinds of interaction.
However, these transformations are not achieved automatically, where they require the
intervention of a designer because he has to choose between the concepts originally of
component or agent models according to the system requirements. Table 9.5 groups the
main mappings between the concepts of the four models.
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9.7. Summary

? Only if these internal services are primitive. See section 9.3 for the explanations.
† Except for the delegation of the service. See section 9.3 for the explanations.

Next chapter presents the core of our design guide that presents possible variants
of some of the already presented mappings in this chapter. It helps the designer to
determine his choices in application specifications through CASOM.

167



Chapter 9. Semantic Mappings

168



Chapter 10

Design Guide

Contents
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10.1 Introduction

This chapter groups all the cases that need the intervention of a designer to take a
decision or to precise a choice. This choice must ensure the robustness and the flexibility
of the system. Our design guide contains some hints that help the designer to choose
the appropriate element when specifying an application via CASOM. It also presents
possible variants of the mappings presented in the previous chapter, in addition to the
presentation of some special cases that need the intervention of a designer through the
transformations. We need to mention that this design guide is a basic one, however
it is an open guide. It can become richer in its hints and mapping variants since a
designer may add new hints for the application specifications through CASOM or new
possible variants of transformation between the four models according to the system
requirements analysis. A designer may also face other possible special cases through the
transformation and he can add the specification of such cases to the guide that may help
other designers in the future.
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10.2 Hints for an application specification via CASOM

As we saw previously, the main idea of CASOM is to specify an application with both
components and agents, where they interact with each other by using or providing ser-
vices. The design guide helps the designer to choose the suitable structural entities
(groups, agents, composites and components) to represent system elements. The first
step to do is to identify the used or provided services of each actor in the system. In
order to facilitate the choices between structural entities to represent a system element;
you need to ask the following questions:

1. Does this element simulate human behaviour (it deals with humans or with other
applications)?

2. Does this entity need to take decisions through its interactions with other system
elements?

3. Do the interacted system elements consider a general objective although they may
own their own goals and different capabilities?

4. Do the system elements have well-defined, and clearly separated income and out-
come services?

5. Can these elements be decomposed to several parts that interact between each
other in parallel or sequential ways?

If the answers of the first two questions are positive then the agent concept is the
ideal candidate to represent such elements because we need an autonomous entity that
is able to take decisions.

A positive answer to the third question leads to the group of agents that interact
between each other to realize a defined goal.

Positive answers to the last two questions lead us to the components and the com-
posites that can contain also primitive and composite components.

Many possible compositions of positive answers are possible for these questions. The
designer needs to study and know the system requirements, he needs also to know which
entity will decrease the cost of the system and increase its efficiency in the same time (e.g.,
using agents with decision-making and reasoning capabilities may affect the speediness
of the system. Then this choice may decrease the system efficiency if it was supposed to
be a speedy system).

In CASOM, all kinds of advanced interactions are available to components, and
they own their goals. Moreover, agents become reusable through their service points.
Then, we have reusable entities (components and agents) with high-level interactions
and defined goals. However, the main difference is that a component can be composite
itself of other primitive or composite components, but an agent cannot although it can
be a part of a composite. Then, the component is always the ideal candidate for any
composite structure. On the other side, the autonomy is still restricted in agents, where
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they own their capabilities of perception, reasoning and making decisions. Then an agent
is still the best candidate to represent autonomous entities.

One may ask why not adding relations between capability and component concepts,
so components become also autonomous. The response to this question is related to
other issues like, how to define components capabilities, and how these capabilities can
affect the component services since these services must be well-defined and not change-
able. Specification hints by CASOM are open, where a designer may add new hints
according to the specified system. The content of our design guide is built incrementally
by designers’ experience, where using these variants requires designers intervention to
avoid the systemically proposed mappings.

Next section browses possible variants of some already presented mappings in the
previous chapter.

10.3 Mapping variants

In this section, we present possible variants of mappings instead of some direct mappings
presented previously. These variants can be translated to transformation rules but the
designer needs to precise whether he wants to apply the direct mappings or the variants.

10.3.1 Service and component models

The first variant consists in not transforming systematically a composite (resp. primitive)
element into a composite (resp. primitive) element of the other model. The rule is that
if the internal elements in a composite (component or service) do not interact with
each other, we can transform this composite element into a primitive element on the
other side39. This variant is notably interesting in the case where we do not want to
specify a service as implicitly formed of provided or required sets of operations (via
associated service points). We dedicate explicitly each set of operations to a particular
service (that is, a primitive service that contains only one service point), defining in this
way a composite service containing primitive ones. However, regarding the component
side, it is more relevant to have a primitive component as each set of operations is
directly associated with a service point, then with a single service. Figure 10.1 presents
a composite service Client that contains two internal primitive services having each one
a single service point. This composite service is mapped to a primitive component Client
directly defining the two service points equivalent to those of the internal services of the
composite service. The external service points of the composite service with its roles
and delegation interactions are ignored in the new mapped component.

A second variant consists, on the component side, to prefer using a primitive Com-
ponentConnector instead of a connector associated to a protocol to map a complex
interaction on the service side. To add a component connector concept, we need to add

39If the internal elements are connected, this means that a designer has explicitly specified internal
interactions between these elements and by “merging” them in just a single one, we would cause to lose
these interactions and the associated explicit internal structure. Then, there would be information lost.
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Figure 10.1: A composite service (a) to a primitive component mapping(b) mapping.

the symmetric service points (associated to the same service but by providing it instead
of using it or the reverse) with interactions of basic types like RPC/RMI between the
ComponentConnector and the connected components. Figure 10.2 shows the two pos-
sible choices of mapping a complex interaction on the service side to a Connector or
ComponentConnector on the component side. In service side (part (a)), two services
are related via protocol through their service points. In component side, the two ser-
vice points of the corresponding components are related using Connector (part (b)) or
primitive ComponentConnector owning the symmetric service points (part (c)).

