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Introduction�

Chapter�1 Introduction�

The Moore�s law is known as the best description of the Complementary Metal Oxide Semiconductor 

(CMOS) technology evolution [MOO65]. Established in 1965, it predicted that as a result of continuous 

scaling in transistor feature sizes, number of devices in Integrated Circuits (IC) would double every 

eighteen months. This evolution allows the production of smaller and cheaper ICs with more and more 

functionalities. Furthermore, smaller devices are faster and consume less energy. Consequently, CMOS 

evolution has enabled to transition of digital systems from specialized applications to ubiquitous mass 

products. Today, these systems can be found in almost every modern electrical device such as cars, 

television sets, personal computers, cellular phones, etc.  

While supporting the need for competitive mass products, CMOS evolution also influences the 

reliability of digital systems [ITR11]. Different factors are responsible for transient and permanent faults 

that affect robustness of digital circuits and systems. First of all, a high integration density provokes a 

high defect density. Together with aging phenomenon, it may cause permanent defects that result in 

hard errors during circuit operations. Besides, nanometer-scale devices are more vulnerable to cosmic 

radiations and interference phenomenon, which may cause transient faults. These faults are observed at 

circuit outputs as soft (single event-upsets SEUs affecting sequential elements and single event-

transients SETs affecting combinational logic) and timing errors (additional delays in combinational logics 

that cause timing constraint violations in sequential elements of logic circuits). In advanced CMOS 

technology nodes, these problems affect not only critical systems that require high reliability, like circuits 

used in spatial or medical domains, but also consumer electronic systems. Therefore, robustness 

improvement becomes a crucial requirement for CMOS electronic circuits and systems. 

Robustness improvement of digital circuits and systems is getting more and more difficult for every 

introduced CMOS technology node because treating faults at physical level by adjusting manufacturing 

process parameters is no longer feasible. Therefore, fault-tolerance techniques, which deal with faults at 

design level, have become essential to fulfill the required robustness of future digital CMOS circuits and 

systems. These techniques employ information, timing and hardware redundancies to guarantee correct 

operations despite the presence of faults [KOR07]. 

In memory part of digital systems, the use of fault-tolerant techniques has been proven necessary 

and efficient. Information (error detection and correction codes, [KOR07]) and hardware (spare memory 

words, columns and cells [SCH01, NIC03, NIC05, SU05]) redundancies are generally employed to deal 

with transient and permanent faults in memories. However, fault-tolerance in random logic circuits of 

digital systems remains a challenge. These circuits are composed of combinational logic and sequential 

elements such as latches and flip-flops. Different techniques have been proposed to protect the 

sequential part from hard errors and/or SEUs [LYO62, ERN03, ZHA06, DAS09, IMH11]. Some of these 

techniques are also efficient for SETs and timing errors that occurred in the combinational part of logic 

circuits [ERN03, DAS09]. Besides, in order to protect this part from hard errors, Triple Modular 

Redundancy (TMR) architecture has been proven to be an efficient method [VIAL08, VIAL09]. Although 

each type of error has several corresponding solutions, combining all these techniques for robustness 

improvement may require very high level of redundancy and thus, not be applicable in mass products. 

In the state-of-the-art solutions presented above, beside fault-tolerance capability, area overhead is 

the main optimization criterion. In [VIAL08, VIAL09], authors have introduced manufacturing yield 

enhancement as a new goal. Besides, power consumption is also a rising issue in advanced CMOS 
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technology nodes. In fact, as fault-tolerance becomes necessary in mass products, limiting power 

consumption increase of these techniques is one of the key factors in digital design. However, this 

criterion has only been studied in fault-tolerant communication [PUL07], but not for random logic 

circuits. 

Given the new requirements in fault-tolerance field, this manuscript studies the possibility to 

combine different types of redundancy in a hybrid fault-tolerant architecture, which allows the detection 

and correction of all transient and permanent errors in combinational part of logic circuits. Besides fault-

tolerance capability, we also reach optimized costs in both silicon area and power consumption 

compared to existing solutions.  

