Thèse soutenue

Les classes réciproques des processus de Markov : une approche avec des formules de dualité

FR  |  
EN
Auteur / Autrice : Rüdiger Murr
Direction : Christian LéonardSylvie Rœlly
Type : Thèse de doctorat
Discipline(s) : Mathématiques appliquées
Date : Soutenance le 12/10/2012
Etablissement(s) : Paris 10 en cotutelle avec Universität Potsdam
Ecole(s) doctorale(s) : École doctorale Connaissance, langage, modélisation (Nanterre, Hauts-de-Seine ; 1992-....)
Jury : Président / Présidente : Markus Klein
Examinateurs / Examinatrices : Christian Léonard, Sylvie Rœlly, Markus Klein, Paolo Dai Pra, Nicolas Privault, Nathanaël Enriquez, Achim Feldmeier
Rapporteur / Rapporteuse : Paolo Dai Pra, Nicolas Privault

Résumé

FR  |  
EN

Ce travail est centré sur la charactérisation de certaines classes de processus aléatoires par des formules de dualité. En particulier on considérera des processus réciproques à sauts, un cas jusqu'à présent négligé dans la littérature.Dans la première partie nous formulons de façon innovante une charactérisation des processus à accroissements indépendants. Celle-ci est basée sur une formule de dualité pour des processus infiniment divisibles, déjà connue dans le cadre du calcul de Malliavin. On va présenter deux nouvelles méthodes pour prouver cette formule, qui n'utilisent pas la décomposition en chaos de l'espace des fonctionnelles de carré intégrable. Une méthode s'appuie sur une formule d'intégration par parties satisfaite par des vecteurs aléatoires infiniment divisibles. Sous cet angle, notre charactérisation est une généralization du lemme de Stein dans le cas Gaussien et du lemme de Chen dans le cas Poissonien. La généralité de notre approche nous permet de plus, de présenter une charactérisation des mesures aléatoires infiniment divisibles.Dans la deuxième partie de notre travail nous nous concentrons sur l'étude des classes réciproques de processus de Markov avec ou sans sauts, et sur leur charactérisation. On commence avec un résumé des résultats déjà existants concernant les classes réciproques de diffusions browniennes comme solutions d'une formule de dualité. Nous obtenons notamment une nouvelle interprétation des classes réciproques comme les solutions d'une équation de Newton. Cela nous permet de relier nos résultats à la mécanique stochastique d'une part et à la théorie du contrôle optimale, d'autre part. La formule de dualité nous permet aussi de prouver une propriété d'invariance par retournement du temps de la classe réciproque d'une diffusion brownienne.En outre nous obtenons une série de nouveaux résultats concernant les processus de sauts purs. Nous décrivons d'abord la classe réciproque associée à un processus markovien de comptage, c'est-à-dire un processus de sauts de taille un, puis en présentons une charactérisation par une formule de dualité. Cette formule contient une dérivée stochastique, une intégrale stochastique compensée, et une fonctionnelle qui est une grandeur invariante de la classe réciproque. De plus nous livrons une interprétation de la classe réciproque comme ensemble des solutions d'un problème de contrôle optimal. Enfin, par une utilisation appropriée de la formule de dualité, nous montrons que la classe réciproque d'un processus markovien de comptage est invariante par retournement du temps.Quelques-uns de ces résultats restent valables pour des processus de sauts purs dont les sauts sont de taille variée. En particulier nous montrons que certaines fonctionnelles dites invariants réciproques permettent de distinguer différentes classes réciproques. Notre dernier résultat est la charactérisation de la classe réciproque d'un processus de Poisson composé dès lors que les (tailles des) différents sauts sont incommensurables.