10.3.2 Service and agent models

Similarly to what we have presented for the mappings of service and component models,
here we have a mapping variant that does not associate systematically a primitive service
of the service model with an agent of the agent model. If we take the example of a
composite service where its two internal services are not internally interacted, it is not
necessary to have two different agents. We can make the choice to group these services
within a single agent by assigning both corresponding functional and interactional roles
to the two service points. As an example, the composite Client service containing two
primitive services (figure 10.3 (a) is mapped onto a group containing a single agent
instead of two agents (b)).

Another possible variant of mapping of a composite service to a group of agents
(instead of the one already presented in figure 9.3 on page 159) is to add systemically an
agent that represents the composite component and its external service points (the agent
client in figure 10.4 (b)). This variant is very interesting to be used in the case where we
have many composite services and the reverse transformation (from the resulted agent
model to the service one) may be needed. This variant keeps most information during
the transformation (i.e., external service points (names, roles) and the communication
of delegation between the internal service points).
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Figure 10.2: A protocol (a) to a connector (b) or a component connector(c) mapping.

Figure 10.3: Internal services of a composite service (a) to a group of one agent (b)
mapping.

10.3.3 Service and CASOM models

Similarly to the two already presented variants in the transformations from the service
model to the component or agent one, we have two main variants. The first is related
to the structural element. Following the already presented rules, we do not transform
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Figure 10.4: A composite service (a) to a group of agents (b) mapping.

systemically a composite service into a composite component, a group of agents or com-
ponents whenever the internal elements do not interact between each other. A primitive
component or a group of one agent may be sufficient to implement such kind of composite
service.

The second variant is related to the implementation of complex interaction in the
service model. Instead of the choice of using the classification of interaction specialising
this interaction, we implement it by a connector. Then, we have two possibilities to
specify and manage the behaviour of such connector either by the use of a dedicated
component connector or agent one. It depends after all on the desired implementation
of the connector behaviour management. It can be transparent through the agent con-
nector or it can be encapsulated in a black box and composed of other elements by the
component connector.

10.3.4 Component and agent models

The first variant is not to transform systematically a primitive component within a
composite onto an agent. We may choose to group non-interacting internal components
of a composite within the same agent and vice versa (figure 10.5). We keep the same
idea in the proposed mapping variant between a composite service and a group of agent
in figure 10.4 here. Figure 10.6 presents a possible variant of a composite component
mapping to a group of agents. In this proposed mappings we keep all the information in
the composite component (external and internal service points name, roles and delegation
interactions). Whenever a reverse transformation is needed (from the resulted agent
model to the source component one), this variant of mapping is ideal to be used.

Similarly, based on the mapping variant between service and component models,
we can map a complex interaction like negotiation between agents (figure 10.7 (a))
onto a primitive component connector “with its symmetrical service points” instead of a
connector (figure 10.7 (b)).
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Figure 10.5: A composite component with several internal components to a group of one
agent mapping.

Figure 10.6: A composite component (a) to a group of agents (b) mapping.

10.4 Special cases of mappings

We need to discuss some special cases, which may not occur frequently in an application
specification and may need the intervention of a designer, like:

• Composite component of two or more levels: this problem is already addressed
in section 9.3 on page 158 between the composite service and agent transforma-
tions. The absence of the composition on agent side causes different problems
in the transformation related to the composition and delegation concerns. Using
representing agent for the composite of composites component is already proposed
as a solution in the mappings of a composite of composites service from service
model to agent one. We use the same principles in the illustrative example (figure
10.8) to clarify the case of the transformation of a composite of composite com-
ponent to groups of agents with an additional representing agent. The rule here
is to map each (internal or external) composite component (resp. service) to a
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Figure 10.7: Agents negotiation interaction(a) to a component connector (b) mapping.

group of agents corresponding to the internal primitive components with adding
by default a representing agent for this composite. This agent has a derived name
from the name of the interacting components and the actual composite component
(e.g., the agent is named AB in figure 10.8) and it provides or uses the services
provided or used by the internal delegated service points of a component. We need
to precise here that this special case occurs from the component to agent model
transformation. However, whenever we apply the reverse transformation (from the
resulted agent model to component one), we will not have the exact model as the
original component one if we apply the direct mapping rules because we have this
additional agent that can be mapped to a new component (which does not exist
in original model). This shared agent helps only to define the composite of com-
posite components, then the designer need to interfere to avoid applying the direct
mappings rules for this case.

• Agents that belong to two groups: this case may occur from the agent model to
component one. Our agent model does not prevent an agent to be member of two
groups at the same time. The logical mapping of this case is to have a shared
component. This kind of component is not allowed in most of components models
that causes a problem here. The proposed solution is to apply the previously
defined mappings rules (table 9.4 on page 163) for all the group members but to
duplicate the corresponding component for this shared agent twice with its services
in the two corresponding composite components. In figure 10.9, we find the A
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Figure 10.8: A composite of composite component (a) to groups of agents (b) mapping.

composite component mapped to the A group, we have a primitive component
C corresponding to the shared agent C and another primitive component with
the same name of this agent C also exists in the other composite component
B corresponding to the second group B). The names of the exchanged services

Figure 10.9: A shared agent between two groups (a) to two composite components (b)
mapping.

over the interactions and the agent name help to distinguish between the reverse
transformations of the representing agents to composite components used in the
previous case and the shared agent here since they look similar.

