Thèse soutenue

Métamatériaux pour l’infrarouge et applications

FR  |  
EN
Auteur / Autrice : Rasta Ghasemi
Direction : André de Lustrac
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 12/11/2012
Etablissement(s) : Paris 11
Ecole(s) doctorale(s) : Ecole doctorale Sciences et Technologies de l'Information, des Télécommunications et des Systèmes (Orsay, Essonne ; 2000-2015)
Partenaire(s) de recherche : Laboratoire : Institut d'électronique fondamentale (Orsay, Essonne ; 19..-2016) - Institut d'électronique fondamentale
Jury : Président / Présidente : Valérie Vigneras
Examinateurs / Examinatrices : André de Lustrac, Valérie Vigneras, Renaud Bachelot, Éric Lheurette, Abderrahim Ramdane
Rapporteur / Rapporteuse : Renaud Bachelot, Éric Lheurette

Résumé

FR  |  
EN

Les métamatériaux sont des composites artificiels présentant des propriétés électromagnétiques qu’on ne trouve pas dans la nature. Malgré des développements spectaculaires durant la dernière décennie, le potentiel de ces structures aux longueurs d’ondes optique n’est pas encore clairement défini en raison de problèmes technologiques et de contraintes physiques telles que les pertes dans les métaux entrant dans la composition des métamatériaux. Dans notre thèse, nous montrons que les métamatériaux ont des propriétés très favorables dans le contexte de l’optique intégrée dans le proche infrarouge. Nous avons développé une stratégie pour incorporer des métamatériaux dans des circuits photoniques qui n’absorbent que très peu d’énergie. Pour cela, nous ne faisons pas directement agir l’ensemble du mode guidé avec les métamatériaux, mais seulement une composante évanescente à l’extérieur du guide. Pour réaliser un tel adaptateur ou d’autres fonctionnalités, il importe de déterminer quelle géométrie de métamatériaux est la plus favorable aux applications infrarouges. Nous proposons d’utiliser des structures à base de fils d’or empilés couche sur couche. A l’aide de simulations numériques et d’expériences en espace libre, nous montrons qu’il est possible d’obtenir toute une gamme de réponses optiques en contrôlant le couplage entre les différents niveaux de fils, c'est-à-dire en ajustant la distance entre les fils ainsi que leur alignement. En particulier, nous avons réussi à contrôler séparément la réponse électrique et magnétique de nos structures, ce qui offre une flexibilité de conception qui ne se rencontre pas dans les métamatériaux proposés jusqu’à présent.