
ACADEMIE DE MONTPELLIER

UNIVERSITE MONTPELLIER II
SCIENCES ET TECHNIQUES DU LANGUEDOC

THESE

Présentée à l�Université de Montpellier II Sciences et Techniques du Languedoc

pour obtenir le DIPLOME DE DOCTORAT

Spécialité: Microélectronique

Formation Doctorale: Système Automatiques et Microélectroniques

Ecole Doctorale: Information, Structures, Systèmes

ARCHITECTURE HYBRIDE TOLERANTE AUX FAUTES POUR L�AMELIORATION DE

LA ROBUSTESSE DES CIRCUITS ET SYSTEMES INTEGRES NUMERIQUES

(A HYBRID FAULT-TOLERANT ARCHITECTURE FOR ROBUSTNESS IMPROVEMENT

OF DIGITAL INTEGRATED CIRCUITS AND SYSTEMS)

par

Duc Anh TRAN

Soutenue le 21 Décembre 2012, devant le Jury compose de:

Mme. Lirida NAVINER, Professeur, Télécom ParisTech Rapporteur

M. Matteo SONZA REORDA, Professeur, Politecnico di Torino Rapporteur

M. Régis LEVEUGLE, Professeur, Grenoble INP Examinateur

M. Arnaud VIRAZEL, Maître de conférences, Université Montpellier II Encadrant

M. Serge PRAVOSSOUDOVITCH, Professeur, Université Montpellier II Directeur de thèse

M. Patrick GIRARD, Directeur de recherche CNRS, LIRMM, Montpellier co-Directeur de thèse

��������	
������

�

����������	
����
��
����������
�
�����	��������
������������������
�
��
��������
����������
�����

����
�
����
�������
�����������
�������������������
�����

������ ��� ����� �� ��� ����
���� ��� ��� ��
���� ������
������� ������ �
��
� ����������������� ���� ��� ������	�

!��������������
�������������
���
�������������
�
����
���������
���
���
��������������"������
���

�
���� �������� ��	
����
��
����������
�
�����	�� ��������
�������� ���#������$���%
��� �����������
��
��

����������������������������������&����������
����������
���
��������������������������
����������
�

�
�����������
���������
�
����������
�������������������
�������

'
���
��� �� ������ ��	
� ��� ����	� ������ &����(�������)���
������ ���� ���� ���������
� �����
�� ����

����
�������������� ���
� �����
�� ������������ ���
�
�������� ��� �
�
���� ��
�� ������ �
�
������*�� ����
�
�

����	�� ����� ��� ��� ��� #��
���� '������ ��� #���� +������ ��� ,����� ������� ����*���*����
�� ������ ���� ��
���

���������������������
�������"���������

�������� ��	
� ��� ����	���� ��
���� �������

-�������./���� ,
�
���
�� ������ ,������0����
���������*���
��

���%��.
������������
���
�������
�
��������������������
�������������������
�1�
���������

����	
��������������������
������������
�
���������
����������
�����
���
�����,�.**���������
����
��

�
������
������	�������
����������
���������

��
�����

,�������������
������������� ��	
��������	�����������������
������
�����������������������������
��*��

�
���������	�����&���#���+����������
���
�����
������
��
�������
�
��������
�������
�������������������

��
��
��
������������
�����

�

 ���#���+�����

�

Contents�

Introduction ... 1

Chapter�1 Contexts and Motivations .. 4

1.1 Robustness of digital systems .. 5

1.1.1 CMOS technology ... 6

1.1.2 Classification of failure mechanisms... 8

1.1.3 Discussion ... 13

1.2 Fault-tolerant architectures ... 13

1.2.1 Fundamentals ... 14

1.2.2 Hardware redundancy .. 15

1.2.3 Information redundancy ... 18

1.2.4 Timing redundancy ... 20

1.2.5 Hybrid fault-tolerance... 21

1.2.6 Discussion ... 23

1.3 Robustness improvement of digital systems ... 23

1.3.1 Fault-tolerance in memories .. 23

1.3.2 Fault-tolerance in logic circuits ... 25

1.3.3 Discussion ... 27

1.4 Summary .. 28

Chapter�2 The Hybrid Fault-Tolerant Architecture ... 29

2.1 Principles of hybrid fault-tolerance ... 30

2.2 Error detection ... 31

2.2.1 Concurrent Error Detection .. 31

2.2.2 Parity codes ... 32

2.2.3 Duplication/Comparison ... 33

2.2.4 Conclusion ... 39

2.3 Transient error correction .. 40

2.3.1 Input register .. 40

2.3.2 Reset signal ... 42

2.3.3 Transient error correction mechanism ... 42

2.3.4 Control logic and timing constraints ... 44

2.3.5 Conclusion ... 47

2.4 Permanent error correction ... 47

Contents

2.4.1 Input de-multiplexer ... 48

2.4.2 Output multiplexer ... 49

2.4.3 Reconfiguration finite state machine ... 51

2.4.4 Control logic and timing constraints ... 53

2.5 Summary .. 55

Chapter�3 Evaluation of the Hybrid Fault-Tolerant Architecture ... 57

3.1 Context ... 58

3.2 Architecture description .. 59

3.2.1 Hybrid Fault-Tolerant Architecture ... 60

3.2.2 TMR architecture .. 60

3.2.3 Discussion ... 62

3.3 Logic synthesis.. 62

3.3.1 Dynamic CMOS standard cell creation ... 63

3.3.2 Combinational logic synthesis .. 64

3.3.3 Redundant modules synthesis .. 66

3.3.4 Fault-tolerant architecture synthesis ... 72

3.4 Timing behavior of hybrid fault-tolerant architecture ... 73

3.4.1 Comparator simulation ... 74

3.4.2 Control logic simulation .. 76

3.4.3 Hybrid fault-tolerant architecture simulation .. 78

3.4.4 Discussion ... 80

3.5 Power simulation ... 80

3.6 Summary .. 81

Chapter�4 Extended Usage of the Hybrid Fault-Tolerant Architecture .. 82

4.1 Aging phenomenon .. 83

4.1.1 Lifetime improvement .. 83

4.1.2 Usage of FSMs ... 84

4.1.3 Discussion ... 85

4.2 Application of the hybrid fault-tolerant method in pipeline architectures 86

4.2.1 Basic of pipeline architecture ... 86

4.2.2 Fault-tolerance for pipeline architecture ... 87

4.2.3 Hybrid fault-tolerant design for pipeline architecture ... 90

4.2.4 Conclusion ... 92

4.3 SEU protection ... 92

Contents

4.3.1 SEU protection techniques ... 92

4.3.2 SEU protection for the hybrid fault-tolerant architecture ... 94

4.3.3 Discussion ... 96

4.4 Summary .. 96

Conclusion .. 97

Appendix A ... 99

A1. Combinational logic extraction .. 99

A2. RTL descriptions of the hybrid fault-tolerant architecture .. 100

Top-level module without fault injections... 100

Top-level module with fault injections .. 101

Input register ... 102

Input demultiplexer ... 103

Output multiplexer .. 104

Output register .. 107

Pseudo-dynamic comparator .. 107

Control logic module.. 108

A3. RTL descriptions of TMR architectures .. 114

Top-level module of Partial TMR architecture .. 114

Top-level module of Full TMR architecture ... 114

Word-voter .. 115

Scientific Contributions .. 117

References .. 118

List of Figures ... 122

List of Tables ... 124

Introduction�

Chapter�1 Introduction�

The Moore�s law is known as the best description of the Complementary Metal Oxide Semiconductor

(CMOS) technology evolution [MOO65]. Established in 1965, it predicted that as a result of continuous

scaling in transistor feature sizes, number of devices in Integrated Circuits (IC) would double every

eighteen months. This evolution allows the production of smaller and cheaper ICs with more and more

functionalities. Furthermore, smaller devices are faster and consume less energy. Consequently, CMOS

evolution has enabled to transition of digital systems from specialized applications to ubiquitous mass

products. Today, these systems can be found in almost every modern electrical device such as cars,

television sets, personal computers, cellular phones, etc.

While supporting the need for competitive mass products, CMOS evolution also influences the

reliability of digital systems [ITR11]. Different factors are responsible for transient and permanent faults

that affect robustness of digital circuits and systems. First of all, a high integration density provokes a

high defect density. Together with aging phenomenon, it may cause permanent defects that result in

hard errors during circuit operations. Besides, nanometer-scale devices are more vulnerable to cosmic

radiations and interference phenomenon, which may cause transient faults. These faults are observed at

circuit outputs as soft (single event-upsets SEUs affecting sequential elements and single event-

transients SETs affecting combinational logic) and timing errors (additional delays in combinational logics

that cause timing constraint violations in sequential elements of logic circuits). In advanced CMOS

technology nodes, these problems affect not only critical systems that require high reliability, like circuits

used in spatial or medical domains, but also consumer electronic systems. Therefore, robustness

improvement becomes a crucial requirement for CMOS electronic circuits and systems.

Robustness improvement of digital circuits and systems is getting more and more difficult for every

introduced CMOS technology node because treating faults at physical level by adjusting manufacturing

process parameters is no longer feasible. Therefore, fault-tolerance techniques, which deal with faults at

design level, have become essential to fulfill the required robustness of future digital CMOS circuits and

systems. These techniques employ information, timing and hardware redundancies to guarantee correct

operations despite the presence of faults [KOR07].

In memory part of digital systems, the use of fault-tolerant techniques has been proven necessary

and efficient. Information (error detection and correction codes, [KOR07]) and hardware (spare memory

words, columns and cells [SCH01, NIC03, NIC05, SU05]) redundancies are generally employed to deal

with transient and permanent faults in memories. However, fault-tolerance in random logic circuits of

digital systems remains a challenge. These circuits are composed of combinational logic and sequential

elements such as latches and flip-flops. Different techniques have been proposed to protect the

sequential part from hard errors and/or SEUs [LYO62, ERN03, ZHA06, DAS09, IMH11]. Some of these

techniques are also efficient for SETs and timing errors that occurred in the combinational part of logic

circuits [ERN03, DAS09]. Besides, in order to protect this part from hard errors, Triple Modular

Redundancy (TMR) architecture has been proven to be an efficient method [VIAL08, VIAL09]. Although

each type of error has several corresponding solutions, combining all these techniques for robustness

improvement may require very high level of redundancy and thus, not be applicable in mass products.

In the state-of-the-art solutions presented above, beside fault-tolerance capability, area overhead is

the main optimization criterion. In [VIAL08, VIAL09], authors have introduced manufacturing yield

enhancement as a new goal. Besides, power consumption is also a rising issue in advanced CMOS

Introduction

2

technology nodes. In fact, as fault-tolerance becomes necessary in mass products, limiting power

consumption increase of these techniques is one of the key factors in digital design. However, this

criterion has only been studied in fault-tolerant communication [PUL07], but not for random logic

circuits.

Given the new requirements in fault-tolerance field, this manuscript studies the possibility to

combine different types of redundancy in a hybrid fault-tolerant architecture, which allows the detection

and correction of all transient and permanent errors in combinational part of logic circuits. Besides fault-

tolerance capability, we also reach optimized costs in both silicon area and power consumption

compared to existing solutions.

In the proposed hybrid fault-tolerant architecture, information redundancy consists of duplicating

combinational part of logic circuits and comparing their outputs to detect all kind of errors. Timing

redundancy, which performs re-computation of affected input vector, allows transient errors correction

at low silicon area costs. Finally, hardware redundancy that requires one additional combinational logic

module enables permanent error correction via re-configuration. As only two out of three redundant

combinational logics are running in parallel, the proposed architecture offer about 33% power

consumption saving compared to TMR architectures, while having similar silicon area. Besides, this

solution can be used in several contexts such as: 1) Dealing with aging phenomenon; 2) Protecting

pipeline architectures from hard, SETs and timing errors; and 3) Being combined with register-level SEU

protection techniques to tolerate faults in both combinational and sequential parts of logic circuits at

optimized area overhead.

The following of this manuscript is divided in four chapters:

- Chapter 1 details the contexts and motivations of our research. The first part presents various

advantages of CMOS evolution, as well as how diverse kinds of fault and errors affect

robustness of digital circuits and systems in advanced technology nodes. The second part of

this chapter studies the principle of different fault-tolerant techniques, classified in four

categories depending on their employed redundant resources. Finally, the last part provides

an overview on state-of-the-art solutions for permanent and transient errors in different

parts of digital systems.

- Chapter 2 proposes a hybrid fault-tolerance architecture targeting permanent and transient

faults in combinational part of logic circuits. This architecture is built step-by-step as three

fault-tolerance levels. The first level consists of using information redundancy to detect all

kinds of errors, regardless of their nature. The second fault-tolerance level adds timing

redundancy to correct transient errors. Finally, the third level completes the hybrid fault-

tolerant architecture with hardware redundancy, which allows permanent errors correction.

- Chapter 3 consists of evaluating the proposed hybrid fault-tolerant architecture. This method

is compared to TMR architectures in order to prove its advantages in terms of fault-tolerance

capability, area overhead and power consumption. The evaluations are performed using

simulations done with Electronic Design Automation (EDA) tools. Fault-tolerance techniques

are implemented for combinational part of ISCAS�85 and ITC�99 benchmarks circuits [ISCAS85,

ITC99]. The resulted architectures are then mapped on a 45nm standard cells library [NOCL].

The final netlists are then used to simulate the architecture�s behavior in different error

occurrence scenarios, as well as to estimate their power consumption.

- Chapter 4 proposes extended usages of the hybrid fault-tolerant architecture for various

applications. First of all, we study how the proposed architecture can be used in the context

of aging phenomenon: 1) to improve lifetime of digital logic circuits and 2) to optimized the

fault-tolerance scheme in case of high error occurrence rates. Then, we investigate the

Introduction

3

possibility to use the hybrid fault-tolerant technique in pipeline architectures. The objective is

to add hard errors tolerance to state-of-the-art solutions, which only tolerate SETs and timing

errors in combinational part of these architectures. Finally, we propose to use the hybrid

fault-tolerant architecture in combination with a register-level SEU protection technique and

thus, provide an advanced solution for faults in both combinational and sequential parts of

logic circuits.

Chapter�1�

Contexts�and�Motivations�

Chapter�1 Contexts�and�Motivations�

Chapter�1 Contexts and Motivations .. 4

1.1 Robustness of digital systems .. 5

1.1.1 CMOS technology ... 6

1.1.2 Classification of failure mechanisms... 8

1.1.3 Discussion ... 13

1.2 Fault-tolerant architectures ... 13

1.2.1 Fundamentals ... 14

1.2.2 Hardware redundancy .. 15

1.2.3 Information redundancy ... 18

1.2.4 Timing redundancy ... 20

1.2.5 Hybrid fault-tolerance... 21

1.2.6 Discussion ... 23

1.3 Robustness improvement of digital systems ... 23

1.3.1 Fault-tolerance in memories .. 23

1.3.2 Fault-tolerance in logic circuits ... 25

1.3.3 Discussion ... 27

1.4 Summary .. 28

Chapter 1 � Contexts and Motivations

5

Digital systems have transitioned from specialized applications to ubiquitous mass products. Today, a

consumer mobile phone may contain a processor with a higher computing power than a super computer

in the early 1990s. This revolution has been conducted by the evolution of CMOS (Complementary

Metal Oxide Semiconductor) technology which allows the production of smaller and cheaper Integrated

Circuits (IC) with higher performance and lower power consumption. While supporting the need for

competitive mass products, this evolution also influences the reliability of digital systems. In particular,

increasing apparition rate of faults and errors during manufacturing processes and ICs� lifetime make

robustness one of the upcoming key requirements in many application areas, including safety critical

applications and mass products. However, improving digital system reliability is getting more and more

difficult for every introduced technology node because treating faults on the physical level by adjusting

manufacturing process parameters is no longer feasible. Therefore, fault-tolerance techniques which

deal with faults at the design level have become essential to fulfill the required robustness of future

digital CMOS circuits and systems.

In this chapter, we study different issues of technology evolution with regards to robustness of digital

systems, and explain how fault-tolerance can be a solution for these problems. The chapter is organized

as follows. In the first section, we present the evolution of CMOS technology and how it can impact the

reliability of digital systems by inducing faults in ICs. These faults are classified into different categories

depending on their duration (transient, intermittent and permanent faults) and their impacts on ICs�

operation (hard, soft and timing errors). Then, in the second section, we study the principle of fault-

tolerance techniques which allow systems to operate correctly despite the presence of faults. Four

categories (hardware, information, timing and hybrid fault-tolerance) are detailed with concrete

architectural examples. Finally, in the third section, we study different existing solutions which tolerate

faults in both memories and logic circuits of integrated systems.

1.1 Robustness�of�digital�systems�

Robustness of digital systems is their ability to cope with anomalies during execution, i.e. providing

good results despite the presence of faults. Different sources of fault can be grouped into five categories,

depending on their occurrence during the lifetime of a system:

- Design errors: errors during design phases, which result in incorrect hardware

implementation of system specifications.

- Manufacturing defects: failures during fabrication phases, which modify logic function of the

system or degrade its functional characteristics.

- Operation errors and malicious attacks: human errors, unintentional or voluntary, to operate

the system under abnormal conditions.

- Interference phenomena: interactions of the digital system with its environment during

operation.

- Physical degradations: aging phenomena which degrade components of the digital system.

In the scope of this thesis, we aim to deal with physical faults [LAP95] which are caused by

manufacturing defects, interference phenomena and physical degradations. This section presents how

CMOS technology evolution increases the apparition frequency of these problems as well as their

impacts on digital circuits and systems. It is divided into two sub-sections. The first sub-section details

key points of CMOS technology evolution which is used to manufacture IC, the material blocks that built

digital systems. We analyze also consequences of each technology progress with regards to reliability of

these systems. Then, in the second sub-section, we detail how different factors, such as manufacturing

defects, variability, interference and aging phenomena, result in fault in ICs, which may lead to failures of

Chapter 1 � Contexts and Motivations

6

digital systems. These faults and errors will then be classified according to their impact on ICs�

functionality.

1.1.1 CMOS�technology�

Technology�evolution�

In 1965, Gordon Moore made a prediction in [MOO65] that the number of transistors in an IC roughly

doubles every two years. This statement has become the guide line for the entire semiconductor

industry and therefore leads to CMOS technology evolution.

The most important evolution of CMOS technology is the downscaling in feature size of

manufacturing processes. This parameter refers to the minimum dimension of a Metal-Oxide-

Semiconductor Field-Effect Transistor (MOSFET) that can be built on an IC. It has been reduced from

10µm in 1971 to 22nm in 2011. And the ITRS predicts that this progression will continue for at least

another decade [ITR11]. Figure 1.1 shows this evolution with square symbols that represent existing

manufacturing processes and triangular symbols that represent predicted technology nodes [INT10,

ITR11].

Figure 1.1 CMOS Technology Nodes

By downscaling feature size, CMOS evolution allows integration of more and more transistors on an

IC. In 1972, the first Intel microprocessor was introduced with only 2300 transistors [INT10]. In 2011, the

six-core microprocessor Core i7 (Sandy Bridge-E) contained more than 2.27 billion transistors. This

corresponds to a compounding annual growth rate of more than 40% over 40 years. With this incredible

growth rate, illustrated in Figure 1.2, the industry has transformed from Small-Scale Integration (SSI, up

to 10 logic gates per IC) through Medium-Scale Integration (MSI, up to 1000 gates per IC) and Large-Scale

Integration (LSI, up to 10,000 gates per IC), to today Very Large-Scale Integration (VLSI) with many

millions of logic gates per IC.

Miniaturization of CMOS technology also offers manufacturing cost reduction which is the most

important factor in the semiconductor industry. Historically, Cost Per Function (CPF) of ICs, i.e. cost per

transistor, decreased by an average of 29% each year. This means CPF is halved every two years. In 2011,

it is estimated at 5.5 micro-cents per transistor. And the ITRS predicts that this reduction rate of 29% will

continue in the next decade [ITR11].

10µm

3µm

1.5µm

1µm 0.8µm
0.6µm

0.35µm
0.25µm

0.18µm
0.13µm

90nm
65nm

45nm
32nm

22nm 20nm
18nm

17nm
0,01

0,1

1

10

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

F
e

a
tu

re
 s

iz
e

 (
µ

m
)

Year

Existing technology node Future technology node

Chapter 1 � Contexts and Motivations

7

Figure 1.2 Transistor Counts of Intel Microprocessors, Data Source: [INT10]

Beside higher integration level and lower manufacturing cost, steady downscaling efforts in CMOS

technology can be explained by Dennard�s scaling theory [DEN74]: smaller transistors are faster and

consume less power. Between two technology nodes, main dimensions of MOSFETs, i.e. channel

length/width and oxide thickness, are scaled with the same factor . Consequently, channel resistances

remain unchanged while gate capacitances are reduced by . Hence, transistor delays are also scaled by

the same factor. As transistors become faster, ICs can be operate at higher frequencies. Figure 1.3 shows

clock frequency change in Intel microprocessors since 1971. We see that the frequency doubled almost

every 34 months. However, in 2005, the frequency scaling process has reached the power wall limit at

about 3 GHz. In fact, higher switching activity of transistors leads to higher power consumption. Even

though these small transistors do not consume much, hundred millions of them are switching at the

same time in less than five hundred millimeter square IC. This results in significant power density that

must be limited to avoid breakdown of physical materials.

Figure 1.3 Clock Frequencies of Intel Microprocessors, Data Source: [INT10]

To reduce power dissipation of CMOS devices, the supply voltage Vdd is also scaled, because dynamic

power is proportional to Vdd
2
 while leakage power is proportional to Vdd. However, voltage scaling only

started in the late 80s because the industry had settled on 5V supplies in the early 70s to be compatible

4004
8008 8080

8086

286
386

486

Pentium
Pentium ProPentium II Pro Pentium III

Pentium 4 Pentium M

Itanium 2 Core 2 Duo

Dual-Core Itanium 2
Sandy Bridge-E

1 000

10 000

100 000

1 000 000

10 000 000

100 000 000

1 000 000 000

1970 1975 1980 1985 1990 1995 2000 2005 2010

T
ra

n
si

st
o

r
C

o
u

n
t

Year

4004

8008

8080

8086 286

386
486

Pentium

Pentium Pro
Pentium II Pro

Pentium III

Pentium 4

Pentium M

Itanium 2

Pentium D

Core 2 Duo
Dual-Core Itanum2

Sandy Bridge-E

0,01

0,10

1,00

10,00

100,00

1 000,00

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

C
lo

ck
 F

re
q

u
e

n
v

y
 (

M
H

z)

Year

Chapter 1 � Contexts and Motivations

8

with bipolar Transistor-Transistor Logic (TTL) [CRI07]. As power dissipation became unsustainable, this

standard finally collapsed. Vdd was scaled within few years, first to 3.3V then to 2.5V, etc. In 2011, supply

voltage of high-performance ICs was at 0.9V and predicted to be reduced to 0.66V in 2021 [ITR11].

Reliability�

Reliability of digital circuits and systems is defined as their ability to perform required functions under

stated conditions and for a specified period of time [STA11]. In other word, circuits and systems have

reliability issues when they fail to operate correctly and to provide expected results. These events are

called failures.

While offering many advantages, each new CMOS technology node is facing reliability issues [ITR11].

As the miniaturization trend approaches physical limits of operation and manufacturing, failures may

occur at all phases of digital systems� lifetime: infant mortality, working life or wearout period [GIR10].

The bathtub curve in Figure 1.4 [GIR10] shows how different types of failure affect ICs during its lifetime.

There are three types of failure; each of them has major effects during one the three phases:

- Early failures that dominate infant mortality phase are mostly due to manufacturing issues.

While transistors size shrinks, manufacturing processes are more difficult to control and thus,

more likely to cause defects [ITR11]. Furthermore, in nanoscale CMOS technology, transistors

are so small that printing errors below the wavelength of light and variations in the discrete

number of dopant atoms have major effects on their performance.

- Random failures happen during systems� working life. As transistors become smaller, as well

as their supply voltage, they are more vulnerable to interference phenomena such as cosmic

radiation. Furthermore, variability caused by manufacturing imperfections may also affect

chips performance and reliability.

- In the last phase of systems� lifetime, wearout failures may decrease their reliability. These

failures are caused by aging phenomena such as metal and oxide wearout, hot carriers

injection or electromigration-related defects [GIR10].

Figure 1.4 Failure Rate during Digital Systems� Lifetime, Source: [GIR10]

Reliability problems described above affect digital systems via faults and errors occurrences in ICs. In

the next sub-section, we detail how each type of fault and error affects chips� operation.

1.1.2 Classification�of�failure�mechanisms�
Before analyzing further different factors responsible for failures of digital systems, let�s define three

important terminologies used in thesis: failure, defect, fault and error [BUS02]. As stated in the previous

sub-section, failures are deviations of a digital system from compliance with its specification during a

period of time. Failures are caused by defects, which are �unintended difference between the

implemented hardware and its intended design�. These defects can be represented at abstracted

Chapter 1 � Contexts and Motivations

9

function level as faults. Finally, errors are the manifestation of faults during system operations under the

form of wrong output signals. Note that not all faults lead to errors because some of them may be

masked.

To clarify these terminologies, we consider as example an adder inside a microcontroller. Suppose

that due to manufacturing defects, the adder�s carry output line is shorted to the supply voltage Vdd.

Consequently, this output remains at logic-1 regardless of the adder�s input operands. We say that the

adder is affected by a stuck-at-1 fault. When this adder is used, the fault only causes an error when the

carry line is supposed to have been at logic-0 instead of logic-1. In this case, the error may lead to a

failure of the microprocessor.

In the previous sub-section, we have seen that there are four main reasons for failures in digital

systems: manufacturing defects, variability, interference and aging phenomena. In fact, each of these

factors has different impacts on system devices and therefore can create various types of fault.

Manufacturing�defects�

In IC manufacturing, different processes can be responsible for defects on fabricated products:

implantation, etching, deposition, planarization, cleaning, lithography, etc. From the International

Technology Roadmap for Semiconductors (ITRS,[ITR11]), several contaminations and mechanisms are

defect causes in ICs: a) Airborne Molecular Contamination (AMC); b) process induced defects, such as

scratches, cracks, particles, overlay faults and stresses; c) process variations, such as variations in doping

profiles or layer thicknesses; d) deviation from design, due to pattern transfer from the mask to the

wafer; and e) diffusion of atoms through layers and in the semiconductor bulk material. Different defect

types in digital CMOS ICs caused by these manufacturing imperfections are illustrated in Figure 1.5.

Figure 1.5 Different types of manufacturing defect, Source: [ITR11]

There are manufacturing defects that can modify the structure of digital circuits. For example, in

Figure 1.5, the �short� defect creates a connection at Metal 1 level, between the gate and the drain of

the PMOS transistor. This type of defect may permanently change the logic function of the circuit which

then leads to failures of digital systems. Consequently, they are also responsible for manufacturing yield

loss.

Meanwhile, other defects, such as variation in doping profile or deviation of channel length from

design specification, do not change the logical function of devices. However, they modify functional

Chapter 1 � Contexts and Motivations

10

behavior of these components such as their switching delays. ICs containing this type of defect operate

with degraded timing characteristics and may cause random failure of digital systems. This will be

detailed further below.

Variability�

From manufacturing processes to operating environment, there are three principal sources of

variation that determine an IC�s behavior: process variation, supply voltage and operating temperature.

They are also known under the term Process, Voltage and Temperature (PVT) variation. Significant

efforts are spent during the design phase to guarantee that digital systems operate correctly under high

range of PVT variations. However, in nanoscale technologies, this goal becomes more and more

challenging:

- Process variations: Due to manufacturing imperfections, transistors and interconnects in ICs

are subject to variations in film thickness, lateral dimensions and doping concentrations

[BER99]. For transistors, most important variations are channel length L and threshold voltage

Vth. For interconnects, most important variations are line width/spacing, metal/dielectric

thickness and contact resistance [WES10]. In digital circuits, variations of these parameters

cause different timing behaviors. For example, longer channel transistors are slower while

thicker metals lead to faster connections.

- Supply voltage Vdd: Digital systems are designed to operate at a nominal supply voltage. But

during operations, this parameter may vary for different reasons, such as IR-drops along

supply rails, di/dt noise and tolerances of the voltage regulator. These variations also affect

timing characteristics of digital circuits. In fact, [BAK10] has proven that IC speed is roughly

proportional to Vdd

- Operating temperature: During their lifetime, ICs may be subject to temperature variations

from freezing to boiling. For example, a military IC may have to work correctly between -55°C

and 125°C [WES10]. Furthermore, there are also high temperature variations inside of the IC.

In [HAR01], simulation results showed that for the Intel Itanium 2 microprocessor,

temperature at the execution core is higher than 100°C while memory caches in the

periphery are below 70°C. It has been proven that these variations also have impacts on

propagation delay of CMOS ICs [KUM06].

Although PVT variations usually do not change the logic function of ICs, they are the source of timing

degradations in logic circuits, which create non-operational digital systems. Consequently, in sequential

systems where timing characteristics are critical factors, these variations may also lead to errors.

Therefore, these problems must be dealt with, in order to improve robustness of digital systems.

Interference�phenomenon�

During their lifetime, ICs continuously interact with the operating environment. They may be subject

to radiation strikes, electrical noises from crosstalk or electromagnetic interferences with other running

circuits in proximity. Among these interactions, radiation strikes are the most important sources of error

in CMOS ICs. They create Soft errors which affect memories, registers and combinational logics of digital

systems.

Soft errors are triggered when high-energy alpha particles strike an IC. These particles can be found in

cosmic rays, or can also be emitted by impurities in packaging material. The mechanism of error creation

is illustrated in Figure 1.6 sourced from [BAU05]. When a particle hits a silicon atom, it can induce fission,

shattering the atom into charged fragments that continue traveling through the substrate. Therefore, a

cylindrical track of electron-hole pairs is formed (Figure 1.6-a). When the ionization track comes close to

the depletion region, the electric field rapidly collects carriers and creates a current/voltage glitch at that

Chapter 1 � Contexts and Motivations

11

node. Note that a tunnel shape extending high field depletion region deeper into substrate is formed

(Figure 1.6-b). This collection phase completes within tens of picoseconds, and another phase follows, in

which diffusion begins to dominate the collection process (Figure 1.6-c). Figure 1.6-d shows the

corresponding current pulse resulting from these three phases.

Figure 1.6 Soft Error Mechanism, Source: [BAU05]

With the mechanism described above, soft errors create voltage glitches at struck nodes. In

combinational logic parts of digital systems, these glitches are called Single-Event-Transient (SET). If the

glitches are captured by registers, they will change stored values in these elements (bit-flip). This

behavior is called Single-Event-Upset (SEU).

Note that to completely flip state of a node, a minimum quantity of charge Qcritical must be collected.

This value depends on the capacitance and the voltage of the node. In nanoscale CMOS technology, both

gate capacitances and supply voltage are downscaled. This feature explains why soft-errors have more

and more impacts on digital circuit operations, and therefore must be prevented in order to improve

robustness of digital systems.

Aging�phenomena�

Different phenomena such as hot carriers injection, temperature variations, oxide wearout and

electromigration are responsible for aging of ICs� components, which may lead to defects in digital

systems [GIR10]. Their two most important impacts on circuits are: oxide and interconnect wearouts.

During ICs� lifetime, gate oxides are subject to stress and gradually wear out. Consequently, the

threshold voltage shift reduces the speed of transistors. As for PVT variations, this modification in timing

characteristics of components may cause digital systems to fail. There are three main mechanisms

responsible for oxide wearout of CMOS ICs:

- Hot Carriers Injection (HCI): As transistors switch, high-energy (�hot�) carriers are occasionally

injected into the gate oxide. These carriers are trapped in the oxide, and therefore change the

current-voltage characteristics of the device. Note that, as electrons have higher mobility,

they account for the most of the hot carriers. Consequently, the current in NMOS transistors

decrease while the current in PMOS transistors increase. When the NMOS becomes too slow,

the ICs may stop working correctly and cause system failures.

- Negative Bias Temperature Instability (NBTI): This problem concerns mostly PMOS transistors

because they almost always operate at elevated temperature with strong negative bias

(current gate voltage is at 0 while drain and source voltages are at Vdd). In this situation,

Chapter 1 � Contexts and Motivations

12

dangling bonds called traps develop at the Si-SiO2 interface. As traps form, the threshold

voltage Vth increases, reducing the drive current, and making transistors slower. This

phenomenon becomes one of the major causes for temporal reliability degradations in

nanoscale CMOS technologies where oxide thickness is aggressively downscaling [PAU07].

- Time-Dependant Dielectric Breakout (TDDB): With an electric field applied across the gate

oxide, the gate current gradually increases. After sufficient stresses, this can result in

catastrophic dielectric breakdown that short-circuits the gate and cause system failures

[WES10].

In digital ICs, electromigration caused by high unidirectional current flowing through wires is the main

responsible for interconnect wearout. In fact, when the current density is sufficiently high, it will drift the

metal ions in the direction of the electron flow. Consequently, metal atoms are displaced gradually

during circuits� lifetime. Therefore, resistance of interconnect may vary, which leads to modification in

timing characteristics of ICs. In extreme cases, metal wearout can also cause the formation of voids (i.e.

open in the metal line) which change the logic function of circuits.

Classification�

As we have discussed previously, manufacturing defects, variability, interference and aging

phenomena may create different fault types in ICs. Although have different causes, these faults also have

some common impacts on circuits. In the following, we classify faults into categories, depending on their

duration as well as the nature of errors they may cause.

Based on duration, faults can by classified into three groups: permanent, transient and intermittent

[KOR07].

- Permanent faults: As their names indicate, these faults are irreversible. Once they have

occurred, none will vanish. The most common sources of permanent faults are

manufacturing defects. These faults can also be caused by aging phenomena at the end of

circuits� lifetime when the device starts to wear out.

- Transient faults: These are faults that cause IC components to malfunction during a short

period of time. Unlike permanent faults, they disappear after that time and devices return to

correct operation. Principle sources of transient faults are variability and interference

phenomena.

- Intermittent faults: These faults happen now and then during ICs� operation. They never

disappear completely like transient faults, but they do not occur continuously like permanent

fault either. However, intermittent faults often precede the occurrence of permanent faults.

Aging phenomenon is the main cause of this reliability issue.

In the scope of this thesis, we propose robustness improvement solutions for permanent and

transient faults. Depending on their duration, intermittent faults can also be treated as one of these two

types. For example, if an intermittent fault appears during two or more consecutive clock cycles in logic

circuits, it will be considered as a permanent fault. Otherwise, solutions for transient faults will be

applied.

Faults can also be classified by their resulting errors in ICs. There are three types of error: hard, soft

and timing.

- Hard errors: These are permanent errors which change permanently the logic function of ICs. A

typical example is an error caused by a stuck-at-fault. Normally, permanent faults are responsible

for this type of error.

- Soft errors: As we have seen previously, soft errors are caused by transient faults. Depending

on the place of error occurrence (in memories, combinational logics or registers), they may lead

Chapter 1 � Contexts and Motivations

13

to bit-flipping (in memories and registers) or voltage glitches (in combinational logics). SET in

combinational logic part and SEU in registers are the most common soft errors observed in digital

circuits.

- Timing errors: Unlike hard and soft errors, components that suffer from timing error still

provide correct logic outputs. However, they have higher delays between input and output signal

establishments. Transient faults induced by PVT variability, manufacturing defects and aging

phenomenon are responsible for this type of error.

Table 1.1 summarizes different types of fault and error, as well as the four main reasons for these

reliability issues. The first column presents different phenomena that induce faults and errors. The two

other columns show possible errors created by these phenomena: the second column contains errors

induced by permanent faults while the third column shows errors created by transient faults.

 Permanent Transient

Manufacturing defect Hard error Timing error

Variability Timing error

Interference Soft Error

Aging phenomenon Hard error Timing error

Table 1.1 Faults and Errors in Digital Systems

1.1.3 Discussion�

In this section, we have seen that CMOS technology evolutions allow the realization of more complex

systems at lower cost and with higher performance. At each new technology node, feature sizes of

transistor are downscaled allowing us to integrate more devices in one chip. Besides, these small

transistors are faster, consume less power and are cheaper to manufacture. This explains why the

semiconductor industry keeps scaling CMOS technology further despite the fact that reliability of digital

systems has become a more and more important issue.

 However, each new technology node is facing reliability problems. Different factors are responsible

for transient and permanent faults in integrated circuits. These faults may induce errors and cause digital

systems to fail. First of all, smaller devices are more difficult to fabricate. This leads to a higher rate of

manufacturing defects and a lower manufacturing yield. Furthermore, if these defects are not detected

during production test, they may cause hard errors during ICs� operation. Secondly, defect free ICs may

suffer from Process-Voltage-Temperature variations which are responsible to timing errors. During their

lifetime, ICs are also affected by interference phenomena. Smaller transistors are more vulnerable to

radiation effects which cause soft errors in both memories and logic circuits. Finally, aging phenomena

are responsible to hard and timing error at the end of circuits� lifetime.

Given the importance of CMOS technology in recent information technology revolutions, it is

necessary to solve its reliability issues when emergent technologies are not ready for mass production.

Fault-tolerant architectures which allow correct operation of digital systems despite the presence of

faults may be a promising solution.�

1.2 Fault-tolerant�architectures�

Previous section has shown that permanent and transient faults in ICs must be treated in order to

improve the robustness of digital systems. This can be achieved by: i) improving manufacturing

Chapter 1 � Contexts and Motivations

14

processes to reduce defects and variability; ii) putting more constraints in circuit utilization, maximum

operating voltage for example, to avoid aging phenomenon; or iii) redesigning digital circuits in a way

that they can operate correctly despite the presence of faults.

In nanoscale CMOS, where device dimensions are of atomic size, improving manufacturing processes

becomes extremely difficult. Furthermore, manufacturing improvements must be revised at each new

technology node. Likewise, constraints in circuit utilization are not easy to apply and do not solve

random failures. That is why in this thesis we aim to improve robustness of digital circuits and systems at

the design level, using fault-tolerance methods.

This section is divided into five sub-sections. In the first sub-section, we present the fundamental of

fault-tolerance. After studying the principles of this technique, we classify different types of fault-

tolerant architecture into several categories, depending on which redundant resources they employ.

Then, in the four remaining sub-sections, we present different fault-tolerant architectures corresponding

to each type of redundancy: hardware, information, timing and hybrid.

1.2.1 Fundamentals�

As we have seen in the last section, to cause failure of digital systems, faults must trigger errors in ICs.