• Application specifications via CASOM: as we saw previously in chapter 8, CASOM
allows widest combinations of agent and component model concepts. A designer
is able then to define composite components containing groups of agents, these
groups in their turns can contain composite components, agents and groups in
the application specified by CASOM. Then, the transformations from CASOM
to component or agent models require the intervention of the designer after the
application of the direct mapping rules (already presented in section 9.4 on page 159
and 9.6 on page 163) to consider the already presented special cases or new ones.
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10.5 Summary

We presented in this chapter the base of our design guide. It helps the designer to
precise his choices when he specifies an application by CASOM or to use certain mapping
variants during the transformations instead of the systematically proposed ones. The
system requirements play a key role in the application specification. From this chapter,
we find that a designer must get in the way through the application specifications via
CASOM and the transformation from / to this model. A designer may interfere to use
the proposed mapping variants in this section instead of the direct already proposed
one in the previous chapter. The table 10.1 presents the transformations with their
main variants. The transformations are completely reversible between component and
service models. However, they need a designer intervention in any transformation to
the target of agent model to define the needed capabilities and associated tasks. The
transformations towards CASOM require also a designer intervention to choose the target
mapped elements, since there are at least two choices that are originally from component
or agent model. A choice by default may be proposed for the transformation to the
target of CASOM, which may not respond to the designer or system requirements, and
then the designer has to change the default proposed mapped elements manually. The
transformations from CASOM in the direction of the other models are already included
in the transformation from component to agent models, service to component and service
to agent transformations. It depends on the used elements in CASOM and the needed
ones in the target model (e.g. from CASOM to component, we can translate an agent
to a component and a component to a component).The development of an environment
that manages the choices for designer interventions is one of our main concerns in near
future.

The process of building this guide is an incremental one, where any designer facing
special cases and personalizes new solutions, can add them to the guide since it is open.

Next chapter ends the contribution part by presenting the implementation of our
framework in its four models and the relations between them in a modeling driven
engineering environment.

Transform. Automatic Manual
(designer)

Lost Informa-
tion

Variants

Service To Com-
ponent

Yes N/A None Complex In-
teraction can
be mapped to
a connector or
a component
connector

Component To
Service

Yes N/A Associated proto-
col to a compo-
nent connector?

N/A
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Transform. Automatic Manual
(designer)

Lost Informa-
tion

Variants

Service To Agent Yes Tasks, ca-
pabilities
and goals of
agents

None A complex in-
teraction can
be mapped to
communication,
coordination and
negotiation kinds
of interaction‡

Agent To Service Yes N/A Tasks, capabili-
ties and goals of
agents†

N/A

Component To
Agent

Yes Tasks, ca-
pabilities
and goals of
agents

None A connector or
a component
connector can
be mapped to
communication,
coordination, and
negotiation kinds
of interaction‡

Agent To Compo-
nent

Yes N/A Tasks, capabili-
ties and goals of
agents

An interaction by
communication
or coordination
or negotiation
can be mapped
to a connector
or component
connector.

Service/ Compo-
nent/ Agent To
CASOM

No± Yes, el-
ements
implement-
ing ser-
vices and
complex
interactions

None N/A
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Transform. Automatic Manual
(designer)

Lost Informa-
tion

Variants

CASOM To Ser-
vice/ Component
/Agent

Yes N/A∓ Tasks, capabili-
ties and goals of
agents if its used
or associated
protocols to a
component con-
nector if it was
used in CASOM

N/A∓

Table 10.1: Summary of the accomplished transformations

? A component connector is viewed as an ordinary component.
† If we apply a transformation from the service to agent model and in the service model,
there were compositions of many levels. The resulted agent model will have representing
agents to ensure the representation of these compositions. However, in the reverse trans-
formation, from the resulted agent model to the service one, a designer should check the
services resulted from the translation of the representing agents to be sure to have the
exact source service model.
‡There is no hierarchical composition in the agent model, therefore we use a dedicated
agent to represent the N nested levels of composition.
± It cannot be automatic because there are at least two choices, to map the source model
elements, that are originally from component or agent model.
∓ The lost information and variants are already included in the transformation from
component to agent models, service to component and service to agent transformations.

Next chapter ends the contribution part by presenting the implementation of our
framework in its four models and the relations between them in a modelling driven
engineering environment.
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Implementation
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11.1 Introduction

In this chapter, we implement our framework (models and transformations) via Eclipse
Modeling Framework (EMF) (already presented in chapter 6). We presented the service,
component, agent and CASOM models in figures in chapters 7 and 8 using UML class
diagram specification to present these models conceptually. However, this representa-
tion needs some reformatting in order to be implemented in Ecore meta-models. This
chapter presents then the implementation of the four models in Ecore, in addition to the
implementation of the relations between these models (the mappings already presented
in chapter 9) via ATL transformation rules at the end of this chapter. The general steps
of our implementation in EMF are the following.

• We implement the four models of service, component, agent and CASOM using
Ecore model.

• We implement the mappings between pairs of service, component, agent and CA-
SOM models via Atlas Transformation Language.

Next section presents how to move on from our conceptual models to DSLs / Ecore
(meta-)models.
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11.2 From conceptual models to DSLs / Ecore models

Many changes need to be applied on our conceptual models to represent them via Ecore
model. These changes are related to the absence of some elements in Ecore model that
exist in UML like association classes or they are related to the respected ways of defining
a model. These ways exist in Ecore and do not exist in UML, which imply the addition of
some concepts like a root element, composition relations, factoring elements for common
concepts. Here, we present the applied changes to move on from the conceptual models
to the DSLs (the implemented model in Ecore).

• The association class: we want to implement our conceptual models using Ecore
meta-model since EMF contains plug-ins to implement the transformations be-
tween them. However, the main difference between Ecore meta-model and UML
class diagram is the fact that Ecore does not have association classes that we use
frequently in our proposed models. Then, when implementing these models in
EMF by Ecore meta-model, some changes must be applied. Figure 11.1 represents
an example of the translation of an association class from UML class diagram to
Ecore model. We can see that an interaction is related to two ServicePoints at
least by a Role (see figure 11.1 (a)). In Ecore, we break the association class by
having two relations instead of one. The first relation is between an interaction
and at least two Roles. The second relation is between the Role which is related
to one ServicePoint (see figure 11.1 (b)).

Figure 11.1: An association class from UML to Ecore specification.

