Thèse soutenue

Perturbation et excitabilité dans des modèles stochastiques de transmission de l’influx nerveux

FR  |  
EN
Auteur / Autrice : Damien Landon
Direction : Nils Berglund
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance le 28/06/2012
Etablissement(s) : Orléans
Ecole(s) doctorale(s) : École doctorale Sciences et technologies (Orléans ; 2009-2012)
Partenaire(s) de recherche : Equipe de recherche : Laboratoire mathématiques - analyse, probabilités, modélisation (Orléans ; 2012-2017)
Laboratoire : Mathématiques et Applications- Physique Mathématique d'Orléans
Jury : Président / Présidente : Romain Abraham
Examinateurs / Examinatrices : Nils Berglund, Romain Abraham, Gianbattista Giacomin, Bruno Cessac, Barbara Gentz, Samuel Herrmann, Simona Mancini
Rapporteur / Rapporteuse : Gianbattista Giacomin, Bruno Cessac

Résumé

FR  |  
EN

Le système de FitzHugh-Nagumo stochastique est un modèle qualitatif pour la propagation de l’influx nerveux dans un neurone. Ce système lent-rapide s’écrit εdxt = (xt - xt3 + yt) dt + √εσ1 dWt(1), dyt = (a - bxt - cyt) dt + σ2 dwt(2) où a, b et c sont des réels, ε est un petit réel positif, σ1 et σ2 sont deux réels positifs représentant l’intensité du bruit, Wt(1) et Wt(2) sont deux mouvements browniens standards indépendants. Dans cette thèse, nous étudions d’abord le système déterministe associé (σ1 = σ2 = 0) et montrons qu’il est excitable. Nous regardons ensuite le cas particulier où b = 0. Dans ce cas, le comportement au voisinage du point d’équilibre est le même que celui d’un autre modèle, celui de Morris-Lecar. Nous étudions alors la loi du temps de sortie de ce voisinage. Dans le cas général, après avoir mis en évidence trois principaux régimes, nous montrons des résultats généraux sur la distribution du nombre de petites oscillations N entre deux spikes consécutifs en introduisant une chaîne de Markov. Puis nous étudions le cas particulier du régime de bruit faible.