In the case where a fault exists, but does not cause any logic or timing faulty operations of circuits, we

say that they are tolerated. An example of a tolerated fault is shown in Figure 1.7. In a fault free case, the

circuit in Figure 1.7 provides an output . Suppose that due to manufacturing defects, the

node x of the circuit is shorted to the ground. Consequently, x is always at logic-0 regardless of the inputs

a, b and c (stuck-at-0 fault). However, even in this case, the output remains and the fault

never triggers an error.

Figure 1.7 Example of a Tolerated Fault

The principle of fault-tolerance techniques is to exploit and manage redundancy to tolerate faults in

circuits and systems. Redundancy is the property of having more than the minimal resource necessary to

perform an operation [KOR07]. For example, in the circuit of Figure 1.7, the AND gate and the OR gate

are redundant because we can remove them and use the node y as primary output without modifying

the logic function of the circuit. Fault-tolerances are traditionally used to deal with online faults, i.e.

faults that occur during the working life of ICs. However, it has been proven in [FAN06, VIA08, VIA09]

that they could also tolerate manufacturing defects and thus help improving yield.

There are two ways to deal with faults: error masking and error detection/correction. In the first

method, errors are masked by the redundant resources. Therefore, faults that are responsible for these

errors become transparent at system level. In the second method, the tolerance process is divided in two

phases: i) error detection and ii) error correction.

Redundancy is the core of fault-tolerance techniques. There are four sources of redundancy:

hardware, information, timing and software [KOR07].

- Hardware redundancy: This kind of redundancy consists of integrating extra hardware into

the circuit. An example is the Triple Modular Redundancy (TMR) structure where there are

three identical circuits running in parallel to mask faults.

a

b

c

z

x

y

Chapter 1 � Contexts and Motivations

15

- Information redundancy: The principle of this redundancy is to generate additional

information to detect and correct errors at circuit outputs. The best-known examples for this

technique are error detection and correction codes.

- Timing redundancy: This redundancy attempts to tolerate faults by using additional

computation time. For example, we can repeat a calculation several times and compare the

results to detect errors.

- Software redundancy: Mainly used to prevent software failures, this redundancy can also be

used to tolerate hardware faults in ICs. For example, let�s consider two programs (software)

that realize the same function. During their executions, each program uses only one part of

the hardware resources. Therefore, there are hardware faults that affect only one of the two

programs. Consequently, these faults can be detected by comparing results generated by the

two softwares.

Beside these four types of redundancy, there exists a technique called hybrid fault-tolerance. It

consists of combining different types of redundancy in the same fault-tolerant architecture in order to

benefit from their advantages and overcome their drawback.

In the scope of this thesis, we do not study software redundancy which requires particular knowledge

on interactions between software and hardware parts of digital systems. Different examples of fault-

tolerant architecture using the other three redundancies and the hybrid technique are detailed in the

following sub-sections.

1.2.2 Hardware�redundancy�
Hardware is the most used redundant resource in the field of fault-tolerance. Many hardware fault-

tolerance techniques are employed widely in various applications, from consumer electronics to space

satellites [MCH01]. In this sub-section, we present three important examples of this technique: M-of-N

system, Duplex system and Neumann multiplexing architecture.

M-of-N�system�

An M-of-N system is composed of N modules running in parallel and a voter [SIE75]. The modules

receive a common input and realize the same operation. They can either be identical or different

implementations of the same logic function. The voter has the following functionality. It receives all

outputs of the N modules and compares them. If there are at least M identical outputs then the voter

returns the common value of these outputs. Otherwise, the system fails. Note that to guarantee a

correct operation of the system, even with fault occurrences, there must not be two different sets, each

account more than M identical outputs. Consequently, we need:

 (1.1)

Due to the condition above, the function of the voter is called majority vote. Usually, N is an impair

number: N=2.k-1, while M is equal to k.

A widely used M-of-N system is the Triple Modular Redundancy (TMR) architecture [LYO62]. In this

particular case, N=3 and M=2. The TMR architecture is illustrated in Figure 1.8. Note that when only one

module of the TMR is faulty, the voter returns the common output of other two fault-free modules.

Therefore, single and multiple errors in one module are masked in this fault-tolerance technique.

Furthermore, in [VIA08, VIA09], the authors have shown that a TMR architecture can also tolerate an

important set of multiple faults in its three modules.

Chapter 1 � Contexts and Motivations

16

Figure 1.8 TMR Architecture

One variation of M-of-N systems is the unit-level modular redundancy architecture. Using this fault-

tolerance technique, we apply replication and voting at the sub-system (unit) level [LYO62]. Figure 1.9

shows a subsystem-level TMR architecture applied for an original circuit combined of 4 units. One

advantage of this architecture compared to the TMR is that the voter is no longer a critical element. In

fact, in Figure 1.8, even if the three modules are fault-free, a single fault in the voter (a stuck-at-fault at

one of its output bits for example) may cause failures of the entire architecture. This is no longer a

problem in Figure 1.9 where there are always three voters working in parallel.

Figure 1.9 Subsystem-level TMR Architecture

Duplex�system�

Duplex (or Duplication/Comparison) is an error detection method widely used in fault-tolerant

architectures [KOR07]. Figure 1.10 illustrates a Duplication/Comparison architecture. It consists of using

two modules running in parallel and a comparator. As for M-of-N systems, the two modules can either

be identical or different, but must realize the same function. The comparator compares outputs of

modules in order to determine the presence of any errors.

Figure 1.10 Duplication/Comparison Architecture

Module2

=
vin error

Module1
vout1

vout2

VUnitA1

UnitA2

UnitA3

V

V

VUnitB1

UnitB2

UnitB3

V

V

VUnitC1

UnitC2

UnitC3

V

V

VUnitD1

UnitD2

UnitD3

V

V

v
in

v
o

u
t

Module2 =vin vout

Module1
vout1

vout2

Module3
vout3

Chapter 1 � Contexts and Motivations

17

Compared to M-of-N systems, duplex system has the advantage of using less hardware redundancy.

However, it only detects errors but does not correct them. Consequently, this technique is usually

combined with other methods such as timing or information redundancy to form a complete hybrid

fault-tolerant architecture [FOR09, TAH95]. This technique will be discussed more in details in the later

sub-section.

NAND�multiplexing�system�

In 1956, Von Neumann was the first person to consider using redundant components to tolerate

defected devices. He proposed an architecture called NAND multiplexing (or Von Neumann multiplexing)

system [NEU56].

The principle of NAND multiplexing architecture is similar to unit-level modular redundancy system.

Each processing unit is replicated Nbundle times, forming a bundle of units. However, instead of majority

voters, a bundle of wires is used to connect two successive bundles of units.

Figure 1.11 shows the example of a NAND multiplexing architecture, where the processing unit is a

XOR gate and Nbundle=3. The architecture has two stages: Executive and Restorative. The Executive stage

performs the function of the processing unit (XOR function) while the Restorative stage is used to reduce

degradations caused by errors in both inputs and faulty devices. To carry out these operations:

- The Executive stage contains Nbundle=3 copies of the XOR gates, and a random permutation

module (U). With this structure, signals of input bundles A and B are randomly paired before

being connected to the processing units. Output of the Executive stage is Bundle C which

carries the computation result.

- The Restorative stage is made using the same technique. Signals of Bundle C are duplicated at

the beginning of this stage. After being permuted, these signals are connected to Nbundle=3

NAND gates. Outputs of these NAND gates form Bundle D which carries inverted value of

Bundle C. The same process is used one more time to invert Bundle C, and produce output

Bundle Z that carries the computation result.

Figure 1.11 NAND Multiplexing Architecture of a XOR Unit

In [NEU56], the authors have shown that using this architecture, digital system can operate correctly

even with an individual device failure rate of about 0.01. However, this solution requires enormous

hardware redundancy level (about 10
3
-10

4
times silicon area requirement compared to original circuits).

Pros�and�cons�

The most important advantage of hardware fault-tolerance techniques is their fault-tolerance

capability. Duplex systems can detect all single and multiple faults arriving in one of its modules while M-

of-N and NAND multiplexing systems also offer the possibility to mask errors induced by these faults.

Furthermore, these fault-tolerant architectures can be effective for both transient and permanent faults,

Bundle B

Bundle A

Bundle Z

U U U

Executive stage Restorative stage

Bundle C
Bundle D

Chapter 1 � Contexts and Motivations

18

making them the most used in critical systems that require high level of reliability such as aircraft or

space satellite.

Hardware redundancy is expensive in both silicon area and power consumption because it requires

parallel operation of two or more copies of the circuits. That explains why in the past, these solutions

were employed only by applications where the reliability is a critical factor. In advance CMOS

technologies, where billions of transistors that can be put on a single chip, the area cost becomes less

important, especially because techniques such as TMR can also improve manufacturing yield [VIA08,

VIA09]. However, power consumption is still an important factor that needs to be improved when using

hardware redundancy.

1.2.3 Information�redundancy�
The most common form of information redundancy is coding, which consists of inserting redundant

bits (check bits) into the data inside digital systems. This redundancy can be realized under the form of

extra stored bits in memories, or supplementary output signals in logic circuits. The additional

information is used to verify the correctness of data at each stage, before it propagates further in the

system. In some fault-tolerance techniques, the redundant information also allows correction of faulty

data.

In a memory, information redundancy is implemented as additional check bits, stored with data bits.

Figure 1.12-a shows an example of information fault-tolerant architecture for memories. The

architecture is divided into two stages corresponding to the data writing and reading operations of the

memory. During data writing, a coder calculates the check bits from the data. A code-word containing

both data and check bits is then stored in the memory. During data reading, a decoder separates data

and check bits from the code-word. Before providing the data bits to subsequent stages of the digital

system, a checker verifies their correctness using the check bits.

a) Memory b) Logic circuit

Figure 1.12 Information Fault-Tolerant Architectures for Memories and Logic Circuits

Figure 1.12-b presents a fault-tolerant architecture for logic circuits. In this architecture, redundant

outputs are calculated by a predictor. This is done in parallel with the primary output computation of the

logic circuit. Then, a checker compares redundant and primary outputs to validate a correct operation of

the logic circuit. Note that the predictor does not calculate redundant bits from outputs of the logic

circuit like a coder, but from the primary input bits. Therefore, its logic function may be much more

complex than the former module.

Various types of code are used in the field of information redundancy. Among them, parity codes,

arithmetic codes, Berger codes and cyclic codes are the most common uses.

Parity�codes�

Single-bit parity code is the simplest of all. It consists of adding one redundant bit (check bit) to the

data bits. This additional bit contains the parity of the data. For example, in an even parity code, the

Logic circuit

primary input

Predictor

primary output

Checker

errorredundant

output

MemoryCoder Decoder
data

data
data

check

bits

code

word

Checker

check

bits

error

Data reading Data writing

Chapter 1 � Contexts and Motivations

19

check bit is equal to logic-0 if and only if there is an even number of logic-1 bits in the data. In this case,

the check bit can be calculated by performing a logical sum of all data bits. Then, to verify the

correctness of the data, we only have to sum all bits of the code-word. The result is logic-0 if the code-

word is correct and logic-1 otherwise. Note that single-bit parity code can detect all single faults, at both

data bits and check bit.

Although it is very simple, single-bit parity code has a limited fault-tolerance capability. First of all, it

cannot detect multiple faults. For example, if due to soft errors, two bits of the code-word stored in the

memory are flipped, then the logical sum of all bits will remain intact and consequently, the error will

not be detected. Secondly, even in the good case, it only helps detecting errors but not correcting them.

To overcome the first limitation, one solution is to divide the data into separate groups of bits and to

use one single-parity check bit for each of them. As each group has a smaller number of bits, the

probability of having multiple faults in one group is also smaller. Therefore, the error detection capability

is improved. However, better error detection is achieved with a higher level of redundancy (number of

check bits added). In the extreme case, one check bits is added to each data bits. For logic circuits, this

fault-tolerance solution is equivalent to the duplex system presented previously.

The second limit of single-bit parity code is more difficult to resolve. To be able to correct errors, we

also need multiple check bits. However, the groups of bits must not be separated. And it�s the

dependence between these groups that allows the correction of errors. Due to their complexity, in the

field of fault-tolerance, error correction codes usually offer only detection of two erroneous bits with

correction of one bit. These codes are called Single Error Correction � Double Errors Detection (SEC-DED)

codes. One example is the Hsiao codes that are widely used in memories [HSI70].

Berger�and�Cyclic�codes�

With higher integration, the probability of multiple error occurrence increases significantly. This leads

to the need of better detection and correction codes. For memories, Berger and cyclic codes are efficient

solutions:

- Berger codes [BER61, DE94] allow the detection of unidirectional errors, i.e. errors where all

detected bits are flipped in the same direction from logic-1 to logic-0 or vice-versa. Compared

to single-bit parity code, they have higher fault-tolerance capability because they can detect

unidirectional errors affecting multiple bits and all single-bit errors. Compared to SEC-DEC

code, Berger codes do not allow error correction. Besides, they also have the disadvantage of

lacking of bidirectional double error detection.

- Cyclic codes are non-separable: data and check bits are mixed together, and extracting data

from the code-word requires decode operations that may induce additional delays. Despite

this drawback, these codes are the most used in memory fault-tolerance because they allow

detection and correction of multiple bits with low information redundancy [KOR07].

Arithmetic�codes��

While parity, Berger and cyclic codes are the most used in memories, arithmetic codes are better

suited to logic circuits. They employ arithmetic properties that are preserved under a set of arithmetic

operations, such as addition or multiplication, to detect errors. Their advantage relies on the simple

implementation of the predictor module (Figure 1.12-a) when used for arithmetic circuits [RAO70,

RAO77, TAH95, FOR09]. However, these solutions are not applicable for random logic circuits.

Pros�and�cons�

Compared to hardware redundancy, information redundancy has the advantage of using much less

additional resources. Parity, Berger and cyclic codes are adapted for fault-tolerance in memories. In

Chapter 1 � Contexts and Motivations

20

these cases, the number of check bits is significantly smaller than the number of data bits while coders,

decoders and checkers can be implemented easily using small number of simple logic gates.

Furthermore, advanced parity and cyclic codes also allow correction of single or multiple defected bits.

However, implementation of these techniques for logic circuits is more complex, especially in the

generation of redundant outputs from primary inputs. For these circuits, arithmetic codes are more

suitable. Nevertheless, these codes can only be used for arithmetic operations such as addition or

multiplication.

1.2.4 Timing�redundancy�
The principle of timing redundancy is, when an error is detected, to repeat the faulty operation

several times before delivering the final good result. Computations are performed by the same

processing units and their results are stored in different registers. These values are then compared in

order to detect and correct errors.

Figure 1.13-a shows an example of using timing redundancy to detect errors at logic circuits. In this

architecture, each operation is repeated once by the processing unit Module. A control module and a

demultiplexer are used to store the results in two output registers Reg1 and Reg2. These outputs are

compared at the end of the calculation, using a comparator. If a transient error occurs at one of the two

computations then it will be detected by this comparison. The functionality of this architecture is similar

to the duplex system presented in Figure 1.10, but it only requires one instead of two modules. Hence, it

allows significant reduction of area overhead and power consumption. However, the timing fault-

tolerant architecture can only detect transient errors. In fact, if Module suffers from a permanent fault

then both computation results stored in Reg1 and Reg2 will be affected the same way. Consequently, the

errors will not be detected by the comparator.

Error detection can also be added to the architecture above by doing more than two computations

for each input data and then using a majority voter to mask transient errors [HSU94, GAL98]. Figure 1.13-

b shows an example where each operation is repeated twice. This architecture is called Time shared

Triple Modular Redundancy (TTMR) because it has similar functions compared to TMR architecture. Note

that like the structure in Figure 1.13-a, although it offers significant cost reductions compared to TMR

architecture, TTMR can only tolerate transient faults.

a) Error detection b) Error correction

Figure 1.13 Timing Fault-Tolerant Architectures

Compared to two other types of redundancy, timing redundancy has smaller area and power

consumption costs. However, they have significant delay costs because every calculation is repeated

several times, even in fault-free cases. Furthermore, as each operation is repeated, their total energy

consumption also increases several times.

Reg1

voter
vin error

Module

vout1

vout2

Reg3

vout

Control

Reg2

vout3

Reg1

=
vin error

Module

vout1

vout2

vout

Control

Reg2

Chapter 1 � Contexts and Motivations

21

1.2.5 Hybrid�fault-tolerance�
As we have seen in previous sub-sections, each type of redundancy has different advantages and

disadvantages regarding their fault-tolerance capability, silicon area and power consumption. The

principle of hybrid fault-tolerance technique is to combine these redundancies to complement their

benefits and costs.

Information�and�Timing�

One important drawback of timing redundancy is the lack of permanent fault detection capability.

Meanwhile, information redundancy offers low cost detection for both permanent and transient faults,

but it is not adapted for logic circuits. Combining information and timing redundancies allows to

overcome these issues.

Figure 1.14 shows an example where information and timing redundancies are combined to detect

transient and permanent faults at logic circuits. Compared to the timing fault-tolerant architecture in

Figure 1.13-a, this architecture does not re-compute the primary input data X but its encoded value C(X),

where C is the logic function of the coder. Both data X and C(X) are selected for computations by an

additional multiplexer. Then, the computation result of C(X) is decoded before being compared with the

computation result of X. The processing unit Module is proven fault-free if no difference is detected

when comparing the results.

Figure 1.14 Information-Timing Hybrid Fault-Tolerant Architecture for Error Detection

Note that this simple architecture works under the hypothesis that the computation result of C(X) is

C(Y) where Y represents the computation result of X. If we call F the logic function of Module then we

need:

 (1.2)

One concrete application of the architecture in Figure 1.14 is error detection in alternating logic

circuits [RAY75]. They are circuits that satisfy . For example, a circuit receiving three input

bits a, b, c, which calculates , is an alternating circuit because

 . For this type of logic circuit, we can use complimentary code to fulfill

equation (1.2). Consequently, both coder and decoder can be easily implemented using inverters.

Besides, this architecture has also been proven to be efficient for stuck-at-fault detection [RAY75].

Although being efficient for both transient and permanent faults detection, the architecture in Figure

1.14 does not offer error correction. For this purpose, Figure 1.15 proposes another way to combine

information and timing redundancies.

Reg1

=

C(X)

error

Module

Control

Reg2

Coder
Decoder

Y Y

Y

X

C(Y)

Y

Chapter 1 � Contexts and Motivations

22

Figure 1.15 Information-Timing Hybrid Fault-Tolerant Architecture for Error Correction

Compared to the information fault-tolerant architecture shown in Figure 1.12-b, the new architecture

employs an additional control module to manage re-computation by re-injecting affected primary input

data in case an error is detected by the checker. As error correction is done by timing redundancy, we

can use simple error detection codes as information redundancy. Hence, this method helps reducing

area overhead thanks to the complexity of the predictor.

Information�and�Hardware�

Although it offers efficient error correction capability, the principal drawback of hardware

redundancy is its high costs in area and power consumption. To improve this, we can combine

information and hardware redundancies. Figure 1.16 shows an example for such architecture [ALM03].

error1 error2 Source of errors
Correct

output

0 0 Fault-free
output1 or

output2

0 1

Faults in Parity

Predictor or Parity

Checker

output1 or

output2

1 0
Faults in Module1

or Comparator
output2

1 1 Faults in Module2 output1

a) Architecture b) Fault-tolerance

Figure 1.16 Hybrid Architecture Combining Duplication/Comparison and Parity Codes

The architecture in Figure 1.16-a combines duplication/comparison method (hardware redundancy,

Figure 1.10) and parity codes (information redundancy) to detect and correct errors in logic circuits. The

processing unit is duplicated (Module1 and Module2). A comparator detects mismatches between their

outputs (output1 and output2). If Module1, Module2 and the comparator are fault-free then signal

error1 is at logic-0. If one and only one of these modules is affected by faults then error1 turns to logic-1.

The correctness of output2 is also verified by a parity predictor (Parity Predictor) and a checker (Parity

Checker). If these two modules are fault-free and output2 is correct then error2 is at logic-0. If there are

faults in one of the modules Module2, Parity Predictor or Parity Checker then error2 switches to logic-1.

With the architecture above, all single and multiple faults affecting any single module are detected

and tolerated. The table in Figure 1.16-b shows how this is done: the first two columns present values of

error1 and error2; the third column shows which module can be affected given the value of the error

signals; the last column indicates which output is correct and should be used as primary output of the

architecture.

Module2input

Parity Predictor

Parity

Checker error2

Predicted

Parity

Module1

=

output1

output2

error1

Logic circuit

primary input

Predictor

primary output

Checker
error

redundant

output

Control

Chapter 1 � Contexts and Motivations

23

The advantage of the presented architecture is that for some particular logic circuits, the parity

predictor may have smaller silicon area than the processing units. Consequently, the complete

architecture may have smaller area overhead than that of TMR architecture.

Note that in the example above, parity codes are used as information redundancy. However, this

solution can also be applicable for other error detection codes such as arithmetic codes, Berger codes,

etc. Depending on the type of logic circuit, one type of code can be more suitable than the others if it

allows simpler implementations of the predictor and the checker. In some cases where the predictor is

much smaller than the processing units, the resulting fault-tolerant architecture has smaller area

overhead compared to TMR architecture while offering comparable error detection/correction

capability.

1.2.6 Discussion�
In this section, we have studied the principle of fault-tolerance technique. Employing different

redundant resources allows digital circuits to operate correctly despite the presence of permanent

and/or transient faults. This is done by masking or detecting/correcting errors induced by faults.

We have also classified fault-tolerant architectures in four categories depending on which

redundancies are used. Hardware fault-tolerant architectures use one or more copies of the original

circuit to detect or mask errors. Although providing efficient fault-tolerance for both transient and

permanent faults, this solution requires considerably high costs in silicon area and in power

consumption. Information fault-tolerant architectures employ codes to detect and correct errors created

by faults. This method is efficient for memories thanks to their regular structure. For logic circuits,

information redundancy may lead to high area overhead due to complex implementations of code

predictors. Timing fault-tolerant techniques consist of using re-computation to detect and correct

transient errors. Although having small area overhead, this method results in high calculation delays

because both fault-free and faulty operations are repeated several times. To enhance the advantages

and overcome the drawbacks of the three techniques above, hybrid fault-tolerance methods employ

different redundancies at the same time to deal with faults. These techniques are efficient for logic

circuits and can be used to tolerate both permanent and transient faults while optimizing area overhead

and power consumption.

1.3 Robustness�improvement�of�digital�systems�

In previous sections, we have seen how faults and errors are responsible for failures in digital

systems. We have also studied how fault-tolerance techniques can be used to deal with these issues and

thus, improve digital system robustness. In this section, we detail how fault-tolerant architectures are

used to protect different parts of digital systems from faults and errors.

The section is divided in two parts. In the first sub-section, we study fault-tolerance in memories

while in the second sub-section, we investigate robustness improvement in logic circuits.

1.3.1 Fault-tolerance�in�memories�
In 2003, the Semiconductor Industry Association (SIA) reported that memory cores presented more

than 70% silicon area of a digital system and that this ratio would increase to more than 90% after 2012

([ITR03], Figure 1.17). In 2011, they predicted that this trend will continue in the future [ITR11]. This

explains why reliability of memory is a very important factor in the semiconductor industry.

Chapter 1 � Contexts and Motivations

24

Figure 1.17 Logic/Memory Composition of System-on-Chip, Source: [ITR03]

Robustness of memory circuits are affected the most by two types of error: soft errors caused by

interference and radiation phenomena, permanent errors caused by manufacturing defects and aging

phenomenon [SU05].

Soft�errors��

Table 1.2 shows Soft Error Rate (SER) in memories for different CMOS technology nodes. This rate is

presented in number of failures in one million hours per megabit (FIT/Mb). It is shown that SER increases

as the technology advances. In this table, we can also see that the percentage of Multiple Bits Upsets

(MBU) on total SER increases very fast and will reach 100% in 2016. These trends explain why today,

error detection/correction codes are systematically used in memories.

Year 2007 2008 2009 2010 2013 2016 2019 2022 2024

Technology node (nm) 65 55 50 45 35 25 18 13 10

SER (FIT/Mb) 1150 1150 1150 1200 1250 1300 1350 1400 1450

Percentage of MBU on total SER 16% 16% 16% 32% 64% 100% 100% 100% 100%

Table 1.2 Soft Error Rate in Embedded Memory, Source [ITR11]

Permanent�error��

Although information redundancy can tolerate both soft and permanent errors, the effectiveness of

this method decreases during systems� lifetime. In fact, as memories age, the number of permanently

defected bits increases. If this number exceeds the detection capability of codes then failures will occur.

The most used solution for this problem is hardware redundancy.

Hardware fault-tolerance in memories is implemented under the form of spare memory cells, words

and columns [SCH01, NIC03, NIC05, SU05]. Traditionally, memory repair is performed right after the

fabrication phase. External test equipments are used to detect and localize faults. Then defected

elements (memory cells, words and columns) are replaced by redundant resources using different

techniques such as laser beams, electrical fuses or anti-fuses. For embedded memory, external test and

repair have been replaced by Built-In Self-Test (BIST) and Built-In Self-Repair (BISR) [NIC05, SU05].

Additional modules are implemented so that the memory circuit can perform test and repair itself. Note

2003 2006 2009 2012 2015 2018

10%

0%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Year

P
e

rc
e

n
ta

g
e

 o
f

A
re

a

Die size= 1cm
2

 Total Memory Area (%) LSTP

 Total Memory Area (%) LOP

Logic Area Contribution (%) LSTP

Logic Area Contribution (%) LOP

Chapter 1 � Contexts and Motivations

25

that, BIST/BISR can be run anytime during the lifetime of memories to tolerate both manufacturing

defects and faults created by aging phenomena.

1.3.2 Fault-tolerance�in�logic�circuits�
In general, a logic circuit is composed of combinational and sequential parts. At each moment,

outputs of the combinational part depend only on its present inputs, while outputs of the sequential part

also depend on its previous inputs. In other words, the sequential part has memory while the

combinational part does not. Besides, operations of the sequential part are synchronized by clock

signals. Consequently, the logic circuit is subject to two timing constraints:

- Setup time: Inputs of the sequential part must be established an amount of time (called setup

time) before the clock events.

- Hold time: Inputs of the sequential part must be held steady during an amount of time (called

hold time) after the clock events.

There are different types of logic circuits, depending on how the combinational and the sequential

parts are connected. In the scope of this thesis, we study logic circuits with the architecture presented in

Figure 1.18. In this architecture, the combinational part consists of a Combinational Logic module (CL)

while the sequential part is made of an input register (Reg_in) and an output register (Reg_out). Primary

input PI of the logic circuits is captured by Reg_in. Then, output vin of this register is used to feed CL.

Finally, Reg_out captures output vout of CL to provide primary output PO. The registers are synchronized

by a clock signal CLK. Note that registers can be made by different elements such as flip-flops or latches.

In this thesis, we consider only edge sensitive designs which employ D flip-flops.

Figure 1.18 Logic Circuit Architecture

There are three types of error that can affect the logic circuit in Figure 1.18:

- Hard errors: These errors may modify logic functions of both combinational and sequential

parts, and change the logic value of vin, vout and PO.

- Soft errors: Two types of soft error may cause incorrect operations of the logic circuit. The

first type is SEU which modifies the logic values (bit flipping) stored in the registers. The

second type is SET which may induce glitches at output vout of CL and thus, responsible for

timing violations (setup and hold times of Reg_out).

- Timing errors: These errors cause additional calculation delays in CL which may also lead to

timing violation in Reg_out.

In the following parts, we detail different solutions proposed in the literature to protect registers and

the combinational logic from the mentioned errors.

Hard�error�protection�

As we have seen in the previous section, TMR architecture is an efficient fault-tolerance solution for

hard errors. However, this method usually leads to high area and power consumption overhead (more

than 200%). To overcome this problem, one solution is to triplicate only parts of the logic circuit that are

more vulnerable to hard errors [DAS09].

CL

R
e

g
_

in vin vout

R
e

g
_

o
u

t

POPI

CLK

Chapter 1 � Contexts and Motivations

26

Although occupy small silicon area compared to memories, logic circuits majorly contribute to power

consumption in digital systems. Figure 1.19 sourced from [ITR11] shows that this trend will continue in

the future, especially for consumer stationary applications. Consequently, power consumption will be an

important drawback of TMR architecture in advance technology nodes.

a) Consumer stationary b) Consumer portable

Figure 1.19 Power Consumption Trends of System-on-Chip

SEU�protection�

To protect registers from SEU, TMR architecture is also an effective solution. [WAN03] proposes to

use subsystem-level TMR (Figure 1.9) to harden D flip-flops of the registers. These flip-flops are made of

master and slave latches. Each latch is hardened in an asynchronous manner (Figure 1.20). Although

effective for both hard errors and SEU, this method has an area overhead of about 400%.

Figure 1.20 Latch Hardening Using TMR,

Source: [WAN03]

Figure 1.21 Flip-flop Hardening Using C-element,

Source: [ZHA06]

To overcome the high costs of TMR, [ZHA06] proposes BISER (Built-In Soft Error Resilience)

architecture using C-elements to tolerate SEU in D flip-flops. In this solution (Figure 1.21), the hardened

flip-flop is composed of two D flip-flops, a C-element and a keeper. As shown in its truth table (Table

1.3), the C-element acts like an inverter when its inputs O1 and O2 are identical. If due to a SEU, one

input bit is flipped, then output Q remains at its previous value retained by the keeper. Consequently,

the soft error is tolerated.

G

A

B

C

A

B

C

A

B

C

D

B

A

C

Q

Trend: Memory Static Power

Trend: Memory Dynamic Power
Requirement: Dynamic plus Static Power

Trend: Logic Static Power

Trend: Logic Dynamic Power
P

o
w

e
r

[m
W

]

Switching Power, Logic

Leakage Power, Logic Leakage Power, Memory

Switching Power, Memory

P
o

w
e

r
C

o
n

su
m

p
ti

o
n

 [
W

]

Chapter 1 � Contexts and Motivations

27

O1 O2 Q

0 0 1

1 1 0

0 1 Previous value retained

1 0 Previous value retained

Table 1.3 Truth Table of a C-element

Compared to TMR solution, solution in Figure 1.21 has lower silicon area and power consumption

costs. However, it does not allow the correction of hard errors because if O1 or O2 suffers from stuck-at-

faults then the value of Q will never change.

SET�and�timing�error�protection�

Although caused by different phenomena, SET and timing errors have the same effect on operations

of logic circuits: outputs of the combinational logic are not stable, violating setup and hold time of the

output register. Consequently, to detect these errors, one solution is to discover glitches or invalid

transitions that occur at inputs of the register.

 In [ERN03], the authors propose RAZOR flip-flop architecture (Figure 1.22), which allows the

detection of SET and timing errors. Each RAZOR flip-flop is augmented with a shadow latch controlled by

a delayed clock (clk_del). This delayed capture assures that the shadow latch stores a correct value even

if SET or timing errors occur during the main flip-flop capture (at clk event). Outputs of the main flip-flop

and the shadow latch are compared to detect errors. In case an error is detected, a multiplexer is used to

replace the faulty value of the main flip-flop by the correct value stored in the shadow latch.

Figure 1.22 RAZOR Flip-flop, Source: [ERN03] Figure 1.23 RAZOR II Latch, Source: [DAS09]

Figure 1.23 illustrates another technique proposed in [DAS09] which employs RAZOR II latches to

detect errors. In this architecture, between two consecutive computations, outputs of the combinational

logic L1 are supposed to be stable during a timing window (the detection window). Spurious transitions

caused by SET and timing errors during this window may be discovered by a transition detector

(TDetector). To assure that TDetector reports only invalid transitions, a digital clock generator (DC

generator) is used to define the detection window.

1.3.3 Discussion�
In memory part of digital systems, the use of fault-tolerant architectures has been proven necessary

and efficient. Information (error detection/correction) and hardware (spare memory words, columns and

lines) redundancies are employed to deal with both transient and permanent faults. However, fault-

tolerance in logic circuits of digital systems remains a challenge for future technology nodes. Different

Chapter 1 � Contexts and Motivations

28

fault-tolerant architectures have been proposed but none of them are effective for both transient (SEU,

SET, timing errors) and permanent (hard errors) faults in logic circuits:

- TMR architecture may be used to tolerate both permanent faults in combinational part and

SEU in sequential part of logic circuits. However, this solution is vulnerable to timing errors

which may arrive at inputs of the combinational logic.

- BISER structure allows SEU tolerance in registers with low area overhead than TMR. The

tradeoff is that this structure cannot tolerate permanent errors in logic circuits.

- RAZOR and RAZOR II architectures deal with both SEU in registers and SET/timing errors in

combinational logics. However, these solutions only detect problems. Errors correction is

done by re-computation. Furthermore, like BISER, both architectures are vulnerable to

permanent errors.

Beside fault-tolerance capability, power consumption of logic circuits is a rising issue in advanced

technologies. As these circuits contribute the major consuming parts of digital systems, limiting their

power budget is one of the key factors in digital design. However, existing fault-tolerant architectures

are only optimized in term of area overhead.

1.4 Summary�

In this chapter, we have discussed the importance of CMOS technology evolutions that have allowed

the realization of more complex systems at lower costs and with higher performance. We have also seen

that advanced technology nodes are facing reliability issues. Manufacturing defects, variability,

interference and aging phenomena induce more and more transient and permanent faults which cause

digital systems to fail. In order to continue taking advantage of new CMOS technology nodes, we must

improve robustness of digital systems by dealing with hard, soft and timing errors.

To solve reliability problem of digital systems, one solution is to use fault-tolerant architectures.

These architectures employ redundant resources to guarantee correct operation of circuits despite the

presence of faults. There are three type of redundancy: hardware, information and timing redundancy.

Each type fault-tolerance method has different pros and cons with regards to errors. Hardware fault-

tolerance is efficient for both transient and permanent errors, but they often require high area overhead

and power consumption. Information fault-tolerance requires less redundant resources but is only

adapted for memories and arithmetic circuits. Timing fault-tolerance is the most cost effective solution

in term of area overhead but it increases significantly IC delays and can only tolerate transient errors. To

improve robustness of digital circuits and systems, the three types of redundancy can be employed

together to compromise their pros and cons. This technique is called hybrid fault-tolerance.

 While information and hardware redundancy provide efficient robustness improvement for

memories, fault-tolerance in logic circuits remains a challenge for future technology nodes. Different

fault-tolerant architectures have been proposed, but none of them are effective for both transient (SEU,

SET, timing errors) and permanent (hard errors) faults in logic circuits. Besides, these techniques are only

optimized in term of area overhead whilst power consumption of logic circuits is becoming a more and

more important factor.

In the rest of this thesis, we study the use of hybrid fault-tolerance techniques for robustness

improvement of logic circuits. Our objective is to tolerate both transient and permanent errors in these

circuits. Besides, both silicon area and power consumption of the solutions are subject to optimizations.

Finally, we aim to provide a �plug and play� solution which can be applied without modification in the

implementation of the logic circuits.

Chapter�2�

The�Hybrid�Fault-Tolerant�Architecture�

Chapter�2 The�Hybrid�Fau lt-Tolerant�Architecture �

Chapter�2 The Hybrid Fault-Tolerant Architecture ... 29

2.1 Principles of hybrid fault-tolerance ... 30

2.2 Error detection ... 31

2.2.1 Concurrent Error Detection .. 31

2.2.2 Parity codes ... 32

2.2.3 Duplication/Comparison ... 33

2.2.4 Conclusion ... 39

2.3 Transient error correction .. 40

2.3.1 Input register .. 40

2.3.2 Reset signal ... 42

2.3.3 Transient error correction mechanism ... 42

2.3.4 Control logic and timing constraints ... 44

2.3.5 Conclusion ... 47

2.4 Permanent error correction ... 47

2.4.1 Input de-multiplexer ... 48

2.4.2 Output multiplexer ... 49

2.4.3 Reconfiguration finite state machine ... 51

2.4.4 Control logic and timing constraints ... 53

2.5 Summary .. 55

Chapter 2 � The Hybrid Fault-Tolerant Architecture

30

We have seen in the previous chapter that different types of fault, transient and permanent, affect

normal operations of logic circuits. Consequently, redundancy resources are added to tolerate these

faults and thus, improve circuits� robustness. Each type of redundancy is suitable for some particular

fault categories. In this chapter, we propose a new architecture, which combines information, timing and

hardware redundancies to tolerate both transient and permanent faults of digital systems. This solution,

called hybrid fault-tolerant architecture, will be able to detect and correct hard, soft and timing errors

which occur in combinational part of logic circuits.

The chapter is organized as follows: In the first section, we present principles of the hybrid fault-

tolerance solution. It is divided into three phases: error detection using information redundancy,

transient error correction using timing redundancy and permanent error correction using hardware

redundancy. Then, in the three following sections we study in detail these phases. For each phase, we

propose a complete fault-tolerant architecture with logic implementations of additional modules as well

as their control logic and timing constraints.

2.1 Principles�of�hybrid�fault-tolerance��

Our objective is to tolerate transient and permanent fault in logic circuits which consist of

combinational logic (CL) and input/output registers (Figure 1.18). As described in 1.3.2, there are

different efficient methods to protect registers from hard and soft errors. Therefore, in this chapter, we

consider only hard, soft and timing errors, which may occur in CL part of the circuits. The integration of

SEU protection into the proposed architecture will be studied further in Chapter 4.

Figure 2.1 Principles of Hybrid Fault-tolerance

The hybrid fault-tolerant architecture uses error detection/correction method to deal with faults. The

fault-tolerance operation is divided into three phases (Figure 2.1). In the first phase, we use Concurrent

Error Detection (CED) techniques to detect errors, regardless of their nature. In a fault-free case, the

architecture continues to operate normally in Phase 1. If errors are detected, the second phase will be

activated. The architecture will re-compute the affected input vector in order to tolerate transient faults.

If errors disappear after the re-computation, the architecture will return to its normal operation. If errors

remain, the architecture will then enter the third phase. A re-configuration will replace hardware which

error

Normal

operation

CED

Re-computation

Re-configuration

Re-computation

CED

error

No error

No error

Phase 1

Errors detection

Phase 2

Transient errors

correction

Phase 3

Permanent errors

correction

Chapter 2 � The Hybrid Fault-Tolerant Architecture

31

may contain permanent faults by fault-free resources. A re-computation will then allow the architecture

to come back to normal operation.

In the following sections, we construct the complete hybrid fault-tolerant architecture through three

stages. At each stage, we integrate one of the three phases presented above to obtain:

- An error detection architecture capable of detecting transient and permanent errors.

- A transient error correction architecture that detects both type of error and tolerates

transient errors.