• The root element: In Ecore, for helping in editing a model within a single XML
Metadata Interchange (XMI)40 file, a particular design rule has to be applied when

40http://www.omg.org/spec/XMI/
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creating a meta-model. It is base on the fact that if a meta-element A has a
composition reference on a meta-element B, then, when editing the model, it is
possible to directly create instances of B whithin an instance of A. The particular
design rule consists in having a kind of root or container element and to have
direct or transitive composition links from it for all the elements of the meta-
model. For our DSLs, we decide to make the Application element in the service and
component meta-models and the Organization element in the agent and CASOM
meta-models, being this root element for their respective meta-models. Indeed,
such elements represent the application as a whole, they are then natural candidates
for embedding directly or transitively all the elements of a model. This design rule
requires also to add some composition links starting from the root element that
have no equivalent or are not relevant at the conceptual level but they will help
in editing the models. For instance, in the service meta-model, a composition link
has been added from Application to Interaction.

• The factoring element: in order to avoid the repetition of the attribute Name
that exists in almost all the concepts of the four models; We added a new concept
NamedElement as an abstract class and all concepts inherit its attribute Name.

11.3 The four DSLs in Ecore

We present here service, component, agent and CASOM models in Ecore. This repre-
sentation respects the already presented points to move from the conceptual model to
the one in Ecore.

• Figure 11.2 shows our already presented service model (figure 7.1 on page 117) in
Ecore. There is no association class in this model, where we break it as we presented
previously in two relations (a relation between an interaction and at least two Roles
and a relation between the Role and ServicePoint). The Application class is a root
concept with relations of compositions with the other concepts. We can see the
class of NamedElement as an abstract father concept for all the other concepts.

• Figure 11.3 represents our component model (already presented in figure 7.4 on
page 126) in Ecore. Similarly to the service model in Ecore we can find the same
changes (i.e., no association class, an Application root class with composition re-
lations to reach the other concepts and the abstract NamedElement concept also
exists.

• Figure 11.4 demonstrates our already presented agent model (figure 7.6 on page 133)
in Ecore. The implementation of the association class between the Group, Func-
tionalRole concepts by the Agent one (see figure 11.5 (a)) leads to a relation that
says an agent belongs to one group and it is associated with one FunctionalRole
(i.e., service) in the Ecore model of agent (see figure 11.5 (b)). The interpreta-
tion of these relations is not logic then we change manually two cardinalities (see
(c) figure 11.5). The modified relations cardinalities allow an agent to have many
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Figure 11.2: The service model in Ecore.
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Figure 11.3: The component model in Ecore.
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Figure 11.4: The agent model in Ecore.
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FunctionalRoles. They allow also having a shared agent between two groups. We
already used this shared agent in the mappings from service / component model
to agent one where we use a shared agent to represent a composite of composite
service / component. Then, we change manually this relation in the agent model
(see figure 11.5 (c)). The root concept is the Organization one with its composition

Figure 11.5: The actual association class between group and functional role class by
agent one (a) the corresponding relation in Ecore (b) the actual relation in Ecore (c).

relations with other concepts and the abstract NamedElement) concept.

• Figure 11.6 represents our CASOM model (already presented in figure 8 on page 139)
in Ecore, with the Organization concept as the root one in addition to the existence
of the abstract NamedElement) concept.

11.4 The ATL transformations implementing the mappings

ATL is a model transformation language; it contains functions that help to produce a
target model from a source one. Any ATL program is composed of transformation rules
and some functions named helpers. In this section, we implement our already proposed
mappings between the four models in chapter 9. We present some main rules to generate
a component model from a service one. We start by structural entities related rules, like
the transformation from composite and primitive service to a composite or primitive
component (see figure 11.7). As well as the required (resp. provided) service points to
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Figure 11.6: The CASOM meta-model in Ecore.
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required (resp. provided) service point and a service with the same list of operations as
already presented in table 9.1 on page 155.

rule ServiceCompositeToComponentComposite {
From
sourceService : ServiceModel!Composite
to cibleComponent : ComponentModel!Composite (
name<- sourceService.name,
owner<- sourceService.owner,
components<- sourceService.services
) }
rule ServicePrimitiveToComponentPrimitive {
from
sourceService : ServiceModel!Primitive
to
cibleComponent : ComponentModel!Primitive (
name<- sourceService.name,
owner<- sourceService.owner
) }
rule ServicePointRequiredToServicePointRequiredAndService {
from
sourceServicePoint : ServiceModel!Required
to
cibleService : ComponentModel!Service (
name<- sourceServicePoint.name,
owners<-cibleService.owners->including(sourceServicePoint.service),
operations<-sourceServicePoint.operations
)
,
cibleServicePoint : ComponentModel!Required (
name<- sourceServicePoint.name,
component<-sourceServicePoint.service,
service<-cibleService,
roles<-sourceServicePoint.roles
)
do{
thisModule.getComponent(sourceServicePoint.service.name).servicePoints<-
thisModule.getComponent(sourceServicePoint.service.name).servicePoints-
>including(cibleServicePoint);
}
}

Figure 11.7: ATL rules for structural entities from the service model to component one.

Another transformation rule is related to the interaction concept. Whenever, we have
an interaction related to a protocol in a service model (complex interaction), it becomes
a connector specified by the same protocol in the component model (see figure 11.8).
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rule complexInteractionToConnector {
from
sourceInteraction : ServiceModel!Interaction(not sourceInterac-
tion.protocol.oclIsUndefined())
to
cibleConnector : ComponentModel!Connector (
name<- sourceInteraction.name,
protocol<- sourceInteraction.protocol,
roles<-sourceInteraction.roles
) }

Figure 11.8: ATL rule to transform complex interaction from the service model to the
component one.

In the same way, we provide the rules of transformations from service to agent model
and from agent to component one, in addition to the reverse transformations for all the
previous ones.

