Thèse soutenue

Développement et caractérisation de nouveaux agents de contraste lipidiques ultrasensibles pour l'imagerie par résonnance magnétique destinés à l'imagerie moléculaire

FR  |  
EN
Auteur / Autrice : Bochra Chahid
Direction : Sylviane Lesieur
Type : Thèse de doctorat
Discipline(s) : Pharmacotechnie et biopharmacie
Date : Soutenance le 20/12/2012
Etablissement(s) : Paris 11
Ecole(s) doctorale(s) : Ecole doctorale Innovation Thérapeutique : du Fondamental à l'Appliqué (Châtenay-Malabry, Haut-de-Seine ; 2000-2015)
Partenaire(s) de recherche : Laboratoire : Institut Galien Paris-Saclay (Châtenay-Malabry, Hauts-de-Seine ; 1998-....) - Physico-chimie, pharmacotechnie, biopharmacie
Jury : Président / Présidente : Catherine Dubernet
Examinateurs / Examinatrices : Sylviane Lesieur, Catherine Dubernet, Christine Ménager, Laurent Lemaire, Marc Port, Célia Bonnet
Rapporteur / Rapporteuse : Christine Ménager, Laurent Lemaire

Résumé

FR  |  
EN

L’effet des composés paramagnétiques sur le déplacement chimique des protons, c’est-à-dire sur leur fréquence de résonance propre, beaucoup utilisé en RMN conventionnelle, peut également être un outil de contraste en Imagerie par Résonance Magnétique (IRM) pour réaliser des images encodées en fréquence et donc sélectives selon la nature ou l’environnement de l’entité que l’on cherche à révéler. Cette approche fait intervenir le transfert d’aimantation par échange chimique de protons mobiles, en anglais « Chemical Exchange Saturation Transfer » (CEST). Le principe consiste à saturer sélectivement un signal donné de protons labiles appartenant à la structure-même de l’agent de contraste ou aux molécules d’eau qui lui sont transitoirement liées, à l’aide d’une impulsion radiofréquence bien choisie. L’image résulte alors de l’altération du signal des protons échangés. Le fonctionnement de la méthode repose sur l’existence effective de deux ensembles ou réservoirs de protons, celui correspondant aux protons associés à l’agent de contraste et celui représenté par le milieu environnant, autrement dit l’eau des tissus, ces deux réservoirs présentant une fréquence de résonance bien distincte. Les systèmes LipoCEST, liposomes encapsulant un complexe paramagnétique de lanthanide, permettent une telle différenciation de deux réservoirs de protons constitutifs d’une part de l’eau contenue dans la cavité interne des liposomes (dont la fréquence de résonance est modifiée par l’agent paramagnétique) et d’autre part de l’eau présente à l’extérieur de la structure. La sensibilité de tels systèmes est principalement due au grand nombre de protons contenus dans le réservoir interne. La nature de l’agent paramagnétique joue un rôle déterminant dans la sélectivité de l’effet CEST et la nature de la membrane des liposomes dont la perméabilité permet un échange plus ou moins rapide entre les deux réservoirs d’eau doit être sélectionnée de manière à conduire à une réponse CEST efficace.Les travaux réalisés au cours de cette thèse portent sur une telle mise au point avec pour objectif l’optimisation de systèmes destinés à une IRM-CEST après administration par voie intraveineuse. De ce fait, le diamètre des liposomes a été fixé inférieur à 200 nm et leur surface recouverte de chaînes de poly(éthylène glycol) pour assurer leur future stabilité dans le compartiment sanguin. Le choix des agents de déplacement chimique à centre lanthanide, principalement des complexes de thulium, a été fixé à partir de leurs propriétés structurales et magnétiques. La méthodologie spécialement développée pour encapsuler ces entités au sein de liposomes de compositions lipidiques induisant des perméabilités membranaires distinctes a permis la mise au point d’un nouvel agent de contraste LipoCEST.