- A permanent error correction architecture, i.e. the complete hybrid fault-tolerant

architecture, which detects and tolerates both transient and permanent errors.

2.2 Error�detection�

2.2.1 Concurrent�Error�Detection�

Concurrent Error Detection (CED) methods are widely used to enhance logic circuits� reliability

[MIT00a] by continuously checking for errors during its operation. Their principle is illustrated in Figure

2.2:

- From an input vector vin, the circuit CL must realize a function f and produce an output vector

vout:

 (2.1)

- The CED employs an additional Predictor module to predict some particular characteristics C

of a fault-free vout. Let�s call the Predictor�s logic function P and its output vector CB. We will

have:

 (2.2)

or:

 (2.3)

- Finally, a Checker will make sure that the output vout has the characteristics predicted, which

means verifying that:

 (2.4)

Figure 2.2 Concurrent Error Detection Scheme

Depending on the characteristic function C, we have different CED techniques [MIT00a], such as

parity codes [DE94, TOU97, NIC97], duplication/comparison [SEL68], Berger codes [BER61, DE94], Bose-

Lin codes [BOS85], or arithmetic codes [FOR09, TAH95, RAO77]. Berger and Bose-Lin codes can only

error

P(vin)=C(vout)?

CL Predictor

Checker

vout=f(vin)

CB=P(vin)=C(f(vin))

vin

Chapter 2 � The Hybrid Fault-Tolerant Architecture

32

detect unidirectional errors while the use of arithmetic codes requires sufficient knowledge of the logic

function f. As our architectures target general logic circuits, we will only consider parity codes and

Duplication/Comparison scheme.

2.2.2 Parity�codes�

Predictor�synthesis�

As we have seen in 1.2.3, single-bit parity code is the simplest way to detect errors in memories

because its implementation only requires an additional bit (code-word) for a data word. Even with more

advanced techniques, such as Hsiao codes [HSI70], the cost remains relatively low. For example, 10-bit

Hsiao codes are able to detect double-errors in 120-bit data word. In order to use parity codes for logic

circuits, we also use additional code bits for their output vector. The generation of these parity bits by a

predictor must be performed independently to the logic circuits so that a single fault can not affect both

the output and the parity code-words.

In [KO04], the authors suggested a predictor synthesis using AND/XOR expressions and Davio�s

expansion theorem. But the proposed method targets only FPGA implementations. Another method is to

use logic synthesis tools to build parity predictors. This synthesis flow is described in Figure 2.3. For a

combinational logic circuit CL, the predictor is obtained by adding a logic structure XORT which can

calculate parity check bits CB from circuit outputs vout. The simplest way is to use XOR-trees to realize

XORT. Then, a logic synthesis tool is run to generate the gate level description of parity predictors.

Figure 2.3 Parity Predictor Synthesis Flow

Area�overhead��

Circuit Single-bit parity

code

Hsiao

code

c17 176% na

c432 113% 133%

c499 60% 149%

c880 116% 151%

c1355 124% 148%

c1908 114% 143%

c2670 119% 156%

c3540 101% 114%

c6288 103% 109%

c7552 113% 139%

Table 2.1 Parity Predictors' Area

We used the synthesis flow described above to build predictors for single-bit parity and Hsiao codes

(with the minimum number of check bits). The targeted circuits are from ISCAS�85 benchmark [ISCAS85].

The logic synthesis is performed by Synopsys Design Compiler [DCSYN] using a 90nm technology from

CL CL PredictorXORT
vin vout vin vout CB CBvin

Add

XOR-tree

Logic

synthesis

Chapter 2 � The Hybrid Fault-Tolerant Architecture

33

STMicroelectronics. Results are presented in Table 2.1, where the predictors� area (�Single-bit parity

code� and �Hsiao code�) is presented in percentage of the original circuit. We note that in most case, the

predictors are larger than the original logic circuits.

Common-mode�failures�

Parity codes are vulnerable to common-mode faults (CMF), i.e. faults that may cause more than one

erroneous bits. For example, single-bit parity code can only detect an impair number of CL output faulty

bits. In [MIT00a, TOU97], the authors proposed a CED systems based on parity codes that deal with

CMFs. Although the proposed techniques promise small parity predictors, they require a re-synthesis of

the combinational logic CL into separate logic cones which increase its total area significantly.

Furthermore, these techniques are not applicable because we target a �plug and play� fault-tolerance

method.

Discussion�

We have seen in this sub-section that parity predictors have similar silicon area compared to original

logic circuits. Thus, using parity code in CED leads to an area overhead equivalent to a

Duplication/Comparison scheme. Besides, we will see in Chapter 3 that the Duplication/Comparison

technique allows better fault detection of CMFs. Therefore, in our hybrid fault-tolerant architecture, we

will use this technique for errors detection.

2.2.3 Duplication/Comparison�

Error�detection�scheme�

Figure 2.4 illustrates our error detection method using the Duplication/Comparison technique

detailed in 1.2.2. Our targets are logic circuits composed of a combinational logic CL and input/output

registers Reg_in/Reg_out (Figure 1.18). Compared to Figure 1.18, the combinational logic CL is

duplicated (CL1 and CL2). These two copies realize the same logic function as CL but they can be

implemented differently. Both CLs are fed by output vin of the input register. However, only output

vout1 of CL1 will feed the output register. Output vout2 of CL2 is instead used to validate data integrity

of the complete architecture. This validation is performed by comparing the primary output PO with

vout2 during a comparison window. If the two vectors matches up during this time window, error stay at

logic-0 indicating �No error detected�. If they are different, error will switch to logic-1 alerting the

problem.

Figure 2.4 Duplication/Comparison Scheme for Logic Circuits

Note that the comparison is placed after data capture of the output register. In this configuration,

error detection process will finish after CLK rising edge when the next computation has be launched.

Therefore re-computation phase (details in 2.3) will take two instead of one CLK cycles: one to calculate

new input and one to repeat the affected input.

vin

vout1
CL1

=
error

vout2
CL2

R
e

g
_

in

R
e

g
_

o
u

t

CLK

PO

PI

Chapter 2 � The Hybrid Fault-Tolerant Architecture

34

An alternative solution is to finish the comparison before the data capture (by comparing vout2 with

vout1 instead of PO). At CLK rising edge, either new computation will be launched if no error is detected

or re-computation is activated otherwise. Although only one CLK cycle is taken for transient error

correction, this solution requires a longer CLK period, even for fault-free operation, because delay time

of the comparator must be taken into account with CLs calculation time.

Supposing that fault-free operations happen most of the time, we will choose to keep the

architecture in Figure 2.4 which operates at the same CLK period as the original logic circuit (Figure 1.18).

The�error�signal�

The comparator itself consists of two stages: a local (bit to bit) comparison and a global comparison

which accumulates all local comparisons into a one-bit-signal error. The basic structure of a comparator

is presented in Figure 2.5. In the first stage, XOR gates are used to realize n bit-to-bit comparisons

between vout1 and vout2. Then, the n signals Ci (i=1..n) are combined in the second stage by an OR-tree,

in order to provide the error signal. The presented circuit is called static comparator because it is made

of static CMOS gates.

Figure 2.5 Static Comparator Structure

While combinational logics CL1 and CL2 realize the same logic functions, their timing characteristics

often differ. In fact, CL1 and CL2 might be structurally different due to area/power optimizations. Even if

they are structurally identical, both circuits are likely to be affected by intra-die variations. The different

timing characteristics of the CLs conduct to differences between vout1 and vout2 during the

computation time tCL of the CLs. Consequently, error signal is not stable during that period. In addition,

the comparator itself has a propagation delay tCOMP during which glitches may occur at the error signal.

Therefore, error must be used only during a stable period called �comparison window�, after tCL + tCOMP

and before the next computation.

In a fault-free context, error is constantly at logic-0 during the comparison window. If a hard error

occurs, the problem is detectable since error will change to a logic-1. For soft and timing errors, the

detection may be effective since glitches and delay transitions are observable at error signal during the

comparison window. Fault-free and faulty (hard, soft and timing errors) cases are highlighted in Figure

2.6.

Although it is capable of detecting hard, soft and timing errors that affect CLs, the static comparator

has a drawback: electrical mask. In fact, soft and timing errors result in small differences (glitches or late

transitions) between vout1 and vout2 during the comparison window. These slight differences might be

�.

�.

�.

�.

vout1[1]

vout1[2]

vout1[3]

vout1[4]

vout1[n]

vout2[1]

vout2[2]

vout2[3]

vout2[4]

vout2[n]

C1

C2

C3

C4

Cn

error

Local comparison Global comparison

Chapter 2 � The Hybrid Fault-Tolerant Architecture

35

filtered out by the XOR gates. If they are not, small glitches produced by the local comparison might also

be masked by the multi-layer Or-tree. This results in undetectable errors. In order to solve this problem,

we integrate dynamic CMOS gates to the comparator structure illustrated in Figure 2.5.

Figure 2.6 Error Signal

Dynamic�CMOS�

Dynamic or clocked CMOS gates are used to increase speed, decrease power dissipation while

reducing the complexity of combinational logic circuits [BAK10]. The basic idea is to use capacitive inputs

of the MOSFET to store a charge and thus remember a logic level for later use.

Figure 2.7 illustrates the principle of a dynamic gate using a pull-down network (PDN). In this Figure,

CL presents the input capacitance of the next logic stage or of an output inverter. When the clock � is at

logic-0 (pre-charge phase), T1 is opened while T2 is closed. CL node is therefore charged to VDD and

output is at logic-1. When � switches to logic-1 (evaluation phase), T1 is closed while T2 is opened.

Depending on the NMOS logic, the pre-charged capacitance CL might be discharged to GND (output

switches logic-0) or stay at VDD (output remain logic-1).

Figure 2.7 Dynamic CMOS Logic Figure 2.8 Dynamic OR

Compared to static CMOS structures, the dynamic CMOS presented in Figure 2.7 does not have a pull-

up network made of PMOS logic. This simplification gives dynamic CMOS gates with higher switching

speed and lower power consumption.

In Figure 2.8, we present the concrete example of a 4-input dynamic OR (DOR). The gate is controlled

by reset and DC signals. During the pre-charge phase, reset is at GND. Input capacitance of inverter INV1

VDD

Z
N

INV1
T7T6T5T4

C1 C2 C3 C4

T1

T2

T3

T8

reset

reset

DC

PDN

NMOS logic
�.

T1

T2

CL

output

input

�

�

VDD

Fault free

Hard error

Timing error

Soft error

wrong logic level

delayed

transition

glitch

n-th period (n+1)-th period

tCL tCOMP
Comparison

window

new

data arrival

Chapter 2 � The Hybrid Fault-Tolerant Architecture

36

is pre-charged to VDD, which puts output Z to logic-0. During the evaluation phase, reset and DC are both

at VDD, which means T1 is closed while T2 and T3 are opened. If all inputs Ci (i=1..4) are at logic-0 then

the PDN is closed and N is kept at logic-1 while Z remains at logic-0. If at least one of the inputs Ci turns

to logic-0 then a discharge current path exists. Consequently, N is pulled down to VDD and Z switches to

logic-1. Note that once the discharge happens, Z will remain at logic-0 until the next pre-charge phase.

During the evaluation phase, dynamic CMOS logic suffers from leakage currents. Even if the PDN is

closed, these currents still slowly discharge node N and causes a false logic value at output Z. Therefore,

we need a �keeper� to maintain N at logic-1 when the PDN is closed. Besides, the keeper must be weak

enough so that when the PDN is opened, node N can be pulled down to logic-0. In [DAS09], the authors

proposed a �weak keeper� formed by a two-inverter loop. However, in order to reduce the area

overhead, we decided to use a feedback transistor T8 as proposed in [BAK10].

Pseudo-dynamic�comparator�

There are different ways to use dynamic CMOS gate to improve the comparator. One method consists

of using the transition detector proposed in [DAS09]. This detector, presented in Figure 2.9, is capable of

detecting all transition arriving at input N during the high phase of clock DC. By adding this detector to

every output bits of the CLs, we can detect small glitches at these signals during the comparison

windows and thus detect soft and timing errors. However, this method leads to a very high area

overhead as the output number of CLs is normally high. We can also combine output signals of CLs into a

one-bit signal using a parity tree before employing the transition detector, as suggested in [PAL11].

Although less costly in term of area overhead, this method also has electrical masking problem caused by

the parity tree itself.

Figure 2.9 Transition Detector Structure

Another approach to implement the pseudo-dynamic comparator is to use dynamic gates inside the

static comparator structure. This is achieved by replacing one part of the static comparator with dynamic

CMOS logic. The obtained circuit is called pseudo-dynamic comparator.

Figure 2.10 shows our proposed pseudo-dynamic comparator. Similarly to the static comparator

presented in Figure 2.5, the pseudo-dynamic comparator has two stages: local and global comparison.

The local comparison stage consists of static XOR gates whilst the global comparison stage is an OR-tree

combining dynamic and static gates. The first layer of the Or-tree is made of dynamic OR gates (DOR)

while other layers use static OR gates. Compared to the static comparator, the pseudo dynamic

comparator has two more inputs, which control reset and DC inputs of the DOR gates. For the reason of

clarity, these control signals are not presented in Figure 2.10.

N
d0 d1

d2

d3

TD-TG VDD

d0

d2

d1

d3

reset

DC

error

Chapter 2 � The Hybrid Fault-Tolerant Architecture

37

As mentioned above, DOR gates� outputs are stable at logic-0 due to the keeper during the pre-

charge phase (reset�s low phase). During the evaluation phase (reset and DC�s high phase), if vout1 and

vout2 are stable and identical then all signals Ci (i = 1..n) are also at logic-0 which maintain DOR outputs

unchanged. Therefore, error remains constant logic-0 representing a fault-free case. Otherwise, if vout1

and vout2 differs, there will be either a constant logic-1 (presence of hard error) or glitches (presence of

soft or timing error) at the Ci signals. At least one of the DOR outputs will then turn to logic-1, which

makes error signal switch to logic-1 indicating �Error detected�. The Error signal will remain at logic-1

until the next reset signal is applied. Note that DC defines comparison window of the comparator during

its high phase.

Figure 2.10 Pseudo-Dynamic Comparator Structure

In the pseudo-dynamic comparator structure (Figure 2.10), only the first layer of the global

comparison stage is implemented using dynamic gates. In fact, when a glitch is captured by these gates,

their outputs remain logic-1 even if the glitch has disappeared. Therefore inputs of the second layer are

stable signals which will not be filtered by the OR tree. Consequently, static gates of this layer can also

guaranty correct operation of the global comparison.

As error detection is place right after the XOR gates, our pseudo-dynamic comparator is more

sensitive to small glitches caused by soft and timing errors compared to the static comparator. This

improvement will be proven in Chapter 3. Besides, our architecture also promises lower power

consumption. In fact, the global comparison stage is only active during the comparison window.

Moreover, in fault free conditions, which happen most of the time, DOR�s gate outputs are at constant

logic-0, which means that the Layer 2 of the global comparison stage (Figure 2.10) does not consume

dynamic power. Finally, we will show in the next chapter that our dynamic OR gate can be implemented

with no area overhead compared to a static gate. Therefore our pseudo-dynamic comparator obtains

better performance without introducing any area penalty.

Figure 2.11 present the complete error detection architecture using the pseudo-dynamic comparator.

Compare to Figure 2.4, a control module is added to generate DC and reset signals, which command this

comparator. Its logic implementation will be discussed in the next part.

�.�.

vout1[1]

vout1[2]

vout1[3]

vout1[4]

vout1[n]

vout2[1]

vout2[2]

vout2[3]

vout2[4]

vout2[n]

C1

C2

C3

C4

Cn

error

Local comparison Global comparison

DOR

DOR

DOR

�.

�. �.

Layer 2Layer 1

Chapter 2 � The Hybrid Fault-Tolerant Architecture

38

Figure 2.11 The Complete Error Detection Architecture

Control�logic�and�timing�constraints�

In order to use the pseudo-dynamic comparator for error detection, we must control the comparison

window by generating a DC signal. The comparison must start (DC at logic-1) only when both PO and

vout2 are stable. Otherwise, valid transitions (while combination logics are calculating) may be flagged as

errors. Applied to our architecture in Figure 2.11:

- The comparison must start when both outputs PO of register Reg_out and vout2 of

combinational logic CL2 are established. During a fault-free operation, CL1 and CL2 must

finish their calculation before the CLK capture edge. After this CLK edge, Reg_out will add a

delay tdff before PO is established, where tdff represents the CLK-to-Q delay of output D flip-

flops. Consequently, this condition requires the comparison windows (DC high phase) to

begin later than tdff after CLK rising edge.

- The comparison must finish before PO and vout2 start changing value. When both signals are

established, PO will only vary at next CLK capture edge. However, as the previous CLK capture

edge has released a new input vin, vout2 will start changing value after a delay tshort compared

to this edge (tshort represents the short path of CL2). Therefore, to satisfy this condition, the

comparison window (DC high phase) must finish earlier than tshort after CLK rising edge.

Besides, after each comparison, reset signal must be applied so that the pseudo-dynamic comparator

is ready for new error detection. This must happens between each comparison window and the next

one.

Figure 2.12 Timing Constraints for Error Detection Scheme

Figure 2.12 presents a correct timing scheme for our error detection method:

CLK

n
th

 edge (n+1)
th

 edge

DC

reset

vout1/vout2 (n-1)
th

 result n
th

 result

PO (n-1)
th

 result n
th

 result(n-2)
th

 result

0

tshort tdff+tCL

thigh tperiod

tDC- tDC+

tdff

tdff tshort

0

0

0

0 tDC-

vin n
th

 input

0

(n+1)
th

 input

tdff

(n-1)
th

 input

tCL

vin

vout1
CL1

=
error

vout2
CL2

R
e

g
_

in

R
e

g
_

o
u

t

PO

PI

Control
DC

reset

CLK

CLK

Chapter 2 � The Hybrid Fault-Tolerant Architecture

39

- After each CLK rising edge, input vin of CLs and primary output PO of the complete

architecture are unstable during the switching time tdff of Reg_in/Reg_out. Note that we

suppose here that both registers are made of same D flip-flops and thus have similar delays.

After this short duration, vin and PO remain stable until the next CLK rising edge.

- At n
th

 CLK edge (t=0), vout1 and vout2 are stable at the (n-1)
th

computation result. These

signals remain stable until t=tshort and then start varying. They return to stable state (n
th

result) at t=tdff+tCL where tCL represents the maximum between the computation times of

combinational logics CL1 and CL2.

- DC signal defines the comparison window of the Comparator during its high phase between

tDC- and tDC+ after each CLK rising edge. The timing constraints for this signal are:

 (2.5)

- Reset signal is activated (logic-0) each period before the comparison window which means

earlier than tDC- after each CLK rising edge.

Figure 2.13 illustrates a simple implementation of the control module which generates DC and reset

signal in Figure 2.12. In Figure 2.13-a, DC is generated using a buffer bufDC which adds a delay tbufDC to

CLK signal. In order to respect the condition (2.5), we must have:

 (2.6)

and

 (2.7)

 Condition (2.6) can be obtained by adjusting the delay of bufDC while condition (2.7) requires either thigh

reduction by controlling CLK duty cycle or tshort increase by adding delay buffers to LCs� short path

[DAS09]. In Figure 2.13-b, reset is created using a glitch generator combined of a buffer bufRComp, an

inverter invRComp and an NAND gate. Timing constraint of reset is obtained by fine-tuning delay time of

these gates.

a) DC signal

b) Reset signal

Figure 2.13 Control Module for Error Detection Architecture

Note that the reset signal will be applied every CLK cycle, regardless of errors occurrence. Therefore,

error is at logic-0 at the beginning of each period. If this signal turns to logic-1 during n
th

 period then the

(n-1)
th

 computation result is not correct.

2.2.4 Conclusion�

The complete error detection architecture studied in this section is presented in Figure 2.11. Using

Duplication/Comparison, it allows both transient and permanent error detections. Moreover, this

concurrent error detection method is more adapted for logic circuits with better detection capability and

lower area cost compared to coding techniques. Furthermore, to improve the detection of SET and

timing error, we use pseudo-dynamic comparator which detects small glitches better than classic static

comparators. We have also proposed control logics and different timing constraints for the error

detection scheme (Figure 2.13).

reset

bufRComp invRComp

CLK
CLK DC

bufDC

Chapter 2 � The Hybrid Fault-Tolerant Architecture

40

2.3 Transient�error�correction�

As we have seen in the last chapter, transient errors only affect circuits during a short period of time.

Therefore, by re-computing the affected input vectors when these errors have been removed, we will

obtain a correct operation. The advantage of this method is that it does not require particular knowledge

of the logic circuit and hence, respects our �Plug and Play� constraint. Moreover, this timing redundancy

is only used when an error is detected. Thus, it will not affect circuit�s performance during fault-free

operations which happen most of the time. Finally, integrating the re-computation scheme into our

existing error detection architecture does not require much area overhead compared to fault masking

techniques such as TMR.

Figure 2.14 Transient Error Correction Architecture

Figure 2.14 illustrates an implementation of the re-computation technique integrated into the

duplication/comparison error detection scheme presented previously. Compared to the last structure,

new control signals are introduced to drive the input register Reg_in. In a fault-free case, the structure

works exactly like the one presented in Figure 2.11. However, if an error is detected, the Control logic

will be informed by the error signal and the structure will enter into the �Transient Error Correction�

phase. The new signals will order Reg_in to repeat the affected input vector. Hence, a re-computation

will tolerate transient errors, and the complete structure will then return to normal operation.

2.3.1 Input�register�
As we have seen in 2.2.3, the pseudo-dynamic comparator is placed after Reg_out so that the logic

circuit�s performance is not affected during fault-free operations. However, this configuration leads to a

difficulty for the re-computation scheme. Let�s suppose that when our circuit is computing the n
th

 input

vector, an error occurs at CL1. The faulty n
th

 output will be captured at (n+1)
th

 CLK rising edge. At the

same time, Reg_in has passed a new input vector to CLs. Consequently, when the error is detected at

(n+1)
th

 period, the n
th

input is no longer available for a re-computation. This problem is illustrated in

Figure 2.15.

vin

vout1
CL1

=
error

vout2
CL2

R
e

g_
in

R
e

g_
o

u
t

CLK

PO

PI

Control
DC

reset

Chapter 2 � The Hybrid Fault-Tolerant Architecture

41

Figure 2.15 Re-computation Problem
Figure 2.16 Modified D Flip-Flop mDFF for Re-

computation

In order to use re-computation technique for transient error correction, we must resolve the problem

above. One solution is to use additional memories to preserve previous input data until the computation

result has been proven correct. As our architecture targets logic designs using D flip-flop based registers,

we propose in Figure 2.16 a modified D flip-flop mDFF that satisfies this requirement.

In Figure 2.16, a low level sensitive D latch (DLL) is used to store previous input in Qm when the

original D flip-flop (DFF) has captured a new value for Q. The time period during which Qm is maintained

in DLL is defined by a new clock signal CLKRegin and a control signal CRegin. The last signal controls also

a 2:1 multiplexer which decides whether the new data D or the memorized value Qm will be passed to Q

at the next CLK rising edge. Note that while the additional latch and the 2:1 multiplexer must be added

for each modified flip-flop, the OR gate which control enable input of DLL can be shared between them.

a) Fault-free case b) Error detected case

Figure 2.17 Modified D Flip-Flop�s Function

Figure 2.17 explains how a modified D flip-flop works in: a) Fault free case and b) Error detection case:

- In a fault free case (Figure 2.17-a), CRegin remains at logic-0. Hence, the multiplexor always

selects input D. Consequently, at CLK rising edge (t=tperiod), the main flip-flop DFF captures

new data from D and hence, Q switches from D1 to D2. Before this moment, the prior data D1

CLK

CLKRegin

D

D1

Qm

D1 D0

CRegin

Q

D0

D0

D0

0 tperiod

tCLKRegin- tCLKRegin+

error detected

Capture ignored

Re-computation

CLK

CLKRegin

D

D1 D2

Qm

D1 D2

CRegin

Q

D0

D0

D0 D1

0 tperiod

tCLKRegin- tCLKRegin+

Q
D

CLK

CLKRegin

CRegin

DFF

DLL
Qm

1

0

enable

D Q

Q D

CLK

n
th

 edge (n+1)
th

 edge

n
th

 period (n+1)
th

 period

(n+2)
th

 edge

vin
n

th
 input (n+1)

th
 input

PO
(n-1)

th
 output n

th
 output (faulty)

vout1
(n-1)

th
 output n

th
 output (faulty)

error

fault

error detected

n
th

 input is no more available

Chapter 2 � The Hybrid Fault-Tolerant Architecture

42

has been captured by DLL during its transparent window (low phase of CLKRegin) from

tCLKRegin- to tCLKRegin+. This data is stored in DLL as long as CLKRegin remains logic-1.

- In the situation of Figure 2.17-b, a fault becomes active while CLs are computing D0. The

erroneous result is then detected during the next CLK period, between t=0 and t=tperiod.

CRegin will turn to logic-1 during this period so that the enable input of DLL is also kept at

high level. Consequently, D1 is not captured during the next CLKRegin low phase from tCLKRegin-

to tCLKRegin+. Therefore, data D0 will be maintained by DLL. At the next CLK rising edge (t=tperiod),

the multiplexer will select this data for re-computation.

Our method requires two CLK cycles for transient error correction: the first cycle consists in raising

error signal while the second cycle is for re-computation. Also note that in Figure 2.17, when the error is

detected, input D does not change from D1 to D2 and hence, D1 remains available after the error

correction process. This must be controlled at system level and will be discussed further in Chapter 4.

The complete transient error correction architecture using modified input register is presented in

Figure 2.18. The additional control signals CRegin and CLKRegin are also driven by the control logic which

generates DC and reset for the pseudo-dynamic comparator. A resetControl signal is added which allow

initialization of the control module.

Figure 2.18 The Complete Transient Error Correction Architecture

2.3.2 Reset�signal��
With the error detection mechanism presented in the last section, error signal is reset to logic-0 at the

beginning of every CLK cycle. This is necessary because the architecture computes new input vector at

each period, regardless of errors occurrence. However, when we integrate errors correction to the

architecture, this periodic reset signal is no longer validate. In fact, as explained previously, each time an

error is detected for n
th

 input, the combinational logics will lost one CLK cycle running the (n+1)
th

 input

before re-computing the prior one. Once the error is corrected, the architecture will return to normal

operation and run the (n+1)
th

 input. Consequently, at system level, the (n+1)
th

 result must be ignored

when error correction mechanism takes place. One solution is to keep error signal at logic-1 indicating

invalid output during this period. To do that, we need to dismiss (keep at logic-1) the periodic reset signal

for one CLK period every time an error is detected. Furthermore, to minimize dynamic power

consumption of the comparator, we can keep reset at logic-1 during normal operation and active it only

when an error is detected (one period after the detection).

2.3.3 Transient�error�correction�mechanism�
Figure 2.19-a illustrates the complete transient error correction mechanism of our architecture:

- As the first period is fault-free, we have the same waveforms as those of the error detection

scheme. Note that even if Reg_in is modified, the registers still have similar delay time tdff

vin

vout1
CL1

=
error

vout2
CL2

R
e

g
_

in

R
e

g
_

o
u

t

CLK

PO

PI

Control

logic

DC

reset

resetControl

CLKRegin

CRegin

Chapter 2 � The Hybrid Fault-Tolerant Architecture

43

because it depends mainly on the CLK-to-Q delay of the D flip-flops, which remains identical

for both of them.

- During the second period, a transient fault occurs at combinational logic CL1 at t=t0. After in2

computation, this fault causes an error at output vout1 under the form of a faulty value of

out2 (out2*).

- The erroneous output out2* is captured by Reg_out at the third CLK rising edge. Although the

error is detected during this CLK cycle, a new calculation of input in3 has been launched at

the beginning of the period. Consequently, both CLs work as if no error were detected and

answer with out3.

- Error detection of the last cycle has triggered the error correction mechanism. Hence, during

the fourth period, Reg_in passes input in2 to CLs again. The re-computation happens during

this period. At the end of the cycle, both CLs provide the correct value out2.

- At the fifth period, Reg_out captures the corrected result out2 while Reg_in release input in3.

The system returns to its normal operation mode.

Note that during the fourth and the fifth CLK edges, PI does not change value so that in3 remain

available after the error correction process.

a) Error correction scheme b) Control signals

Figure 2.19 Transient Error Correction Mechanism

In Figure 2.19-b, we explain how the control signal manages the operations detailed above:

- For each period, CLKRegin turns to logic-0 between tCLKRegin- and tCLKRegin+ after CLK rising edge

so that at fault-free operation, prior input data will be captured by the additional latches DLL

of Reg_in before its main flip-flops DFF pass to new input. The stored data will be available

until the next CLKRegin falling edge.

- The transient fault (t=t0) causes a difference between PO and vout2 during the third CLK

period. The pseudo-dynamic comparator detects this error during its comparison window and

raises error signal to logic-1, triggering the error correction process.

- When error turns to logic-1, it makes CRegin switch to high level too (t=t1). So, during the next

CLKRegin low phase, data capture DLL is ignored. Therefore, previous input data in2 remains

stored at these latches. Consequently, at the forth CLK rising edge, this stored input data is

selected for re-computation because CRegin is still at logic-1. After this edge, CRegin returns

to logic-0 (t=t2) so that new input will be computed at the next period.

- As the error is detected at the third CLK period, reset signal of the pseudo-dynamic

comparator is not activated (i.e. is kept at logic-1) until the fifth cycle. That�s why at the third

reset

DC

error

CLKRegin

CRegin

No reset for

one period

No capture

of DLLs

Re-computation

Fault at

CL1

0 tDC- tDC+

t1 t2

tperiod

0 tCLKRegin- tCLKRegin+

t0

CLK

PI

vin

in1 in2 in3

in1 in2 in3 in2 in3

vout1 out1 out3 out2 (corrected)

Fault at CL1

PO
out1 out2* out3 out2

out1 out2 out3 out2vout2

out2*

0 tperiod t0

tdff

out0

0

tdff

tshort tCL+tdff

0

out0

out0

Chapter 2 � The Hybrid Fault-Tolerant Architecture

44

and the fourth CLK cycle, error remains at logic-1 indicating that primary output PO must be

ignored. The fact that error remains at logic-1 during these periods is also used at system

level to control primary input flow PI so that no new input vector comes during the error

correction process. At the fifth period, the comparator is reset and the architecture returns to

normal operation.

2.3.4 Control�logic�and�timing�constraints�

DC�signal�

Compared to the error detection architecture, DC signal in transient error correction scheme has the

same constraints. Its high phase must be placed when:

- Primary output PO has been established (tdff after CLK rising edges where tdff represents the

CLK to Q delay of output D flip-flops)

- Output vout2 of combinational logic CL2 has not changed value (tshort after CLK rising edges

where tshort represents the short path of CL2)

We can use the same control logic as in Figure 2.13-a to generate DC signal, i.e. use a buffer bufDC to

delay the CLK signal. To satisfy the timing constraints, we must also assure (2.6) and (2.7) by adjusting

the delay tbufDC of the buffer, high phase duration thigh of CLK and short path tshort of the combinational

logics.

CLKRegin�signal�

The additional clock CLKRegin must guarantee a valid capture of the prior data by DLLs before the

input register releases new value. Therefore, three timing constraints must be satisfied:

- First of all, the data capture of additional latches DLL must happen when the prior data is still

available. As illustrated in Figure 2.16, these additional latches are placed at output of the

main flip-flops DFF. Consequently, to insure this timing constraint, the transparent window of

DLLs (CLKRegin low phase) must be placed before the capture edge of DFFs (CLK rising edge)

after which new data has arrived at Q.

- Then, a new data capture must happen only when the computation result of the last data has

been proven correct by the pseudo-dynamic comparator. As the comparator has a delay tComp,

the falling edge of CLKRegin must take place at least tComp after DC falling edge.

- Finally, the signal Q must be stable (at prior data value) during the setup and hold time

(tsetupDLL and tholdDLL) of latches to assure a good data capture. As Q changes value at CLK rising

edge and the falling edge of CLKRegin will be placed when Q is established, this constraint

means that:

§ CLKRegin low phase duration must be at least tsetup

§ CLKRegin rising edge must happen at least thold before CLK rising edge

Figure 2.20 CLKRegin Generator for Transient Error Correction Architecture

In Figure 2.20, we propose a simple generator for CLKRegin. The main idea is to use a glitches

generator to create CLKRegin low phase while DC is at logic-0. The buffer bufCLKRegin1 adds a delay

CLKRegin

bufCLKRegin1 bufCLKRegin2 invCLKRegin

ORCLKRegin

DC

Chapter 2 � The Hybrid Fault-Tolerant Architecture

45

tbufCLKRegin1 to DC so that CLKRegin falling edge happens at least tComp after the comparison window. Thus,

we must have:

 (2.8)

The duration of CLKRegin low phase is assured by bufCLKRegin2. As this phase must last at least tsetup,

the delay tbufCLKRegin2 must satisfy:

 (2.9)

 Finally, we must assure that CLKRegin rising edge happens at least thold before CLK rising edge. As in

our generator, CLKRegin rising edge corresponds to the falling edge of DC after being delayed by the

buffers, the inverter and the OR gate, this condition means that:

 (2.10)

Reset�signal�

As we have seen before, once an error is detected, we will wait for one CLK cycle before applying a

reset to the pseudo-dynamic comparator. To do that, we can employ the circuit presented in Figure 2.13-

b to generate a periodic signal CLKComp, and then introduce an additional Control signal to create reset

from CLKComp. The method is illustrated in Figure 2.21.

a) Control logic b) Waveform

Figure 2.21 Reset and CRegin Generator for Transient Error Correction Architecture

We see in Figure 2.21-b that during normal operation (before (n-1)
th

 period), Control is at logic-1.

When an error is detected at n
th

 period (t=t0), Control remains at logic-1 until t=t2 to keep reset at high

level during (n+1)
th

 period. It switches to logic-0 (t=t2) before the (n+2)
th

CLK rising edge so that a reset

will be applied to the comparator during this

period. After the re-computation, at t=t5, Control returns to

logic-1 and the architecture comes back to normal operation.

For a correct function of the architecture, Control must satisfy two conditions:

- First of all, its falling edge (t=t2) must happen after the rising edge of CLKComp during the

(n+1)
th

 period so that no reset is applied for this cycle.

- Then, its rising edge (t=t5) must also happen after the rising edge of CLKComp during the

(n+2)
th

period to make sure that a reset is applied correctly.

error

Control

reset

(n-1)
th

period

n
th

period

(n+1)
th

period
(n+2)

th

period

CLKComp

CRegin

t0

t1

t2

t3

t4

t5

CLKComp

bufRComp invRComp

CLK

Control
reset

error
CRegin

ANDCRegin

Chapter 2 � The Hybrid Fault-Tolerant Architecture

46

CRegin�signal�

We have explained previously that CRegin controls both prior data capture by additional latches DLL

and new data capture by main flip-flops DFF. When an error is detected at n
th

 CLK cycle for (n-1)
th

 output:

- CRegin turns from logic-0 to logic-1 to disable the n
th

 input captured by the latches. Thus,

CRegin rising edge must take place before the beginning of this capture at tCLKRegin-.

- CRegin remains at logic-1 until the next CLK rising edge so that the (n-1)
th

 input stored at DLLs

(Qm outputs of the latches) will be selected by the multiplexers. After this edge, CRegin must

return to logic-0 so that n
th

 input data (D inputs of the modified flip-flops) will be selected for

subsequent calculations.

CRegin signal can be easily generated using the Control signal discussed before. Figure 2.21 shows

how we can do that by simply combining error and Control using an AND gate ANDCRegin. We see that at

t=t0, when an error is detected, error turns to logic-1 while Control remains at logic-0 until t=t2 after the

(n+1)
th

 CLK rising edge. Consequently, CRegin rises to logic-1 at t=t1, just after t0. This rising edge must

happen before the beginning of CLKRegin low phase at tCLKRegin- after the CLK n
th

 edge. When Control is

switched to logic-0 at t=t2, CRegin also comes back to logic-0 at t=t3 during the (n+1)
th

 period. Therefore,

at (n+2)
th

 the architecture can return to normal operation. Note that before Control comes back to logic-

1 (t=t5), error has been reset to logic-0 at t=t4 and hence, CRegin remains at logic-0.

To guarantee a correct function of the architecture, we must assure that:

- The rising edge of CRegin happens earlier than tCLKRegin- after CLK n
th

 rising edge. For each

period, the latest error can be detected at tDC+ after CLK rising edge and the comparator has a

delay tComp. Therefore, this condition means that:

 (2.11)

where tANDCRegin represents the delay of ANDCRegin. As tCLKRegin- is controlled by the buffer

bufCLKRegin1, we can satisfy the equation above by controlling this gate so that:

 (2.12)

- CRegin remains at logic-0 after t=t3, which means that error falling edge (t=t4) must happen

before Control falling edge (t=t5).

Control�signal�

As explained previously, in fault-free operations, Control is stable at logic-1. When an error is

detected (error at logic-1), this signal drops to logic-0 during the next period and then returns to logic-1

one cycle later. This characteristic can be easily described by the finite state machine (FSM) in Figure

2.22-a where A represents the normal operation (error=�0�) when Control is at logic-1 and B represents

the cycle after an error is detected (error=�1�). Note that from B, regardless of the value of error (1=1),

the system will return to normal state A at the next clock edge.

a) Finite State Machine b) Control logic

Figure 2.22 Control Signal Generator for Transient Error Correction Architecture

DFFR

resetControl

DC

error

Control
A

B

error= �0�

error= �1�1=1

Chapter 2 � The Hybrid Fault-Tolerant Architecture

47

To realize the FSM described above, we will need a clock signal. As both rising and falling edges of

Control must happen after the rising edge of CLKComp (in two adjacent periods), one option is to use DC

signal which has the same characteristics. Moreover, by adjusting the delay of DC compared to CLK, we

can also guarantee that Control falling edge will take place after the falling edge of error signal (Figure

2.21).

In Figure 2.22-b, we propose a logic circuit that realizes the FSM. It is composed of an AND gate and a

D flip-flop (DFFR) whose asynchronous reset input is driven by resetControl signal. Control signal is

connected to the output of the flip-flop. Therefore, Control will be at logic-0 (or logic-1) if a logic-1 (or

logic-0) is captured by the flip-flop. During the initialization phase of the FSM, resetControl is at logic-0,

and Control will be set to logic-1 (state A). During normal operations, error is at logic-0 and output of the

AND gate will remain at low phase too. At DC rising edge, this logic-0 will be captured by the flip-flop

which makes Control remain at logic-1 (state A). If an error is detected then error will rise to logic-1 and

thus, input of DFFR will turn to logic-1 too. Therefore, at new DC edge, logic-1 is captured which pulls

Control to logic-0 (state B). Consequently, the output of the AND gate returns to logic-0 regardless of the

value of error. At next DC edge, this logic-0 will be captured and hence, Control will come back to logic-1

(state A).

