Thèse soutenue

Contribution à une théorie de Morse-Novikov à paramètre

FR  |  
EN
Auteur / Autrice : Carlos Moraga Ferrándiz
Direction : François LaudenbachAndrei V. Pajitnov
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance en 2012
Etablissement(s) : Nantes
Partenaire(s) de recherche : Autre partenaire : Université de Nantes. Faculté des sciences et des techniques

Résumé

FR  |  
EN

Le cadre de cette étude est une variété fermée de dimension au moins six qui est munie d'une classe de cohomologie de De Rham non-nulle. L'objectif de la thèse est de créer des outils pour répondre au problème de savoir si deux 1-formes fermées non-singulières (sans zéro) dans la classe fixée sont toujours isotopes. La réponse générale à la question est non, et une obstruction de type K-théorique est attendue. Il est toujours possible de relier deux 1-formes fermées non singulières par un chemin qui reste dans la classe de cohomologie ; l'isotopie des extrêmes du chemin équivaut à déformer le chemin par une homotopie relative en un autre constitué de 1-formes non-singulières. On introduit deux sortes de pseudo-gradients pour chaque nombre L positif : ceux avec une liaison L-élémentaire et ceux que nous appelons L-transverses. Ils forment une classe de champs de vecteurs adaptés aux 1-formes qui permettent de faire une lecture algébrique associée au chemin. Cette lecture est analogue à celle qui est faite dans la théorie de Hatcher-Wagoner qui traitait le problème d'isotopie pour les fonctions à valeurs réelles sans point critique. On réussit à trouver un nombre L assez grand pour déformer un chemin de 1-formes à deux indices critiques en un autre chemin muni d'un équipement L-transverse qui est sous forme normale. Les zéros d'un tel chemin de 1-formes qui sont nées ensemble, s'éliminent ensemble et de plus le graphique de Cerf-Novikov associé se ferme : la lecture algébrique citée appartient à un certain K2, ce qui est au point de départ de la définition d'une obstruction à l'isotopie des 1-formes fermées non-singulières.