In the proposed hybrid fault-tolerant architecture, information redundancy consists of duplicating 

combinational part of logic circuits and comparing their outputs to detect all kind of errors. Timing 

redundancy, which performs re-computation of affected input vector, allows transient errors correction 

at low silicon area costs. Finally, hardware redundancy that requires one additional combinational logic 

module enables permanent error correction via re-configuration. As only two out of three redundant 

combinational logics are running in parallel, the proposed architecture offer about 33% power 

consumption saving compared to TMR architectures, while having similar silicon area. Besides, this 

solution can be used in several contexts such as: 1) Dealing with aging phenomenon; 2) Protecting 

pipeline architectures from hard, SETs and timing errors; and 3) Being combined with register-level SEU 

protection techniques to tolerate faults in both combinational and sequential parts of logic circuits at 

optimized area overhead.    

The following of this manuscript is divided in four chapters: 

- Chapter 1 details the contexts and motivations of our research. The first part presents various 

advantages of CMOS evolution, as well as how diverse kinds of fault and errors affect 

robustness of digital circuits and systems in advanced technology nodes. The second part of 

this chapter studies the principle of different fault-tolerant techniques, classified in four 

categories depending on their employed redundant resources. Finally, the last part provides 

an overview on state-of-the-art solutions for permanent and transient errors in different 

parts of digital systems. 

- Chapter 2 proposes a hybrid fault-tolerance architecture targeting permanent and transient 

faults in combinational part of logic circuits.  This architecture is built step-by-step as three 

fault-tolerance levels. The first level consists of using information redundancy to detect all 

kinds of errors, regardless of their nature. The second fault-tolerance level adds timing 

redundancy to correct transient errors. Finally, the third level completes the hybrid fault-

tolerant architecture with hardware redundancy, which allows permanent errors correction. 

- Chapter 3 consists of evaluating the proposed hybrid fault-tolerant architecture. This method 

is compared to TMR architectures in order to prove its advantages in terms of fault-tolerance 

capability, area overhead and power consumption. The evaluations are performed using 

simulations done with Electronic Design Automation (EDA) tools. Fault-tolerance techniques 

are implemented for combinational part of ISCAS�85 and ITC�99 benchmarks circuits [ISCAS85, 

ITC99]. The resulted architectures are then mapped on a 45nm standard cells library [NOCL].  

The final netlists are then used to simulate the architecture�s behavior in different error 

occurrence scenarios, as well as to estimate their power consumption.  

- Chapter 4 proposes extended usages of the hybrid fault-tolerant architecture for various 

applications. First of all, we study how the proposed architecture can be used in the context 

of aging phenomenon: 1) to improve lifetime of digital logic circuits and 2) to optimized the 

fault-tolerance scheme in case of high error occurrence rates. Then, we investigate the 
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possibility to use the hybrid fault-tolerant technique in pipeline architectures. The objective is 

to add hard errors tolerance to state-of-the-art solutions, which only tolerate SETs and timing 

errors in combinational part of these architectures. Finally, we propose to use the hybrid 

fault-tolerant architecture in combination with a register-level SEU protection technique and 

thus, provide an advanced solution for faults in both combinational and sequential parts of 

logic circuits. 
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Digital systems have transitioned from specialized applications to ubiquitous mass products. Today, a 

consumer mobile phone may contain a processor with a higher computing power than a super computer 

in the early 1990s.  This revolution has been conducted by the evolution of CMOS (Complementary 

Metal Oxide Semiconductor) technology which allows the production of smaller and cheaper Integrated 

Circuits (IC) with higher performance and lower power consumption. While supporting the need for 

competitive mass products, this evolution also influences the reliability of digital systems. In particular, 

increasing apparition rate of faults and errors during manufacturing processes and ICs� lifetime make 

robustness one of the upcoming key requirements in many application areas, including safety critical 

applications and mass products. However, improving digital system reliability is getting more and more 

difficult for every introduced technology node because treating faults on the physical level by adjusting 

manufacturing process parameters is no longer feasible. Therefore, fault-tolerance techniques which 

deal with faults at the design level have become essential to fulfill the required robustness of future 

digital CMOS circuits and systems.  