Complete control logic for the transient error correction architecture is presented in Figure 2.23.

Figure 2.23 Control Module for Transient Error Correction Architecture

2.3.5 Conclusion�

The complete transient error correction architecture studied in this section is presented in Figure

2.18. Using a timing redundancy based fault-tolerance method, the architecture needs two CLK cycles to

tolerate transient errors. The error signal is kept at logic-1 during these two periods to inform the system

so that new primary inputs will be hold until the correction process is done. Besides, the input register is

modified to capture prior input data necessary for re-computation. Control signals for this register and

that of the pseudo-dynamic comparator are produced by the control module in Figure 2.23. New timing

constraints have been studied to assure good operation of the whole architecture.

2.4 Permanent�error�correction�

In the previous section, we explained how to use timing redundancy to tolerate transient faults in

logic circuits. Although simple and effective for temporary errors, this method does not work for faults

which last for more than two clock cycles such as permanent or intermittent faults. For example, let�s

suppose that aging phenomenon causes a permanent stuck-at-fault at combinational logic CL1. When

the fault becomes active, Duplication/Comparison mechanism will detect errors. However, when the

affected vector is re-computed, the fault remains in CL1 and causes a new error. Consequently, the

CLK DC

bufDC

DFFR

resetControl

error

Control

CLKRegin
bufCLKRegin1 bufCLKRegin2 invCLKRegin

ORCLKRegin

CLKComp

bufRComp invRComp

reset

CRegin

ANDCRegin

Chapter 2 � The Hybrid Fault-Tolerant Architecture

48

complete architecture stops working for this input vector. Note that even though CL2 still operates

correctly, it does not help tolerating faults because there will always be mismatches between outputs of

CLs which lead to error detection.

In order to resolve the problem above, our solution is to integrate hardware redundancy in the

existing architecture. The idea is to replace the affected combinational logic by a third one CL3 before

performing a new re-computation. This time, as both CLs operate correctly, the fault will be tolerated.

Figure 2.24 shows how we combine this permanent error correction technique and the ongoing transient

error correction structure to form a hybrid fault-tolerant architecture.

Figure 2.24 The Hybrid Fault-Tolerant Architecture

Compared to the transient error correction architecture presented in Figure 2.18, the hybrid fault-

tolerant architecture has three instead of two copies of the combinational logic (CL1, CL2 and CL3).

However, during normal operation, only two CLs (CL1 and CL2) run in parallel while the third one (CL3) is

put on standby. Consequently, only two out of three CLs consume dynamic power. This is how our

proposed method saves power consumption compared to the TMR technique. When an error is

detected, the architecture will perform a re-computation which tolerates transient faults. In the case

where errors persist after re-computation, a re-configuration will replace one of the two running

combinational logics (CL1 for example) by the third one (CL3). If the replaced CL1, which is now on

standby, is the faulty one then this re-configuration has eliminated the faults and the system can return

to normal operation after a new re-computation. Otherwise, we will need a new re-configuration to

finally put the affected CL2 on standby and use CL1 and CL3 to tolerate the fault.

The method described above works with the help of two additional modules (Figure 2.18) Demux and

Mux which represent respectively an input demultiplexer and an output multiplexer. Their roles are

selecting two running CLs while keeping the third one on standby. These modules receive control signals

from the control logic which now uses a new finite state machine (FSM) to decide which CLs run and

which CL does not.

In the following sub-section, we present details of Demux, Mux, FSM and the control logic.

2.4.1 Input�de-multiplexer�
In the proposed hybrid fault-tolerant architecture, the input demultiplexer Demux has two functions.

First of all, it selects two functioning combinational logics (CL1 and CL2 for example) by driving input

signal vin to their input vectors (i1 and i2). Then, it must keep the third circuit (CL3) in standby by

applying logic-0 to all of its input bits.

vout1

CL1

= errorvout2

CL2

R
e

g
_

in

R
e

g
_

o
u

t

CLK

PO

Control

logic

DC

reset

resetControl

CLKRegin CRegin

CL3

D
e

m
u

x M
u

x

CLK

PI
vin

i1

i2

i3

o1

o2

o3

Chapter 2 � The Hybrid Fault-Tolerant Architecture

49

d1 d2 d3 Configuration

1 1 0 CL1-CL2

0 1 1 CL2-CL3

1 0 1 CL3-CL1

Figure 2.25 Elementary input demultiplexer

To realize the function above, Demux consists of many elementary demultiplexers eDmux, one for

each input bit. In Figure 2.25 we propose a gate-level schematic for this circuit. The proposed eDmux is

made of three AND gates which all receive n
th

 bit of vin (vin[n]) as one input. Their remaining inputs are

driven by control bits d1, d2 and d3 provided by the control logic. In the table of Figure 2.25, we see that

to put a combinational logic, CL1 for example, on operation (or standby), we only have to keep its

corresponding control bit d1 at logic-1 (or logic-0).

Note that even at standby state, combinational logic still consumes leakage power. To optimize this

kind of power consumption, one idea is to find out an input vector for which the leakage power of CLs is

the smallest. Then, we can modify the Demux so that it applies this input vector while putting the CLs on

standby. Figure 2.26 shows an example of an optimized Demux for three-bit input vectors vin. The

control bits used for this Demux are the same as those in Figure 2.25. Using this demultiplexer, when a

circuit is put on standby, its input vector will be kept at �010� instead of �000�.

Figure 2.26 Example of an Optimized Input Demultiplexer

2.4.2 Output�multiplexer�
While the input demultiplexer selects two running circuits (CL1 and CL2 for example) by applying vin

to their inputs (i1 and i2), the output multiplexer Mux must drive their output vectors (o1 and o2) to its

outputs vout1 and vout2. These vectors will then be compared to detect errors. Vout1 is also captured by

the output register Reg_out to provide the primary output PO.

As for the input demultiplexer, Mux is also combined of several elementary multiplexers eMux, one

for each primary output bits of the hybrid fault-tolerant architecture. In the flowing, we will present

different ways to implement eMux.

Method�1�

In Figure 2.27, we present a simple elementary multiplexer eMux for the n
th

 output bit. It is made of

two 2:1 multiplexers mux1 and mux2 which are controlled by m1 and m2 signals. Output vout1[n] of

mux1 is connected to o1[n] or o2[n] when m1 is at logic-0 or logic-1, respectively. Meanwhile, output

vout2[n] of mux2 is connected to o3[n] or o2[n] when m1 is at logic-0 or logic-1, respectively. The table

of Figure 2.27 summarizes different values of the control bits and the corresponding configurations.

d2

d3

vin[2]
i2[2]

i1[2]

i3[2]

d1

d2

d1

d3

vin[3]
i2[3]

i1[3]

i3[3]

d2

d1

d3

vin[1]
i2[1]

i1[1]

i3[1]

Bit 1 Bit 2 Bit 3

d2

d1

d3

vin[n]
i2[n]

i1[n]

i3[n]

Chapter 2 � The Hybrid Fault-Tolerant Architecture

50

m1 m2 vout1 vout2 Configuration

0 1 o1 o2 CL1-CL2

1 0 o2 o3 CL2-CL3

0 0 o1 o3 CL1-CL3

Figure 2.27 Elementary output multiplexer � Method 1

The eMux presented above is very simple. But using this structure, vout1 is never connected to o3

while vout2 cannot be connected to o1. This constraint will limit the performance of our hybrid fault

tolerant architecture with regard to timing issues. Let us suppose that for a certain input vector, CL1 has

a longer calculation time due to process variations. As a result, its output o1 is established after CLK

rising edge but still before the comparison window. When o1 is connected to vout1, Reg_out always

captures a faulty result. Therefore, there is only one configuration of Figure 2.27 that can operate

correctly: CL2-CL3. A possible solution that allows error correction when CL1 is running consists in

connecting o1 to vout2. As vout2 is used for comparison after CLK edge, this configuration allows

additional time for CL1 to finish its computation.

Method�2�

We propose another eMux that is composed of four 2:1 multiplexers in Figure 2.28. This circuit is

control by the same signals m1 and m2 as in the previous method. The table of Figure 2.28 shows

different configurations corresponding to various values of these signals. The first two configurations

work exactly like in Method 1. The third configuration is slightly different. In fact, when both m1 and m2

are at logic-0 we will still have CL1 and CL3 work in parallel. However, output o1 of CL1 is connected to

vout2 while output o3 of CL3 is connected to vout1. Consequently, by using this bigger eMux, we can

improve the performance of the hybrid fault-tolerant architecture.

m1 m2 vout1 vout2 Configuration

0 1 o1 o2 CL1-CL2

1 0 o2 o3 CL2-CL3

0 0 o3 o1 CL3-CL1

Figure 2.28 Elementary output multiplexer � Method 2

Tri-state�buffer�

Another way to implement an elementary multiplexer is to use active-low tri-state buffers. Controlled

by a signal c, these buffers have two states. When c is at logic-0, they work like normal buffers and

hence, their outputs and inputs have the same logic values. However, when c is at logic-1, their output

will be held in a high-impedance state (i.e. disconnected from the rest of the circuit). We can simply think

of the tri-state buffer as a switch. The switch is opened when c is at logic-0 and closed when c is at logic-

1.

0

1
0

1

0

1
0

1

vout1[i]

vout2[i]

m2
m1

o1[i]

o2[i]

o3[i]

o1[n]

o2[n]

o3[n]

vout1[n]

vout2[n]

m1

m2

0

1

1

0

mux1

mux2

Chapter 2 � The Hybrid Fault-Tolerant Architecture

51

m1 m2 m3 vout1 vout2 Configuration

1 1 0 o1 o2 CL1-CL2

0 1 1 o2 o3 CL2-CL3

1 0 1 o3 o1 CL3-CL1

Figure 2.29 Elementary output multiplexer � Tri-state buffer

Figure 2.29 explains how we can use active-low tri-state buffers to make an eMux. The circuit is

controlled by three signal m1, m2 and m3. To make two circuits (CL1 and CL3 for example) run together,

we must keep their respective control signals (m1 and m3) at logic-1 and the third one (m2) at logic-0.

Therefore, we can use the same control signal as those of the input demultiplexer Demux (Figure 2.25).

However, the control logic must assure that in no case, two control signals can be at logic-0 at the same

time. Because otherwise, there will be more than one signal connected to the same bus, which is not

allowed. The table of Figure 2.29 shows that with the proposed circuit, we can have the same

configurations as Method 2, with optimized performance of the hybrid fault-tolerant architecture.

Note that we can also realize the same circuit using transmission gates (pass-gates) instead of tri-

state buffers. However, while usually being more costly in term of silicon area, the tri-state buffers have

advantages of output drive-strength compared to transmission gates.

2.4.3 Reconfiguration�finite�state�machine�
The Finite State Machine (FSM) manages the re-configuration of the hybrid fault-tolerant architecture

by deciding which two circuits run in parallel. When an error is detected, two tolerant schemes are

investigated:

- In the first scheme (FSM1), the architecture will not be re-configured when the first error

occurs. Two working circuits will run the affected input vector one more time. If the error is

transient then it will be corrected after this re-computation and hence, the architecture can

return to normal operation. However, if the error remains, the FSM must re-configure the

architecture before applying the re-computation. This time, the faulty circuit will be

eliminated and the architecture can then operate correctly. Note that when an error is

detected, we do not know which combinational logic was affected by faults. Consequently, it

might take two re-configurations in order to tolerate permanent faults.

- The second fault-tolerant scheme (FSM2) consists of changing the configuration each time an

error is detected. This method also takes one re-configuration to correct transient errors,

and maximum two re-configurations to tolerate permanent faults in one of the CLs. However,

supposing that the possibility of having permanent faults are equal for the three

combinational logics, we have 50% of chance that one re-configuration is enough to eliminate

the faulty one. Therefore, this method might be faster for permanent fault-tolerance.

o1[i]

vout1[i]

vout2[i]

m3

o2[i]

o3[i]

m3

m1

m2

m1

m2

Chapter 2 � The Hybrid Fault-Tolerant Architecture

52

a) FSM1 b) FSM2

Figure 2.30 Finite state machine diagrams

Diagrams of both FSMs are illustrated in Figure 2.30 while their functioning examples are shown in

Table 2.2 (FSM1) and Table 2.3 (FSM2).

In both diagrams of Figure 2.30, states of FSMs are represented by circles. The initial state is in gray

while the final state (the one when no more correction/tolerance is possible) is in black. Transitions

between different states at each clock edge are illustrated by arrows. Solid arrows correspond to error

detected situations while dotted arrows are used when there is no error occurrence. There are three

branches in each diagram, corresponding to the three possible configurations (1-2, 2-3 and 3-1). For

example, 1-2 means that CL1 and CL2 are running in parallel while CL3 is on standby.

In Table 2.2 and Table 2.3, the first row indicates the computation cycle; the second row specifies the

current configuration; the third row highlights the input sequence; the last row points out the active

state in the corresponding diagram in Figure 2.30. In both examples, when the first transient error (T)

occurs at the 3
th

 cycle, input vector V3 is repeated for re-computation. However, the configuration

remains 1-2 for FSM1 (state A1 and B1) while switches from 1-2 (state A2) to 2-3 (state B2) for FMS2. In

both cases, the transient error is corrected after one re-computation. From 5
th

 computation, a

permanent fault (P2) is activated at CL2 by input vector V4. FMS1 realizes four faulty computations of V4

using configurations 1-2 and 2-3 before operating correctly with configuration 3-1 at the 9
th

computation.

Meanwhile, FSM2 take only one computation cycle to switch from 2-3 to 3-1 at 5
th

 period.

In the finite state machine diagrams above, the architecture stops working (black state in Figure 2.30)

after six re-computations. This is our choice so that the hybrid fault-tolerant architecture can tolerate

transient errors which occur once during the tolerance of a permanent error. This will be discussed

further in Chapter 4. However, note that depending on the application, we can choose to stop the FSM

after another number of re-computations.

A2

E2

C2

B2

E2

D2

No error

Error detected

1-2

2-33-1

A1

B1

C1

D1

F1

E1

No error

Error detected

1-2

2-33-1

Chapter 2 � The Hybrid Fault-Tolerant Architecture

53

Computation 1 2 3 4 5 6 7 8 9 10

Configuration 1-2 1-2 1-2 1-2 1-2 1-2 2-3 2-3 3-1 3-1

Input vector V1 V2 V3 V3 V4 V4 V4 V4 V4 V5

Current state A1 A1 A1 B1 A1 B1 C1 D1 E1 F1

 ñ ñ ñ ñ ñ

 T P2 P2 P2 P2

Table 2.2 FSM1 Functioning Example

Computation 1 2 3 4 5 6 7 8 9 10

Configuration 1-2 1-2 1-2 2-3 2-3 3-1 3-1 3-1 3-1 3-1

Input vector V1 V2 V3 V3 V4 V4 V5 V6 V7 V8

Current state A2 A2 A2 B2 C2 D2 E2 E2 E2 E2

 ñ ñ

 T P2

Table 2.3 FSM2 Functioning Example

2.4.4 Control�logic�and�timing�constraints�
Unlike the error detection architecture (Figure 2.11) and the transient error correction architecture

(Figure 2.18), the complete hybrid fault-tolerant architecture has to insert two modules in the data path,

between primary input PI and primary output PO: the input demultiplexer Demux and the output

multiplexer Mux. This affects the calculation time of the complete structure. However, delays (tDemux and

tMux) of the two modules are normally negligible compared to the logic circuit�s calculation time. It is

because they are made of small elementary circuits (eDmux and eMux) running in parallel. Moreover, as

the hybrid fault-tolerant is capable of tolerating timing errors, in non critical applications, we can use

more aggressive timing for the combinational logics which may results in a total delay of the fault-

tolerant architecture equal to the delay of the original logic circuit. To summarize, the additional

modules Demux and Mux do not affect significantly functional frequency of the logic circuit.

In the hybrid fault-tolerant architecture, we still need control signals of the transient error correction

architecture: DC and reset for the pseudo-dynamic comparator; CRegin and CLKRegin for the input

register; resetControl for the control logic. We can reuse the same logic circuits proposed in the last

section (Figure 2.23) for the new architecture:

- DC signal can be generated with respect to timing constraints in (2.6) and (2.7). However, in

(2.7) we must take into account the delay of Demux and Mux. Hence, tshort will represent the

short path between vin and vout2.

- CLKRegin must satisfy timing constraints in (2.8), (2.9) and (2.10).

- Reset and CRegin must respects (2.11) and (2.12).

Besides these four control signals, we will need to generate control bits of Demux and Mux in order to

perform architectural re-configurations. To do that, first of all, we will need to realize the finite state

machine FSM. Then, from the output of this FSM, we will produce these control bits.

Logic�circuit�of�the�finite�state�machine�

To design logic implementations of the FSM from the state diagram in Figure 2.30, we must define

firstly the clock signal that drives transitions of the FSM. As for the transient error correction scheme

presented in the previous section, fault correction in the hybrid fault-tolerant architecture also requires

two clock cycles. Suppose that a fault becomes active at (n-1)
th

 CLK cycle, it will be detected (error turns

Chapter 2 � The Hybrid Fault-Tolerant Architecture

54

to logic-1) at n
th

 period and the re-computation will take place at (n+1)
th

 period. Consequently, the re-

configuration must happen during n
th

 cycle after the error detection. As the latest detectable error is at

DC falling edge and the comparator has a delay tComp, the FSM must change state at least tComp after DC

low phase. This condition is the same as that of the data captured by additional latches DLL of Reg_in.

Therefore, we can use CLKRegin falling edge to drive the FSM.

We also need to define conditions that decide which state of the FSM will be active after each

CLKRegin falling edge. Let�s consider again the last example where a fault occurs at (n-1)
th

 CLK cycle. As

the re-configuration happens only at n
th

 CLK cycle, we need a signal which has a fixed logic value during

fault-free operation but changes to the opposite value at n
th

 period. The switching must take place

before CLKRegin falling edge of n
th

period and finish earlier than the next CLKRegin falling edge. CRegin is

such a signal. In fact, during fault-free operations, CRegin is at logic-0. When the error is detected at n
th

period, it switches to logic-1 before the transparent phase of Reg_in�s DLLs which begins at CLKRegin

falling edge. Then, it returns back to logic-0 before the next CLKRegin falling edge. The example above is

illustrated in Figure 2.31.

f1 f2 Configuration Comments

0 1 1-2 LC1 and LC2 work together

1 0 2-3 LC2 and LC3 work together

0 0 3-1 LC3 and LC1 work together

1 1 �Final state� FSM stops working

Figure 2.31 Clock and Condition

Signals of the Finite State Machine
Table 2.4 Outputs of the Finite State Machine

 As explained above, we will use CLKRegin falling edge to drive the FSM and CRegin as condition to

define the next active state at each clock edge. If CRegin is at logic-0 at CLKRegin falling edge then the

transition will correspond to dotted arrows (�No error�) in the diagrams of Figure 2.30. Otherwise, it is

defined by solid arrows (�Error detected�) of these diagrams. Besides these two signals, we can also use

the existing resetControl signal to define an asynchronous reset for the FSM during initialization of the

architecture.

The fact that we use CLKRegin as the FSM clock signal imposes an additional constraint for this signal.

From CLKRegin rising edge, the FSM outputs will be established after a delay tFSM which represents the

calculation time of the machine. Because these outputs must be ready before the next CLK rising edge

where re-computation process starts, CLKRegin rising edge must happen at least tFSM earlier than this

moment. This condition is similar to the one described by (2.10) which guarantees that CLKRegin rising

edge takes place at least thold before CLK rising edge. Therefore, it can be expressed by:

 (2.13)

We have seen in the last sub-section that the FSM defines three possible configurations of the

architecture as well as a final state when it stops working. Therefore, we will need two outputs bits f1

error

(n-1)
th

period

n
th

period

(n+1)
th

period
(n+2)

th

period

CRegin

CLKRegin

CLK

fault

DC

Re-configuration

Chapter 2 � The Hybrid Fault-Tolerant Architecture

55

and f2 to define these four situations. The values of these two bits and the corresponding configuration

are presented in Table 2.4.

In order to obtain a concrete gate level implementation of the FSMs, we use VHDL descriptions of the

modules and logic synthesis tools to generate the netlists. VHDL code for both FSMs of Figure 2.30 can

be found in Appendix A.

Control�signal�of�the�input�demultiplexer�

To control the input demultiplexer Demux, we need to generate the control bits d1, d2 and d3 for its

elementary module eDmux (table of Figure 2.25). To produce these bits, we use output signal f1 and f2

of the finite state machine (Table 2.4). Combining the two tables above, we obtain the truth table in

Figure 2.32-a. Note that in the last row of this table, the �Final state� is reached by applying logic-0 to all

control bits of Demux. This means that all CLs will be put on standby. The simple circuit in Figure 2.32-b

realizes our proposed truth table using two inverters and one XOR gate.

f1 f2 Configuration d1 d2 d3

0 1 LC1-LC2 1 1 0

1 0 LC2-LC3 0 1 1

0 0 LC3-LC1 1 0 1

1 1 �Final state� 0 0 0

a)Truth table b) Circuit

Figure 2.32 Control Logic for Input Demultiplexer

Control�signal�of�the�output�multiplexer�

Depending on the method used for the output multiplexer Mux, we will need different control

signals. For Method 1 (Figure 2.27) and Method 2 (Figure 2.28), we can see that control signals m1 and

m2 correspond exactly to output f1 and f2 of the FSM (Table 2.4). Meanwhile, to use tri-state buffers for

the Mux (Figure 2.29), we can use the same control bits d1, d2 and d3 of the input demultiplexer Demux.

2.5 Summary�

In this chapter, we have developed a hybrid-fault tolerant architecture capable of detecting and

correcting hard, soft and timing errors in combinational part of logic circuits. To obtain this objective, we

proposed three architectures, corresponding to three phase of the hybrid fault-tolerance:

- Error detection architecture: Employing Duplication/Comparison CED technique (Information

redundancy), this architecture detects both transient and permanent errors. To improve its

error detection capability, a pseudo-dynamic comparator is proposed to deal with small

glitches produced by soft and timing errors.

- Transient error correction architecture: Adding timing redundancy to the error detection

architecture, this architecture corrects transient error by re-computation. Our method

employs modified input register capable of keeping one previous input vector at each clock

cycle. This vector will be used for re-computation when an error is detected. While having the

same operation frequency as the original logic circuit, the architecture requires two clock

cycles to tolerate each transient error.

- Permanent error correction architecture (hybrid fault-tolerant architecture): A third copy of

the combinational logic CL is added to the previous architecture to tolerate both transient

and permanent errors. This CL is kept on standby state during normal operation. When

f1

f2

d1

d2

d3

Chapter 2 � The Hybrid Fault-Tolerant Architecture

56

permanent errors are detected in one of the two running CLs, a re-configuration is done to

replace the faulty CL by the third one. This process is performed by additional input

demultiplexer and output multiplexer. Different re-configuration schemes have been studied

with corresponding Finite State Machine.

For each one of the architectures above, we have proposed detailed logic implementation for

additional modules as well as their control logic and timing constraints. The use of these architectures

will depend on application fields of the original logic circuit. Tradeoff between their fault-tolerance

ability and their silicon area, power consumption costs must be considered. These tradeoffs of the hybrid

fault-tolerant architecture will be studied in the next chapter.

Chapter�3�

Evaluation�of�the�Hybrid�Fault-Tolerant�Architecture�

Chapter�3 Evaluation�of�the�Hybrid�Fault-Tolerant�Architecture�

Chapter�3 Evaluation of the Hybrid Fault-Tolerant Architecture ... 57

3.1 Context ... 58

3.2 Architecture description .. 59

3.2.1 Hybrid Fault-Tolerant Architecture ... 60

3.2.2 TMR architecture .. 60

3.2.3 Discussion ... 62

3.3 Logic synthesis.. 62

3.3.1 Dynamic CMOS standard cell creation ... 63

3.3.2 Combinational logic synthesis .. 64

3.3.3 Redundant modules synthesis .. 66

3.3.4 Fault-tolerant architecture synthesis ... 72

3.4 Timing behavior of hybrid fault-tolerant architecture ... 73

3.4.1 Comparator simulation ... 74

3.4.2 Control logic simulation .. 76

3.4.3 Hybrid fault-tolerant architecture simulation .. 78

3.4.4 Discussion ... 80

3.5 Power simulation ... 80

3.6 Summary .. 81

Chapter 3 � Evaluation of the Hybrid Fault-Tolerant Architecture

58

In this chapter, we evaluate the hybrid fault-tolerant architecture presented in Chapter 2 using

simulations with Electronic Design Automation (EDA) tools. The objective is to prove that this

architecture can be used for pipeline-style logic circuits (Figure 1.18) regardless of their logic function,

without any modification on the combinational part of circuits. This chapter also proves that

implemented hybrid fault-tolerant architectures have the predicted fault tolerance ability with regard to

transient and permanent faults. Besides, the hybrid solution is compared with TMR techniques in terms

of area overhead and power consumption to highlight the pros and cons of each solution.

The chapter is organized as follows. The first section presents the concept of fault-tolerant

architecture evaluation which is divided into four phases: RTL descriptions, logic synthesis, timing

behavior and power consumption simulations. Then, in the four following sections we study in detail

each of these phases. For each phase, we present different simulation steps and the required EDA tools.

Important results of each simulation are then discussed to highlight the conformity of hybrid fault-

tolerant methods with the objective defined in Chapter 2.

3.1 Context�

Our evaluation of fault-tolerant architectures is based on simulations using EDA tools. The simulation

process is divided into four phases:

- Architecture description: In this phase, we create a Register-Transfer Level (RTL) description

of fault-tolerant architectures combining of logic circuits and redundant modules. These

descriptions are written using Hardware Description Languages (HDL) such as Verilog or

VHDL.

- Logic synthesis: This step consists of converting RTL descriptions into gate-level

implementations (netlist). For this, we use logic synthesis tools that map abstract logic

functions to concrete gates of standard cell libraries while optimizing silicon area and delays

of the architecture. During synthesis, different timing constraints must be applied to

guarantee correct operations of fault-tolerant architectures.

- Functional and timing behavior simulations: Using netlists generated in previous phases, we

simulate functional and timing behaviors of architectures. Simulations are performed at

transistor-level using SPICE or SPICE-like simulators. Different types of fault are injected

during simulations to verify fault-tolerance capability of architectures.

- Power simulation: This phase is similar to the previous, except that no fault is injected. A set

of random input vectors are run to compare the power consumption of different

architectures. This comparison is performed by monitoring average and peak currents at

power node VDD during simulation runs.

The complete simulation flow is illustrated in Figure 3.1 where we also specify different files needed

in each phase. In the following subsections, we detail methods and simulation tools used for each

simulation.

Chapter 3 � Evaluation of the Hybrid Fault-Tolerant Architecture

59

Figure 3.1 Fault-tolerant Architecture Evaluation Flow

3.2 Architecture�description�

For evaluation purpose, the hybrid-fault tolerant (Figure 2.24) and the TMR architecture (Figure 1.8)

are used to tolerate transient and permanent faults in logic circuits whose structure is illustrated in

Figure 1.18. Such logic circuits are created using combinational logic (CL) part of ISCAS�85 [ISCAS85] and

ITC�99 [ITC99] benchmark circuits and input/output registers made of D flip-flops.

ISCAS�85 benchmark contains only combinational logics and hence no modification is needed.

However, ITC�99 benchmark circuits are circuits. Thus, we must remove sequential elements (D flip-flops)

from these circuits before using them. For each D flip-flop removed, one primary input nPI[n] and one

primary output nPO[n] will be added to the resulting CL. The new primary input corresponds to output Q

of the removed flip-flop while the new output corresponds to its input D. The combinational part

extraction is illustrated in Figure 3.2.

Figure 3.2 Combinational Logic Extraction from Sequential Circuits

Note that logic circuits created using extracted CLs and input/output registers do not have the same

logic function as original benchmark circuits because all feedback signals have been removed. However,

this does not affect our objective which consists of comparing different fault-tolerant architectures,

regardless of CL functions.

D Q

PO

nPO[1] D Q

CL

D Q...

CLK

POPI CL

...

nPI[1]

nPO[2]

nPI[2]
nPO[n]

nPI[n]

PI

Remove DFF

Add new inputs, outputs

Architecture description

Logic synthesis

Functional and timing

behavior simulation

Power consumption

simulation

.v

.vhdl

Abstract logical

description

Timing constraints

.db

Transistor-level

Gate-level netlist

.spi

.vec

Specific input

vectors with

fault injections

Standard cell library

Gate-level

.vec

Random input

vectors

.v

.vhdl

Chapter 3 � Evaluation of the Hybrid Fault-Tolerant Architecture

60

In Appendix A, we illustrate an example of how Verilog netlists of CLs are created from original netlist

of benchmark circuits.

To create RTL descriptions of fault-tolerant architectures, beside HDL codes of CLs, we also require

descriptions of redundant modules as well as HDL codes of top-level modules. The creation of these

modules is detailed in the following sub-sections.

3.2.1 Hybrid�Fault-Tolerant�Architecture�
As illustrated in Figure 2.24, the hybrid fault-tolerant architecture employs three copies CL1, CL2 and

CL3 of logic circuits� combinational part CL. For these modules, we can use the same CL Verilog

descriptions extracted from benchmark circuit netlists (Figure 3.2). Note that using the same HDL code

we can create different gate-level implementations during logic synthesis to simulate variability. This will

be explained further in the next section.

Input register Reg_in, input demultiplexer Demux, output multiplexer Mux and output register

Reg_out are created using identical sub-modules. Reg_in is made of nbInput identical modified flip-flops

mDFF (Figure 2.16), where nbInput represents input number of CLs. Demux is made of nbInput

elementary demultiplexers eDmux (Figure 2.25). Mux is made of nbOutput elementary multiplexers

eMux (Figure 2.27, Figure 2.28 or Figure 2.29), where nbOutput represents output number of CLs.

Reg_out is made of nbOutput D flip-flop. We use generic logic functions and behavioral Verilog to

describe sub-modules, and then generate complete modules using nbInput and nbOutput as parameters.

HDL description of the control module is divided into three sub-modules:

- The first sub-module consists of control logic for transient error correction (Figure 2.23),

which generates DC, reset, CRegin and CLKRegin signals from CLK, resetControl and error. To

guarantee correct timing behavior of this sub-module, we do not use generic logic functions

but specific gates from standard cell library. Note that this sub-module must be keep

untouched during logic synthesis. This will be detailed further in the next section.

- The second sub-module is the Finite State Machine FSM. Two versions of FSM corresponding

to state diagrams in Figure 2.30 can be described in behavioral Verilog. Output values f1 and

f2 of this sub-module corresponding to different FSM states are shown in Table 2.4.

- The third sub-module receives FSM outputs and provides control signals for Demux and Mux

modules that re-configure the hybrid fault-tolerant architecture in case of errors occurrence.

It can be described with Verilog generic logic functions, using Figure 2.32.

Unlike other modules, the pseudo-dynamic comparator (Figure 2.10) cannot be described in Verilog

using generic logic functions. This is due to the dynamic characteristics of DOR gates. These gates must

be created, added to the standard cell library and instanced together with generic XOR, OR gates in

structural Verilog description of the dynamic comparator. The creation of DOR gates will be detailed

further in this chapter.

After making all modules, we describe the complete hybrid fault-tolerant architecture (top-level)

using structural Verilog. Examples of concrete HDL codes of each module and the complete architecture

are presented in Appendix A.

3.2.2 TMR�architecture��
There are different methods to implement TMR architecture for logic circuits, depending on which

part of this circuit is triplicated. In Figure 3.3, we present two TMR structures that will be compared with

the hybrid fault-tolerant architecture. The first implementation (Partial TMR, Figure 3.3-a) consists of

triplicating only combinational logic (CL) part of the logic circuit while the second one (Full TMR, Figure

Chapter 3 � Evaluation of the Hybrid Fault-Tolerant Architecture

61

3.3-b) requires triplications of both combinational and sequential parts. While having smaller area

overhead, the Partial TMR solution introduces a module Voter in the data path of the structure.

Consequently, this architecture requires longer CLK period which results in slower operation. Moreover,

a timing error at the Voter will be captured by Reg_out without being tolerated. Problems above can be

solved using Full TMR solutions. By putting the Voter after output registers, it preserves functioning

speed of logic circuits while avoiding timing error. Furthermore, triplicated registers will be immune to

single SEU because they can only affect at most one vector among vout1, vout2 and vout3. Note that in

Full TMR architecture, input registers are also triplicated so that timing errors caused by each register

can also be tolerated.

a) Partial TMR b) Full TMR

Figure 3.3 TMR Structure for Logic Circuits

For comparison purpose, we use the same CLs as those previously created for the hybrid fault-

tolerant architecture. Besides, we can also reuse output register Reg_out of this architecture for TMR

solutions (Reg_out for Partial TMR and Reg_out1, Reg_out2, Reg_out3 for Full TMR).

Input registers of TMR architectures (Reg_in for Partial TMR and Reg_in1, Reg_in2, Reg_in3 for Full

TMR) are simpler than that of the hybrid fault-tolerant structure. Only one D flip-flop is needed for each

CL input in structural Verilog description of this module. Consequently, we can use the same HDL code as

for output registers.

There are two types of voter that can be used for fault tolerance: bit-wise and word-wise voters. The

first solution consists of independent bit-by-bit votes, while the second solution is based on vote of three

whole input vectors. Table 3.1-a and b show examples that distinguish the two schemes. In both tables,

the first three columns present input vectors of the voter while the forth column corresponds to its

output vector. The word-wide voter has an additional output error which turns to logic-1 when and only

when the vote is impossible (there are not a couple of identical input vectors). In both table, correct bits

are in black while faulty bits are in red.

Input 1 Input 2 Input 3 Output

1100 1111 1100 1100

1100 1000 1010 1000

Input 1 Input 2 Input 3 Output error

1100 1111 1100 1100 0

1100 1000 1010 xxxx 1

a) Bit-wise Voter b) Word-wise Voter

Table 3.1 Bit-wise vs. Word-wise Voter

In Table 3.1-a and b, both voters work correctly in the first two cases where only one input vector is

erroneous. In the second case where both Input2 and Input3 are faulty, the word-wise voter does not

CL1

CL2

CL3

Voter

Reg_in1 Reg_out1

CLK

PO

i1 o1

o3

o2

vout1

Reg_in2

Reg_in3

i2

i3

Reg_out2

Reg_out3

vout2

vout3

PI

CL1

CL2

CL3

VoterReg_in Reg_outPI

CLK

PO
i

o1

o3

o2
vout

Chapter 3 � Evaluation of the Hybrid Fault-Tolerant Architecture

62

found two identical inputs and thus, raises an error signal. Meanwhile, the bit-wise voter continues

voting and answer a value. As the second bit of Input2 and Input3 are identical faulty logic-0, the second

bit of Output is also faulty logic-0.

In [MIT00b], authors demonstrated that the word-wise voter is more suitable for fault-tolerance

because it increases data integrity of TMR structures. Consequently, we will use this voter for our TMR

architectures. Verilog description of such voter can be created using generic logic functions and the

structure illustrated in Figure 3.4.

Figure 3.4 Word-Voter Architecture, Source: [MIT00b]

As for the hybrid fault-tolerant architecture, top-level descriptions of both TMR architectures are

created using structural Verilog. Examples of concrete HDL codes of the modules and the complete

architecture are presented in Appendix A.

3.2.3 Discussion�
In this section, we have create RTL descriptions of hybrid fault-tolerant as well as Partial and Full TMR

architectures for combinational part of ISCAS�85 and ITC�99 benchmark circuits. HDL codes of different

modules and complete architectures are presented in Appendix A. These codes only specify logic

functions and connections between modules regardless of the technology used to implement them.

Area, timing and power consumption information of architectures can only be extracted after logic

synthesis phase which will be detailed in the next section.

3.3 Logic�synthesis�

Logic synthesis is a process where we translate RTL descriptions of digital circuits and systems to

concrete implementations using specific gates. For this, we require standard cell libraries which contain

information about logic function, silicon area, power consumption and different delays of each gate. A

synthesis tool is then used to translate HDL codes to gate-level netlist of circuits.

In the scope of this thesis, we use commercial synthesis tool Synopsys Design Compiler® [DCSYS] and

the Nangate 45nm Open Cell Library (NOCL, [NOCL]) which contains standard cells of a 45nm technology

specified by Predictive Technology Model (PTM, [PTM]).

Our logic synthesis flow for fault-tolerant architectures is divided into 4 steps:

- Dynamic CMOS standard cells creation: In NOCL, there are only static CMOS gates. However,

to create pseudo-dynamic comparator (Figure 2.10) of the hybrid fault-tolerant architecture,

Chapter 3 � Evaluation of the Hybrid Fault-Tolerant Architecture

63

we require dynamic CMOS OR gates (Figure 2.8). These gates must be created using full

custom design style, characterized, and added to the library.

- Combinational logic synthesis: To guarantee correct comparison of different architectures,

the same gate-level netlists of CL must be use for the hybrid fault-tolerant and TMR

structures. Consequently, this module must be synthesized independently, and then kept

untouched during subsequent synthesis steps.

- Redundant module synthesis: In this step, we synthesize different versions of redundant

modules of the hybrid fault-tolerant architecture. Then, we compare these versions in terms

of silicon area and delay in order to decide which implementation should be used for the

fault-tolerant architecture.

- Fault-tolerant architecture synthesis: This step consists of synthesizing the complete fault-

tolerant architectures and comparing their silicon area.

In the following sub-section, we detailed each step together with synthesis results.

3.3.1 Dynamic�CMOS�standard�cell�creation�
As detailed in Chapter 2, we need dynamic OR gates to create pseudo-dynamic comparators. A 4-

input dynamic OR gate (DOR4_X1) is proposed in [TRA12]. It is designed according to design and

electrical rules of FreePDK process design kit [PDK], which was also used to create NOCL. DOR4_X1

transistors are also sized according to typical transistor dimensions of NOCL gates. These dimensions are

illustrated in Figure 3.5-a. For each transistor, W represents its channel width in nanometer. All

transistors have minimum channel length of 50nm.