11.5 How to use our MDE framework?

After the implementation of our four models and the relations between them, we need to
know how to use this framework. Firstly, we need to create an application example for
one of our four models of service, component, agent and CASOM (e.g., service application
example). Secondly, we apply the suitable ATL transformations corresponding to the
already presented mappings between the four models in chapter 9. We get as a result
the application example corresponding to the target model according to the applied
transformation. The application example conforming to a defined model is created by
the creation of the class instances and relations between them conforming to this model.
The creation of the instances can be generated from the root class (i.e., the Application
class in the service / component model and the Organization class in the agent/CASOM
model). We get in EMF a file that groups all instances of each concept and their relations
with other concepts, this file is from the type XMI. We can create any of our already
presented travel agency examples in figures 7.2 on page 120, 7.5 on page 129, 7.7 on
page 135 and 8.3 on page 150. Figure 11.9 shows a part of the vacation reservation
example conforming to our service model where it is not possible to presents all the
instances in one figure. One of our main perspectives is to provide a friendly view
of these models using the Graphical Modeling Framework (GMF)41. GMF allows us to
realize graphic editors that edit and assign graphical shapes for the classes in our models.
These editors allow us to visualize our application examples in the same way presented
in figures 7.2, 7.5, 7.7 and 8.3 by using the same shapes. This will facilitate the reading
of the XMI files.

41http://www.eclipse.org/modeling/gmp/
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Figure 11.9: Part of the service model instances conforming to our service model.

11.6 Summary

In this chapter, we implemented our framework by implementing its models and the
relations between them in Ecore Modeling Framework. The service, component, agent
and CASOM meta-models are defined in Ecore, that requires some changes on the con-
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Service
To Com-
ponent

Component
To Service

Service
To
Agent

Agent
To
Service

Component
To
Agent

Agent To
Compo-
nent

CASOM
To Ser-
vice

lines of
code

171 165 376 298 429 300 350

Table 11.1: Transformations implemented in ATL

ceptual models which are already represented in UML class diagram. These changes are
related to the absence of some elements in Ecore model that exist in UML like associa-
tion classes or to the respected ways of defining a model in Ecore. These respected ways
imply the addition of some concepts like a root element for each model with composition
relations to reach the other concepts in the model.

The relations between service, component, agent and CASOM models are imple-
mented in ATL transformation language. Table 10.1 on page 180 already presented the
main transformations. The transformations between component and service models are
completely reversible. The transformations from service / component model towards
agent/ CASOM one are automatic but the designer needs to define the agent tasks
and capabilities. However, the reverse transformation from the resulted agent/ CASOM
model towards service / component one are direct and automatic where some concepts
will be removed (i.e. task and capability).

Table 11.1 shows the implemented transformations of table 10.1 and the number of
code lines for each one. We can see from this table that the code size for ATL rules
between service and component models is relatively small, since the component model
implements directly the service one. However, the code size of ATL rules between the
component/ service models and agent/CASOM one are relatively large regarding their
riches in the number of concepts.

In order to use these transformations on application examples, a designer must follow
the next steps:

• design the application model conforming to one of the service, component, agent
and CASOM models,

• select a target model,

• launch the ATL transformation engine,

• complete, if needed, the resulted model.
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In this part, we presented our contributions starting by the presentation of our frame-
work. This framework relates the three domains of service, component and agent with
the domain allowing mixing the three previous ones in one model (chapter 6). This chap-
ter also presents our running example of holiday reservation system that we use along
this part to illustrate the application examples (to create instances of the model concepts
corresponding to our holiday reservation system elements). We propose a general model
for each domain in chapter 7, with their main concepts and OCL constrains to remove
possible ambiguity. We propose in chapter 8, our general model that allows specifying
applications by interacting agents and components via services. The relations between
the four models are defined in chapter 9. A design guide that helps the designer to precise
his choices (in specifying an application by CASOM or choosing variants of mappings
through transformations) is proposed in chapter 10. We present the implementation
of the contribution through a MDE environnement (EMF/Ecore for implementing the
meta-models and ATL to realize the transformation between them) in chapter 11.
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Chapter 12

Conclusion

12.1 Summary of achievements

We started this dissertation with a main goal in front of our eyes: the integration of the
two approaches of component-based systems and MultiAgent ones by service-oriented
approaches, since there is a nice complement between the advantages of one approach
and the shortages of the other. The service-oriented approach represents a pivot of inter-
operability between the component and agent approaches. Service and the interaction
concepts are key ones to reach our objective.

The response to our goal is proposed in CASOM model in chapter 8. CASOM allows
us to use interacting agents and components via services in one application specification
although one can think these two approaches are completely separated. These interacted
components or agents gain some interests through CASOM, where an agent can be part
of a composite structure and its services can be reusable and a component can interact
with other parties using advanced kinds of interaction. We can say then that the figure
1.3 is implemented.

As we have seen, this objective imposes several other issues, which we summarize in
the following achievements in this research:

• We studied works that consider each domain separately with a focus on service
and interaction concepts in chapters 2, 3, 4. After studding these models, we
make a comparison between their main concepts (component models in table 2.3
on page 35, agent models in table 3.4 on page 66 and service models in table 4.2 on
page 80). From this tables, we can identify clearly the lack of high-level interactions
in the service and component models, else few models that contain connector and
component connector concepts [CBJ02]. We also identified the shortages of agent
models considering reusability and composition purposes. It is also clear that the
interests of one approach (components vs. agents) overcome the shortages of the
other.

• We looked for the works that are already interested in mixing these domains in
chapter 5. We found many works that concern considering pairs of approaches
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jointly, like service and component approaches in the Service Component Archi-
tecture [CA07], service and agent approaches like [HJR10] and component and
agent ones together [KMW03]. However, few works consider the three of them
together like [BP11]. Most of the studied approaches that mix two domains use
one domain to enhance the other or merge them in a new entity like ActiveCom-
ponent in [BP11]. However, we consider the two domains at the same level and
with equity. Then we aim to provide wide choices to a designer to use components
and agents with their classical interests or with the new gained ones.

