Thèse soutenue

Théorie de Boltzmann chirale pour le transport dans les multicouches, électrons et photons, balistique et diffusif

FR  |  
EN
Auteur / Autrice : Nicolas Charpentier
Direction : Marc F. GabayFrédéric Piechon
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 25/01/2012
Etablissement(s) : Paris 11
Ecole(s) doctorale(s) : École doctorale Physique de la région parisienne (....-2013)
Partenaire(s) de recherche : Laboratoire : Laboratoire de physique des solides (Orsay, Essonne)
Jury : Président / Présidente : André Thiaville
Examinateurs / Examinatrices : Marc F. Gabay, André Thiaville, Xavier Waintal, Mairbek Chshiev, Thierry Valet
Rapporteur / Rapporteuse : Xavier Waintal, Mairbek Chshiev

Résumé

FR  |  
EN

Cette thèse aborde le problème du transport diffusif dans les matériaux multicouches lorsque l'épaisseur des couches est comparable voire plus petit que le libre parcours moyen. Nous présentons un formalisme qui à la fois effectue une synthèse et permet d'aller au delà des divers modèles existants, dérive-diffusion, le modèle Valet-Fert, la méthode des flux ou encore le modèle de Fuchs-Sondheimer. Ce formalisme est applicable à deux types de structures: (i) la géométrie dite CPP (Current Perpendicular to Plane) où le courant moyen est perpendiculaire aux interfaces séparant les couches, et (ii) la géométrie dite CIP (Current In Plane) où le courant moyen est parallèle aux interfaces. Ce nouveau modèle de transport est bâti à partir d'une équation de Boltzmann où les collisions dans les couches et aux interfaces sont représentées par des intégrales de collision linéaires pouvant décrire aussi bien des réflexions spéculaires que des collisions aléatoires non nécessairement isotropes. La résolution de cette équation de Boltzmann pour déterminer les quantités macroscopiques locales d'intérêt se fait en trois étapes : pour chacune des couches, (1) la distribution locale des particules est séparée en deux « chiralités » caractérisés par le signe de la projection du vecteur vitesse de chaque particule le long de l'axe perpendiculaire aux interfaces ; (2) la description locale complète de la distribution angulaire des vitesses pour chaque chiralité est obtenue en développant sur une nouvelle base polynômes orthogonaux adaptée à l'existence de deux chiralités ; (3) pour effectuer la moyenne chirale sur la distribution angulaire des vitesses on définit une troncature minimale de ce développement adaptée aux quantités macroscopiques locales d'intérêt.L’étape (1) est nécessaire afin de pouvoir décrire correctement les collisions d'interfaces, l'étape (3) est usuelle mais l'ingrédient clef de ce formalisme est le point (2) qui seul permet de rendre cohérent les étapes (1) et (3) en présence d'interfaces. Pour la géométrie CPP, ce formalisme « Boltzmann chiral » permet d'unir les systèmes balistique et diffusif sous une même approche macroscopique. En présence de polarisation en spin, ce nouveau formalisme permet d'obtenir entre autre les résistances d'interfaces du modèle Valet-Fert en fonction des coefficients de transmission généralisés associés aux collisions d'interface. Pour les structures CIP, ce modèle permet d'obtenir des expressions analytiques pour les conductivités locales par couche (avec ou sans polarisation en spin) et de plus il rend le lien avec le transport CPP plus transparent. Ce formalisme n'étant pas propre au transport électrique, nous montrons sa versatilité sur une application au transport lumineux en revisitant le problème de Milne pour lequel nous retrouvons un résultat exact de façon beaucoup plus simple. Nous présentons pour terminer une méthode variationnelle fournissant une interprétation intéressante du modèle de Fuchs-Sondheimer.