Thèse soutenue

Développement de méthodes thermodynamiques pour l'ingénieur : étude analytique et expérimentale de machines quasi-Carnot et Stirling

FR  |  
EN  |  
RO
Auteur / Autrice : Catalina Georgiana Dobre
Direction : Pierre RochelleLavinia GrosuStoian Petrescu
Type : Thèse de doctorat
Discipline(s) : Mécanique
Date : Soutenance le 28/09/2012
Etablissement(s) : Paris 10 en cotutelle avec Universitatea politehnica (Bucarest)
Ecole(s) doctorale(s) : École doctorale Connaissance, langage, modélisation (Nanterre, Hauts-de-Seine ; 1992-....)
Jury : Président / Présidente : Alexandru Dobrovicescu
Examinateurs / Examinatrices : Pierre Rochelle, Lavinia Grosu, Stoian Petrescu, Alexandru Dobrovicescu, Gheorghe Dumitrascu, Michel Feidt, Monica Costea
Rapporteur / Rapporteuse : Gheorghe Dumitrascu, Michel Feidt

Résumé

FR  |  
EN

La première partie de la thèse comporte l’étude des machines à froid, en tenant compte de la vitesse finie des processus. L’approche est basée sur une nouvelle méthode d’optimisation des processus et cycles à vitesse finie, la Méthode Directe d’étude et évaluation des irréversibilités. Les performances de ces cycles sont évaluées en prenant en compte les irréversibilités internes générées par la vitesse finie, notamment (1) les pertes de pression dues au laminage, (2) les pertes de pression dues à la vitesse finie du piston, (3) les pertes de pression dues aux frottements interne et mécanique et (4) l’irréversibilité due aux pertes de chaleur. On obtient ainsi directement l'expression du rendement ou du coefficient de performance et de la génération d’entropie en fonction de la vitesse des processus et d'autres paramètres géométriques et fonctionnels. Le travail proposé pour cette partie de thèse analyse la génération des irréversibilités dans une machine thermique fonctionnant selon le cycle inverse quasi-Carnot (Machine Frigorifique à compression mécanique des vapeurs), en proposant un schéma de calcul complètement analytique. A l’aide de ce schéma de calcul on peut développer des études de sensibilité et d’optimisation de ces machines, sans avoir besoin d’utiliser de tableaux des vapeurs saturés.La deuxième partie du mémoire présente l’application des modèles thermodynamiques (la Méthode Directe, la Méthode de la Thermodynamique en Dimensions Physiques Finies (TDPF), la méthode isotherme de Schmidt, la méthode adiabatique de Finkelstein) dans l’étude des machines Stirling – moteurs et récepteurs et confrontation avec l’expérience.La Méthode de la TDPF est une méthode qui regroupe les techniques de la thermodynamique en temps, vitesse et dimensions géométriques finies. Cette méthode introduit les exo-irréversibilités dues aux transferts de chaleur finis entre les réservoirs (source chaude, puits froid, régénérateur) et le fluide de travail et, de plus, considère les contraintes qui se présentent à l’ingénieur (la pression maximale, le volume maximum, les températures des réservoirs chaud et froid, la vitesse de rotation). La méthode isotherme de Schmidt est une méthode zéro-dimensionnelle qui permet l’étude de la machine divisée en trois volumes isothermes. Elle permet de décrire l’évolution de paramètres, comme le volume instantané (chaud, froid ou de régénération) ou la pression en fonction du temps. L’analyse des processus de transfert de la chaleur et d’écoulement du gaz de travail, ayant lieu dans le moteur Stirling d’un micro-cogénérateur, est effectuée en utilisant un model adiabatique monodimensionnel. Cette analyse repose sur la division du moteur Stirling en 5 volumes de control auxquels on applique les équations des gaz parfaits et les équations de conservation de masse et d’énergie.Les résultats expérimentaux seront confrontés à ceux obtenus par les quatre méthodes de calcul, ce qui permettra de définir les paramètres d’ajustage afin de valider les modèles thermodynamiques. Cette confrontation permettra le développement d’une autre méthode, une combinaison des trois approches utilisées afin de modéliser au mieux le fonctionnement du système, préservant les avantages de chacune sur des intervalles de vitesse de rotation donnés.Des études de sensibilité et d’optimisation de paramètres géométriques et fonctionnels seront effectuées afin de proposer des améliorations de mise au point système pour fournir puissance et de rendement plus élevés.