Développement et réalisation d'un circuit de microélectronique pour le détecteur spatial de rayons cosmiques JEM-EUSO
Auteur / Autrice : | Salleh Ahmad |
Direction : | Christophe de La Taille, Sylvie Dagoret-Campagne |
Type : | Thèse de doctorat |
Discipline(s) : | Microélectronique |
Date : | Soutenance le 29/11/2012 |
Etablissement(s) : | Paris 11 |
Ecole(s) doctorale(s) : | École doctorale Particules, Noyaux, Cosmos (Paris ; 2009-2015) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire de l'accélérateur linéaire (Orsay, Essonne ; 1969-2019) |
Jury : | Président / Présidente : Achille Stocchi |
Examinateurs / Examinatrices : Christophe de La Taille, Sylvie Dagoret-Campagne, Achille Stocchi, Marco Casolino, Marc Winter, Philippe Gorodetzky | |
Rapporteur / Rapporteuse : Marco Casolino, Marc Winter |
Mots clés
Résumé
Extreme Universe Space Observatory on Japanese Experiment Module (JEM-EUSO) est conçu comme l’expérience de rayons cosmiques de prochaine génération pour observer les particules hautement énergétiques au-dessus de 10²⁰ eV. Le projet est mené par RIKEN et soutenu par une collaboration de plus de 200 membres provenant de 13 pays. Cet observatoire, sous la forme d'un télescope fluorescent, sera arrimé à la Station Spatiale internationale (ISS) pour un lancement prévu en 2017. En observant les gerbes atmosphériques produites dans la troposphère, à une altitude de 400 km, cet observatoire de rayons cosmique offrira une grande surface de détection, qui est au moins 100 fois supérieur que le plus grand détecteur de rayons cosmiques jamais construit. La surface focale de JEM-EUSO sera équipée d'environ 5000 unités de photomultiplicateur multianode 8x8 pixels (MAPMT). Un circuit intégré (ASIC), connu sous le nom SPACIROC, a été proposé pour la lecture du MAPMT. Cet ASIC de 64 voies propose des fonctionnalités comme le comptage de photons, la mesure des charges et le transfert de données à haute vitesse. Par-dessus tout, cet ASIC doit peu consommé afin de respecter la contrainte de puissance de JEM-EUSO. Réalisé en utilisant la technologie AMS Silicium-Germanium (SiGe) 0,35 µm, cet ASIC intègre 64 canaux de comptage de photons rapides (Photon Counting). La résolution de temps pour le comptage de photons est de 30 ns, ce qui permettra d’atteindre la valeur maximale comptage qui est de l'ordre de 10⁷ photons / s. Le système de mesure de charge est basé sur le Time-Over-Threshold qui offre 8 canaux de mesure. Chaque canal de mesure est une somme des 8 pixels du MAPMT et il est prévu que ce système est capable de mesurer jusqu'à 200 pC. La partie numérique fonctionne en continu et gère la conversion des données de chaque voie des blocs de Photon Counting et Time-Over-Threshold. Les données numériques sont transmises par l'intermédiaire de liaisons parallèles dédiées et ces opérations sont effectuées pendant une fenêtre de communication ou « Gate Time Unit » (GTU) de fréquence 400 kHz. Le taux de transfert des données d’ASIC avoisine les 200 Mbps ou 576 bits / GTU. La dissipation de puissance est strictement inférieure à 1 mW par canal ou 64 mW pour l'ASIC. Le premier prototype de SPACIROC a été envoyé pour fabrication en Mars 2010 au Centre Multi Projet (CMP). Des puces nues et packagés ont été reçues en Octobre 2010, ce qui a débuté la phase de caractérisation de cet ASIC. Après une phase de test réussie, des puces SPACIROC ont été intégrés dans l'électronique frontale d'un instrument pour détecter les sursauts gamma - Ultra Fast Flash Observatoire (UFFO) qui va être lancé en 2013. Vers la fin de l'année 2012, des cartes électroniques frontales conçues autour des puces SPACIROC ont été fabriqués pour le projet EUSO-Balloon. Ce projet de vol en ballon stratosphérique à une altitude de 40 km servira comme le démonstrateur technologique et l'ingénierie d'un instrument miniaturisé JEM-EUSO. La deuxième génération de cet ASIC a été envoyée à la fonderie en Décembre 2011. Ce second prototype, SPACIROC2, a été testé à partir de mai 2012. Les principales améliorations sont les suivantes: la consommation d'énergie a été revue à la baisse, ainsi que l'amélioration de la résolution temporelle de Photon Counting et l'extension de la gamme dynamique pour le module Time-Over-Threshold. Les mesures en cours ont montré que SPACIROC2 présente un bon comportement général et apporte des améliorations par rapport à son prédécesseur.