Figure 3.5-b shows the layout of DOR4_X1 standard cell. The transistors from Figure 3.5-a are placed

as follows: The small N-well in the upper left corner contains pull-up transistor T9 of the inverter,

feedback transistor T8 as well as charge transistor T1; The Pwell at the bottom holds pull-down transistor

T10 of the inverter together with discharge transistors T2 and T3; The right hand side implements NMOS

transistors T4-T7 used for the inputs. With this design, DOR4_X1 has the same silicon area as a static 4-

input OR gates (OR4_X1) from NOCL.

The layout in Figure 3.5-b is characterized to extract parasite parameters as well as area, power

consumption and delay information. DOR_X1 can then be used in logic synthesis as other standard cells

from NOCL.

a) Transistor-level schematic b) Layout

 Figure 3.5 4-input dynamic OR gate DOR4_X1

VDD

OUT
N

D0 D1 D2 D3

T1

T3

T8

reset

reset

DC

W=255

T4
W=90

T5 T6 T7
W=90 W=90 W=90

W=180

T2
W=180

W=50

W=90

T10

T9

W=135

Chapter 3 � Evaluation of the Hybrid Fault-Tolerant Architecture

64

Note that in the scope of this thesis, we use 4-logic-input DOR gates because the highest fan-in static

OR gate in NOCL also has four inputs. However, higher fan-in DORs can also be used to optimize silicon

area and power consumption of pseudo-dynamic comparators.

3.3.2 Combinational�logic�synthesis�
During logic synthesis, different conditions must be specified to Design Compiler to guarantee correct

timing behavior of combinational logic CLs used in stand-alone logic circuits as well as in fault-tolerant

architectures.

Timing�constraints�in�logic�circuits��

Delays of combinational logic CLs must respect both setup and hold time constraints of logic circuits�

output register (Figure 1.18). While setup time violation can be easily avoided by increasing operational

clock period, hold time violations require more effort to be corrected during synthesis.

Small delay paths (short paths) between CL inputs and outputs are responsible for hold time violation

in output register of logic circuits. An example of short path is feedthroughs which are direct connections

between CL inputs and outputs. In our CLs, feedthroughs may come from both original benchmark

circuits� structure and the combinational part extraction. Let us consider the example of a logic circuit

illustrated in Figure 3.6 in which a feedback signal connects output Q of the n
th

 flip-flop to input D of the

m
th

 flip-flop (note that they may be the same flip-flop). After combinational logic extraction process

(Figure 3.2), a feedthrough path is created between nPI[n] and nPO[m].

Figure 3.6 Feedthrough Path Created by Combinational Part Extraction

Hold time violations in logic circuits can be handled automatically by EDA tools. In our case, Design

Compiler does this by inserting buffers or resizing gates to increase CL short path delays.

Timing�constraints�in�fault-tolerant�architectures��

Beside hold time violations, CL short paths must also be dealt with to guarantee correct function of

the pseudo-dynamic comparator in hybrid fault-tolerant architectures (Figure 2.24). In Chapter 2, we

have seen that CL outputs must be held stable during the comparison window of this comparator (Figure

2.12). This condition is specified by equation (2.7), which defines the minimum CL short path delay.

Similar to previous timing constraints, (2.7) can also be handled during logic synthesis by specifying a

minimum delay between all inputs and outputs of CLs using the command set_min_delay of Design

Compiler. Note that CL short path fixing may lead to higher silicon area and power consumption of CL

due to buffer insertions. However, it has been proven that these overhead are negligible for large circuits

[ERN03]. Besides, we can also reduce the duty cycle of CLK signal in the hybrid fault-tolerant architecture

to reduce the minimum delay defined by (2.7).

nPO[m]

POPI CL

nPI[m] nPO[n] nPI[n]
D Q D Q

Chapter 3 � Evaluation of the Hybrid Fault-Tolerant Architecture

65

Logic�synthesis�results�

As discussed above, during logic synthesis of CLs, minimum delay constraints are applied. For all

circuits, this parameter is set at 2ns. These chosen values correspond to the 1.5ns hold time of typical D

flip-flop DFF_X1 from NOCL library.

Table 3.2 shows logic synthesis result for CL part of biggest ISCAS�85 and ITC�99 benchmark circuits.

The first three columns present CL characteristics: name of original benchmark circuit, input and output

number of combinational part. The fourth column corresponds to area in square micrometer of

synthesized CL with applied timing constraints. The last column presents maximum delay in nanosecond

between inputs and outputs of CL.

Circuit Nb. Input Nb. Output
Area CL

(µm
2
)

Delay max

(ns)

c5315 178 123 5312 11.19

c6288 32 32 2928 8.18

c7552 206 107 4798 8.67

b14s 278 300 15000 9.00

b15s 486 520 27189 11.57

b20s 523 513 28096 11.03

b21s 523 513 27956 10.26

b22s 768 758 41729 9.92

Table 3.2 Area and Delay of Synthesized Combinational Logic

Discussion�

During logic synthesis of CLs, we have chosen important timing margins for short path delays, which

lead to high area overhead between CLs synthesized with and without constraints. There are two

reasons for this choice. First, due to important number of gates, our transistor-level power evaluations

are done at low SPICE-level in order to reduce simulation time. Consequently, large timing margins are

needed to prevent simulation errors due to the lost of precision. Second, all evaluations are done at

front-end stages of digital design flow, before place and route. Therefore, wire delays between gates are

not taken into account. This means short paths are under-estimated during synthesis, and hence, more

buffers are required to compensate the difference.

The important area overhead induced by short path correction is mainly due to our choice of

benchmark circuits, and does not represent area overhead of fault-tolerant architecture compared to

stand-alone logic circuits. In fact, in [ERN03] and [DAS09], similar minimum delay constraints are

performed for state-of-the-art processors with negligible area and power overhead.

Redundant�combinational�logics�

An important phenomenon that must be taken into account during logic synthesis of redundant CLs is

variability. We have seen in previous chapters that this phenomenon may result in different timing

characteristics of identical CL modules in the same fault-tolerant architecture. These variations cause

CLs� outputs to differ during transient phase of computation, and therefore affect power consumption of

the pseudo-dynamic comparator and the voter. To simulate this phenomenon, various minimum delays

are defined for different CL copies in a fault-tolerant architecture so that buffers are inserted unequally,

and result in variations of CL timing characteristics.

Chapter 3 � Evaluation of the Hybrid Fault-Tolerant Architecture

66

Note that the same set of timing constraints is used to synthesize CLs in TMR and the hybrid fault-

tolerant architectures to guarantee fair comparisons. For all architectures, the minimum path delay of

three CL copies CL1, CL2 and CL3 (Figure 2.24, Figure 3.3) are set at 2ns, 2.2ns and 2.1ns respectively.

Table 3.3 shows synthesized area of combinational logics with different timing constraints. The first

column presents original benchmark circuits� name while the three next column detail silicon area of

CL1, CL2 and CL3 in square micrometer. The fifth column shows average area of the three CL copies used

in fault-tolerant architectures. The last column details maximum delay in nanosecond of CLs, which

define operating frequency of fault-tolerant architectures.

Circuit
Area CL1

(µm
2
)

Area CL2

(µm
2
)

Area CL3

(µm
2
)

CL

(µm
2
)

Delay max

(ns)

c5315 5312 5737 5579 5543 11.88

c6288 2928 3090 3004 3007 8.18

c7552 4798 5246 5005 5016 9.44

b14s 15000 16969 15889 15953 10.59

b15s 27189 29644 28227 28353 12.11

b20s 28096 30322 28699 29039 11.48

b21s 27956 30325 29020 29100 10.42

b22s 41729 44520 42977 43075 11.54

Table 3.3 Area and Delay of Synthesized Redundant Combinational Logics

3.3.3 Redundant�modules�synthesis�
In this subsection, we detailed logic synthesis results of redundant modules. Different versions of

these modules, whose structure are presented in Chapter 2, are compared in term of area overhead and

delay.

Registers�

We have seen in Chapter 2 that there are two types of register used in fault-tolerant architectures.

The first type consists of using one D flip-flop for each input/output bits. Output register Reg_out of

hybrid fault-tolerant architectures (Figure 2.24) as well as input registers Reg_in, Reg_in1, Reg_in2,

Reg_in3 and output registers Reg_out, Reg_out1, Reg_out2, Reg_out3 of TMR architectures (Figure 3.3)

belong to this type. The second type of register is made of modified D flip-flops (Figure 2.16) that enable

re-computation possibility in hybrid fault-tolerant architectures.

In Table 3.4, we present synthesized input and output registers� area. The first three columns

correspond to characteristics of original logic circuits: name, CL input and output numbers. The fourth

column shows input register area of hybrid fault tolerant architectures while the fifth column presents

input register area of TMR architectures. The last column details output register area of all architectures.

All synthesized areas are expressed in square micrometer.

We can see in Table 3.4 that due to additional latches and multiplexers, second type registers (Reg_in

of hybrid fault-tolerant architectures) are twice larger than first type registers (Reg_in of TMR

architectures) of the same input number.

Chapter 3 � Evaluation of the Hybrid Fault-Tolerant Architecture

67

Circuit Nb. Input Nb. Output
Reg_in Hybrid

(µm
2
)

Reg_in TMR

(µm
2
)

Reg_out

(µm
2
)

c5315 178 123 1623 805 556

c6288 32 32 292 145 145

c7552 206 107 1879 931 484

b14s 278 300 2539 1257 1357

b15s 486 520 4440 2198 2351

b20s 523 513 4769 2365 2320

b21s 523 513 4769 2365 2320

b22s 768 758 7008 3473 3428

Table 3.4 Area of Synthesized Input and Output Registers

Input�demultiplexer�

Input demultiplexers Demux of hybrid fault-tolerant architectures (Figure 2.24) are made of

elementary demultiplexers eDmux (Figure 2.25), one for each CL input bit. Structure of eDmux after logic

synthesis is presented in Figure 3.7. Compared to Figure 2.25, AND gates are replaced by NOR gates and

inverters to reduce eDmux area. Note that inverters that generate cd1, cd2 and cd3 from d1, d2 and d3

signals can be shared between eDmuxes of a Demux. To enhance drive strength of cd1, cd2 and cd3

signals provided by the shared logic, additional buffers are automatically inserted by Design Compiler for

high input number CL.

Figure 3.7 Synthesized Elementary Input Demultiplexer

Beside silicon area, delay of input demultiplexer Demux is also an important factor. There are two

types of Demux delay that have influences on operations of hybrid fault-tolerant architectures:

- The first type is IN/OUT delay that consists of delay between data inputs (vin) and outputs i1,

i2, i3 of this module (Figure 2.24). For each eDmux in Figure 3.7, it corresponds to the delay

between vin[n] and i1[n], i2[n], i3[n]. This type of delay increases data path delay between

input and output registers of hybrid fault-tolerant architectures. Consequently, it affects

computation speed of architectures during fault-free operation.

- The second type is SELECT/OUT delay that exists between control bits d1, d2, d3 and outputs

of Demux. Beside inverters and NOR gates between d1, d2, d3 and i1[n], i2[n], i3[n] (Figure

3.7), inserted buffers at outputs of shared logic also contribute to this delay. This type of

delay does not exist during fault-free operations when d1, d2 and d3 are stable.

Consequently, it does not influence computation speed of hybrid fault-tolerant architectures.

cd2

cd1

cd3

vin[n]
i2[n]

i1[n]

i3[n]

d1

d2

d3

cd1

cd2

cd3

Chapter 3 � Evaluation of the Hybrid Fault-Tolerant Architecture

68

However, it defines the time needed for re-configuration of the architectures when errors

occur.

Logic synthesis results of Demuxes are presented in Table 3.5. The first and second columns of Table

3.5 correspond to original logic circuit name and CL input number. The third column shows synthesized

area in square micrometer of Demux. The two last columns present IN/OUT and SELECT/OUT delays in

picoseconds.

Circuit Nb. Input
Demux

(µm
2
)

IN/OUT

(ps)

SELECT/OUT

(ps)

c5315 178 561 70 340

c6288 32 95 70 160

c7552 206 650 70 390

b14s 278 892 70 280

b15s 486 1555 70 380

b20s 523 1673 70 390

b21s 523 1673 70 390

b22s 768 2469 70 320

Table 3.5 Area and Delays of Synthesized Input Demultiplexer

In Table 3.5, synthesis results have proven our hypothesis that IN/OUT delay is negligible compared to

maximum CL delay (Table 3.2). This allows hybrid fault-tolerant architectures to operate at almost the

same frequency as standalone logic circuits. We can also observe that SELECT/OUT delay varies with CL

input number, due to buffer insertion. However, this delay remains lower than 0.5ns. In further sections,

we will prove that this value satisfies different timing constraints that guarantee correct re-

configurations of hybrid fault-tolerant architectures before re-computation phase.

Output�multiplexer�

In Chapter 2, we have seen that there are three methods to implement output multiplexer Mux of the

hybrid fault-tolerant architecture (Figure 2.24), corresponding to three elementary output multiplexers

eMux presented in Figure 2.27 (Method 1), Figure 2.28 (Method 2) and Figure 2.29 (Method 3).

Table 3.6 compares synthesized area of Muxes created using the three methods. Name and CL output

number of original logic circuits are presented in the first two columns. The three next columns show

areas the three Mux versions. The two last columns detail area overhead of Method 2 and Method 3

compared to Method 1. Both overheads are expressed in percentage of Method 1 Mux area.

In Table 3.6, we can see that Method 1 provides significantly smaller Muxes area compared to other

methods. Area overhead of Method 3 compared to Method 1 is 157% for all circuits while overhead of

Method 2 compared to Method 1 is 73% for largest CL output numbers.

 Note that the constant ratio between area of Method 3 and Method 1 Muxes is due to the fact that

for each method, the area of synthesized Muxes is proportional to CL output number. This is because the

structures in Figure 2.27 (Method 1) and Figure 2.29 (Method 3) are optimized. No logic sharing among

eMuxes is possible and hence, total Mux area is equal to CL output number time the area of an eMux.

Chapter 3 � Evaluation of the Hybrid Fault-Tolerant Architecture

69

Circuit Nb. Output
Area (µm

2
) Area overhead

Method 1 Method 2 Method 3 2/1 3/1

c5315 123 458 789 1178 72% 157%

c6288 32 119 195 306 64% 157%

c7552 107 398 675 1025 70% 157%

b14s 300 1117 1921 2873 72% 157%

b15s 520 1936 3345 4979 73% 157%

b20s 513 1910 3299 4912 73% 157%

b21s 513 1910 3299 4912 73% 157%

b22s 758 2823 4879 7259 73% 157%

Table 3.6 Area of Synthesized Output Multiplexer

For Method 2, Mux area does not vary linearly with CL output number. In fact, after logic

optimization, the structure of eMux in Figure 2.28 is transformed into that structure in Figure 3.8. In a

Mux, the logic part that generates cm1, cm2 and cm3 signals from m1 and m2 signals can be shared

among eMuxes. However, when CL output number increases, buffers are inserted to preserve drive

strength of cm1, cm2 and cm3 signals. This explains the non linear variation of Method 2 Mux area. Note

that when CL output number is large, area of shared logic and inserted buffers are negligible compared

to total Mux area. For this reason, we have the same area overhear between Method 2 and Method 1

Muxes for high fan-out CLs.

Figure 3.8 Synthesized Elementary Output Multiplexer � Method 2

Beside area overhead, delays between inputs and outputs of Muxes are also an important selection

criterion. Similar to input demultiplexer Demux, there are two types of Mux delay that affect functions of

hybrid fault-tolerant architectures. The first type is delays between data input o1, o2, o3 and output

vout1, vout2 of Mux (Figure 2.24). These IN/OUT delays affect hybrid fault-tolerant architectures during

fault-free operations. They increase data path between input and output registers and thus, reduce

functional CLK frequency of the architectures. The second type consists of delays between selection bits

and outputs of Mux. These SELECT/OUT delays increase switching configuration time of hybrid fault-

tolerant architectures when errors occur.

Table 3.7 shows maximum delays estimated by Design Compiler (in picoseconds) for synthesized

Muxes for c6288, b14s and b22s benchmark circuits. In this table, the second line presents name and CL

output number of logic circuits. The three next lines correspond to different delays of Muxes created

m1

m2
cm1

cm2

cm3

o1[i]

o2[i]

o3[i]

cm1

cm2

cm3

cm2

cm1

cm3

vout2[i]

vout1[i]

Chapter 3 � Evaluation of the Hybrid Fault-Tolerant Architecture

70

with Method 1, Method 2 and Method 3. For each of these lines, second, third and fourth columns show

IN/OUT delay while the last three columns present SELECT/OUT delay.

IN/OUT (ps) SELECT/OUT (ps)

Circuit
c6288

(32)

b14s

(300)

b22s

(758)

c6288

(32)

b14s

(300)

b22s

(758)

Method 1 100 100 100 120 120 120

Method 2 130 130 130 560 810 760

Method 3 90 90 90 280 280 280

Table 3.7 Delays of Synthesized Output Multiplexer

From Table 3.7, we can see that IN/OUT delays of all methods do not vary with CL output number

because there is no logic sharing between data inputs and outputs of eMuxes. IN/OUT delay of Method 3

(90ps) is smaller than that of Method 1 (100ps) and Method 3 (130ps). However, differences between

these delays are negligible compared to maximum delays of CLs which are at order of 10ns.

Table 3.7 also shows that SELECT/OUT delay of Method 1 and Method 3 are constant while delay of

Method 2 varies with CL output number. This is due to buffers that are inserted to increase drive

strength of cm1, cm2 and cm3 signals in Method 2 (Figure 3.8). For this reason, SELECT/OUT delay of this

method is significantly higher than that of Method 1 and Method 3. However, this comparison does not

taken into account buffers that need to be inserted to enhance drive strength of m1, m2 and m3 signals

when using Method 1 and Method 3. Consequently, to keep a fair comparison, we consider SELECT/OUT

delay of Method 2 without inserted buffers. After Design Compiler, this delay is only 190ps.

Although Method 1 is the most cost effective and provides fastest Muxes, we have seen in Chapter 2

that it limits the performance of the hybrid fault-tolerant architecture with regard to timing errors.

Between two other methods, Method2 has smaller area overhead and lower SELECT/OUT delay. For this

reason, despite its delay which is slightly higher IN/OUT compared to Method 3, in subsequent

simulation, Method 2 Muxes are used for hybrid fault-tolerant architectures.

Comparator�

Using the 4-input dynamic OR gate DOR4_X1 presented in Figure 3.5, we create pseudo-dynamic

comparators for hybrid fault-tolerant architectures. Silicon area of these comparators is compared with

that of traditional static comparators whose structure is shown in Figure 2.5.

Table 3.8 shows area comparison between synthesized comparators. The first two columns show CL

characteristics: original benchmark circuit name and output number. The two third and fourth columns

detail synthesized area in square micrometer of static and pseudo-dynamic comparators used to detect

errors at CL outputs. The last column presents area overhead of pseudo-dynamic comparator compared

to static comparators. This overhead is measured in percentage of static comparators� area.

 Although DOR4_X1 is designed with the same area cost as a 4-input static OR (OR4_X1) from NOCL

library, pseudo-dynamic comparators still require some area overhead compared to static comparators.

This is mainly due to the fact that DOR4_X1 has a dynamic logic function that cannot be optimized during

logic synthesis.

Chapter 3 � Evaluation of the Hybrid Fault-Tolerant Architecture

71

Circuit Nb. Output
Static

(µm
2
)

Pseudo-dynamic

(µm
2
)

Area overhead

c5315 123 251 260 4%

c6288 32 65 67 3%

c7552 107 219 227 4%

b14s 300 622 638 3%

b15s 520 1062 1096 3%

b20s 513 1046 1082 3%

b21s 513 1046 1082 3%

b22s 758 1551 1608 4%

Table 3.8 Area of Synthesized Comparator

 Although they require small area overhead of 3%-4%, pseudo-dynamic comparators have higher

error detection capability and lower power consumption compared to static comparators. This will be

proven in subsequent sections. Moreover, since both comparator areas are negligible with regard to CLs�

area (Table 3.3), this overhead is insignificant compared to total area of fault-tolerant architectures.

Control�logic�

As stated in previous section, control logic module of hybrid fault-tolerant architectures is divided

into three sub-modules:

- The first sub-module generates DC, reset, CRegin and CLKRegin signals that control input

register and pseudo-dynamic comparator of hybrid fault-tolerant architectures. To guarantee

correct timing between these signals, instead of using Design Compiler to do logic synthesis,

we simply replace generic logic gate in Figure 2.23 by concrete instance of standard cells from

NOCL library. Different cells with various drive strength are used to modify delays between

signals. Buffers are also inserted for the same purpose. During logic synthesis of hybrid fault-

tolerant architectures in further step, this sub-module must be keep untouched to avoid any

area optimization that may modify its timing characteristics. In Appendix A, we provide the

implementation that has been proven work for our evaluation logic circuits which have

similar CL delays. The verification, which is performed using SPICE-like simulation of complete

fault-tolerant architecture with fault injection, is detailed in further sections. The total area of

the mentioned sub-module is 59µm
2
.

- The second sub-module corresponds to the FSM that defines configuration of hybrid fault-

tolerant architectures (Figure 2.24). Output value of this sub-module is presented in Table

2.4. Unlike other redundant modules, FSM implementations do not depend on original logic

circuits. Two versions of FSM correspond to state diagrams in Figure 2.30 are synthesized.

Area (in square micrometer) and maximum delay (in picoseconds) of synthesized FSMs are

presented in Table 3.9. We can see that the FSMs have similar silicon areas which are both

negligible compared to CL areas (Table 3.3). Their delays of about 500ps contribute to the re-

configuration time of hybrid fault-tolerant architectures in case of error occurrence. It will be

proven in further sections that these delays satisfy different time constraints established in

Chapter 2. In subsequent simulation, we use FSM2 as case study to control hybrid fault-

tolerant architectures.

Chapter 3 � Evaluation of the Hybrid Fault-Tolerant Architecture

72

Area (µm

2
) Delay(ps)

FSM 1 93.896 500

FSM 2 101.080 560

Table 3.9 Area and Delay of Synthesized Finite State Machine

- The third sub-module generates control signals d1, d2, d3 of input demultiplexer Demux and

m1, m2 of output multiplexer Mux from outputs f1, f2 of the second sub-module. As we use

the method in Figure 2.28 to implement Mux, f1 and f2 can directly be used as control signals

m1 and m2 respectively. Control logic circuit for d1, d2 and d3 (Figure 2.32) is synthesized by

Design Compiler. The resulted logic has a silicon area of 3µm
2

and a maximum delay of 70ps

which are both negligible compared to area and delay of CLs.

Voter�

We have seen that there are two possible voter implementations for TMR architectures. Synthesized

area and maximum delay of both implementations are presented in Table 3.10 for different logic circuits.

In this table, the first two columns show name and CL output number of original logic circuits. The third

column presents CLs� average area in fault-tolerant architectures (Table 3.3). The three next columns

detail area of synthesized bit-wise and word-wise voters as well as area overhead of word-wise solutions.

This overhead is expressed in percentage of bit-wise voters� area. The three final columns correspond to

maximum delay of bit-wise and word-wise voter together with delay overhead of word-wise

implementations. The delay overhead is also calculated in percentage of bit wise-voters� maximum

delay.

Circuit
Nb.

Output

CL

(µm
2
)

Area Delay

Bit-wise

(µm
2
)

Word-

wise (µm
2
)

Overhead
Bit-wise

(ps)

Word-

wise (ps)
Overhead

c5315 123 5543 393 984 150% 90 740 722%

c6288 32 3007 102 255 150% 90 610 578%

c7552 107 5016 341 858 152% 90 740 722%

b14s 300 15953 958 2447 155% 90 920 922%

b15s 520 28353 1660 4199 153% 90 1170 1200%

b20s 513 29039 1637 4139 153% 90 1130 1156%

b21s 513 29100 1637 4139 153% 90 1130 1156%

b22s 758 43075 2419 6152 154% 90 1190 1222%

Table 3.10 Area of Synthesized Voters

From Table 3.10, we can see that word-wise voters are significantly larger and slower than bit-wise

solutions. However, while voter areas remain small compared to CL areas, additional delays induced by

voters may have important influences on CLK frequency of TMR architectures. In fact, since CL maximum

delays are at orders of 10ns (Table 3.2), word-wise voters may cause TMR architectures to operate at

7%-10% lower speed compared to standalone logic circuits. Despite these drawbacks, in further

simulations, we will use word-wise voter which offer higher reliability for TMR architectures [MIT00b].

3.3.4 Fault-tolerant�architecture�synthesis�
Using implementation of different modules established in previous sub-section, we synthesize fault-

tolerant architectures for ISCAS�85 and ITC�99 benchmark circuits. Synthesis results are presented in

Table 3.11.

Chapter 3 � Evaluation of the Hybrid Fault-Tolerant Architecture

73

In Table 3.11, the first three columns detail characteristics of original benchmark circuits: name, CL

input and output numbers. The fourth column shows average area of three CL copies using in fault-

tolerant architectures (Table 3.3). The fifth column presents area of hybrid fault-tolerant architectures

while the sixth column details area of Partial TMR solutions. Area overhead of hybrid fault-tolerant

technique compared to Partial TMR is shown in the next column. This overhead is expressed in

percentage of Partial TMR architectures� area. The two last columns correspond to area of Full TMR

architectures and area reduction of hybrid fault-tolerant structures compared to them. This reduction is

calculated in percentage of Full TMR architectures� area.

Circuit Nb. Input Nb. Output
CL

(µm
2
)

Hybrid

(µm
2
)

Partial TMR Full TMR

Area

(µm
2
)

Overhead
Area

(µm
2
)

Reduction

c5315 178 123 5543 20322 18973 7,1% 21695 6,3%

c6288 32 32 3007 9931 9567 3,8% 10147 2,1%

c7552 206 107 5016 18886 17322 9,0% 20152 6,3%

b14s 278 300 15953 54776 52919 3,5% 58147 5,8%

b15s 486 520 28353 96960 93808 3,4% 102906 5,8%

b20s 523 513 29039 99377 95941 3,6% 105311 5,6%

b21s 523 513 29100 99561 96125 3,6% 105495 5,6%

b22s 768 758 43075 147234 142279 3,5% 156081 5,7%

Table 3.11 Area of Synthesized Fault-Tolerant Architectures

We can observe that area overheads of hybrid fault-tolerant architectures compared to Partial TMR

solutions are negligible for largest ITC�99 benchmark circuits (about 3.5%). This is not the case for c5315

and c7552 circuits of ISCAS�85 benchmarks. This can be explained by additional area of input register,

input demultiplexer and output multiplexer in hybrid fault-tolerant architectures which are important

compared to CLs� size.

Compared to Full TMR architectures, the area reduction realized using hybrid fault-tolerant technique

is of about 6% except for c6288 which has small CL input and output numbers.

3.4 Timing�behavior�of�hybrid�fault-tolerant�architecture�

The objective of this section is to verify the correct function of synthesized hybrid fault-tolerant

architectures. It is divided into three parts:

- Comparator simulation: This part consists of using SPICE simulations to study glitch detection

capability of the pseudo-dynamic comparator. Comparisons with static comparator are

performed to justify our choice of this module in hybrid fault-tolerant architectures.

- Control logic simulation: This part verifies the correct timing of different control signals

generated by synthesized logic modules. Due to the large size of this module, SPICE-like

simulations performed by Synopsys NanoSim [NNSIM] are used to reduce simulation time.

- Hybrid fault-tolerant architecture simulation: In this part, we use SPICE-like simulations to

verify the correctness of hybrid fault-tolerant architectures� operations in case of error

occurrence. During these simulations, glitches are injected at CL outputs to simulate different

type of faults.

Chapter 3 � Evaluation of the Hybrid Fault-Tolerant Architecture

74

3.4.1 Comparator�simulation�

Dynamic�OR�

We have seen in Chapter 2 that the sensitivity of DOR gates with regard to glitches is the key factor

that determines detection capability of pseudo-dynamic comparators. To evaluate this sensitivity, we

perform SPICE simulations of the DOR4_X1 gate presented in Figure 3.5. These simulations are

performed by Linear Technology LTSpice [LTSPICE].

In the simulations, the DOR4_X1 gate is reset once at t=50ps (logic-0 at reset input). Its evaluation

phase (logic-1 at DC input) is set between t=100ps and t=350ps. As the four inputs D0, D1, D2 and D3 of

DOR4_X1 are symmetric, we only apply glitches at D0 while the others are kept at logic-0 during the

entire simulation time. These 0-1-0 glitches are applied at t=200ps (during the evaluation window).

Figure 3.9 shows simulation results for two glitches with different durations: �1=50ps (large glitch,

Figure 3.9-a) and �2=15ps (small glitch, Figure 3.9-b). Waveforms of input D0 and output Z are presented

as V(d0) and V(z), respectively. We can observe that when a large glitch appears at D0, Z turns from logic-

0 to logic-1. After a transient phase which takes about 35ps, Z remains at high level. In the case of a small

glitch, Z also changes value but then returns to logic-0 when the glitch disappears. This can be explained

by the fact that the glitch duration is too small for Z to completely switch to logic-1. Consequently, it is

pulled down to logic-0 by the feedback transistor T8 (Figure 3.5) when D0 has returned to logic-0. In fact,

our simulations show that DOR4_X1 gate can detect a minimum glitch size of 16ps.

a) Large glitch b) Small glitch

Figure 3.9 Glitches Detection Capability of DOR Gate

Another factor that may affect DOR4_X1 function is the reset duration necessary to pull down its

output Z to logic-0 after error detection. Figure 3.10 presents our simulation results where a reset of

50ps is applied when Z is at stable logic-1. We can observe that this duration is enough to reset

DOR4_X1. In further simulations, we will prove that the synthesized control logic is able to provide such

reset signal.

Figure 3.10 Reset of DOR Gate

Chapter 3 � Evaluation of the Hybrid Fault-Tolerant Architecture

75

Pseudo-dynamic�versus�static�comparator�

To compare error detection capability of pseudo-dynamic (Figure 2.10) and static comparators (Figure

2.5), we use SPICE simulations for two comparators of two 4-input vectors. The Local comparison stage

of both comparators is made of four 2-input XOR gates XOR2_X1 from NOCL. In addition, a 4-input OR

gate OR4_X1 from NOCL and a 4-input DOR gate DOR4_X1 created according to Figure 3.5 are used as

Global comparison stage of the static and pseudo-dynamic comparators.

In the simulations, the pseudo-dynamic comparator is reset at t0=50ps and t4=400ps (logic-0 at reset

input of DOR4_X1 gates) while its comparison phase is set between t1=100ps and t3=350ps (logic-1 at DC

input of DOR4_X1 gates). Both comparators are used to compare two input vectors A[3:0] and B[3:0].

Input pair (A0, B0) is kept at logic-1 while the others are at logic-0. In addition, 0-1-0 glitches are applied

at A1 at t2= 200ps to simulate error occurrence.

Figure 3.11 shows simulation results for a glitch of duration �=50ps. Waveforms of reset and DC

inputs of the pseudo-dynamic comparator are present as V(reset) and V(dc), respectively. Plot V(a1) and

V(b1) correspond to signals applied at input pair (A1, B1) of both comparators. Comparator outputs are

shown in V(comp_s) and V(comp_pd) for the static and the dynamic comparators, respectively.

Figure 3.11 Detection Capability of Pseudo-Dynamic and Static Comparators

Figure 3.11 shows that the pseudo-dynamic comparator is able to detect the glitch of �=50ps while

the static comparator filters it. By varying the glitch duration, we observe that the pseudo-dynamic

comparator can detect glitches of 42ps while the static comparator detects only 55ps or larger glitches.

Moreover, due to their un-symmetric internal structure, both comparators have detection capability that

depends on the glitch form. Simulations with B1 and A1 kept at logic-1 and 1-0-1 glitches reveal that the

pseudo-dynamic comparator can detect glitches of 44ps wide. In the same conditions, the static

comparator can only detect larger than 58ps glitches.

Note that in the simulations above, Global comparison stages of both comparators contain only Layer

1 (Figure 2.10, Figure 2.5). However, Layer 2 is needed for comparators with higher input number. This

layer which consists of static OR-tree may also filter glitches at Layer 1 outputs. Consequently, detection

capability of larger static comparators may decrease. This degradation depends on the CMOS technology

used to implement the gates. In our case, it remains small. In fact, for a static comparator of 1024-bit

input vectors, the smallest glitch detectable is of 60ps size. For pseudo-dynamic comparators, the

50ps

t0 t1 t2 t3 t4

Comparison window

Chapter 3 � Evaluation of the Hybrid Fault-Tolerant Architecture

76

sensitivity is not affected by electrical mask because DOR outputs are stable signal. Therefore, in all

cases, pseudo-dynamic comparators always detect smaller glitches than static comparators.

3.4.2 Control�logic�simulation�
The objective of this sub-section is to verify that timing characteristics of control signals provide by

the synthesized control module satisfy different timing constraints established in Chapter 2. For this, we

run SPICE-like simulations of this module with Synopsys NanoSim. In these simulations, we use a CLK

signal of 10ns period whose high phase duration is 1ns (10% duty cycle). To initialize the module, its

resetControl input is asserted (logic-0) during the first CLK period and then remains at logic-1 for the rest

of the simulation. To simulate error occurrences, error signal is switched from initial logic-0 to logic-1 at

t=32ns, during the third CLK period.

In Figure 3.12, waveform of CLK, reset and DC signals are presented as v(clk), v(reset) and v(dc). We

can observe that reset is asserted (logic-0) during the fifth period (two CLK periods after error

occurrence). This corresponds exactly to expecting timing behaviors shown in Figure 2.21-b. Besides, we

have proven in the previous sub-section that low phase duration of more than 100ps allows reset signal

to completely pull down error signal to logic-0 (Figure 3.10). This process takes about 50ps, which is

smaller than the delay between reset falling edge and DC rising edge. Therefore, error signal is at correct

low level during DC high phase which allows hybrid fault-tolerant architectures to return to normal

operation.

Figure 3.12 Generated Control Signals for Pseudo-Dynamic Comparator

Figure 3.12 also shows that the high phase of DC signal happens from 0.4ns to 1.6ns after each CLK

positive edge. This guarantee that transient phase of CL outputs are not detected as errors because our

CLs have minimum short path delays of 2ns.

Figure 3.13 shows simulation results of CLKRegin and CRegin signals that control hybrid fault-tolerant

architectures� input registers. Waveform of CLK, reset, CLKRegin and CRegin are present as v(clk),

v(error), v(clkregin) and v(cregin) respectively. We can see that CLKRegin low phase happens from 3ns to

3.7ns after each CLK rising edge. Consequently, there are 1.4 ns between the end of the comparison

window (Figure 3.12) and CLKRegin falling edge. This gap allows error signals that are triggered at the

end of the comparison window to reach high level and switch CRegin to logic-1 before CLKRegin negative

edge. This condition is satisfied in our simulation where CRegin turns to high level at t=32.2ns while

CLKRegin falling edge happens at t=33ns. Note that as constrained in Chapter 2 (Figure 2.21), CRegin

Comparison window

Chapter 3 � Evaluation of the Hybrid Fault-Tolerant Architecture

77

signal only remains at logic-1 during one CLK period and then returns to logic-0 before the next CLKRegin

negative edge. Therefore CLKRegin and CRegin satisfy timing conditions that guarantee correct function

of hybrid fault-tolerant architecture.

Figure 3.13 Generated Control Signals for Input Register

With correct timing of CLKRegin and CRegin signals, the control logic module is able to generate

appropriate control signals d1, d2, d3 and m2, m1 to control input demultiplexer and output multiplexer

of the hybrid fault-tolerant architecture. This is proven in Figure 3.14 where CLK, error and the control

signals are presented as v(clk), v(error), v(d1), v(d2), v(d3), v(m1) and v(m2).

Figure 3.14 Generated Control Signals for Input Demultiplexer and Output Multiplexer

Figure 3.14 shows that when an error is detected at the third CLK period, the control signals are

changed so that the hybrid fault-tolerant architecture is re-configured. In fact, (d1,d2,d3,m1,m2) switch

Chapter 3 � Evaluation of the Hybrid Fault-Tolerant Architecture

78

from logic (1,1,0,0,1), which means CL1 and CL2 are running in parallel, to logic (0,1,1,1,0) that orders

CL2 and CL3 to run in parallel (Figure 2.25, Figure 2.28). Note that the re-configuration finishes before

the end of the third period. Consequently, the architecture is ready for re-computation at the next

period.

3.4.3 Hybrid�fault-tolerant�architecture�simulation�
The previous sub-section has proven that critical modules of the hybrid fault-tolerant architecture

function correctly. In this sub-section, we study error detection capability of the complete architecture

with regard to transient and permanent errors. The simulations in this sub-section are also SPICE-like

simulations performed by NanoSim. The hybrid fault-tolerant architecture studied is the synthesized

architecture for c6288 circuit of ISCAS�85 benchmark.

In the following simulations, the architecture is run with CLK signal of 10ns period and 10% duty cycle.

Note that this period is larger than maximum CL delay of c6288 (Figure 3.2). This guarantees that no

timing error can occur without fault injection. Before running different input vectors from t=70ns, the

architecture is initialized so that its pseudo-dynamic comparator is reset and its configuration order CL1

and CL2 to run in parallel.

Simulation results of the fault-tolerant architecture in a fault-free case are presented in Figure 3.15.

Signals shown in this figure correspond to that presented in Figure 2.24: CLK signal (clk); primary input

(PI) and output (PO) vectors (pi[31:0] and po[31:0]); error signal (error); input vectors i1, i2 and i3 of CL1,

CL2 and CL3 (i1[31:0], i2[31:0] and i3[31:0]); output vectors vout1 and vout2 of Mux (vout1[31:0] and

vout2[31:0]). Logic value of vectors in this figure is expressed in Hexadecimal.

In Figure 3.15, error signal is stable at logic-0 confirming that the architecture is fault-free. Besides,

we can see that only input i1 and i2 of CL1 and CL2 are receiving input value from PI. CL3 is at stand-by

because its input i3 is stable at 0000000016. Finally, we can observe that outputs vout1 and vout2 of Mux

remain stable for more than 2ns after each CLK rising edge, which guarantee correct function of the

pseudo-dynamic comparator.

Figure 3.15 Hybrid Fault-Tolerant Architecture�s Behavior in Fault-Free Case

In order to simulate function of the hybrid fault-tolerant architecture with error occurrence, we inject

transient and permanent faults to output o2 of CL2. For this, an additional 2-input XOR gate is inserted

between CL2 and Mux. The XOR gate uses an additional input fault to flip the 0
th

 output bit o2[0] of CL2.