• We defined a kind of framework that groups all the domains that we consider in a
single view. This framework represents the gateway of our contributions. It con-
sists of two levels (see figure 6.1 on page 106), the abstract level that contains the
models that represent the four domains (i.e., the component model represents the
studied component models. The agent model represents the studied agent models.
The service model represents the studied service models and Service Component
Agent Oriented Model represents the models that mix the three previous ones).
The second level is the concrete one and it contains the application examples in
specific models. This framework is presented in chapter 6 and it defines a kind of
hierarchy between the four representing models, where the service model belongs
to a higher level of abstraction. It also defines the relations between these models.

• We defined general models for component and agent domains where the two key
concepts of service and interaction are explicit and central. We defined also an
abstract service model that does not consider service provides and consumers but
only interacting service; these providers (resp. consumers) will be specified in a
lower level of conceptions. These general service, component and agent models are
defined in chapter 7. This chapter provides also a unified view of the three models
in order to present their shared concepts with their relations. the concepts in the
four models were considered only from a structural view.

• The analysis of the unified view was the basis to design our CASOM model in
chapter 8 after choosing representing concepts for the ones with almost the same
significations in the three models.

• The relations between the four models of service, component, agent and CASOM
are presented in chapter 9. These relations are the transformations between service
model and the other three models of component, agent and CASOM are named
Projection / Abstraction. Direct transformations between component and agent
models or indirect towards CASOM are named Agentification / Componentifica-
tion. They are applied to our own service, component and agent models. However,
these models are relatively general because we defined main conceptual principles
in each field. Our study of mappings between these three fields can also be con-
sidered as a “theoretical” and general one, and not just dedicated to our models.
It is possible, through an adequate adaptation, to easily reuse the principles of
mappings we established for specific models of service, component or agent.
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• A core of a design guide is proposed in chapter 10. It presents the cases that need
the intervention of a designer through the design of applications in CASOM model
or in using variants of mappings through the transformations between models in-
stead of the direct provided mappings. This design guide is open, where a designer
may change or define new variants.

• The implementation of all the parts of our contribution is presented in chapter 11.
We used the Ecore Modeling Framework to implement the conceptual models by
Ecore meta-models and the transformations between models by ATL rules.

12.2 Perspectives

We have several general perspectives and implementation related ones for this research.

12.2.1 General perspectives

We list below the envisaged improvements for some parts of our contribution:

• General models: our provided general models of component, agent, service and
CASOM are well-defined and consistent since they are extracted from representa-
tive models of each domain. But these domains are still evolving and new models
appear. Morevover, in our study, we focused on the aspect of services and interac-
tions that could lead us to ignore some concepts that we considered secondary. In
this context, we may need other ways to specify certain things; therefore, we plan
to have variants of models to handle these cases. For example, the following cases
could be adressed:

1. We will consider behavioural aspects in the models variants since the actual
models consider only the structural aspects. For example detailing the be-
havioural specification related to the concept of protocol.

2. We may have groups within groups in a new variants of the agent model since
it is not possible currently. This should simplify the mappings between agent
model and service or components ones.

3. We may integrate the resource concept in a new variants of the agent model,
this will allow us to take into account the environment dimension of MAS and
it implies considering coordination between agents to share these resources.

4. We may add the capability concept to the component in a variant of CASOM,
and this implies to study how to define these capabilities.

• Design guide: our design guide is a very basic one. We need to make it richer
in its transformation variants and special cases of application specification via
CASOM. We must provide our framework (implementation) to be used by several
designers using different application examples. This variety of examples helps to
see critical cases and hidden problems, which are not discovered yet.
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• Validation:In the short term, we plan to experiment the implementation of CA-
SOM model: starting from a specification that conforms to CASOM and imple-
menting it on concrete platforms according to specific models of agents and com-
ponents. We already started a work in that direction on the travel agency example.
The goal is to make interacting Jade agents and Fractal components via web ser-
vices.

In the longer term, the overall validation of this work requires an empirical exper-
imentation on several examples to verify models transformations. The first step
is to create a repository specification from the examples. Ideally, each example
should be specified using the four models. However, depending on the nature of
the example, it can be assumed that some models do not have interest and that
the specification can be limited to an origin model and a target one. Then, the sec-
ond step consists in applying the transformations and chains of transformations on
repository items and check if the resulting specification belongs to the repository,
or, if some transformations lost elements, that the resulting specification contains
the expected conserved elements. These verifications can be processed using model
transformation contracts [CBBD09].

Beyond empirical validation of our approach, these experiments will help in en-
riching the designer guide.

12.2.2 Implementation perspectives

• A framework supporting the management of a designer choices: as we
saw previously in the design guide chapter, the manual interventions of a designer
are required. The designer choices and interventions are required through the ap-
plication specification in CASOM or through the transformations to determine
which variant to use instead of the direct proposed mappings. Then, the imple-
mentation of a transformation environment that includes the management of the
designer choices and interventions is the first on our implementation perspectives
list. For example, a designer should be able, via CASOM, to transform a compo-
nent (and only one among all other components of an application) to an agent via
the selection of this component by the designer.

• Towards a transformation engine between the four models: the same
framework (from the previous point) must define a plug-in that groups the four
models of service, component, agent and CASOM with their Projection / Abstrac-
tion, Agentification and Componentification transformations. This plug-in is a
transformation engine with a friendly interface. This interface allows us to choose
the source and target models and to load the source model conforming to the cho-
sen source model (a file containing all the instances of the model concepts) though
this interface. The result of this transformation is a generated target model con-
forming to the chosen target model. This engine will be named CAST that stands
for Component Agent Service Transformation Engine. For example, we load a file,
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that is actually an application example conforming to our component model and
the desired output is an application that contains interoperable agents and com-
ponents (conforming to CASOM model). Figure 12.1 presents a general view of
CAST transformation engine.

