Thèse soutenue

Etude expérimentale modèle de l'imbibition capillaire de substrats poreux à volume et structure de pores ajustables

FR  |  
EN
Auteur / Autrice : Dorra Dallel
Direction : Hamidou Haidara
Type : Thèse de doctorat
Discipline(s) : Chimie des matériaux
Date : Soutenance le 05/12/2012
Etablissement(s) : Mulhouse
Ecole(s) doctorale(s) : École doctorale pluridisciplinaire Jean-Henri Lambert, ED 494 (Mulhouse)
Partenaire(s) de recherche : Laboratoire : Institut de Science des Matériaux de Mulhouse

Résumé

FR  |  
EN

L’imbibition est d’une importance fondamentale dans de nombreuses applications technologiques et intervient par ailleurs dans de nombreux phénomènes naturels (industrie textile, industrie pharmaceutique, érosion des sols ….). Malgré l’importance de ce phénomène, la description et la modélisation des mécanismes d’imbibition sont encore sujettes à discussion dans la littérature, en particulier, la prédiction des cinétiques d’imbibition à partir de la connaissance de la topographie du milieu poreux. L’objectif de ce travail de thèse a été de relier les cinétiques d’imbibition à la structure du milieu poreux imbibé. Pour cela, nous avons étudié l’imbibition capillaire (ou spontanée) en suivant une démarche expérimentale dans laquelle nous avons utilisé des substrats poreux modèles dont nous contrôlons le volume et la structure de pores. La configuration d’imbibition choisie dans ce travail est celle d’une goutte sessile (ou posée).Ces travaux ont permis de mettre en œuvre une technique de construction de pastilles macroscopiques, autosupportées et cohésives, par assemblage de microbilles de polymère. Ces systèmes modèles ont été utilisés pour étudier les cinétiques d’imbibition capillaire de liquides dans des supports tridimensionnels à structure de pores complexe en fonction de la taille des microbilles constituant la pastille poreuse, de la reconstruction thermique, de la perméabilité pour une structure poreuse bicouches et de la force capillaire. Ces études ont permis entre autres de mettre en évidence des régimes cinétiques et des transitions d’imbibition inattendues dans ces systèmes (régimes visqueux et inertiel).