Thèse soutenue

Etude de la viabilité et de la réactivité d'une biomasse épurative de Bioréacteur à membranes

FR  |  
EN
Auteur / Autrice : Farshid Pajoum Shariati
Direction : Alain GrasmickMarc HéranMohammad Hossein Sarrafzadeh
Type : Thèse de doctorat
Discipline(s) : Génie des procédés
Date : Soutenance le 12/12/2012
Etablissement(s) : Montpellier 2
Ecole(s) doctorale(s) : Sciences des Procédés – Sciences des Aliments (Montpellier ; École Doctorale ; 2009-2015)
Partenaire(s) de recherche : Laboratoire : Institut Européen des membranes (Montpellier)
Jury : Président / Présidente : Claire Albasi
Examinateurs / Examinatrices : Alain Grasmick, Marc Héran, Mohammad Hossein Sarrafzadeh, Claire Albasi, Babak Bonakdarpour
Rapporteurs / Rapporteuses : Claire Albasi, Babak Bonakdarpour

Résumé

FR  |  
EN

Les règlements plus stricts pour les rejets d'eaux usées présentent de nouveaux défis technologiques pour le traitement d'eaux usées urbaines et industrielles. Le besoin notamment d‘améliorer la qualité hygiénique de l'eau traitée se fait ressentir en cas de sites sensibles ou de réutilisation. Le bioréacteur à membranes (BRMs) représente une des approches les plus innovatrices pour éviter la présence d'agents pathogènes dans l‘eau en sortie de station. En utilisant des membranes avec un seuil de coupure dans la gamme 0.04~0.2 μm, les bactéries mais aussi les virus sont pratiquement complètement retenus. Si l'encrassement membranaire reste un problème déterminant pour le développement des BRMs, le manque d‘outils de caractérisation en ligne de la qualité et la quantité de biomasse active dans les réacteurs reste un point important pour favoriser le contrôle et l‘optimisation des BRMs. Dans cette étude une méthode originale a été développée pour évaluer la viabilité des boues activées présentes dans un réacteur biologique d‘épuration en complémentarité des informations données par la mesure d'activité respirométrique. Cette méthode permet la distinction entre cellule morte et vivante, la respirométrie pouvant alors distinguée la part active de la biomasse vivante. Le travail expérimental a été conduit dans deux réacteurs biologiques de type chenal d‘oxydation équipés de membranes immergées "airlift oxidation ditch membrane bioreactor" (AOXMBR). Les modules membranaires sont immergés dans un zone aérée où l‘apport d‘air permet à la fois la circulation d‘eau par air-lift, l‘aération du milieu et le nettoyage des membranes par aération. Les essais ont été conduits en mode fermé (batch reactor), alterné (fed batch reactor) et continu. La première partie de l‘étude concerne la caractérisation hydrodynamique du réacteur déterminante en terme de conformité du système pour la circulation des fluides, l‘intensité des transferts et des réactions d‘épuration. Les résultats mettent en avant le rôle de la géométrie de l‘airlift sur la circulation des fluides mais aussi la rétention gazeuse déterminante en terme de transfert d‘oxygène et capacité de nettoyage des membranes. La viabilité et l'activité respirométrique de boues activée ont alors été étudiées sous différentes conditions opératoires. Les résultats ont montré une évolution semblable des deux paramètres en fonction des conditions imposées. Ceci confirme l‘intérêt de la mesure de viabilité qui peut être conduite en ligne sur le système, à la différence de la mesure par respirométrie qui nécessite une procédure spécifique plus ou moins complexe. Toutefois, les essais ont montré aussi qu‘une concentration en biomasse importante était nécessaire dans le bioréacteur pour que la viabilité soit mesurable. Les résultats ont aussi montré que la viabilité et l'activité augmentent avec la charge organique (Cv). Cette variation était conforme à l'augmentation des matières volatiles en suspension MVS et de la vitesse de consommation d‘oxygène OUR. Lors de diminution de charge organique, la concentration de protéine dans le milieu a changé inversement avec la viabilité de la biomasse. De possibles améliorations de l'instrument de mesure en ligne de la viabilité et de l'activité de boues activées dans les bioréacteurs sont également discutées. Les performances épuratives mesurées ont confirmé la grande capacité épuratoire d‘un BRM, toutefois, travailler à très forte charge engendre une dynamique de colmatage intense qu‘il faut maîtriser.