• A graphical representation of the applications: another perspective related
to the implementation is to use the Graphical Modeling Framework (GMF) of
EMF to view and modify the application examples visually. We need then to
assign graphical shapes to the concepts of component, agent service and CASOM
models (i.e., the same shapes which are presented in the legend of the application
examples in figures 7.2 on page 120, 7.5 on page 129, 7.7 on page 135 and 8.3
on page 150 can be assigned to the concepts of their models). This will facilitate
the complexity in finding relations between the instances in the XMI file, then to
facilitate the reading of the application examples.

In our preliminary study, we do realize the difficulty of considering the three domains
jointly, then some choices were taken like the restriction of the number of studied models
in each domain. Nevertheless, we have proposed a relevant and consistent contribution
to the area considering the integration of the three domains of service, component and
agent simultaneously. But we are aware that there is still work to be done on the
implementation and validation of the approach that should be adressed in future work.
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Figure 12.1: A general view of CAST engine.
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sémantiques entre des modèles de services, de composants et d’agents.
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[Fer95] Jacques Ferber. Les Systèmes Multi-Agents : vers une intelligence collec-
tive. Inter-Editions, 1995.

[FG98] Jacques Ferber and Olivier Gutknecht. A Meta-Model for the Analysis
and Design of Organizations in Multi-Agent Systems. In Yves Demazeau,
editor, ICMAS, pages 128–135. IEEE Computer Society, 1998.

[FGM04] Jacques Ferber, Olivier Gutknecht, and Fabien Michel. From Agents
to Organizations: an Organizational View of MultiAgent Systems. In
Agent-Oriented Software Engineering (AOSE) IV, volume 2935 of LNCS.
Springer, 2004.

[fip01] FIPA English Auction Interaction Protocol Specification. http://www.

fipa.org/specs/fipa00029/SC00029H.html, 2001.

[fip02a] FIPA ACL Message Structure Specification. http://www.fipa.org/

specs/fipa00061/SC00061G.html, 2002.

[fip02b] FIPA Communicative Act Library Specification. http://www.fipa.org/

specs/fipa00029/SC00037J.html, 2002.

[fip02c] FIPA Contract Net Interaction Protocol Specification. http://www.fipa.
org/specs/fipa00029/SC00029H.html, 2002.

207

http://www.omg.org/spec/EDOC/1.0/PDF/
http://www.omg.org/spec/EDOC/1.0/PDF/
http://www.fipa.org/specs/fipa00029/SC00029H.html
http://www.fipa.org/specs/fipa00029/SC00029H.html
http://www.fipa.org/specs/fipa00061/SC00061G.html
http://www.fipa.org/specs/fipa00061/SC00061G.html
http://www.fipa.org/specs/fipa00029/SC00037J.html
http://www.fipa.org/specs/fipa00029/SC00037J.html
http://www.fipa.org/specs/fipa00029/SC00029H.html
http://www.fipa.org/specs/fipa00029/SC00029H.html


Bibliography

[FMBB04] Jacques Ferber, Fabien Michel, and José-Antonio Báez-Barranco. AGRE:
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Environment. In Thomas Böhme, Victor Larios-Rosillo, Helena Unger, and
Herwig Unger, editors, IICS, volume 3473 of Lecture Notes in Computer
Science, pages 99–110. Springer, 2004.

[HMMF+06] Christian Hahn, Cristián Madrigal-Mora, Klaus Fischer, Brian Elvesæter,
Arne-Jørgen Berre, and Ingo Zinnikus. Meta-models, Models, and Model
Transformations: Towards Interoperable Agents. In Klaus Fischer, Ingo J.
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Résumé

Les travaux présentés dans cette thèse concernent des problématiques d’architecture logi-
cielle multi-domaines pour le développement d’applications distribuées. Ces applications
sont caractérisées aujourd’hui comme des systèmes ouverts, complexes, hétérogènes et à
large échelle. Les approches traditionnelles, telles que l’approche orienté objet, n’offrent
plus un paradigme de conception suffisant pour appréhender la complexité de tels sys-
tèmes. Ces nouvelles tendances ont conduit à l’émergence d’approches de plus haut
niveau telles que les approches orientées services, composants ou agents. Chacune de
ces approches offrent des intérêts et des caractéristiques propres dans le développement
d’applications distribuées. Les services offrent une abstraction et une interopérabilité
à large échelle. Abstraction dans le sens où un service permet de spécifier un élément
fonctionnel sans préciser comment cet élément est implémenté. Les composants sont une
approche robuste basée sur la composition et la réutilisation d’éléments clairement défi-
nis par leurs interfaces. Les agents sont eux des éléments présentant un comportement
dynamique dirigé par un but et des interactions de haut niveau avec les autres agents
formant l’application, vue comme une organisation de services collaboratifs.

D’un point de vue conceptuel, le service peut donc être perçu comme le modèle
«métier» de l’application, alors que les composants et les agents constituent un modèle
d’implémentation. L’étude de ces différents domaines et des modèles associés, a mon-
tré que les approches composants et agents sont complémentaires, les points forts d’une
approche représentant les faiblesses de l’autre. Face à ce constat, il nous est paru in-
téressant d’intégrer ces deux approches, au sein d’une même démarche de conception.
Cela permet, d’une part, qu’une approche puisse bénéficier des intérêts de l’autre et
d’autre part, d’utiliser conjointement des agents et des composants dans la conception
d’une même application. La démarche que nous avons adoptée consiste à considérer les
services comme pivot d’interaction afin de rendre possible l’interopérabilité des agents
et des composants.

Pour supporter cette démarche, nous avons défini un processus de conception basé
sur l’Ingénierie Des Modèles qui contient quatre modèles conceptuels (Domain Specific
language) dont l’intérêt est de mettre l’accent sur les concepts de services et d’interaction.
Nous avons ainsi défini un modèle de services, un modèle de composants et un modèle
d’agents. Enfin, un modèle mixte appelé CASOM, Component Agent Service Oriented
Model, permet de spécifier une application via une combinaison des trois domaines précé-
dents. Ensuite, des règles de correspondances ont été définies entre les quatre modèles
pour pouvoir par exemple transformer une spécification agents en une spécification com-
posants ou mixte. L’implémentation de ces transformations a été réalisée en langage
ATL (ATLAS Transformation Language).