Modified RTL description of the hybrid fault-tolerant architecture is detailed in Appendix A.

To simulate an error caused by a transient faults (SEU, timing error) at CLs, a 0-1-0 glitch is injected to

fault signal at the beginning of a period from t=90ns to t=100ns. Besides, primary input vector PI is kept

Chapter 3 � Evaluation of the Hybrid Fault-Tolerant Architecture

79

unchanged during two CLK periods of error detection and correction. Simulation results are shown in

Figure 3.16. In addition to signals presented in Figure 3.15, this figure also shows fault signal (fault).

Figure 3.16 Hybrid Fault-Tolerant Architecture�s Behavior with Transient Error Occurrence

In Figure 3.16, we can see that error signal turns to logic-1 signaling that vout2 and captured PO have

different values during the comparison window. During the same period between t=90ns and t=100ns,

CL1 is put in stand-by (stable logic 0000000016 at i1) while CL3 is turn on (i3 receives captured primary

input). The re-configuration successfully finishes before the beginning of new CLK period. At next CLK

positive edge (t=100ns), the previous value of primary input (33EC884A16) is applied to CL2 and CL3. This

shows that the input register and the control logic module have correctly triggered a re-computation.

Note that error remains at logic-1 during this period. The re-computation finishes before next CLK edge

at t=110ns. As vout2 and PO are identical, error returns to logic-0 signaling that the captured output is

correct. The transient error is tolerated by the architecture with two additional CLK periods.

To simulate a permanent fault at CLs, fault signal is kept at logic-1 from t=90ns. Consequently, CL2

output is permanently affected. Simulation results are presented in Figure 3.17 with the same signal of

Figure 3.16.

Figure 3.17 Hybrid Fault-Tolerant Architecture�s Behavior with Permanent Error Occurrence

In the first two periods after error occurrence (from t=90ns to t=110ns), the architecture works

exactly like in case of transient errors. It is re-configured so that CL2 and CL3 run in parallel to re-

error detection
re-confuguration

re-computation

Reset comparator

Kept for 4 additional periods

error detection

re-confuguration

re-computation
Reset comparator
Back to normal operation

error detection
re-confuguration

re-computation

Reset comparator, back to normal operation

Kept for 2 additional periods

Chapter 3 � Evaluation of the Hybrid Fault-Tolerant Architecture

80

compute the input vector 33EC8B4A. However, after CLK edge at t=110ns, error signal is briefly reset to

logic-0, then return to logic-1, signaling that PO and vout2 are not identical. This is caused by the

permanent error that remains in CL2. Consequently, a new re-configuration is done during the period

between t=110ns and t=120ns. CL2 is put on stand by while CL1 is turned on. After re-computation

during next period, the permanent error is tolerated and error returns to logic-0 at t=130ns.

3.4.4 Discussion�

In this section, we have studied timing behavior of pseudo-dynamic comparator, control logic module

as well as complete hybrid fault-tolerant architecture. SPICE and SPICE-like simulation at transistors level

of synthesized modules and architectures have shown that implemented hybrid fault-tolerant

architectures respect all timing constraints specified in Chapter 2 and provide expected error correction

capability for both transient (SET and timing errors) and permanent (hard errors) faults.

3.5 Power�simulation�

Beside error detection/correction capability, power saving is another important advantage of the

hybrid fault-tolerant architecture compared to other solutions. In this section, we compare power

consumption of the proposed architecture (Figure 2.24) with Partial and Full TMR architectures (Figure

3.3). In order to perform such comparison, we use NanoSim to run SPICE-like simulation of synthesized

architectures obtained earlier. For each original logic circuit, the three corresponding fault-tolerant

architectures are fed by the same set of 100 random input vectors. Average currents at power supply

node VDD are monitored to deduce average power consumption of the architectures. Note that the

number of random input vectors is chosen so that simulation results may represent typical power

consumption of fault-tolerant architecture during normal operations, while simulations can be done with

available resources of our simulators (time and memories).

Due to limit of time and memories available for simulation, we only evaluate power consumption of

largest ISCAS�85 benchmark circuits. Table 3.12 presents results of these simulations. In this table, the

first three columns correspond to name, input and output number of the benchmark circuits. The three

next columns detail average power consumption of the hybrid fault-tolerant, the partial TMR and the

Full TMR architectures. All power consumptions are calculated in milliwatt. The two final columns show

average power saving of hybrid fault-tolerant architectures compared to Partial and Full TMR

architectures. These values are expressed in percentage of corresponding TMR architecture�s average

power consumption.

Name
Nb.

Input

Nb.

Output

Average Power Consumption

(mW)
Average Power Reduction

Hybrid Partial TMR Full TMR Partial TMR Full TMR

c5315 178 123 3.5 5.0 5.4 30.3% 35.4%

c6288 32 32 5.5 8.4 8.4 34.7% 35.3%

c7552 206 107 4.9 7.1 7.9 30.3% 37.6%

Table 3.12 Power Saving of Hybrid Fault-Tolerant Compared to TMR Architectures

In hybrid fault-tolerant architecture, only two CLs are running in parallel. This gives us about 33.3%

power saving compared to three operating CLs in TMR architectures. In Table 3.12, we observe that the

average power saving values are comparable to this ratio.

Chapter 3 � Evaluation of the Hybrid Fault-Tolerant Architecture

81

For c5315 and c7552 benchmark circuits, hybrid fault-tolerant technique reduces about 30% of power

consumption compared to Partial TMR solution. This value, which is smaller than expected, may be

explained by power consumption overhead introduced by redundant modules such as input

demultiplexer, output multiplexer and shadow latches in input register of hybrid fault-tolerant

architectures. This is not the case for c6288 because its input and output number are small, which lead

to much less additional hardware in hybrid fault-tolerant architecture. Besides, we can see that for this

circuit, power reduction value is slightly higher than expected. This may be explained by the fact that

pseudo-dynamic comparators consume less than word voters.

For Full TMR solution, power reduction values that are higher than 33.3% are due to the fact that

additional registers in TMR architectures consume more power than input demultiplexer and output

multiplexer in hybrid fault-tolerant architectures.

3.6 Summary�

In this chapter, we have evaluated the hybrid fault-tolerant architecture proposed in Chapter 2 using

combinational part of ISCAS�85 and ITC�99 benchmark circuits. The evaluations have allowed us to:

- Create RTL descriptions of the hybrid fault-tolerant architecture that can be used for all

benchmark circuits: These descriptions only take as parameters input and output numbers of

logic circuits regardless of their logic functions. Consequently, the concept of plug-and-play

has been proven for the proposed fault tolerance solution.

- Implement the hybrid fault-tolerant architecture in the 45nm technology library using

commercial synthesis tool: By comparing our solution with Partial and Full TMR architectures,

we show that our solution has small or even negative area overhead compared to TMR

methods.

- Verify timing behavior and fault-tolerance capability of the hybrid fault-tolerant architecture:

Using SPICE and SPICE-like simulations, we show that its synthesized critical redundant

modules function correctly and all timing constraints for control signals specified in Chapter 2

are respected. We also prove that the hybrid fault-tolerant architecture can tolerate

efficiently both permanent (hard) and transient (timing, SET) errors at its CLs.

- Monitor power consumption of the hybrid fault-tolerant architecture: Using SPICE-like

simulation with random input vectors, we compare this architecture with Partial and Full TMR

solution using different benchmark circuits. Simulation results show important dynamic

power saving of about 30% for Partial TMR and 35% for Full TMR.

Despite its advantage of fault tolerance capability and power saving have been proven, the hybrid-

fault-tolerant architecture only dealt with permanent and transient faults in CLs. Besides, its power

saving consist only of dynamic power reduction. Improvement of the architecture is proposed in the next

chapter.

Chapter�4�

Extended� Usage� of� the� Hybrid� Fault-Tolerant�

Architecture�

Chapter�4 Extended�Usage�of�the�Hybrid�Fault-To leran t�Architecture�

Chapter�4 Extended Usage of the Hybrid Fault-Tolerant Architecture .. 82

4.1 Aging phenomenon .. 83

4.1.1 Lifetime improvement .. 83

4.1.2 Usage of FSMs ... 84

4.1.3 Discussion ... 85

4.2 Application of the hybrid fault-tolerant method in pipeline architectures 86

4.2.1 Basic of pipeline architecture ... 86

4.2.2 Fault-tolerance for pipeline architecture ... 87

4.2.3 Hybrid fault-tolerant design for pipeline architecture ... 90

4.2.4 Conclusion ... 92

4.3 SEU protection ... 92

4.3.1 SEU protection techniques ... 92

4.3.2 SEU protection for the hybrid fault-tolerant architecture ... 94

4.3.3 Discussion ... 96

4.4 Summary .. 96

Chapter 4 � Extended Usage of the Hybrid Fault-Tolerant Architecture

83

In previous chapters, we have proposed a hybrid fault-tolerant architecture for robustness

improvement of digital logic circuits and systems. This architecture targets stand-alone pipeline-style

circuits, i.e. circuits that are combined of an input register, a combinational logic module and an output

registers (Figure 1.18). The proposed technique is able to detect and correct hard, SETs and timing errors

in combinational part of these circuits, with advantageous silicon area and power consumption costs

compared to existing solutions. Beside these objectives, the hybrid fault-tolerant method can also be

used in others contexts such as lifetime improvement of logic circuits and fault-tolerance of pipeline

architectures. Furthermore, it can be combined with SEU protection techniques to provide an ultimate

solution that target hard, soft and timing errors in all part of logic circuits. In this chapter, we investigate

the possibility to extend the use of the hybrid fault-tolerant architecture for these objectives.

The rest of this chapter is divided in three sections. The first section consists in using the proposed

hybrid fault-tolerant architecture to deal with aging phenomenon. It studies how re-configuration

mechanism can be used for robustness improvement of circuits against material wearout. This section

also discusses how the two FSMs proposed in 2.4.3 can be used with regards to different aging effects.

The second section extends the concept of hybrid fault-tolerance architecture to pipeline architectures.

The proposed technique is compared to state-of-the-art solutions, such as clock gating using Razor flip-

flops or architectural replay using Razor II flip-flops. Finally, the last section discuss about the possibility

to include SEU protection of sequential elements in the hybrid fault-tolerant architecture. It explains how

register-level SEU tolerance techniques can be used for such purpose with optimized area overhead

compared to bit-level solutions such as TMR, Razor or Razor II.

4.1 Aging�phenomenon�

We have seen in Chapter 1 that during the last phase of digital circuits and systems� lifetime, their

reliability decreases because of increasing wearout failure rate (Figure 1.4). Aging phenomenon such as

oxide or interconnect wearout may cause permanent defects, which result in hard errors during circuit

operations. These errors may either reduce robustness of digital circuits and systems or make them not

usable. In this section, we discuss how the hybrid fault-tolerant architecture can help increasing the

useful life of logic circuits. We will also see how different FSMs proposed in 2.4.3 can be used with

regards to different aging effects.

4.1.1 Lifetime�improvement�
In the context of this section, lifetime (or the useful life) of logic circuits is defined as the duration,

during which these circuits operate correctly with all possible input vectors, supposing that there is no

transient error occurrence. For logic circuits without redundant resource, this notion represents the total

running time before appearance of the first permanent fault caused by aging phenomenon. After this

moment, usage of these circuits must be limited to a subset of input vectors, which do not activate the

fault and produce erroneous output.

Fault-tolerant architectures employ redundant resources to guarantee correct operation of logic

circuits, despite the presence of faults. Consequently, they may also help increasing lifetime of digital

logic circuits. The followings of this sub-section provide qualitative comparison between impacts of TMR

and the hybrid fault-tolerant architecture on this factor. Note that this discussion only considers

permanent faults in combinational logic modules of the architecture. Other redundant modules (voter,

pseudo-dynamic comparator, control logic module, etc.) as well as sequential elements are supposed to

be fault-free.

Chapter 4 � Extended Usage of the Hybrid Fault-Tolerant Architecture

84

TMR�architecture�

As detailed in previous chapters, TMR architecture with word-wise voter (see 3.2.2) operate correctly

as long as at least two of its combinational logic modules provide fault-free outputs. Consequently, all

single and multiple permanent faults that affect only one CL can be corrected successfully. Moreover,

multiple faults across modules can also be tolerated if they are never active at the same time. Therefore,

lifetime of TMR architecture is measured by the total running time until at least two of its CLs are

affected by permanent faults, which can be activated by the same input.

At every moment, all CLs of TMR architecture are running in parallel and hence, age at the same rate.

Consequently, expected time before the first permanent fault caused by aging phenomenon appears at

any of these modules is equal to lifetime of the original logic circuit. However, the probability that faults

at different CLs can be activated by the same input vector is smaller than 100%. Depending on the

concrete CL structures, this probability can be considerably small. In this case, significantly lifetime

improvement can be archived using TMR architecture.

The�hybrid�fault-tolerant�architecture�

Similar to TMR techniques, the hybrid fault-tolerant architecture can be used as long as at least two

of its CLs can operate correctly for each possible input vector. However, in this architecture, only two CLs

are running in parallel while the remaining is on standby. The last CL does not have any switching

activities and hence, ages slower than the others. If the hybrid fault-tolerant architecture is re-

configured periodically then each CL only have to run 2/3 of the total running time of the architecture.

Consequently, these modules suffer much less from aging phenomenon compared to CLs of TMR

architecture. Therefore, the hybrid fault-tolerant architecture offers better solution for lifetime

improvement of logic circuits.

In order to balance aging of CL modules in the hybrid fault-tolerant architecture, it must be re-

configured periodically. This can simply be done using a counter which defines the number of CLK cycles

after which a re-configuration is performed even is fault-free case.

4.1.2 Usage�of�FSMs�
As second discussion on aging phenomenon, we analyze further the impact of using FSM1 and FSM2

proposed in 2.4.3 (Figure 2.30) on different fault-tolerance scenarios. We have seen that FSM1 only

changes the configuration when two consecutive errors are detected while FSM2 changes the

configuration each time an error occurs. Depending on current configuration and nature of errors, each

FSM may require different number of re-configuration/ re-computation before errors are tolerated. As

the hybrid fault-tolerant architecture suffers from aging phenomenon, error occurrence rate may

increase significantly. Consequently, the capability to tolerate errors in a minimum number of re-

configuration/re-computation of FSMs becomes an important factor.

This sub-section studies different examples of error occurrence during the computation of an input

vector. Without losing generality, we suppose that the hybrid fault-tolerant architecture is at the

configuration where CL1 and CL2 are running in parallel for the first computation of the input vector.

Each time an error is detected (PE for permanent error, TE for transient error) during computation of the

input vector, the architecture is re-configured. Re-configuration/re-computation repeats until all errors

are tolerated (OK).

Let us consider the following notations used in the rest of this sub-section:

- Configuration j-k is the configuration when the jth and kth combinational logic modules of the

hybrid fault-tolerant architecture are running parallel.

- Pi represents a permanent fault affecting the ith combinational logic module.

Chapter 4 � Extended Usage of the Hybrid Fault-Tolerant Architecture

85

- Tjk represents a transient fault that occurs at first period when the configuration j-k is active.

Table 4.1 and Table 4.2 present different re-configurations done by FSM1 and FSM2 during the

computation of an input vector, for seven error occurrence scenarios. In each table, the first row

indicates the current configuration used at each computation. The remaining rows indicate the

simulated scenarios. For example, scenario P1-S23 means that CL1 is affected by a permanent fault and

that a soft error occurs when the configuration is switched to 2-3.

Configuration 1-2 1-2 2-3 2-3 3-1 3-1

T12 TE OK

P1 PE PE OK

P2 PE PE PE PE OK

P3 OK

P1-S23 PE PE SE OK

P2-S31 PE PE PE PE SE OK

P3-S12 SE OK

Table 4.1 Re-configuration by FSM1

Configuration 1-2 2-3 3-1 1-2 2-3 3-1

T12 TE OK

P1 PE OK

P2 PE PE OK

P3 OK

P1-S23 PE SE PE PE OK

P2-S31 PE PE SE PE PE OK

P3-S12 SE PE PE OK

Table 4.2 Re-configuration by FSM2

The second row of both tables shows that only one re-configuration is needed for a transient error

that occurs at the first computation.

The third to fifth rows of the tables show how re-configuration/re-computation is done for single

permanent error that affects one of the CLs. We can see that FSM2, which re-configures at each error

detection, allows faster fault-tolerance. Therefore, this FSM is suitable in case the hybrid fault-tolerant

architecture suffers from aging phenomenon which creates high density of permanent faults.

In the three last scenarios, a transient error occurs after the previous hard error is tolerated. These

scenarios correspond to the cases where aging phenomenon increase apparent rate of both permanent

and transient errors equally. From the tables above, we can see that FSM1 is the suitable solution for

efficient fault-tolerance in these cases.

4.1.3 Discussion�

In this section, we have discussed effects of aging phenomenon on usage of the hybrid fault-tolerant

architecture. We have seen that using periodical re-configuration to balance aging of combinational logic

module in this architecture may help increasing circuit lifetime. This improvement is proven better than

results archived using TMR architectures.

Chapter 4 � Extended Usage of the Hybrid Fault-Tolerant Architecture

86

As second discussion, we have seen how different FSM versions can be use in case of high error

apparent rate due to aging phenomenon. In the case where hard errors are dominant, FSM2, which re-

configures the architecture at each error detection, is the suitable solution. However, if apparent rate of

transient errors is also important then FSM1 may allow faster fault-tolerance scheme.

4.2 Application� of� the� hybrid� fault-tolerant� method� in� pipeline�

architectures�

In Chapter 1, we have seen that frequency scaling process in advanced CMOS technology nodes is

limited by a �power wall�. Consequently, the semiconductor industry must find other solutions for speed

improvement of digital circuits and systems. Pipeline architecture is one of the key methods used to

make faster digital systems such as microprocessors. In subsequent sub-sections, we detail basics of

pipeline methods, reliability issues in these techniques, as well as how the hybrid fault-tolerant

architecture can be employed to resolve these problems.

4.2.1 Basic�of�pipeline�architecture�
In computer systems, pipelining is defined as �an implementation technique whereby multiple

instructions are overlapped in execution; it takes advantages of parallelism that exists among actions

needed to execute an instruction� [HEN07].

To clarify the definition above, Figure 4.1 illustrates the difference between pipeline architectures

and stand-alone logic circuits.

a) Stand-alone logic circuit

b) Pipeline architecture

Figure 4.1 Stand-Alone Logic Circuit versus Pipeline Architecture

The stand-alone logic circuit in Figure 4.1-a is combined of an input register (Reg_in), an output

register (Reg_out) and a combinational logic between these registers. The combinational part can be

divided into three independent combinational logics connected in series (CL_A, CL_B and CL_C). This

stand-alone circuit is cadenced by clock signal CLK1. The clock period tperiod is defined by the sum of

combinational logics� computation time.

Figure 4.1-b shows a pipeline implementation of the stand-alone circuit presented above. It is divided

into three stages (A, B and C) corresponding to three combinational logic parts (CL_A, CL_B and CL_C).

CL_A

R
e

g
_

A

R
e

g
_

B

CL_B

R
e

g
_

C

CL_D

R
e

g
_

D

CLK2

Stage A

Stage B
Stage C

CL_A

R
e

g
_

in

CL_B CL_D

R
e

g
_

o
u

t

CLK1

Chapter 4 � Extended Usage of the Hybrid Fault-Tolerant Architecture

87

Each stage consists of a combinational logic part, an input and an output registers. Moreover, output

register of each stage is used as input register of its next stage. The pipeline architecture is cadenced by

clock signal CLK2 whose period is defined by the maximum computation time among CL_A, CL_B and

CL_C. In the case where these logics have similar delay, CLK2 period is one third of tperiod.

 With the presented structure, each n
th

 task (or instruction) of the pipeline architecture is divided into

three smaller actions An, Bn and Cn. These actions are consecutively executed in three pipeline stages A,

B and C. Therefore, computation time for each instruction of the pipeline architecture is equal to three

times of CLK2 period. Consequently, the pipeline architecture have similar calculation delay compared to

the stand-alone logic circuit. However, actions of different instructions can be overlapped in execution,

which helps increasing the architecture throughput, i.e. the number of instruction done in a given time.

This key concept of pipeline technique is illustrated by examples in Table 4.3.

CLK2 Period 1 2 3 4 5 6 7 8

Stage A A1 A2 A3 A4 A5 A6 A7 A8

Stage B B1 B2 B3 B4 B5 B6 B7

Stage C C1 C2 C3 C4 C5 C6

Output D1 D2 D3 D4 D5

Table 4.3 Operation of Pipeline Architecture

Table 4.3 presents normal operation of the pipeline architecture (Figure 4.1-b) in fault-free case. The

first line of this table shows the number of CLK2 period. The three next lines detail to actions being

executed at Stage A, B and C of the architecture during corresponding periods. For example, during the

second period, Stage A is executing action A2 of the second instruction while Stage B is performing

action B1 of the first instruction. The last line of Table 4.3 corresponds to outputs of finished instructions

that are be stored in output register Reg_D at each CLK2 period.

We can observe in Table 4.3 that during fault-free operation, each instruction requires three CLK2

periods to complete. For example, action A1 of the first instruction is started at the beginning of the first

period while output D1 is only available at the beginning of the fourth period. As CLK2 is three times

faster than CLK1 of the stand-alone circuit (Figure 4.1-a), this confirms that both architectures have the

same calculation time. However, we can see in Table 4.3 that after seven CLK2 cycles (from the beginning

for the first period to the beginning of the eighth period) the pipeline architecture has finished five

instructions. This work load takes five CLK1 cycles or fifteen CLK2 cycles for the stand-alone circuit to

complete. Therefore, this example have shown that the pipeline have higher throughput than the stand-

alone circuits.

By extending the previous example for a larger number of periods, we can prove that the pipeline

architecture archives three times higher throughput compared to the stand-alone circuits during fault-

free operations. Furthermore, if the combinational part of the stand-alone circuit is divided into N parts

with similar delays, the corresponding pipeline architecture may have N times higher throughput.

4.2.2 Fault-tolerance�for�pipeline�architecture�

Error�propagation�

Similar to stand-alone logic circuits, pipeline architecture may also suffer from transient and

permanent errors. Furthermore, in these structures, there are errors propagations between pipeline

stages which require special re-computation schemes for error correction.

Chapter 4 � Extended Usage of the Hybrid Fault-Tolerant Architecture

88

Table 4.4 illustrates an example for error propagation in the pipeline architecture of Figure 4.1-b. This

table has the same lines as Table 4.3. However, it shows in bold red police the action executions affected

by faults. Meanwhile, executions which receive faulty inputs caused by error propagation are presented

in regular red police with an �*� symbol.

CLK2 Period 1 2 3 4 5 6 7 8

Stage A A1 A2 A3 A4 A5 A6 A7 A8

Stage B B1 B2 B3 B4 B5 B6 B7

Stage C C1 C2 C3 C4* C5 C6

Output D1 D2 D3 D4* D5

Table 4.4 Error Propagation in Pipeline Architecture

In the example of Table 4.4, we can see that during the fifth period, a fault becomes active at Stage B

while it is performing action B4 of the fourth instruction. Consequently, at the next period, input vector

for action C4 is affected by errors. These errors are then propagated to the output of the pipeline

architecture. Therefore, output D4 of the fourth instruction is faulty. Note that in this example, we only

consider transient faults. As a result, the pipeline architecture returns to normal operation at the eighth

period when errors have reached the final register.

State�of�the�art�

Different works have studied fault-tolerance techniques for pipeline architectures, especially from

timing errors at their combinational parts. Among them, the most prominent solutions are Razor

[ERN03] and Razor II [DAS09]. We have seen in Chapter 1 that both architectures provide efficient SETs

and timing errors detection at combinational part of stand-alone logic circuits. Razor method performs

this detection by comparing circuit outputs with a reference value captured by shadow latches.

Meanwhile, Razor II detects invalid transitions caused by errors at circuit outputs. While employing

different error detection strategies, both Razor and Razor II techniques use timing redundancy for error

correction in pipeline architectures. In order to deal with error propagation in these structures, Razor

method uses global clock gating while Razor II technique performs architectural replay for re-

computation. These detection/correction schemes are presented in flowing parts.

Global�clock�gating�with�Razor��

Figure 4.2 shows how Razor and global clock gating methods are implemented for error

Detection/Correction in the pipeline architecture of Figure 4.1-b.

Figure 4.2 Razor and Global Clock Gating Implementation for Pipeline Architecture [ERN03]

CL_A

R
e

g
_

A

R
a

zo
r_

R
e

g
_

B

CL_B

R
a

zo
r_

R
e

g
_

C

CL_D

R
a

zo
r_

R
e

g
_

D

CLK2

error error
error

recoveryrecoveryrecovery

global error

Chapter 4 � Extended Usage of the Hybrid Fault-Tolerant Architecture

89

Compared to the original pipeline structure, the architecture in Figure 4.2 employs Razor flip-flops for

output register of all stages (Razor_Reg_B, Razor_Reg_C and Razor_Reg_D). Each register provide SETs

and timing errors detection for the corresponding stage. Their error signals are combined by a NOR gate

to form a global error signal. This signal is then used to disable global clock signal CLK2 in case of error

occurrence (one of the error signals at logic-1 and the global error signal at logic-0). While CLK2 is gated,

faulty values stored in Razor registers are recovered using correct values stored in their shadow latches

(see Figure 1.22). Error signals are then reset to logic-0, which allows CLK2 to control the registers. At

next CLK2 rising edge, all values stored in registers are correct. Hence, the architecture can return to its

normal operation.

Table 4.5 shows how the previously described scheme helps correcting errors in the example of Table

4.4. As a fault become active at Stage B during the fifth period, its erroneous output is captured by

Razor_Reg_C at the beginning of the sixth period. This Razor register detects this error during the same

CLK2 cycle. After error detection, the seventh CLK2 rising edge is gated. Consequently, Reg_A,

Razor_Reg_B and Reg_D conserve their previous value. Meanwhile, the correct value of Razor_Reg_C is

restored from its shadow latches. Consequently, at the eighth CLK2 cycle, all errors are corrected and the

architecture returns to its normal operation.

CLK2 Period 1 2 3 4 5 6 7 8

Stage A A1 A2 A3 A4 A5 A6 A6 A7

Stage B B1 B2 B3 B4 B5 B5 B6

Stage C C1 C2 C3 C4* C4 C5

Output D1 D2 D3 D3 D4

Table 4.5 Error Correction in Pipeline Architecture Using Razor and Clock Gating

As shown in the previous example, error detection/correction scheme using global clocking for Razor

technique only requires one clock cycle. It is due to the fact that the correct output of pipeline stages can

be restored from shadow latches of Razor registers. However, this is only applicable for SET and timing

errors but not hard errors in combinational logics.

Architectural�replay�with�Razor�II�

Figure 4.3 illustrates how Razor II registers and architectural replay are employed in the pipeline

architecture of Figure 4.1-b. Similar to the structure in Figure 4.2, this solution also replaces pipeline

stages� output registers by Razor II registers (Razor_II_Reg_B, Razor_II_Reg_C, Razor_II_Reg_D). Error

signals which alert SET and timing error occurrences at each pipeline stage are then combined together

in order to form a global error signal. However, instead of being used to disable CLK2 after error

occurrences, the global error signal is driven toward a system control module. Then, this module

performs an architectural replay process, which consists of �flushing� the entire pipeline and restart

from the first action of infected instruction. An example of such process is shown in Table 4.6.

Fault occurrence

Error detection
Recovery

Clock edge gated

Chapter 4 � Extended Usage of the Hybrid Fault-Tolerant Architecture

90

Figure 4.3 Razor II and Architectural Replay Implementation for Pipeline Architecture [ERN03]

Table 4.6 shows the use of architectural replay to tolerate errors in the example of Table 4.4. As a

fault becomes active at Stage B during the fifth period, Razor_II_Reg_C register detects errors during the

sixth period. Consequently, the global error signal turns to logic-0 and actives architectural replay

process. At the seventh CLK2 positive edge, Stage A re-executes the first action A4 of the (affected)

fourth instruction. Meanwhile, other stages stop their current executions and wait for task propagation

from the first stage. It takes two additional periods before the fourth instruction is propagated to Stage

C. Then, the pipeline architecture returns to its normal operation.

CLK2 Period 1 2 3 4 5 6 7 8 9 10

Stage A A1 A2 A3 A4 A5 A6 A4 A5 A6 A7

Stage B B1 B2 B3 B4 B5 B4 B5 B6

Stage C C1 C2 C3 C4* C4 C5

Output D1 D2 D3 D4

Table 4.6 Error Correction in Pipeline Architecture Using Razor II and Architectural Replay

Compared to clock gating technique, architectural replay do not require correct value restoration

from shadows latches. This helps reducing area overhead of the solution. However, this technique

requires higher re-computation time. In the example above, architectural replay requires three clock

cycles to tolerate SETs and timings errors because errors are detected at the third stage of the pipeline

architecture. In general case, error correction using this method takes n clock cycles if errors are

detected at the n
th

 pipeline stage. Besides, similar to Razor technique, Razor II method only allows

detection/correction of transient faults in digital circuits.

4.2.3 Hybrid�fault-tolerant�design�for�pipeline�architecture�
As we have seen in previous sub-sections, Razor and Razor II techniques provide efficient solutions for

transient fault-tolerance in pipeline architecture. However, they are not applicable for permanent faults

created by manufacturing defect or aging phenomenon. One possible solution for this problem consists

of combine these techniques with the use of TMR method for combinational part of pipeline

architectures. However this solution significantly increases silicon area and power consumption of the

architectures.

We have shown in previous chapter that the hybrid fault-tolerant architecture allows detection and

correction of permanent faults at advantageous are overhead and power consumption compared to

TMR methods. Besides, it also tolerates SETs and timing errors at combinational part of logic circuits.

Consequently, using the hybrid fault-tolerant method in pipeline architectures may helps improving

Fault occurrence

Error detection

Architectural replay

CL_A

R
e

g
_

A

R
a

zo
r_

II
_

R
e

g
_

B

CL_B

R
a

zo
r_

II
_

R
e

g
_

C

CL_D

R
a

zo
r_

II
_

R
e

g
_

D

CLK2

error
error

error

Toward system control

Chapter 4 � Extended Usage of the Hybrid Fault-Tolerant Architecture

91

robustness of these architectures with regards to hard, SETs and timing errors at reasonable costs. Figure

4.4 illustrates the implementation of this solution for the original pipeline architecture in Figure 4.1-b.

Figure 4.4 Hybrid Fault-Tolerant Implementation for Pipeline Architecture

In Figure 4.4, combinational part of each pipeline stage is triplicated (CL_Ai, CL_Bi, CL_Ci with i=1,2,3).

Similar to the hybrid fault-tolerant architecture for stand-alone circuits, only two combinational logic

copies of each stage are running in parallel at every moment. Others combinational logic parts are kept

at standby mode and thus, do not consume dynamic power. The configuration of each stage is controlled

by its input demultiplexer and output multiplexer (see Section 2.4 in Chapter 2). In this architecture,

errors are detected by comparing output of the two running combinational logics at each stage (one

before and one after capturing by corresponding output register). The comparison is performed by

pseudo-dynamic comparators (see Sub-section 2.2.3 in Chapter 2), which allows better SETs and timing

errors detections. As errors are detected after output capturing, input registers (Modified_Reg_A,

Modified_Reg_B, Modified_Reg_C) of all stages are implemented using modified D flip-flop (see Sub-

section 2.3.1 in Chapter 2). Error signals of all stages are combined by an OR-tree in order to provide a

global error signal. This signal is used by the control logic module to perform re-configuration and re-

computation of the complete architecture for error correction. For this purpose, this module provides

control signals for all input registers, input demultiplexers, output multiplexers and pseudo-dynamic

comparators. For the reason of clarity, these signals are not presented in Figure 4.4.

With the architecture presented above, transient and permanent errors are tolerated as follows. At

each stage, error detection for execution results of n
th

period is performed at the beginning of the (n+1)
th

period. If an error is detected at any pipeline stage then the global error signal is turned to logic-1.

Consequently, the control logic module forces all input registers to switch to their value of n
th

 period,

which are stored in their shadow latches (see Sub-section 2.3.1 in Chapter 2). This process restores the

whole pipeline architecture to its last fault-free state before error occurrence and thus, prevents error

propagations. Besides, during the same period, all pipeline stages are re-configured for permanent faults

tolerance. This process must finish before the end of (n+1)
th

 period. At the next clock edge, pipeline

stages re-execute actions of n
th

 period. If no error is detected, then the architecture returns to its normal

operation. Otherwise, the previous processes are re-applied.

Table 4.7 presents error correction operation of the hybrid fault-tolerant pipeline architecture for the

example in Table 4.4. As a fault become active during the fifth CLK2 period at stage B, the affected result

captured by Modified_Reg_C is detected at the beginning of the sixth period. During the same CLK2

cycle, the architecture is re-configured. Depending on the FSM of the control logic module, some running

combinational logics may be replaced by their redundant logics, which are currently on standby.

Meanwhile, modified input registers of all stages switch their value to the input of the fifth CLK2 cycle.

Control signals for modified input registers, input

demultiplexers, output multiplexers and pseudo-

dynamic comparators

CL_A2

M
o

d
if

ie
d

_
R

e
g

_
B

R
e

g
_

D

CLK

M
o

d
if

ie
d

_
R

e
g

_
CCL_A1

CL_A3

CL_B2

CL_B1

CL_B3

CL_C2

CL_C1

CL_C3

= = =

Control logic

M
o

d
if

ie
d

_
R

e
g

_
A

Chapter 4 � Extended Usage of the Hybrid Fault-Tolerant Architecture

92

This re-configuration process finishes before the seventh CLK2 rising edge. Consequently, during the

seventh period, all stages re-execute the same action as in the fifth period. Note that at the seventh CLK2

capture edge, Stage 3 has just been re-configured and its output signals are unstable. This explains the

unknown value stored in output register Reg_D during this period. In this example, as the error is

transient, the architecture returns to normal operation at the eight clock cycle.

CLK2 Period 1 2 3 4 5 6 7 8 9

Stage A A1 A2 A3 A4 A5 A6 A5 A6 A7

Stage B B1 B2 B3 B4 B5 B4 B5 B6

Stage C C1 C2 C3 C4* C3 C4 C5

Output D1 D2 D3 unknown D3 D4

Table 4.7 Error Correction in the Hybrid Fault-Tolerant Pipeline Architecture

4.2.4 Conclusion�
In this section, we have studied the possibility to use the hybrid fault-tolerant architecture for

robustness improvement of pipeline architectures. The principle of a complete fault-tolerance scheme

has been proposed where transient errors correction requires two clock cycles, which is faster than

architectural replay using Razor II technique. Moreover, this scheme based on re-configuration/re-

computation allows permanent error correction, which is not possible using clock gating with Razor

architecture. Finally, similar to the hybrid fault-tolerant architecture for stand-alone circuits, this

architecture promises lower power consumption compared to TMR techniques.

4.3 SEU�protection�

In previous chapters, we have seen how different kinds of faults and errors affect robustness of logic

circuits. Among them, hard, SETs and timing errors in combinational part as well as SEUs in sequential

part are the most encountered. It has been proven that the hybrid fault-tolerant architecture provides

efficient solution for faults and errors in combinational part of logic circuits, at advantageous silicon area

and power consumption costs. In this section, we study the possibility to combine this architecture with

SEU detection/correction methods in order to form more advanced fault-tolerance solutions.

4.3.1 SEU�protection�techniques�
Different techniques have been proposed in the literature to protect sequential elements of logic

circuits, i.e. latches and flip-flops, from hard errors and/or SEUs. As we have discussed in Chapter 1, the

most prominent techniques include TMR, BISER, Razor, GRAAL and Razor II [LYO62, ZHA06, ERN03,

NIC07, DAS09]. These methods consist of employing hardware and timing redundancy to tolerate SEUs

by errors masking or detection/correction. Some of them even provide SETs and timing errors protection

for combinational part of logic circuits [ERN03, NIC07, DAS09]. Although having different ways to deal

with errors, these techniques all protect registers at bit-level, i.e. redundant resources are added to each

latch and flip-flop of the register under protection. Consequently, silicon area and power consumption

overhead grow linearly with register size.

Fault occurrence Re-computation

Error detection

and re-configuration

Chapter 4 � Extended Usage of the Hybrid Fault-Tolerant Architecture

93

In [IMH11], authors have proposed a novel method, which tolerates SEUs in sequential elements at

register-level and hence, allows significant silicon area saving compared to bit-level techniques such as

TMR, BISER and Razor. This technique employs both hardware (additional latches) and information

redundancy (linear code) to detect flipped bits in level sensitive registers. Two correction schemes are

proposed: 1) Re-computation or 2) Using bit-flipping latches. Figure 4.5 presents principle configuration

for protection schemes.

Figure 4.5 Register-Level SEU Protection [IMH11]

Figure 4.5-a shows an unprotected register, which is combined of n latches. Figure 4.5-b presents

error detection scheme using linear code. The code word is computed from data of the register under

protection using a XOR-tree and stored in redundant latches. During opaque phase of latches, the stored

code word (called reference characteristic cref) is compared with the continuously computed code word

(called current characteristic ccur). If any mismatch is detected, a fail signal is used to triggered re-

computation process. Note that SEUs can also arrive at redundant latches and cause faulty error

detection. To avoid this problem, [IMH11] proposes to compute the parity of cref as p(cref) which is stored

in an additional latch. This configuration, illustrated in Figure 4.6 allows the detection of all single SEU at

any latches.

Figure 4.6 Detailed SEU Detection Scheme at Register-Level [IMH11]

In case re-computation is not feasible or is too time consuming, another error correction scheme is

proposed in Figure 4.5-c. In this scheme, the n latches are replaced by n bit-flipping latches which are

inherently able to invert their stored value. The difference diff between cref and ccur is decoded and thus,

Chapter 4 � Extended Usage of the Hybrid Fault-Tolerant Architecture

94

allow identification of the affected bits that must be inverted. Proposed design of the bit-flipping latch

using transmission gates is presented in Figure 4.7.

Figure 4.7 Bit-flipping latches for SEU Correction [IMH11]

This bit-flipping latch in Figure 4.7 is controlled by two signals: the main clock L and an additional

signal HI. In fault free case, HI is kept at a constant value so that the second transmission gate (TG2) is

opened while TG3 is closed. Consequently, the bit-flipping latch operates exactly like a conventional

latch with clock L. In order to flip the stored bit during opaque phase of the latch (TG1 is closed while

TG5 gate is opened), a short glitch must be applied at HI. The complement value of Qi is fed to the

inverter chain formed by the first and second inverters (when HI changes state) and then stored in the

latch (when HI returns to its normal state).

