Thèse soutenue

Développement d’un outil de simulation du procédé de contrôle non destructif des tubes ferromagnétiques par un capteur à flux de fuite

FR  |  
EN
Auteur / Autrice : Emna Amira Fnaiech
Direction : Claude Marchand
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 04/06/2012
Etablissement(s) : Paris 11
Ecole(s) doctorale(s) : Ecole doctorale Sciences et Technologies de l'Information, des Télécommunications et des Systèmes (Orsay, Essonne ; 2000-2015)
Partenaire(s) de recherche : Laboratoire : Laboratoire de Simulation et Modélisation - Laboratoire de Simulation et Modélisation
Jury : Président / Présidente : Gérard Berthiau
Examinateurs / Examinatrices : Claude Marchand, Gérard Berthiau, Gérard Meunier, Laurent Krähenbühl, Francis Piriou, Denis Prémel, Adrien Trillon
Rapporteurs / Rapporteuses : Gérard Meunier, Laurent Krähenbühl

Résumé

FR  |  
EN

Le principe du contrôle par flux de fuite magnétique (Magnetic Flux Leakage MFL) consiste à aimanter la pièce à contrôler par un champ magnétique et à détecter à l'aide d'un capteur magnétique les fuites des lignes du champ qui résultent de la présence d'un défaut dans la pièce. Dans le but d'améliorer les performances d'un dispositif de détection, le CEA et la société Vallourec collaborent pour développer un modèle numérique dédié au contrôle virtuel des défauts longitudinaux dans les tubes ferromagnétiques. Le dispositif expérimental comprend un circuit magnétique tournant à une vitesse constante autour du tube qui défile. Dans le cadre de cette thèse, on débute le problème de la modélisation sans tenir compte des effets de la vitesse de rotation, il s'agit donc de résoudre un problème d'électromagnétisme en régime magnétostatique.Pour résoudre ce problème, on propose de comparer une approche semi-analytique basée sur le formalisme des équations intégrales (EI) et une approche purement numérique utilisant les éléments finis (EF).Dans la première partie de cette thèse, après avoir établi le formalisme théorique par EI, un premier modèle considérant des matériaux ferromagnétiques à perméabilité magnétique constante (régime linéaire) a été mis en œuvre en 2D. Ce modèle a été appliqué pour un exemple de système extrait de la littérature et validé numériquement par une comparaison des résultats EI/EF. Pour une meilleure détection, il est opportun de saturer magnétiquement la pièce. Le matériau ferromagnétique est alors caractérisé par une courbe B(H) non-linéaire. Par conséquent, la deuxième partie de la thèse a été consacrée à la mise en œuvre du modèle en régime non linéaire qui tient compte de cette caractéristique.Différentes méthodes de discrétisation ont été étudiées afin de réduire le nombre d'inconnues et le temps de calcul. L'originalité de la thèse réside dans l'utilisation des fonctions d'interpolation d'ordre élevé (polynôme de Legendre) pour une discrétisation des équations intégrales par une approche de type Galerkin. Les premiers essais de validation numérique de ce modèle ont été effectués sur un système MFL simplifié. Des premiers essais de validation expérimentale pour des données obtenues par EF ont été effectués en deux phases : La première a consisté à vérifier le distribution du champ magnétique pour un tube sain et en régime magnétostatique. La deuxième phase a consisté à calculer la réponse d'un défaut dans le tube ferromagnétique en tenant en compte les effets éventuels de la rotation du circuit magnétique par rapport au tube.