Mots-clés: architecture logicielle multi-domaines, approche a base de composants, sys-
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tèmes multiagents organisationnels, Architecture Orientée Service.
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Abstract

The presented work considers problems related to multi-domain software architecture
for the development of distributed applications. These applications are large-scaled, het-
erogeneous, open and complex software systems. Traditional approaches such as object-
oriented are no longer sufficient to represent such complex systems. These trends lead to
the emergence of higher-level approaches such as service-oriented, components or agents.
Each one of these approaches offers interests and characteristics in the development of
distributed applications. Services provide an abstraction and interoperability in a large
scale. Abstraction is in the sense that a service can specify a functional element without
specifying how this element is implemented. The components are a robust approach
based on composition and reusability through their clearly defined interfaces. Agents
are elements which are characterized by dynamic goal directed behaviours and high-
level interactions with other agents forming the application, seen as an organization for
collaborative services.

From a conceptual point of view, the service can be seen as the “business” model
of an application, while components and agents are the implementation models. The
study of these different domains, with their related models, showed that the components
and agents approaches are complementary; the strengths of one approach overcome the
weaknesses of the other. Therefore, we are interested in the integration of these two
approaches in a single design approach. This allows an approach to benefit from the
interests of the other, on one hand and the use of agents and components jointly in the
design of an application on the other hand. To reach our objective, we consider services
as pivot of interaction between agents and components.

The result of our analysis leads us to develop a design process based on Model-Driven
Engineering which contains four conceptual models (Domain Specific Languages) with
the main interest of focusing on the concepts of services and interaction. We then de-
fined a service, component and agent models. Finally, a hybrid model called CASOM,
Component Agent Service Oriented Model, was proposed that allows application speci-
fication via a combination of the three domains. Then, mapping rules have been defined
between the four models in order to transform agents specification into components
specification or mixed. The implementation of these transformations was done in ATL
language (ATLAS Transformation Language).

Keywords: multi-domain software architecture, Component-based approach, Organi-
zational MultiAgent systems, Service Oriented Architecture.

219



220


	Couverture
	Remerciements
	Dedication
	Contents
	List of Tables
	List of Figures
	Part I Introduction
	Introduction
	Context and Problematic
	Service Oriented Architecture (SOA)
	Component-based approach
	MultiAgent Systems (MAS)
	Complementarities between components, agents and services

	Objective
	Contribution
	Thesis Outline


	Part II State of the Art and Related Work
	Overview
	Component-based Models
	Introduction
	What is a component?
	What is a component model?
	Component models
	Architectural Description Language (ADL)
	Industrial component models
	Conceptual component models
	Academicals component models

	Comparison

	Organizational MultiAgent Models
	Introduction
	What is an agent?
	Typical agent view
	An example of agent architecture

	What is a MultiAgent System?
	Categories of agent technologies
	Organizational models
	Agent Group Role (AGR)
	A meta-model of Agents, Roles and Groups
	Model of Organization for multIagent SystEms(MOISE/MOISE+)
	Organizational Model for Normative Institutions (OMNI)
	Guidelines for ORganizational Multi-Agent Systems (GORMAS)

	Methodologies and general models
	Gaia
	PASSI
	Tropos
	FAME Agent-oriented Modeling Language (FAML)

	Interactional dimension
	Communication
	Coordination
	Negotiation

	Comparison

	Service Oriented Architecture models
	Introduction
	What is a service?
	What are SOA and SOC about?
	Service oriented models
	The model of Web Service Description Language
	Service Oriented Architecture Modeling Language
	SOARM
	Model Driven Architecture (MDA) and SOA models
	UML Profiles and SOA models

	Comparison

	Works integrating components, agents and services simultaneously
	Introduction
	Component-based approach and service oriented architecture
	ServiceComponent
	Service Component Architecture (SCA)
	Service for more reusable components
	Service components for managing the life-cycle of service compositions

	MultiAgent systems and service oriented architecture
	Service-oriented computing and software agents
	Agents for service composition by negotiation
	Service-oriented approach for MultiAgent system designs
	SoaML and an agent meta-model

	MultiAgent systems and component-based approach
	Agentification
	Componentification

	Summary


	Conclusion
	Part III Contribution
	Overview
	Starting point: Framework and Case study
	Introduction
	Framework
	Model-Driven Engineering
	Main concepts
	Eclipse Modeling Framework (EMF)

	Case study
	The problematic illustrated by an example

	Our proposed general DSLs of service, component and agent domains
	Introduction
	The general service model
	Main concepts
	OCL constraints
	Service application example

	The general component model
	Main concepts
	OCL constraints
	Component application example

	The general agent model
	Main concepts
	OCL constraints
	Agent application example

	Summary

	CASOM: a DSL for application specification by components, agents and services simultaneously
	Introduction
	Main concepts
	Common or equivalent elements
	Abstraction and generalization of concepts
	Extension of concepts to the other domain
	Secondary or specific elements

	OCL constraints
	Mixed of agents and components application example
	Summary

	Semantic Mappings
	Introduction
	Projection: service and component models
	Projection: service and agent models
	Projection: service and CASOM models
	Agentification / Componentification: direct mappings between component and agent models
	Agentification / Componentification: mappings between component, agent models and CASOM
	Summary

	Design Guide
	Introduction
	Hints for an application specification via CASOM
	Mapping variants
	Service and component models
	Service and agent models
	Service and CASOM models
	Component and agent models

	Special cases of mappings
	Summary

	Implementation
	Introduction
	From conceptual models to DSLs / Ecore models
	The four DSLs in Ecore
	The ATL transformations implementing the mappings
	How to use our MDE framework?
	Summary


	Conclusion
	Part IV Conclusion and Perspectives
	Conclusion
	Summary of achievements
	Perspectives
	General perspectives
	Implementation perspectives



	Bibliography
	Résumé
	Abstract

