Thèse soutenue

Structuration et découverte de contenus visuels par des méthodes basées sur les voisins partagés

FR  |  
EN
Auteur / Autrice : Amel Hamzaoui
Direction : Nozha Ben Hajel-Boujemaa
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 10/05/2012
Etablissement(s) : Paris 11
Ecole(s) doctorale(s) : Ecole doctorale Informatique de Paris-Sud
Partenaire(s) de recherche : Laboratoire : Institut national de recherche en informatique et en automatique (France) - IMEDIA
Equipe de recherche : IMEDIA (Le Chesnay)
Jury : Président / Présidente : François Yvon
Examinateurs / Examinatrices : Nozha Ben Hajel-Boujemaa, François Yvon, Patrick Gallinari, Arjen Paul de Vries, Alexis Joly, Sid-Ahmed Berrani
Rapporteurs / Rapporteuses : Patrick Gallinari, Arjen Paul de Vries

Mots clés

FR  |  
EN

Mots clés contrôlés

Résumé

FR  |  
EN

Cette thèse étudie les méthodes de regroupement basées sur le principe des plus proches voisins partagés (SNN). Comme la plupart des autres approches de clustering à base de graphe, les méthodes SNN sont effectivement bien adaptées à surmonter la complexité des données, l'hétérogénéité et la haute dimensionnalité. La première contribution de la thèse est de revisiter une méthode existante basée sur les voisins partagés en deux points. Nous présentons d'abord un formalisme basé sur la la théorie de décision à contrario. Cela nous permet de tirer des scores de connectivité plus fiable des groupes et une interprétation plus intuitive des voisinage selectionnés optimalement. Nous proposons également un nouveau algorithme de factorisation pour accélérer le calcul intensif nécessaire des matrices des voisins partagés. La deuxième contribution de cette thèse est une généralisation de la classification SNNau cas multi-source. La principale originalité de notre approche est que nous introduisons une étape de sélection des sources d'information optimales dans le calcul de scores de groupes candidats. Chaque groupe est alors associé à son propre sous-ensemble optimal des modalités. Comme le montre le expériences, cette étape de sélection de source rend notre approche largement robuste à la présence de sources locales aberrantes. Cette nouvelle méthode est appliquée à un large éventail de problèmes, y compris la structuration multimodale des collections d'images et dans le regroupement dans des sous-espaces basés sur les projections aléatoires.La troisième contribution de la thèse est une tentative pour étendre les méthodes SNNdans le contexte des graphes biparites. Nous introduisons de nouvelles mesures de pertinence SNNrevisitées pour ce contexte asymétrique et nous montrons qu'elles peuvent être utiliséespour sélectionner localement des voisinages optimales. En conséquence, nous proposons un nouveau algorithme de clustering bipartite SNN qui est appliqué à la découverte d'objets visuels.Les expériences montrent que cette nouvelle méthode est meilleure par rapport aux méthodes de l'état de l'art. Basé sur les objets découverts, nous introduisons également un paradigme de recherche visuelle, c.-à-d les objet basés sur la suggestion de requêtes visuel les.