In [IMH11], authors propose the use of module-2 characteristic as error detection and correction

code. This code allows not only error detection, but also error localization, which is needed to error

correction using bit-flipping latches. Besides, it only requires log2(n) check bits for information words of n

bits. Consequently, only log2(n) redundant latches are needed. This leads to significant silicon area saving

compared to bit-level methods, especially when register size is important. For example, for 127-bit

register, the proposed error detection scheme (Figure 4.5-b) only requires 127% area overhead

compared to unprotected register. Error correction scheme (Figure 4.5-c) employs larger bit-flipping

latches and thus have an area overhead of 183%. Meanwhile, the overhead is more than 300% for bit-

level methods such as TMR, Graal or Razor [IMH11].

4.3.2 SEU�protection�for�the�hybrid�fault-tolerant�architecture�
As the hybrid fault-tolerant architecture is able to detect and correct all kinds of fault in

combinational part of logic circuits, adding SEUs protection to this scheme does not require bit-level

methods such as Razor or Razor II. In fact, it can be combined with the fault-tolerance technique

proposed in [IMH11], which allows optimization of the additional silicon area required for SEU

protection. Sub-sequent parts of this sub-section details how this can be done for output and input

registers of the hybrid fault-tolerant architecture.

Output�register�

Output register (Reg_out) of the hybrid fault-tolerant architecture is made of positive edge sensitive

D flip-flops (DFFs). Each DFF is combined of a low level sensitive (DLL) and a high level sensitive D-latch

(DLH). Both latches are controlled by the same clock signal CLK. Principle of a DFF during different CLK

phases is illustrated in Figure 4.8. In this figure, a latch is presented as a switch followed by a memory

point. The switch is opened during the latch�s opaque phase, and closed during its transparent phase.

Chapter 4 � Extended Usage of the Hybrid Fault-Tolerant Architecture

95

a) During CLK high phase b) During CLK low phase

Figure 4.8 D flip-flop function

During CLK high phase, DLL is opaque while DLH is transparent (Figure 4.8-a). Consequently, all SEUs

that arrive at either DLL or DLH cause output D to flip. As a result, primary output vector PO of the hybrid

fault-tolerant architecture (see Figure 2.24 in Chapter 2) switches value. Besides, in Chapter 2, we have

seen that PO is continuously compared with output vector vout2 of one running combinational logic

during the comparison window (see Sub-section 2.2.3 in Chapter 2). As this window is set until the end of

CLK high phase (see Figure 2.12 in Chapter 2), all changes in PO caused by SEUs during this period are

detected by the pseudo-dynamic comparator. Re-computation process is then activated, which allows

errors to be corrected.

During CLK low phase, DLL is transparent while DLH is opaque (Figure 4.8-b). Therefore, all SEUs that

arrive at DLL during this period do not have any impact on operation of the hybrid fault-tolerant

architecture. However, SEUs in DLH may cause output D to flip. This problem cannot be detected by the

pseudo-dynamic comparator because its comparison window finishes at the beginning of CLK low phase

(see Figure 2.12 in Chapter 2). Therefore DLH latches of the output register must be protected against

SEU using the scheme proposed in [IMH11].

In order to use the register-level SEU protection technique for DLH latches of the output register,

additional latches and error detection modules (XOR-tree for detection and correction code

computation, comparator for error detection) are added following Figure 4.6. Besides, the new

architecture still requires an SEU correction scheme, either by re-computation (Figure 4.5-a) or by using

bit-flipping latches (Figure 4.5-b).

In Sub-section 2.3.1 of Chapter 2, we have seen that re-computation of the hybrid fault-tolerant

architecture is only possible as long as previous input vector is still stored in shadow latch DLLs of its

input register (see Figure 2.16 in Chapter 2). Figure 2.17 in Chapter 2 shows that this period finishes

before the end of each CLK period (at CLKRegin low phase). Consequently, SEUs detected in DLH latches

of the output register at the end of CLK low phase cannot be corrected by re-computation. Therefore,

the only solution is to use bit-flipping latches (Figure 4.7) as DLH latches of the output register.

Input�register�

The hybrid fault-tolerant architecture use modified D flip-flop mDFFs (Figure 2.16) for its input

register. Each mDFF is combined of a regular positive edge sensitive flip-flop DFF and a low level sensitive

latch DLL.

The input register�s DFFs also have principle schematic as presented in Figure 4.8. However, different

than previous case, output of this register is not compared to any reference value during operations.

Therefore, both DLL and DLH latches of each DFF must be protected against SEUs. Besides, as no re-

computation is possible for this register, each latch must be replaced by bit-flipping latches (Figure 4.7).

Shadow latch DLLs of the input register stored previous input vector for re-computation. In case of

single fault occurrence, if SEUs occur at these latches, then the rest of the architecture is supposed to be

fault-free. As no re-computation is needed, the SEUs do not have any impact on data integrity of the

hybrid fault-tolerant architecture. However, to protect the architecture from multiple faults, these

latches also require the SEU tolerance method proposed in [IMH11].

Q D

DLL DLH

Q D

DLL DLH

Chapter 4 � Extended Usage of the Hybrid Fault-Tolerant Architecture

96

4.3.3 Discussion�
This section discusses about the possibility to add SEU protection in the hybrid fault-tolerant

architecture. We have seen that bit-level techniques such as Razor and Razor II allow not only SEUs

detection/correction but also SETs and timing errors tolerance. However, they all require very important

additional redundant resources compared to register-level protection methods, which use information

redundancy to detect SEUs in registers. Error correction can be performed either by re-computation or

bit-flipping. As the hybrid fault-tolerant architecture is able to tolerate SETs and timing errors, we

propose to combine it with the register-level SEU tolerance technique presented in [IMH11]. Besides, we

have seen that only high level sensitive latches in output register of the hybrid fault-tolerant architecture

require SEU protection whilst all latches in its input register must be protected.

4.4 Summary�

In this chapter, we have extended the usage of the proposed hybrid fault-tolerant architecture in

three axes:

- To dealt with aging phenomenon: As only two out of three combinational logic modules are

running in parallel at any moments, the hybrid fault-tolerant architecture suffers less from

aging phenomenon. Using a periodically re-configuration for this architecture allows all CLs to

aging at smaller rates and thus, increases the useful life of the architecture compare to TMR

method. Besides, we have seen that the FSM use for re-configuration also have impacts on

fault-tolerance performance of the architecture. If the number of hard errors is dominant

than re-configure the architecture at each error detections is the optimum methods.

However, if the number of transient errors has the same importance than re-configuration

after two consecutive detections is better solution.

- To tolerate faults in pipeline architectures: We have seen that beside SETs and timing errors,

the hybrid fault-tolerant architecture also provides hard errors protection in combinational

part of pipeline architectures, which is not possible for technique such as Razor and Razor II.

Besides, its correction scheme using re-computation is proven to be faster than architectural

replay method.

- To be combined with SEU protection technique: The hybrid fault-tolerant architecture detects

and corrects all faults in combinational part of logic circuits. Consequently, we do not need

bit-level SEU tolerance techniques such as Razor, Razor II, which also detect/correct SETs and

timing errors. Instead, we can combine the hybrid fault-tolerant architecture with register-

level technique, which use information redundancy to detect SEU. Error correction are

performed using either re-computation (for low level sensitive latches of the output register)

or using bit-flipping latches (for high level sensitive latches of the output register and all

latches of the input register).

For each extension axes, qualitative studies for possible solution are provided. Quantitative studies,

concrete implementations, as well as evaluations that confirm advantages of these solutions for each

problem can be subjects of further researches.

Conclusion�

Chapter�5 Conclusion�

Evolution of CMOS technology is one of the most important factors that are conducting the recent

technological revolution. At each new technology node, transistor feature sizes are down scaled further,

allowing the integration of more and more devices on chip. Together with frequency and power supply

scaling, it allows the realization of more and more complex digital systems at lower costs and higher

performance. These advantages explain why the semiconductor industry keeps scaling CMOS technology

further despite the fact that reliability of digital systems has become an important issue.

Different factors are responsible for transient and permanent faults that degrade reliability of digital

CMOS circuits and systems. First of all, manufacturing devices at nanometer scale is much more difficult,

and thus leads to high rate of manufacturing defects. Together with aging phenomenon, these defects

cause permanent fault in ICs. Secondly, PVT variations as well as aggressive timing requirements are

responsible for increasing rate of timing errors. Finally, radiation and interference effects may cause

more and more soft errors as small transistor are more vulnerable.

Given the importance of CMOS technology in recent information technology revolutions, it is

necessary to solve problems of hard, soft and timing errors in advanced CMOS technology nodes. As

targeting these issues at physical level is no longer feasible, fault-tolerant techniques, which deal with

faults and errors at design level, become the best solutions. These techniques employ information,

timing and hardware redundancy to guarantee correct operation of digital circuits and systems despite

the presence of faults. Each type of redundancy has its pros and cons with regards to particular types of

errors. Consequently, hybrid fault-tolerant methods, which combine the use of these redundancies, are

one of the best solutions to targets different types of faults simultaneously.

In this manuscript, we have developed a hybrid fault-tolerant architecture that targets hard, soft and

timing errors in order to improve robustness of digital circuits. The proposed method employs

information redundancy for errors detection, timing redundancy for transient errors correction and

hardware redundancy for permanent errors correction:

- Information redundancy is implemented under the form of duplication/comparison structure

that detects error in combinational part of logic circuits. The detection is enhanced by the use

of pseudo-dynamic comparator. This comparator, which employs dynamic CMOS gates to

detect transitions at its input vector during a comparison window, allow the detection of

hard, SETs and timing errors.

- Timing redundancy consists in performing re-computation for error correction. This is done

with helps of a modified input register, which can store previous input vector until the

corresponding output is proven correct by the pseudo-dynamic comparator. The re-

computation scheme takes two clock cycles: one to restore affected input vector after error

detection and one to re-compute this vector. This scheme allows the correction of SETs and

timing errors in combinational part of logic circuits.

- Hardware redundancy requires a third copy of logic circuit�s combinational part. This

redundant module is used to replace the two other combinational logic modules in case of

hard error occurrence. Note that, different than TMR technique, only two out of three CLs are

running in parallel in the hybrid fault-tolerant architecture. The third one is put on standby

and hence, does not consume dynamic power. Re-configuration of the hybrid fault-tolerant

architecture is performed with help of a FSM. Two version of the FSM is proposed: 1) FSM1

Conclusion

98

consists in changing configuration only in case of two consecutive error occurrences, and 2)

FSM2 re-configures the architecture each time an error is detected.

The proposed hybrid fault-tolerant architecture is evaluated using simulation with EDA tools. It is

compared with TMR techniques using ISCAS�85 and ITC�99 benchmark circuits and a 45nm standard cell

library. Simulation results have shown that the hybrid fault tolerant architecture is able to tolerate hard,

SETs and timing errors. Compared to TMR architectures, it provides significant power saving of about

33% while having negligible area overhead. In fact, compared to TMR1 (Partial TMR) architecture where

only combinational part of logic circuits is triplicated, the proposed method only requires from 3% to 9%

additional silicon area. Meanwhile, it allows 2% to 6% area reduction compared to TMR2 (Full TMR)

structure where sequential elements of logic circuits are also triplicated.

Beside advantages of fault-tolerant capability, silicon area and power consumption, the hybrid fault-

tolerant also offer the possibility to deal with aging phenomenon. As only two out of three

combinational logic modules are running in parallel at any moments, they all suffers less from aging

phenomenon. By balancing running time of the modules, we can have them running only 2/3 of time

compared to the same operations performed by original logic circuits or TMR structures. Consequently,

the hybrid fault-tolerant architecture may have longer useful life. As a second discussion, we have seen

that the two FSMs proposed may be used differently in various aging phenomenon effects: FMS2 is

suitable for the case where hard errors occurrences are dominant while FSM1 is better solution if

transient errors occurrences are of the same importance. Further fault modeling and qualitative analysis

of aging phenomenon are required to confirm the qualitative studies above.

The hybrid fault-tolerant architecture is originally designed for stand-alone logic circuits. However,

advanced digital systems such as microprocessors, pipeline architectures are used to increase system

speed without frequency scaling, which is limited by the power wall. Existing fault-tolerant techniques

such as Razor and Razor II allow the detection and correction of SETs and timing errors at combinational

part of these architectures. However, none of them is effective for hard error. In this manuscript, we

have qualitatively demonstrated that the hybrid fault-tolerant can be implemented for pipeline

architectures, and provide protections for hard, SETs and timing errors. Concrete implementation as well

as evaluation of this method may be the subject of further researches.

Finally, we have study the possibility to add SEU tolerance for sequential elements of the hybrid fault-

tolerant architecture. As this method is already able to deal with SETs and timing errors, we can

combined it with register-level SEU protection methods in order to reduce area overhead compared to

bit-level techniques such as Razor and Razor II, which also target SETs and timing errors. Using the

register-level method proposed in [IMH11], we have demonstrated that high level sensitive latches of

the input register and all latches of the output registers must be protected. Reducing the area overhead

of such architecture may also be studied further in other researches.

Appendix�A�

Chapter�6 Appendix�A�

HDL�Description�of�Fault-Tolerant�Architectures�
This appendix provides HDL codes that are used to describe different architectures used for

evaluations in Chapter 3. It is divided in three sections. The first section consists of combinational logics

extraction from original logic circuits. The second and third section detail HDL codes for the hybrid fault-

tolerant and TMR architectures, respectively.

A1. Combinational�logic�extraction�

As we have seen in Chapter 3, combinational parts are extracted from ITC�99 benchmark circuits by

removing all D flip-flops from the original netlist (Verilog). For each flip-flop removed, a new primary

output (nPO) and a new primary input (nPI) are added.

An example of combinational logic extraction is detailed below for circuit b01 of ITC�99 benchmark. In

this example, differences in the extracted netlist compared the orginal netlist are in bold police.

Original netlist Netlist of extracted combinational part

module b01 (LINE1, LINE2, OUTP_REG,

OVERFLW_REG, CLK);

input LINE1,LINE2,CLK;

output OUTP_REG,OVERFLW_REG;

//Begin sequential part

dff dff_1 (STATO_REG_2_,U34,CLK);

dff dff_2 (STATO_REG_1_,U35,CLK);

dff dff_3 (STATO_REG_0_,U36,CLK);

dff dff_4 (OUTP_REG,U37,CLK);

dff dff_5 (OVERFLW_REG,U48,CLK);

//End sequential part

//Begin combinational part

module b01 (LINE1, LINE2, OUTP_REG, OVERFLW_REG,

CLK, nPI1, nPI2, nPI3, nPI4, nPI5, nPO1, nPO2, nPO3,

nPO4, nPO5);

input LINE1,LINE2,CLK;

output OUTP_REG,OVERFLW_REG;

input nPI1, nPI2, nPI3, nPI4, nPI5;

output nPO1, nPO2, nPO3, nPO4, nPO5

//Begin sequential part

buf buf_1 (nPO1, U34);

buf buf_2 (STATO_REG_2_, nPI1);

buf buf_3 (nPO2, U35);

buf buf_4 (STATO_REG_1_, nPI2);

buf buf_5 (nPO3, U36);

buf buf_6 (STATO_REG_0_, nPI3);

buf buf_7 (nPO4, U37);

buf buf_8 (OUTP_REG, nPI4);

buf buf_9 (nPO5, U48);

buf buf_10 (OVERFLW_REG, nPI5);

//End sequential part

//Begin combinational part

Appendix A

100

�����.

//End combinational part

endmodule

�����.

//End combinational part

endmodule

A2. RTL�descriptions�of�the�hybrid�fault-tolerant�architecture�

As detailed in Chapter 2, the hybrid fault-tolerant architecture is divided in different modules: input

register Reg_in, input demultiplexers Demux, combinational logics CL1, CL2 and CL3, output multiplexer

Mux, output register Reg_out, the pseudo-dynamic comparator, the control logic module (Figure 2.24).

Consequently, HDL codes of the hybrid fault-tolerant architecture are composed of: different sub-

modules and a top-level module that connect them together. Note that there is two version of top-level

module: with and without fault injections.

Top-level�module�without�fault�injections�
The following Verilog codes describe the fault-free top-level module of the hybrid fault tolerant

architecture (Figure 2.24). Note this description use two parameters nbIn and nbOut, which correspond

to input and output numbers of the original combinational logic.

module hybrid(CLK, resetControl, PI, PO, error);

//parameter declarations

parameter nbIn=0; //input number of combinational part

parameter nbOut=0; //output number of combinational part

//input declarations

input CLK, resetControl;

input [nbIn-1:0] PI;

//output declarations

output [nbOut-1:0] PO;

output error;

//internal signal declarations

wire [nbIn-1:0] vin;

wire CLKRegin, CRegin;

wire d1,d2,d3;

wire [nbIn-1:0] i1,i2,i3;

wire [nbOut-1:0] o1,o2,o3;

wire [nbOut-1:0] vout1,vout2;

wire m1,m2;

wire error,DC,reset;

//input register Reg_in

 shadow_reg #(nbIn) (.CLK(CLK), .CLKRegin(CLKRegin), .CRegin(CRegin), .vin(PI), .vout(vin));

//input demultiplexer Demux

 demux #(nbIn) (.vin(vin), .vout1(i1), .vout2(i2), .vout3(i3), .d1(d1), .d2(d2), .d3(d3));

//combinational logic CLs

Appendix A

101

cl1 (.vin(i1), .vout(o1));

cl2 (.vin(i2), .vout(o2));

cl3 (.vin(i3), .vout(o3));

//output multiplexer Mux

mux #(nbOut) (.vin1(o1), .vin2(o2), .vin3(o3), .vout1(vout1), .vout2(vout2), .m1(m1),

.m2(m2))

//output register Reg_out

 simple_reg #(nbOut) (.CLK(CLK), .vin(vout1),.vout(PO));

//pseudo-dynamic comparator

 comp #(nbOut) (.reset(reset), .DC(DC), .vin1(PO), .vin2(vout2), .vout(error));

//control logic module

 control #(nbOut) (.CLK(CLK), .resetControl(resetControl), .error(error), .DC(DC),

.reset(reset), .CRegin(CRegin), .CLKRegin(CLKRegin), .m1(m1), .m2(m2), .d1(d1) ,.d2(d2) , .d3(d3));

endmodule

Top-level�module�with�fault�injections�
The following Verilog codes describe the top-level module of the hybrid fault tolerant architecture

with fault injection. Differences with the fault-free version are in bold police.

module hybrid(CLK, resetControl, PI, PO, error);

//parameter declarations

parameter nbIn=0; //input number of combinational part

parameter nbOut=0; //output number of combinational part

//input declarations

input CLK, resetControl

input [nbIn-1:0] PI;

input fault;

//output declarations

output [nbOut-1:0] PO;

output error;

//internal signal declarations

wire [nbIn-1:0] vin;

wire CLKRegin, CRegin;

wire d1,d2,d3;

wire [nbIn-1:0] i1,i2,i3;

wire [nbOut-1:0] o1,o2,o3;

wire [nbOut-1:0] o2f;

wire [nbOut-1:0] vout1,vout2;

wire m1,m2;

wire error,DC,reset;

//input register Reg_in

 shadow_reg #(nbIn) (.CLK(CLK), .CLKRegin(CLKRegin), .CRegin(CRegin), .vin(PI), .vout(vin));

//input demultiplexer Demux

 demux #(nbIn) (.vin(vin), .vout1(i1), .vout2(i2), .vout3(i3), .d1(d1), .d2(d2), .d3(d3));

//combinational logic CLs

cl1 (.vin(i1), .vout(o1));

Appendix A

102

cl2 (.vin(i2), .vout(o2));

cl3 (.vin(i3), .vout(o3));

//fault injection

assign o2f[nbOut-1:1] = o2[nbOut-1:1];

assign o2f[0] = fault^o2[0];

//output multiplexer Mux

 mux #(nbOut) (.vin1(o1), .vin2(o2f), .vin3(o3), .vout1(vout1), .vout2(vout2), .m1(m1),

.m2(m2))

//output register Reg_out

 simple_reg #(nbOut) (.CLK(CLK), .vin(vout1),.vout(PO));

//pseudo-dynamic comparator

 comp #(nbOut) (.reset(reset), .DC(DC), .vin1(PO), .vin2(vout2), .vout(error));

//control logic module

 control #(nbOut) (.CLK(CLK), .resetControl(resetControl), .error(error), .DC(DC),

.reset(reset), .CRegin(CRegin), .CLKRegin(CLKRegin), .m1(m1), .m2(m2), .d1(d1) ,.d2(d2) , .d3(d3));

endmodule

Input�register�
The following Verilog codes describe sub-module �shadow_reg�, which is used in the top-level

module of the hybrid fault-tolerant architecture for its input register Reg_in. This sub-module is

composed of N modified D flip-flops (Figure 2.16), where N represents its input number.

//top-level module

module shadow_reg (CLK, CLKRegin, CRegin, vin, vout);

//parameter declarations

 parameter N=0; //input number

//intput declarations

 input CLK, CLKRegin, CRegin;

 input [N-1:0] vin;

//output declarations

 output [N-1:0] vout;

//generate N modified D flip-flop (Figure 2.16)

 genvar i;

 generate

 for (i=0;i<N;i=i+1)

 begin

 eRegin (.CLK(CLK), .CLKRegin(CLKRegin), .CRegin(CRegin), .D(vin[i]), .Q(vout[i]));

 end;

 endgenerate;

endmodule

//Modified D flip-flop (Figure 2.16)

module eRegin(CLK, CLKRegin, CRegin, D, Q);

 //input and output declarations

 input CLK, CLKRegin, CRegin, D;

 output Q;

Appendix A

103

 //internal signal declarations

 wire enable;

 reg D_DFF,Q, Q_DLL;

 //main D flip-flop DFF

 always @(posedge CLK)

 begin: DFF

 Q=D_DFF;

 end;

 //shadow latch DLL

 always @(enable)

 begin: DLL

 if (enable==1'b0)

 begin

 Q_DLL=Q;

 end;

 end;

 //multiplexer

 always @(D or Q_DLL or Cregin)

 begin: MUX

 if (CRegin==1'b1)

 begin

 D_DFF=Q_DLL;

 end

 else

 begin

 D_DFF=D;

 end;

 end;

 // OR gate

 or (enable, CLKRegin, CRegin);

endmodule

Input�demultiplexer�
The following Verilog codes describe sub-module �demux�, which is used in the top-level module of

the hybrid fault-tolerant architecture for its input demultiplexer Demux. This sub-module is composed N

elementary demultiplexers (Figure 2.25), where N represents its input number.

//top-level module

module demux (vin, d1, d2, d3, vout1, vout2, vout3);

//parameter declarations

 parameter N=0; //input number

//input declarations

 input d1,d2,d3;

 input [N-1:0] vin;

//output declarations

 output [N-1:0] vout1,vout2,vout3;

//generate N elementary input demultiplexers eDmux (Figure 2.25)

genvar i;

generate

for (i=0;i<N;i=i+1)

Appendix A

104

begin

 eDmux (vin[i], d1, d2, d3, vout1[i], vout2[i], vout3[i]);

end;

endgenerate;

endmodule

//elementary input demultiplexer eDmux (Figure 2.25)

module eDmux(vin, d1, d2, d3, i1, i2, i3);

//input declarations

 input vin; //data

 input d1,d2,d3; //control bits

//output declarations

 output i1,i2,i3;

 and gat1 (i1,vin,d1);

 and gat2 (i2,vin,d2);

 and gat3 (i3,vin,d3);

endmodule

Output�multiplexer��
The following Verilog codes describe sub-module �mux�, which is used in the top-level module of the

hybrid fault-tolerant architecture for its output multiplexer Mux. This sub-module is composed of N

elementary multiplexers, where N represents its input number The following parts detail three possible

versions of mux, correspond to three types of elementary multiplexer (Figure 2.27, Figure 2.28, Figure

2.29).

Method�1�
//top-level module

module mux (vin1, vin2, vin3, m1, m2, vout1, vout2);

//parameter declarations

 parameter N=0; //input number

//input declarations

 input m1,m2; //control bits

 input [N-1:0] vin1, vin2, vin3; //data

//output declarations

 output [N-1:0] vout1,vout2;

 //generate N elementary output multiplexers eMux

 genvar i;

 generate

 for (i=0;i<N;i=i+1)

 begin

 eMux (.vin1(vin1[i]), .vin2(vin2[i]), .vin3(vin3[i]),.m1(m1), .m2(m2), .vout1(vout1[i]), .vout2(vout2[i]));

 end;

 endgenerate

endmodule

//elementary output multiplexer eDmux using Method 1 (Figure 2.27)

module eMux (m1, m2, vin1, vin2, vin3, vout1, vout2);

Appendix A

105

//input declarations

 input m1, m2; //control bits

 input vin1, vin2, vin3; //data

//output declarations

 output vout1, vout2;

//internal signal declarations

 wire x1,x2;

mux2 (.A(vin1), .B(vin2), .S(m1), .Z(vout1));

mux2 (.A(vin3), .B(vin2), .S(m2), .Z(vout2));

endmodule

//2:1 multiplexer

module mux2 (S, A, B, Z);

 input S, A, B;

 output Z;

 assign Z= (S & B)|(~S & A);

endmodule

Method�2�

// top-level module

module mux (vin1, vin2, vin3, m1, m2, vout1, vout2);

//parameter declarations

 parameter N=0; //input number

//input declarations

 input m1,m2; //control bits

 input [N-1:0] vin1, vin2, vin3; //data

//output declarations

 output [N-1:0] vout1,vout2;

 //generate N elementary output multiplexers eMux

 genvar i;

 generate

 for (i=0;i<N;i=i+1)

 begin

 eMux (.vin1(vin1[i]), .vin2(vin2[i]), .vin3(vin3[i]),.m1(m1), .m2(m2), .vout1(vout1[i]), .vout2(vout2[i]));

 end;

 endgenerate

endmodule

//elementary output multiplexer eDmux using Method 2 (Figure 2.28)

module eMux (m1, m2, vin1, vin2, vin3, vout1, vout2);

//input declarations

 input m1, m2; //control bits

 input vin1, vin2, vin3; //data

//output declarations

 output vout1, vout2;

Appendix A

106

//internal signal declarations

 wire x1,x2;

mux2 (.A(vin3), .B(vin2), .S(m1), .Z(x1));

mux2 (.A(vin1), .B(vin3), .S(m1), .Z(x2));

mux2 (.A(x1), .B(vin1), .S(m2), .Z(vout1));

mux2 (.A(x2), .B(vin2), .S(m2), .Z(vout2));

endmodule

//2:1 multiplexer

module mux2 (S, A, B, Z);

 input S, A, B;

 output Z;

 assign Z= (S & B)|(~S & A);

endmodule

Method�3�(with�tri-state�buffers)�
// top-level

module mux (vin1, vin2, vin3, m1, m2, m3, vout1, vout2);

//parameter declarations

 parameter N=0; //input number

//input declarations

 input m1, m2, m3; //control bits

 input [N-1:0] vin1, vin2, vin3; //data

//output declarations

 output [N-1:0] vout1, vout2;

 //generate N elementary output multiplexers eMux

 genvar i;

 generate

 for (i=0;i<N;i=i+1)

 begin

 eMux (.vin1(vin1[i]), .vin2(vin2[i]), .vin3(vin3[i]),.m1(m1), .m2(m2),.m3(m3), .vout1(vout1[i]),

.vout2(vout2[i]));

 end;

 endgenerate

endmodule

//elementary output multiplexer eDmux using tri-state buffers (Figure 2.29)

module eMux (m1, m2, vin1, vin2, vin3, vout1, vout2);

//input declarations

 input m1, m2, m3; //control bits

 input vin1, vin2, vin3; //data

//output declarations

 output vout1, vout2;

tbuf (.S(m3), .A(vin1), .Z(vout1));

tbuf (.S(m1), .A(vin2), .Z(vout1));

tbuf (.S(m2), .A(vin3), .Z(vout1));

tbuf (.S(m3), .A(vin2), .Z(vout2));

Appendix A

107

tbuf (.S(m1), .A(vin3), .Z(vout2));

tbuf (.S(m2), .A(vin1), .Z(vout2));

endmodule

//tri-state buffer

module tbuf (S, A, Z);

input S, A;

output Z;

assign Z=(S)?1'bz:A;

endmodule

Output�register�
The following Verilog codes describe sub-module �simple_reg�, which is used in the top-level module

of the hybrid fault-tolerant architecture for its output register Reg_out. This sub-module is composed of

N D flip-flops where N represents its input number.

//top-level module

module simple_reg (vin,vout, CLK);

//parameter declarations

 parameter N=0; //input number

//input declarations

 input CLK; //clock

 input [N-1:0] vin; //data

 //output declarations

 output [N-1:0] vout;

 reg [N-1:0] vout;

 always@(posedge CLK)

 begin

 vout<=vin;

 end;

endmodule

Pseudo-dynamic�comparator�
The following Verilog codes describe sub-module �comp�, which is used in the top-level module of

the hybrid fault-tolerant architecture for its pseudo-dynamic comparator (Figure 2.10). This description

uses a parameter N corresponding to size of the two input vectors to be compared.

//top-level module

module comp (reset, DC, vin1, vin2, vout);

//parameter declarations

 parameter N=0; //number of bits per input vetor

//input declarations

 input reset,DC; //control signals

 input [N-1:0] vin1,vin2; //data

//ouput declarations

 output vout;

 //internal signal declarations

 wire [N-1:0] oXor; //output of XOR gates

Appendix A

108

 wire [((N+3)-(N+3)%4)/4-1:0] oDor; //output of DOR gates

 //local comparison stage (Figure 2.10)

 assign oXor= vin1^vin2;

 //generate DOR gates for the first layer of global comparison stage (Figure 2.10)

genvar i;

generate

for (i=0;i<((N+3)-(N+3)%4)/4-1;i=i+1)

begin

DOR4_X1 (.DC(DC), .RESET(reset), .D0(oXor[i*4]), .D1(oXor[i*4+1]), .D2(oXor[i*4+2]), .D3(oXor[i*4+3]),

.OUT(oDor[i]));

end

 for (i=((N+3)-(N+3)%4)/4-1;i<((N+3)-(N+3)%4)/4;i=i+1)

 begin

 if (N%4==0)

 begin

DOR4_X1 (.DC(DC), .RESET(reset), .D0(oXor[i*4]), .D1(oXor[i*4+1]), .D2(oXor[i*4+2]),

.D3(oXor[i*4+3]), .OUT(oDor[i]));

 end

 if (N%4==1)

 begin

DOR4_X1 (.DC(DC), .RESET(reset), .D0(oXor[i*4]), .D1(oXor[i*4]), .D2(oXor[i*4]),

.D3(oXor[i*4]), .OUT(oDor[i]));

 end

 if (N%4==2)

 begin

DOR4_X1 (.DC(DC), .RESET(reset), .D0(oXor[i*4]), .D1(oXor[i*4]), .D2(oXor[i*4+1]),

.D3(oXor[i*4+1]), .OUT(oDor[i]));

 end

 if (N%4==3)

 begin

DOR4_X1 (.DC(DC), .RESET(reset), .D0(oXor[i*4]), .D1(oXor[i*4+1]), .D2(oXor[i*4+2]),

.D3(oXor[i*4]), .OUT(oDor[i]));

 end

 end;

 endgenerate;

 //XOR tree for the second layer of global comparison stage (Figure 2.10)

 assign vout = |oDor[((N+3)-(N+3)%4)/4-1:0];

endmodule

Control�logic�module�
The following HDL codes describe sub-module �control�, which is used in the top-level module of the

hybrid fault-tolerant architecture for its control logic module. As discussed in Chapter 2, this sub-module

is divided in three parts. The first part (�submodule1�) generates control signals for the input register

and the pseudo-dynamic comparator (Figure 2.20, Figure 2.21). In order to meet different timing

constraints of these signals, it is implemented using different buffers in the standard cell library [NOCL].

The second part (�submodule2�) corresponds to the FSM. There are two version of FSM as described in

Figure 2.30. The third part (�submodule3�) generates control signals for the input demultiplexers and the

output multiplexer from outputs of the FSM. Except of FSM modules which are described in VHDL,

others modules are described in Verilog.

//top-level module

module control (CLK, error, resetControl, CLKRegin, CRegin, d1, d2, d3, m1, m2, DC, reset);

Appendix A

109

 //input declarations

 input CLK; //global clock signal

 intput error; //output of the pseudo-dynamic comparator

 input resetControl; //reset the complete architecture (Figure 2.24)

 //output declarations

 output CLKRegin, CRegin; //control signals for input register Reg_in

 output d1,d2,d3; //control signals for input demultiplexer Demux

 output m1,m2; //control signals for output multiplexer Mux

 output DC,reset; //control signals for the pseudo-dynamic comparator

 //internal signal declarations

 wire f1,f2; //signal generated by the FSM (Table 2.4)

 //submodule1: clock generator (Figure 2.20, Figure 2.21)

submodule1 sub1 (.CLK(CLK), .resetControl(resetControl), .error(error), .DC(DC), .reset(reset),

.CRegin(CRegin), .CLKRegin(CLKRegin));

 //submodule2: FSM (Figure 2.30)

 submodule2 sub2 (.CLKRegin(CLKRegin), .CRegin(CRegin), .resetControl(resetControl), .f1(f1), .f2(f2));

 //submodule3: Control signals generator for input demultiplexers and output multiplexer (Figure 2.32)

 submodule3 sub3 (.f1(f1), .f2(f2), .m1(m1), .m2(m2), .d1(d1), .d2(d2), .d3(d3));

endmodule

//submodule1: clock generator (Figure 2.20, Figure 2.21)

//depending on different standard cell library , buf1 and buf2 in of this module are replaced by different buffer cells to

satisfy timing constraints stated in Chapter 2 [NOCL]

module submodule1 (CLK, resetControl, error, DC, reset, CRegin, CLKRegin);

 //input declarations

 input CLK, resetControl, error;

 //output declarations

 output DC, reset, CRegin, CLKRegin;

 // DC generator

 buf2 bufDC (.A(CLK), .Z(DC));

 // CLKRegin generator

 buf2 bufDC1 (.A(CLK), .Z(DC1));

 buf1 bufCLKRegin1 (.A(DC1), .Z(CLKRegin1));

 buf2 bufCLKRegin2 (.A(CLKRegin1), .Z(CLKRegin2));

 INV_X1 invCLKRegin (.A(CLKRegin2), .ZN(CLKRegin3));

 OR2_X1 ORCLKRegin (.A1(CLKRegin1), .A2(CLKRegin3), .ZN(CLKRegin));

 //CLKComp

 buf1 bufRComp (.A(CLK), .Z(CLKComp1));

 INV_X1 invRComp (.A(CLKComp1), .ZN(CLKComp2));

 NAND2_X1 andRComp (.A1(CLK), .A2(CLKComp2), .ZN(CLKComp));

 //Control

 DFFR_X1 DFFR (.CK (DC), .QN(Control), .RN (resetControl), .D(CRegin));

 //reset

 OR2_X1 orReset (.A1(CLKComp), .A2(Control), .ZN(reset));

 //CRegin

 AND2_X1 ANDCregin (.A1(Control), .A2(error), .ZN(CRegin));

Appendix A

110

endmodule

//submodule2 version FMS1 (Figure 2.30-a)

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity fsm is

 Port (CLKRegin : in STD_LOGIC;

 CRegin : in STD_LOGIC;

 resetControl: in STD_LOGIC;

 f1 : out STD_LOGIC;

 f2 : out STD_LOGIC);

end fsm;

architecture behavior of fsm is

 type typeState is (A1,A2,A3,A4,A5,A6,B1,B2,B3,B4,B5,B6,C1,C2,C3,C4,C5,C6,STOP);

 -- State Ax: f1=0;f2=1; (CL1 and CL2)

 -- State Bx: f1=1;f2=0; (CL2 and CL3)

 -- State Cx: f1=0;f2=0; (CL3 and CL1)

 -- State STOP: f1=1;f2=1;

 signal currentState,nextState : typeState;

begin

 state_reg: process (CLKRegin,resetControl)

 begin

 if (CLKRegin'event and CLKRegin='0') then

 if resetControl='0' then

 currentState<=A1;

 else

 currentState <= nextState;

 end if;

 end if;

 end process;

 state_define: process (currentState,CRegin)

 begin

 case currentState is

 when A1 => f1<='0';f2<='1';

 if CRegin='0' then nextState <= A1; end if;

 if CRegin='1' then nextState <= A2; end if;

 when A2 => f1<='0';f2<='1';

 if CRegin='0' then nextState <= A1; end if;

 if CRegin='1' then nextState <= B3; end if;

 when A3 => f1<='0';f2<='1';

 if CRegin='0' then nextState <= A1; end if;

 if CRegin='1' then nextState <= A4; end if;

 when A4 => f1<='0';f2<='1';

 if CRegin='0' then nextState <= A1; end if;

 if CRegin='1' then nextState <= B5; end if;

 when A5 => f1<='0';f2<='1';

 if CRegin='0' then nextState <= A1; end if;

 if CRegin='1' then nextState <= A6; end if;

 when A6 => f1<='0';f2<='1';

 if CRegin='0' then nextState <= A1; end if;

 if CRegin='1' then nextState <= STOP; end if;

Appendix A

111

 when B1 => f1<='1';f2<='0';

 if CRegin='0' then nextState <= B1; end if;

 if CRegin='1' then nextState <= B2; end if;

 when B2 => f1<='1';f2<='0';

 if CRegin='0' then nextState <= B1; end if;

 if CRegin='1' then nextState <= C3; end if;

 when B3 => f1<='1';f2<='0';

 if CRegin='0' then nextState <= B1; end if;

 if CRegin='1' then nextState <= B4; end if;

 when B4 => f1<='1';f2<='0';

 if CRegin='0' then nextState <= B1; end if;

 if CRegin='1' then nextState <= C5; end if;

 when B5 => f1<='1';f2<='0';

 if CRegin='0' then nextState <= B1; end if;

 if CRegin='1' then nextState <= B6; end if;

 when B6 => f1<='1';f2<='0';

 if CRegin='0' then nextState <= B1; end if;

 if CRegin='1' then nextState <= STOP; end if;

 when C1 => f1<='0';f2<='0';

 if CRegin='0' then nextState <= C1; end if;

 if CRegin='1' then nextState <= C2; end if;

 when C2 => f1<='0';f2<='0';

 if CRegin='0' then nextState <= C1; end if;

 if CRegin='1' then nextState <= A3; end if;

 when C3 => f1<='0';f2<='0';

 if CRegin='0' then nextState <= C1; end if;

 if CRegin='1' then nextState <= C4; end if;

 when C4 => f1<='0';f2<='0';

 if CRegin='0' then nextState <= C1; end if;

 if CRegin='1' then nextState <= A5; end if;

 when C5 => f1<='0';f2<='0';

 if CRegin='0' then nextState <= C1; end if;

 if CRegin='1' then nextState <= C6; end if;

 when C6 => f1<='0';f2<='0';

 if CRegin='0' then nextState <= C1; end if;

 if CRegin='1' then nextState <= STOP; end if;

 when STOP => f1<='1'; f2<='1';

 nextState<=STOP;

 end case;

 end process;

end behavior ;

//submodule2 version FMS1 (Figure 2.30-b)

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity fsm is

 Port (CLKRegin : in STD_LOGIC;

 CRegin : in STD_LOGIC;

 resetControl: in STD_LOGIC;

 f1 : out STD_LOGIC;

Appendix A

112

 f2 : out STD_LOGIC);

end fsm;

architecture behavior of fsm is

 type typeState is (A1,A2,A3,A4,A5,A6,B1,B2,B3,B4,B5,B6,C1,C2,C3,C4,C5,C6,STOP);

 -- State Ax: f1=0;f2=1; (CL1 and CL2)

 -- State Bx: f1=1;f2=0; (CL2 and CL3)

 -- State Cx: f1=0;f2=0; (CL3 and CL1)

 -- State STOP: f1=1;f2=1;

 signal currentState,nextState : typeState;

begin

 state_reg: process (CLKRegin, resetControl)

 begin

 if (CLKRegin'event and CLKRegin='0') then

 if resetControl='0' then

 currentState<=A1;

 else

 currentState <= nextState;

 end if;

 end if;

 end process;

 state_define: process (currentState,CRegin)

 begin

 case currentState is

 when A1 => f1<='0';f2<='1';

 if CRegin='0' then nextState <= A1; end if;

 if CRegin='1' then nextState <= B2; end if;

 when A2 => f1<='0';f2<='1';

 if CRegin='0' then nextState <= A1; end if;

 if CRegin='1' then nextState <= B3; end if;

 when A3 => f1<='0';f2<='1';

 if CRegin='0' then nextState <= A1; end if;

 if CRegin='1' then nextState <= B4; end if;

 when A4 => f1<='0';f2<='1';

 if CRegin='0' then nextState <= A1; end if;

 if CRegin='1' then nextState <= B5; end if;

 when A5 => f1<='0';f2<='1';

 if CRegin='0' then nextState <= A1; end if;

 if CRegin='1' then nextState <= B6; end if;

 when A6 => f1<='0';f2<='1';

 if CRegin='0' then nextState <= A1; end if;

 if CRegin='1' then nextState <= STOP; end if;

 when B1 => f1<='1';f2<='0';

 if CRegin='0' then nextState <= B1; end if;

 if CRegin='1' then nextState <= C2; end if;

 when B2 => f1<='1';f2<='0';

 if CRegin='0' then nextState <= B1; end if;

 if CRegin='1' then nextState <= C3; end if;

 when B3 => f1<='1';f2<='0';

 if CRegin='0' then nextState <= B1; end if;

 if CRegin='1' then nextState <= C4; end if;

 when B4 => f1<='1';f2<='0';

Appendix A

113

 if CRegin='0' then nextState <= B1; end if;

 if CRegin='1' then nextState <= C5; end if;

 when B5 => f1<='1';f2<='0';

 if CRegin='0' then nextState <= B1; end if;

 if CRegin='1' then nextState <= C6; end if;

 when B6 => f1<='1';f2<='0';

 if CRegin='0' then nextState <= B1; end if;

 if CRegin='1' then nextState <= STOP; end if;

 when C1 => f1<='0';f2<='0';

 if CRegin='0' then nextState <= C1; end if;

 if CRegin='1' then nextState <= A2; end if;

 when C2 => f1<='0';f2<='0';

 if CRegin='0' then nextState <= C1; end if;

 if CRegin='1' then nextState <= A3; end if;

 when C3 => f1<='0';f2<='0';

 if CRegin='0' then nextState <= C1; end if;

 if CRegin='1' then nextState <= A4; end if;

 when C4 => f1<='0';f2<='0';

 if CRegin='0' then nextState <= C1; end if;

 if CRegin='1' then nextState <= A5; end if;

 when C5 => f1<='0';f2<='0';

 if CRegin='0' then nextState <= C1; end if;

 if CRegin='1' then nextState <= A6; end if;

 when C6 => f1<='0';f2<='0';

 if CRegin='0' then nextState <= C1; end if;

 if CRegin='1' then nextState <= STOP; end if;

 when STOP => f1<='1'; f2<='1';

 nextState<=STOP;

 end case;

 end process;

end behavior ;

// submodule3: Control signals generator for input demultiplexers and output multiplexer (Figure 2.32)

module submodule3 (f1,f2,m1,m2,d1,d2,d3);

 input f1,f2;

 output m1,m2,d1,d2,d3;

 assign m1=f1;

 assign m2=f2;

 assign d1=~f1;

 assign d2=f1^f2;

 assign d3=~f2;

endmodule

Appendix A

114

A3. RTL�descriptions�of�TMR�architectures��

This section details Verilog description of Partial (Figure 3.3-a) and Full TMR architectures (Figure 3.3-

b). Each architecture is combined of input registers, combinational logic modules, output registers and

word voter. In TMR methods, all registers are made of D flip-flop. Consequently, �simple_register� sub-

module described in previous section can be used. Therefore, the following sub-sections only detail

Verilog descriptions for top-level modules (�TMR1� and �TMR2�) of the two TMR versions, as well as the

word voter (�voter_tmr�) which is identical for both versions.