In this chapter, we study different issues of technology evolution with regards to robustness of digital 

systems, and explain how fault-tolerance can be a solution for these problems. The chapter is organized 

as follows. In the first section, we present the evolution of CMOS technology and how it can impact the 

reliability of digital systems by inducing faults in ICs. These faults are classified into different categories 

depending on their duration (transient, intermittent and permanent faults) and their impacts on ICs� 

operation (hard, soft and timing errors). Then, in the second section, we study the principle of fault-

tolerance techniques which allow systems to operate correctly despite the presence of faults.  Four 

categories (hardware, information, timing and hybrid fault-tolerance) are detailed with concrete 

architectural examples. Finally, in the third section, we study different existing solutions which tolerate 

faults in both memories and logic circuits of integrated systems.  

1.1 Robustness�of�digital�systems�

Robustness of digital systems is their ability to cope with anomalies during execution, i.e. providing 

good results despite the presence of faults. Different sources of fault can be grouped into five categories, 

depending on their occurrence during the lifetime of a system: 

- Design errors: errors during design phases, which result in incorrect hardware 

implementation of system specifications.  

- Manufacturing defects: failures during fabrication phases, which modify logic function of the 

system or degrade its functional characteristics. 

- Operation errors and malicious attacks: human errors, unintentional or voluntary, to operate 

the system under abnormal conditions.  

- Interference phenomena: interactions of the digital system with its environment during 

operation. 

- Physical degradations: aging phenomena which degrade components of the digital system.  

In the scope of this thesis, we aim to deal with physical faults [LAP95] which are caused by 

manufacturing defects, interference phenomena and physical degradations. This section presents how 

CMOS technology evolution increases the apparition frequency of these problems as well as their 

impacts on digital circuits and systems. It is divided into two sub-sections. The first sub-section details 

key points of CMOS technology evolution which is used to manufacture IC, the material blocks that built 

digital systems. We analyze also consequences of each technology progress with regards to reliability of 

these systems. Then, in the second sub-section, we detail how different factors, such as manufacturing 

defects, variability, interference and aging phenomena, result in fault in ICs, which may lead to failures of 
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digital systems. These faults and errors will then be classified according to their impact on ICs� 

functionality. 

1.1.1 CMOS�technology�

Technology�evolution�

In 1965, Gordon Moore made a prediction in [MOO65] that the number of transistors in an IC roughly 

doubles every two years. This statement has become the guide line for the entire semiconductor 

industry and therefore leads to CMOS technology evolution. 

The most important evolution of CMOS technology is the downscaling in feature size of 

manufacturing processes. This parameter refers to the minimum dimension of a Metal-Oxide-

Semiconductor Field-Effect Transistor (MOSFET) that can be built on an IC. It has been reduced from 

10µm in 1971 to 22nm in 2011.  And the ITRS predicts that this progression will continue for at least 

another decade [ITR11]. Figure 1.1 shows this evolution with square symbols that represent existing 

manufacturing processes and triangular symbols that represent predicted technology nodes [INT10, 

ITR11]. 

 

Figure 1.1 CMOS Technology Nodes 

By downscaling feature size, CMOS evolution allows integration of more and more transistors on an 

IC. In 1972, the first Intel microprocessor was introduced with only 2300 transistors [INT10]. In 2011, the 

six-core microprocessor Core i7 (Sandy Bridge-E) contained more than 2.27 billion transistors. This 

corresponds to a compounding annual growth rate of more than 40% over 40 years. With this incredible 

growth rate, illustrated in Figure 1.2, the industry has transformed from Small-Scale Integration (SSI, up 

to 10 logic gates per IC) through Medium-Scale Integration (MSI, up to 1000 gates per IC) and Large-Scale 

Integration (LSI, up to 10,000 gates per IC), to today Very Large-Scale Integration (VLSI) with many 

millions of logic gates per IC. 

Miniaturization of CMOS technology also offers manufacturing cost reduction which is the most 

important factor in the semiconductor industry. Historically, Cost Per Function (CPF) of ICs, i.e. cost per 

transistor, decreased by an average of 29% each year. This means CPF is halved every two years. In 2011, 

it is estimated at 5.5 micro-cents per transistor. And the ITRS predicts that this reduction rate of 29% will 

continue in the next decade [ITR11].  
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Figure 1.2 Transistor Counts of Intel Microprocessors, Data Source: [INT10] 

Beside higher integration level and lower manufacturing cost, steady downscaling efforts in CMOS 

technology can be explained by Dennard�s scaling theory [DEN74]: smaller transistors are faster and 

consume less power. Between two technology nodes, main dimensions of MOSFETs, i.e. channel 

length/width and oxide thickness, are scaled with the same factor  . Consequently, channel resistances 

remain unchanged while gate capacitances are reduced by  . Hence, transistor delays are also scaled by 

the same factor. As transistors become faster, ICs can be operate at higher frequencies. Figure 1.3 shows 

clock frequency change in Intel microprocessors since 1971. We see that the frequency doubled almost 

every 34 months. However, in 2005, the frequency scaling process has reached the power wall limit at 

about 3 GHz. In fact, higher switching activity of transistors leads to higher power consumption. Even 

though these small transistors do not consume much, hundred millions of them are switching at the 

same time in less than five hundred millimeter square IC. This results in significant power density that 

must be limited to avoid breakdown of physical materials.  

 

Figure 1.3 Clock Frequencies of Intel Microprocessors, Data Source: [INT10] 

To reduce power dissipation of CMOS devices, the supply voltage Vdd is also scaled, because dynamic 

power is proportional to Vdd
2
 while leakage power is proportional to Vdd. However, voltage scaling only 

started in the late 80s because the industry had settled on 5V supplies in the early 70s to be compatible 
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with bipolar Transistor-Transistor Logic (TTL) [CRI07]. As power dissipation became unsustainable, this 

standard finally collapsed. Vdd was scaled within few years, first to 3.3V then to 2.5V, etc. In 2011, supply 

voltage of high-performance ICs was at 0.9V and predicted to be reduced to 0.66V in 2021 [ITR11]. 

Reliability�

Reliability of digital circuits and systems is defined as their ability to perform required functions under 

stated conditions and for a specified period of time [STA11]. In other word, circuits and systems have 

reliability issues when they fail to operate correctly and to provide expected results. These events are 

called failures.   

While offering many advantages, each new CMOS technology node is facing reliability issues [ITR11]. 

As the miniaturization trend approaches physical limits of operation and manufacturing, failures may 

occur at all phases of digital systems� lifetime: infant mortality, working life or wearout period [GIR10]. 

The bathtub curve in Figure 1.4 [GIR10] shows how different types of failure affect ICs during its lifetime. 

There are three types of failure; each of them has major effects during one the three phases:  

- Early failures that dominate infant mortality phase are mostly due to manufacturing issues. 

While transistors size shrinks, manufacturing processes are more difficult to control and thus, 

more likely to cause defects [ITR11]. Furthermore, in nanoscale CMOS technology, transistors 

are so small that printing errors below the wavelength of light and variations in the discrete 

number of dopant atoms have major effects on their performance.  

- Random failures happen during systems� working life. As transistors become smaller, as well 

as their supply voltage, they are more vulnerable to interference phenomena such as cosmic 

radiation. Furthermore, variability caused by manufacturing imperfections may also affect 

chips performance and reliability.  

- In the last phase of systems� lifetime, wearout failures may decrease their reliability. These 

failures are caused by aging phenomena such as metal and oxide wearout, hot carriers 

injection or electromigration-related defects [GIR10].  

 

Figure 1.4 Failure Rate during Digital Systems� Lifetime, Source: [GIR10] 

Reliability problems described above affect digital systems via faults and errors occurrences in ICs. In 

the next sub-section, we detail how each type of fault and error affects chips� operation.   

1.1.2 Classification�of�failure�mechanisms�
Before analyzing further different factors responsible for failures of digital systems, let�s define three 

important terminologies used in thesis: failure, defect, fault and error [BUS02]. As stated in the previous 

sub-section, failures are deviations of a digital system from compliance with its specification during a 

period of time.  Failures are caused by defects, which are �unintended difference between the 

implemented hardware and its intended design�. These defects can be represented at abstracted 
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function level as faults. Finally, errors are the manifestation of faults during system operations under the 

form of wrong output signals. Note that not all faults lead to errors because some of them may be 

masked.  

To clarify these terminologies, we consider as example an adder inside a microcontroller. Suppose 

that due to manufacturing defects, the adder�s carry output line is shorted to the supply voltage Vdd. 