Top-level�module�of�Partial�TMR�architecture�
//top-level module

module TMR1 (PI, PO, CLK, error);

 //parameter declarations

 parameter nbIn=0; //input number of combinational logic module

 parameter nbOut=0; // output number of combinational logic module

 //input declarations

 input CLK; //global clock signal

 input [nbIn-1:0] PI; //primary input vector

 //output declarations

 output [nbOut-1:0] PO; //primary output vector

 output error; //error signal

 //internal signal declarations

 wire [nbIn-1:0] i;

 wire [nbOut-1:0] o1, o2, o3, vout;

 //input register

 simple_reg #(nbIn) reg_in (.CLK(CLK), .vin(PI), .vout(i));

 //combinational logics

 cl1 cl1 (.vin(i), .vout(o1));

 cl2 cl2 (.vin(i), .vout(o2));

 cl3 cl3 (.vin(i), .vout(o3));

 //voter

 voter_tmr #(nbOut) voter (.vin1(o1), .vin2(o2), .vin3(o3), .vout(vout),.error(error));

 //output register

 simple_reg #(nbOut) reg_out (.CLK(CLK), .vin(vout),.vout(PO));

endmodule

Top-level�module�of�Full�TMR�architecture�
//top-level module

module TMR2 (PI, PO, CLK, error);

 //parameter declarations

 parameter nbIn=0; //input number of combinational logic module

 parameter nbOut=0; // output number of combinational logic module

 //input declarations

 input CLK; //global clock signal

 input [nbIn-1:0] PI; //primary input vector

Appendix A

115

 //output declarations

 output [nbOut-1:0] PO; //primary output vector

 output error; //error signal

 //internal signal declarations

 wire [nbIn-1:0] i1, i2, i3;

 wire [nbOut-1:0] o1, o2, o3

 wire [nbOut-1:0] vout1, vout2, vout3;

 //input registers

 simple_reg #(nbIn) (.CLK(CLK), .vin(PI), .vout(i1));

 simple_reg #(nbIn) (.CLK(CLK), .vin(PI), .vout(i2));

 simple_reg #(nbIn) (.CLK(CLK), .vin(PI), .vout(i3));

 //combinational logics

 cl1 cl1 (.vin(i1), .vout(o1));

 cl2 cl2 (.vin(i2), .vout(o2));

 cl3 cl3 (.vin(i3), .vout(o3));

 //output registers

 simple_reg #(nbOut) (.CLK(CLK), .vin(o1),.vout(vout1));

 simple_reg #(nbOut) (.CLK(CLK), .vin(o2),.vout(vout2));

 simple_reg #(nbOut) (.CLK(CLK), .vin(o3),.vout(vout3));

 //voter

 voter_tmr #(nbOut) voter (.vin1(vout1), .vin2(vout2), .vin3(vout3), .vout(PO),.error(error));

endmodule

Word-voter�
//top-level module

module voter_tmr (vin1, vin2, vin3, vout, error);

 //parameter declarations

 parameter N=0;

 //input declarations

 input [N-1:0] vin1, vin2, vin3;

 //output declarations

 output [N-1:0] vout;

 output error;

 //internal signal declarations

 wire match12, match23, match31;

 wire [N-1:0] M31;

 //verify if there is at least two identical input vectors

 //using submodule Match: compare two vectors, returns logic-1 if they are identical and logic-0 otherwise

 Match #(N) gateMatch12 (.vin1(vin1), .vin2(vin2), .vout(match12));

 Match #(N) gateMatch23 (.vin1(vin2), .vin2(vin3), .vout(match23));

 Match #(N) gateMatch31 (.vin1(vin3), .vin2(vin1), .vout(match31));

 nor gateNor (error, match12, match23, match31);

 //generate output vector

 assign M31= {N {match31} };

 assign vout= (M31&vin1)|(~M31&vin2);

Appendix A

116

endmodule

//submodule Match: compare two vectors, returns logic-1 if they are identical and logic-0 otherwise

module Match (vin1, vin2, vout);

 parameter N=0;

 Input [N-1:0] vin1, vin2;

 output vout;

 wire [N-1:0] oXnor;

 assign oXnor= vin1~^vin2;

 assign vout=&(oXnor);

endmodule

Scientific�Contributions�

Chapter�7 Scientific�Contributions�

Journal

[TVL13] D. A. Tran, A. Virazel, A. Bosio, L. Dilillo, P. Girard, S. Pravossoudovitch, A. Todri, H. �J.

Wunderlich, �A New Hybrid Fault-Tolerant Architecture for Digital CMOS Circuits and

Systems�, submitted to IEEE Tran. on VLSI Systems, October 2012.

Conferences

[VTS12] D. A. Tran, A. Virazel, A. Bosio, L. Dilillo, P. Girard, A. Todri, H. �J. Wunderlich, M. E.

Imhof, �A Pseudo-Dynamic Comparator for Error Detection in Fault-Tolerant

Architectures�, Proc. of the IEEE VLSI Test Sym. (VTS�12), pg. 50-55, 2012.

[ATS11] D. A. Tran, A. Virazel, A. Bosio, L. Dilillo, P. Girard, S. Pravossoudovitch, H. �J. Wunderlich,

�A Hybrid Fault-Tolerant Architecture for Robustness Improvement of Digital Circuits�,

Proc. of the IEEE Asian Test Sym. (ATS�11), pg. 136-141, 2011.

[ITC10] D. A. Tran, A. Virazel, A. Bosio, L. Dilillo, P. Girard, S. Pravossoudovitch, H. �J. Wunderlich,

�Parity Prediction Synthesis for Nano-Electronic Gate Design�, Proc. of the IEEE Int. Test

Conf. (ITC�10), Poster.

Seminars and Workshop

[GDR11] D. A. Tran, A. Virazel, A. Bosio, L. Dilillo, P. Girard, S. Pravossoudovitch, H. �J. Wunderlich,

�Architecture Tolérante aux Fautes pour la Robustesse des Circuits CMOS�, Colloque

National du GDR SOC-SIP, France, June 2011.

[JNR11] D. A. Tran, A. Virazel, A. Bosio, L. Dilillo, P. Girard, S. Pravossoudovitch, H. �J. Wunderlich,

�Architecture Tolérante aux Fautes pour la Robustesse des Circuits CMOS�, Journées

Nationales du Réseau Doctoral en Micro-Nanoélectronique (JNRDM�11), France, May

2011.

[SET11] D. A. Tran, A. Virazel, A. Bosio, L. Dilillo, P. Girard, S. Pravossoudovitch, H. �J. Wunderlich,

�A Hybrid Fault-Tolerant Architecture for Robustness Improvement of Digital Circuits�,

South European Test Seminar (SET�11), France, March 2011.

[GDR10] D. A. Tran, A. Virazel, A. Bosio, L. Dilillo, P. Girard, S. Pravossoudovitch, H. �J. Wunderlich,

�Tolérance aux Fautes et Rendement de Fabrication�, Colloque National du GDR SOC-SIP,

France, June 2010.

[SET10] D. A. Tran, A. Virazel, A. Bosio, L. Dilillo, P. Girard, S. Pravossoudovitch, �Yield

Enhancement using Fault-Tolerant Architectures�, South European Test Seminar

(SET�10), Austria, March 2010.

References�

Chapter�8 References �

[ALM03] S. Almukhaizim, Y. Makris, �Fault Tolerant Design of Combinational and Sequential Logic

Based on a Parity Check Code�, Proc. of the 18th IEEE Int. Sym. on Defect and Fault-

tolerance in VLSI Systems (DFT '03), pg. 563-570, 2003.

[BAK10] R. J. Baker, �CMOS: Circuit Design, Layout, and Simulation�, Ed. Wiley-IEEE Press, 2010.

[BAU05] R. Baumann, �Soft errors in advanced computer systems�, IEEE Design & Test of

Computers, Vol. 22, No. 3, pf. 258�266, May�June 2005.

[BER61] J. M. Berger, �A Note on Error Detection Codes for Asymmetric Channels�, Information

and Control, Vol. 4, pg. 68-73, 1961.

[BER99] K. Bernstein, K. Carrig, C. Durham, P. Hansen, D. Hogenmiller, E. Nowak, and N. Roher,

�High Speed CMOS Design Styles�, Kluwer Academic Publishers, 1999.

[BOS85] B. Bose, D. J. Lin, �Systematic Unidirectional Error-Detecting Codes�, IEEE Trans. Comp.,

pg. 1026-1032, November 1985.

[BUS02] M. L. Bushnell, V. D. Agrawal, �Essentials of Electronic Testing for Digital, Memory and

Mixed-Signal VLSI Circuits�, Ed. Kluwer Academic Publishers, 2002.

[CRI07] Dale L. Critchlow, �Recollections on MOSFET Scaling�, IEEE SolidState Circuits Newsletter

2007, Vol. 12, Issue 1, pg. 19-22, 2007.

[DAS09] S. Das, C. Tokunaga, S. Pant, W. -H. Ma, S. Kalaiselvan, K. Lai, D. M. Bull, D. T. Blaauw,

�Razor II: In Situ Error Detection and Correction for PVT and SER Tolerance�, IEEE J. of

Solid-State Circuits, Vol. 44, Issue 1, pg. 32-48, January 2009.

[DCSYN] Synopsys Inc., Design Compiler® User Guide 2011.

[DE94] K. De, C. Natarajan, �RSYN: A System for Automated Synthesis of Reliable Multilevel

Circuits�, IEEE Transactions on VLSI Systems, Vol. 2, No 2, pg. 186-195, 1994.

[DEN74] R. Dennard, F. H. Gaensslen, H. -N. Yu, V. L. Rideout, E. Bassous, A. R. Leblanc, �Design of

Ion-Implanted MOSFETs with Very Small Physical Dimensions�, IEEE Journal of Solid State

Circuits, Vol. SC-9, No. 5, pp. 256-268, October 1974.

[ERN03] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler, D. Blaauw, T. Austin, K.

Flautner, T. Mudge, �Razor: A Low-Power Pipeline Based on Circuit-Level Timing

Speculation�, Proc. of the 36
th

 Annual IEEE/ACM Int. Sym. on Microarchitecture (MICRO-

36), pg. 7-18, December 2003.

[FAN06] L. Fang, M. S. Hsiao, �Bilateral Testing of Nano-scale Fault-tolerant Circuits�, Proc. of IEEE

Int. Symp. on Defect and Fault-Tolerance in VLSI Systems, pg. 309-317, 2006.

[FOR09] R. Forsati, K. Faez, F. Moradi, A. Rahbar, �A Fault Tolerant Method for Residue Arithmetic

Circuits�, Proc. of the IEEE Int. Conference on Information Management and Engineering,

pg. 59-63, 2009.

References

119

[GAL98] W. L. Gallagher, E. E. Swartzlander Jr., �Error-Correcting Goldschmidt Dividers Using Time

Shared TMR�, Proc. of the 13th Int. Sym. on Defect and Fault-Tolerance in VLSI Systems

(DFT�98), pg. 224-232, 1998.

[GIR10] P. Girard, N. Nicolici, X.Wen, �Power-Aware Testing and Test Strategies for Low Power

Devices�, Springer, 2010.

[HAR01] D. Harris, S. Naffziger, �Statistical clock skew modeling with data delay variations�, IEEE

Trans. VLSI, Vol. 9, No. 6, pg. 888�898, December 2001.

[HEN07] J. L. Hennessy, D. A. Patterson, �Computer Architecture: A Quantitative Approach�, 4
th

Ed. Morgan Kaufmann Publishers, 2007.

[HSI70] M. Y. Hsiao, �A Class of Optimal Minimum Odd-Weight-Column SEC-DED Codes�, IBM J.

of Res. and Develop., Vol. 14, No. 4, pg. 395-401, 1970.

[HSU94] Y. -H. Hsu, E. E. Swartzlander Jr., �Reliability Estimation for Time Redundant Error

Correcting Adders and Multipliers�, Proc. of the IEEE Int. Workshop on Defect and Fault-

Tolerance in VLSI Systems, pg. 159-167, 1994.

[IMH11] M. E. Imhof, H.-J. Wunderlich, �Soft Error Correction in Embedded Storage Elements�,

Proc. of IEEE International On-Line Testing Symposium (IOLTS11), pp. 169-174, 2011.

[INT10] Intel Corporation, �The Evolution of a Revolution�,

http://download.intel.com/pressroom/kits/IntelProcessorHistory.pdf.

[ISCAS85] F. Brglez and H. Fujiwara, �A neutral Netlist of 10 Combinatorial Benchmark Circuits and

a Target Translator in FORTRAN�, Proc. of Int. Symposium on Circuits and Systems

(ISCAS�85), pg. 695-698, 1985.

[ITC99] S. Davidson, �ITC�99 Benchmark Circuits - Preliminary Results�, Proc. of Int. Test Conf.

(ITC�99), pg. 1125, 1999.

[ITR03] Semiconductor Industry Association (SIA), �International Technology Roadmap for

Semiconductors (ITRS)�, 2003.

[ITR11] Semiconductor Industry Association (SIA), �International Technology Roadmap for

Semiconductors (ITRS)�, 2011.

[KO04] S.-B. Ko, J-C. Lo, �Efficient Realization of Parity Prediction Functions in FPGAs�, Journal of

Electronic Testing: Theory and Applications (JETTA), Vol. 20, Issue 5, pg. 489-499,

October 2004.

[KOR07] I. Koren, C. M. Krishna, �Fault-Tolerant Systems�, Ed. Organ Kaufmann, 2007.

[KUM06] R. Kumar, V. Kursun, �Reversed temperature-dependent propagation delay

characteristics in nanometer CMOS circuits�, IEEE Trans. Circuits & Systems, Vol. 53, No.

10, pg. 1078�1082, October 2006.

[LAP95] J. -C.Laprie, J. Arlat, J. -P. Blanquart, A. Costes, Y. Crouzet, Y. Deswarte, J. -C. Fabre, H.

Guillermain, M. Kaâinche, K. Kanoun, C. Mazet, D. Powell, C. Rabéjac, P. Thévenod,

�Guide de La Sûreté de Fonctionnement�, Cépaduès, 1995.

[LTSPICE] Linear Technology, LTSpice Getting Started Guide 2008.

References

120

[LYO62] R. E. Lyons, W. Vanderkulk, �The Use of Triple-Modular Redundancy to Improve

Computer Reliability�, IBM Journal of Research and Development, Vol. 6, Issue 2, pg.

200-209, April 1962.

[MCH01] J. McHale, �Actel Engineers Use Triple-Module Redundancy in New Rad-Hard FPGA�,

Military & Aerospace Electronics, 8 August 2001.

[MIT00a] S. Mitra, E. J. McCluskey, �Which Concurrent Error Detection Scheme to Choose?�, Proc.

of the IEEE Int. Test Conference, pg. 985-994, 2000.

[MIT00b] S. Mitra, E. J. McCluskey, �Word-voter: a new voter design for triple modular redundant

systems�, Proc. of the IEEE 18th VLSI Test Symposium, pg. 465-470, 2000.

[MOO65] G. E. Moore, �Cramming More Components onto Integrated Circuits�, Electronics

Magazine, Vol. 38, No. 8, April 1965.

[NEU56] J. V. Neumann, �Probabilistic Logics and the Synthesis of Reliable Organisms from

Unreliable Components�, Automata Studies, ed. C. E. Shannon and J. McCarthy, pg. 43-

98, Princeton University Press, 1956.

[NIC03] M. Nicolaidis, N. Achouri, S. Boutobza, �Dynamic Data-bit Memory Built-In Self- Repair�,

In Proc. of the 2003 IEEE/ACM International Conference on Computer-Aided Design

(ICCAD '03), pg. 588-594, 2003.

[NIC05] M. Nicolaidis, L. Anghel, N. Achouri, �Memory Defect Tolerance Architectures for

Nanotechnologies�, J. of Electronic Testing, Vol. 21, Issue 4, pg. 445-455, August 2005.

[NIC07] M. Nicolaidis, �Graal: A New Fault Tolerant Design Paradigm for Mitigating the Flaws of

Deep Nanometric Technologies�, Proc. of IEEE International Test Conference (ITC07),

pp.1�10, 2007.

[NIC97] M. Nicolaidis, R. O. Duarte, S. Manich, J Figueras, �Fault-Secure Parity Prediction

Arithmetic Operators�, IEEE Design and Test of Computers, Vol. 14, No. 2, pg. 60-71,

1997.

[NNSIM] Synopsys Inc., NanoSim® User Guide 2011.

[NOCL] Nangate, 45nm Open Cell Library v1.3, http://www.nangate.com, 2009

[PAL11] D. J. Palframan, N. S. Kim, M. H. Lipasti, �Time Redundant Parity for Low-Cost Transient

Error Detection�, Proc. of IEEE Design, Automation & Test in Europe, pg. 1-6, 2011.

[PAU07] B. C. Paul, K. Kang, H. Kufluoglu, M. A. Alam, K. Roy, �Negative Bias Temperature

Instability: Estimation and Design for Improved Reliability of Nanoscale Circuits�, IEEE

Trans. On Computer-Aided Design of Integrated Circuits and Systems, Vol. 26, No. 4, pg.

743-751, April 2007.

[PDK] J. E. Stine, I. Castellanos, M. Wood, J. Henson, F.Love, �FreePDK: An Open-Source

Variation-Aware Design Kit�, IEEE Int. Conf. on Microelectronic Systems Education, pg.

173-174, 2007.

[PTM] W. Zhao and Y. Cao, �Predictive technology model for nano-CMOS design exploration�,

ACM Journal on Emerging Technologies in Computing Systems , Vol. 3, No. 1, 2007.

[PUL07] A. Pullini, F. Angiolini, D. Bertozzi and L. Benini, �Fault Tolerance Overhead in Network-

on-Chip Flow Control Schemes�, in Proc. of Annual Symposium on Integrated Circuits and

System Design, pp. 224-229, 2007.

References

121

[RAO70] T. R. N. Rao, �Bi-Residue Error-Correcting Codes for Computer Arithmetic�, IEEE

Transactions on Computers, Vol. 19, Issue 5, pg. 398�402, May 1970.

[RAO77] T. R. N. Rao, H. J. Reinheimer, �Fault-Tolerant Modularized Arithmetic Logic Units�, Proc.

of the June 13-16, 1977, National Computer Conference (AFIPS'77), pg. 703-710, 1977.

[REY75] D. A. Reynolds, G. Metze, �Fault Detection Capabilities of Alternating Logic�, IEEE

Transactions on Computers, Vol. 27, No. 12, pg. 1093-1098, December 1978.

[SCH01] V. Schöber, S. Paul, O. Picot, �Memory Built-In Self-Repair Using Redundant Words�,

in Proc. of the IEEE International Test Conference (ITC '01), pg. 995-1001, 2001.

[SEL68] F. Sellers, M-Y. Hsiao, L. W. Bearnson, �Error Detection Logic for Digital Computers�,

McGraw-Hill Book Company, 1968.

[SIE75] D. P. Siewiorek, �Reliability Modeling of Compensating Module Failures in Majority

Voting Redundancy�, IEEE Transactions on Computers, Vol. 24, pg. 525�533, May 1975.

[STA11] M. Stanisavljevic, M. Schmid, Y. Leblebici, �Reliability of Nanoscale Circuits and Systems�,

Springer, 2011.

[SU05] Chin-Lung Su, Yi-Ting Yeh, Cheng-Wen Wu, �An Integrated ECC and Redundancy Repair

Scheme for Memory Reliability Enhancement�, Proc. of the 20th Int. Sym. on Defect and

Fault-Tolerance in VLSI Systems (DFT�05), pg. 81-92, 2005.

[TAH95] J. M. Tahir, S. S. Dlay, R. N. G. Naguib, O. R. Hinton, �Fault Tolerant Arithmetic Unit Using

Duplication and Residue Codes�, Integration, the VLSI Journal, Vol. 18, Issue 2-3, pg. 187-

200, June 1995.

[TOU97] N. A. Touba, E. J. McCluskey, �Logic Synthesis of Multilevel Circuits with Concurrent Error

Detection�, IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, Vol. 16, No. 7, pg. 783-789, July 1997.

[VAL10] S. Valadimas, Y. Tsiatouhas, A. Arapoyanni, �Timing Error Tolerance In Nanometer ICs�,

Proc. of the 16th IEEE Int. On-Line Testing Symposium, pg. 283 � 288, 2010.

[VIA08] J. Vial, A. Bosio, P. Girard, C. Landrault, S. Pravossoudovitch and A.Virazel, �Using TMR

Architectures for Yield Improvement�, Int. Symp.on Defect and Fault-tolerance in VLSI

Systems, pp. 7-15, 2008.

[VIA09] J. Vial, A. Virazel, A. Bosio, P. Girard, C. Landrault and S.Pravossoudovitch, �Is TMR

Suitable for Yield Improvement?�, IET Computers and Digital Techniques, vol. 3, No 6,

pp. 581-592,November 2009.

[WAN03] J. Wang, W. Wong, S. Wolday, B. Cronquist, J. McCollum, R. Katz, and I. Kleyner, �Single

Event Upset and Hardening in 0.15 µm Antifuse-Based Field Programmable Gate Array,�

IEEE Transactions on Nuclear Science, vol. 50, no. 6, pp. 2158�2166, 2003.

[WES10] N. H. E. Weste, D. M. Harris, �CMOS VLSI Design: A Circuits and Systems Perspective�, Ed.

Addison-Wesley, 2010.

[ZHA06] M. Zhang, S. Mitra, T. M. Mak, N. Seifert, N. J. Wang, Q. Shi, K. S. Kim, N. R. Shanbhag, S.

J. Patel, �Sequential Element Design with Built-In Soft Error Resilience,� IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 14, No. 12, pg. 1368�

1378, December 2006.

List�of�Figures�

Chapter�9 List�of�Figures�

Figure 1.1 CMOS Technology Nodes .. 6

Figure 1.2 Transistor Counts of Intel Microprocessors, Data Source: [INT10] ... 7

Figure 1.3 Clock Frequencies of Intel Microprocessors, Data Source: [INT10] .. 7

Figure 1.4 Failure Rate during Digital Systems� Lifetime, Source: [GIR10]... 8

Figure 1.5 Different types of manufacturing defect, Source: [ITR11] .. 9

Figure 1.6 Soft Error Mechanism, Source: [BAU05] ... 11

Figure 1.7 Example of a Tolerated Fault .. 14

Figure 1.8 TMR Architecture .. 16

Figure 1.9 Subsystem-level TMR Architecture ... 16

Figure 1.10 Duplication/Comparison Architecture .. 16

Figure 1.11 NAND Multiplexing Architecture of a XOR Unit .. 17

Figure 1.12 Information Fault-Tolerant Architectures for Memories and Logic Circuits 18

Figure 1.13 Timing Fault-Tolerant Architectures ... 20

Figure 1.14 Information-Timing Hybrid Fault-Tolerant Architecture for Error Detection 21

Figure 1.15 Information-Timing Hybrid Fault-Tolerant Architecture for Error Correction 22

Figure 1.16 Hybrid Architecture Combining Duplication/Comparison and Parity Codes 22

Figure 1.17 Logic/Memory Composition of System-on-Chip, Source: [ITR03] 24

Figure 1.18 Logic Circuit Architecture .. 25

Figure 1.19 Power Consumption Trends of System-on-Chip ... 26

Figure 1.20 Latch Hardening Using TMR, Source: [WAN03] ... 26

Figure 1.21 Flip-flop Hardening Using C-element, Source: [ZHA06] .. 26

Figure 1.22 RAZOR Flip-flop, Source: [ERN03] ... 27

Figure 1.23 RAZOR II Latch, Source: [DAS09] ... 27

Figure 2.1 Principles of Hybrid Fault-tolerance .. 30

Figure 2.2 Concurrent Error Detection Scheme ... 31

Figure 2.3 Parity Predictor Synthesis Flow ... 32

Figure 2.4 Duplication/Comparison Scheme for Logic Circuits .. 33

Figure 2.5 Static Comparator Structure ... 34

Figure 2.6 Error Signal .. 35

Figure 2.7 Dynamic CMOS Logic ... 35

Figure 2.8 Dynamic OR ... 35

Figure 2.9 Transition Detector Structure ... 36

Figure 2.10 Pseudo-Dynamic Comparator Structure ... 37

Figure 2.11 The Complete Error Detection Architecture ... 38

Figure 2.12 Timing Constraints for Error Detection Scheme ... 38

Figure 2.13 Control Module for Error Detection Architecture ... 39

Figure 2.14 Transient Error Correction Architecture ... 40

Figure 2.15 Re-computation Problem .. 41

Figure 2.16 Modified D Flip-Flop mDFF for Re-computation ... 41

Figure 2.17 Modified D Flip-Flop�s Function .. 41

Figure 2.18 The Complete Transient Error Correction Architecture .. 42

Figure 2.19 Transient Error Correction Mechanism ... 43

Figure 2.20 CLKRegin Generator for Transient Error Correction Architecture 44

List of Figures

123

Figure 2.21 Reset and CRegin Generator for Transient Error Correction Architecture 45

Figure 2.22 Control Signal Generator for Transient Error Correction Architecture 46

Figure 2.23 Control Module for Transient Error Correction Architecture ... 47

Figure 2.24 The Hybrid Fault-Tolerant Architecture .. 48

Figure 2.25 Elementary input demultiplexer ... 49

Figure 2.26 Example of an Optimized Input Demultiplexer ... 49

Figure 2.27 Elementary output multiplexer � Method 1 ... 50

Figure 2.28 Elementary output multiplexer � Method 2 ... 50

Figure 2.29 Elementary output multiplexer � Tri-state buffer ... 51

Figure 2.30 Finite state machine diagrams .. 52

Figure 2.31 Clock and Condition Signals of the Finite State Machine .. 54

Figure 2.32 Control Logic for Input Demultiplexer ... 55

Figure 3.1 Fault-tolerant Architecture Evaluation Flow ... 59

Figure 3.2 Combinational Logic Extraction from Sequential Circuits ... 59

Figure 3.3 TMR Structure for Logic Circuits .. 61

Figure 3.4 Word-Voter Architecture, Source: [MIT00b] .. 62

Figure 3.5 4-input dynamic OR gate DOR4_X1 .. 63

Figure 3.6 Feedthrough Path Created by Combinational Part Extraction .. 64

Figure 3.7 Synthesized Elementary Input Demultiplexer ... 67

Figure 3.8 Synthesized Elementary Output Multiplexer � Method 2 .. 69

Figure 3.9 Glitches Detection Capability of DOR Gate ... 74

Figure 3.10 Reset of DOR Gate ... 74

Figure 3.11 Detection Capability of Pseudo-Dynamic and Static Comparators 75

Figure 3.12 Generated Control Signals for Pseudo-Dynamic Comparator .. 76

Figure 3.13 Generated Control Signals for Input Register ... 77

Figure 3.14 Generated Control Signals for Input Demultiplexer and Output Multiplexer 77

Figure 3.15 Hybrid Fault-Tolerant Architecture�s Behavior in Fault-Free Case 78

Figure 3.16 Hybrid Fault-Tolerant Architecture�s Behavior with Transient Error Occurrence 79

Figure 3.17 Hybrid Fault-Tolerant Architecture�s Behavior with Permanent Error Occurrence............ 79

Figure 4.1 Stand-Alone Logic Circuit versus Pipeline Architecture .. 86

Figure 4.2 Razor and Global Clock Gating Implementation for Pipeline Architecture [ERN03] 88

Figure 4.3 Razor II and Architectural Replay Implementation for Pipeline Architecture [ERN03] 90

Figure 4.4 Hybrid Fault-Tolerant Implementation for Pipeline Architecture ... 91

Figure 4.5 Register-Level SEU Protection [IMH11] ... 93

Figure 4.6 Detailed SEU Detection Scheme at Register-Level [IMH11] ... 93

Figure 4.7 Bit-flipping latches for SEU Correction [IMH11].. 94

Figure 4.8 D flip-flop function .. 95

List�of�Tables�

Chapter�10 List�of�Tables �

Table 1.1 Faults and Errors in Digital Systems ... 13

Table 1.2 Soft Error Rate in Embedded Memory, Source [ITR11] .. 24

Table 1.3 Truth Table of a C-element ... 27

Table 2.1 Parity Predictors' Area .. 32

Table 2.2 FSM1 Functioning Example .. 53

Table 2.3 FSM2 Functioning Example .. 53

Table 2.4 Outputs of the Finite State Machine .. 54

Table 3.1 Bit-wise vs. Word-wise Voter ... 61

Table 3.2 Area and Delay of Synthesized Combinational Logic ... 65

Table 3.3 Area and Delay of Synthesized Redundant Combinational Logics ... 66

Table 3.4 Area of Synthesized Input and Output Registers ... 67

Table 3.5 Area and Delays of Synthesized Input Demultiplexer .. 68

Table 3.6 Area of Synthesized Output Multiplexer .. 69

Table 3.7 Delays of Synthesized Output Multiplexer ... 70

Table 3.8 Area of Synthesized Comparator .. 71

Table 3.9 Area and Delay of Synthesized Finite State Machine ... 72

Table 3.10 Area of Synthesized Voters... 72

Table 3.11 Area of Synthesized Fault-Tolerant Architectures.. 73

Table 3.12 Power Saving of Hybrid Fault-Tolerant Compared to TMR Architectures 80

Table 4.1 Re-configuration by FSM1 .. 85

Table 4.2 Re-configuration by FSM2 .. 85

Table 4.3 Operation of Pipeline Architecture .. 87

Table 4.4 Error Propagation in Pipeline Architecture .. 88

Table 4.5 Error Correction in Pipeline Architecture Using Razor and Clock Gating 89

Table 4.6 Error Correction in Pipeline Architecture Using Razor II and Architectural Replay 90

Table 4.7 Error Correction in the Hybrid Fault-Tolerant Pipeline Architecture 92

125

Architecture Hybride Tolérante aux Fautes pour l�Amélioration de la Robustesse

des Circuits et Systèmes Intégrés Numériques

RESUME : L�évolution de la technologie CMOS consiste à la miniaturisation continue de la taille des

transistors. Cela permet la réalisation de circuits et systèmes intégrés de plus en plus complexes et plus

performants, tout en réduisant leur consommation énergétique, ainsi que leurs coûts de fabrication.

Cependant, chaque nouveau n�ud technologique CMOS doit faire face aux problèmes de fiabilité, dues

aux densités de fautes et d�erreurs croissantes. Par conséquence, les techniques de tolérance aux fautes,

qui utilisent des ressources redondantes pour garantir un fonctionnement correct malgré la présence

des fautes, sont devenus indispensables dans la conception numérique.

Ce thèse étudie une nouvelle architecture hybride tolérante aux fautes pour améliorer la robustesse des

circuits et systèmes numériques. Elle s�adresse à tous les types d�erreur dans la partie combinatoire des

circuits, c'est-à-dire des erreurs permanentes (« hard errors »), des erreurs transitoires (« SETs ») et des

comportements temporels fautifs (« timing errors »). L�architecture proposée combine la redondance de

l'information (pour la détection d'erreur), la redondance de temps (pour la correction des erreurs

transitoires) et la redondance matérielle (pour la correction des erreurs permanentes). Elle permet de

réduire considérablement la consommation d'énergie, tout en ayant une surface de silicium similaire

comparée aux solutions existantes. En outre, elle peut également être utilisée dans d'autres applications,

telles que pour traiter des problèmes de vieillissement, pour tolérer des fautes dans les architectures

pipelines, et pour être combiné avec des systèmes avancés de protection des erreurs transitoires dans la

partie séquentielle des circuits logiques (« SEUs »).

Mots clefs : Robustesse, tolérance aux fautes, circuits logiques.

A Hybrid Fault-Tolerant Architecture for Robustness Improvement

of Digital Integrated Circuits and Systems

ABSTRACT: Evolution of CMOS technology consists in continuous downscaling of transistor features

sizes, which allows the production of smaller and cheaper integrated circuits with higher performance

and lower power consumption. However, each new CMOS technology node is facing reliability problems

due to increasing rate of faults and errors. Consequently, fault-tolerance techniques, which employ

redundant resources to guarantee correct operations of digital circuits and systems despite the presence

of faults, have become essential in digital design.

This thesis studies a novel hybrid fault-tolerant architecture for robustness improvement of digital

circuits and systems. It targets all kinds of error in combinational part of logic circuits, i.e. hard, SETs and

timing errors. Combining information redundancy for error detection, timing redundancy for transient

error correction and hardware redundancy for permanent error corrections, the proposed architecture

allows significant power consumption saving, while having similar silicon area compared to existing

solutions. Furthermore, it can also be used in other applications, such as dealing with aging

phenomenon, tolerating faults in pipeline architecture, and being combined with advanced SEUs

protection scheme for sequential parts of logic circuits.

Keywords: Robustness, fault-tolerance, logic circuits.

Laboratoire d�Informatique, de Robotique et de Microélectronique de Montpellier

LIRMM, UMR 5506 CC477, 161 rue Ada, 34392 Montpellier Cedex 5, France