Consequently, this output remains at logic-1 regardless of the adder�s input operands. We say that the 

adder is affected by a stuck-at-1 fault. When this adder is used, the fault only causes an error when the 

carry line is supposed to have been at logic-0 instead of logic-1. In this case, the error may lead to a 

failure of the microprocessor. 

In the previous sub-section, we have seen that there are four main reasons for failures in digital 

systems: manufacturing defects, variability, interference and aging phenomena. In fact, each of these 

factors has different impacts on system devices and therefore can create various types of fault. 

Manufacturing�defects�

In IC manufacturing, different processes can be responsible for defects on fabricated products: 

implantation, etching, deposition, planarization, cleaning, lithography, etc. From the International 

Technology Roadmap for Semiconductors (ITRS,[ITR11]), several contaminations and mechanisms are 

defect causes in ICs: a) Airborne Molecular Contamination (AMC); b) process induced defects, such as 

scratches, cracks, particles, overlay faults and stresses; c) process variations, such as variations in doping 

profiles or layer thicknesses; d) deviation from design, due to pattern transfer from the mask to the 

wafer; and e) diffusion of atoms through layers and in the semiconductor bulk material. Different defect 

types in digital CMOS ICs caused by these manufacturing imperfections are illustrated in Figure 1.5. 

 

Figure 1.5 Different types of manufacturing defect, Source: [ITR11] 

There are manufacturing defects that can modify the structure of digital circuits. For example, in 

Figure 1.5, the �short� defect creates a connection at Metal 1 level, between the gate and the drain of 

the PMOS transistor. This type of defect may permanently change the logic function of the circuit which 

then leads to failures of digital systems. Consequently, they are also responsible for manufacturing yield 

loss. 

Meanwhile, other defects, such as variation in doping profile or deviation of channel length from 

design specification, do not change the logical function of devices. However, they modify functional 
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behavior of these components such as their switching delays. ICs containing this type of defect operate 

with degraded timing characteristics and may cause random failure of digital systems. This will be 

detailed further below. 

Variability�

From manufacturing processes to operating environment, there are three principal sources of 

variation that determine an IC�s behavior: process variation, supply voltage and operating temperature. 

They are also known under the term Process, Voltage and Temperature (PVT) variation. Significant 

efforts are spent during the design phase to guarantee that digital systems operate correctly under high 

range of PVT variations. However, in nanoscale technologies, this goal becomes more and more 

challenging: 

- Process variations: Due to manufacturing imperfections, transistors and interconnects in ICs 

are subject to variations in film thickness, lateral dimensions and doping concentrations 

[BER99]. For transistors, most important variations are channel length L and threshold voltage 

Vth. For interconnects, most important variations are line width/spacing, metal/dielectric 

thickness and contact resistance [WES10]. In digital circuits, variations of these parameters 

cause different timing behaviors. For example, longer channel transistors are slower while 

thicker metals lead to faster connections.  

- Supply voltage Vdd: Digital systems are designed to operate at a nominal supply voltage. But 

during operations, this parameter may vary for different reasons, such as IR-drops along 

supply rails, di/dt noise and tolerances of the voltage regulator. These variations also affect 

timing characteristics of digital circuits. In fact, [BAK10] has proven that IC speed is roughly 

proportional to Vdd  

- Operating temperature: During their lifetime, ICs may be subject to temperature variations 

from freezing to boiling. For example, a military IC may have to work correctly between -55°C 

and 125°C [WES10]. Furthermore, there are also high temperature variations inside of the IC. 

In [HAR01], simulation results showed that for the Intel Itanium 2 microprocessor, 

temperature at the execution core is higher than 100°C while memory caches in the 

periphery are below 70°C. It has been proven that these variations also have impacts on 

propagation delay of CMOS ICs [KUM06]. 

Although PVT variations usually do not change the logic function of ICs, they are the source of timing 

degradations in logic circuits, which create non-operational digital systems. Consequently, in sequential 

systems where timing characteristics are critical factors, these variations may also lead to errors. 

Therefore, these problems must be dealt with, in order to improve robustness of digital systems.    

Interference�phenomenon�

During their lifetime, ICs continuously interact with the operating environment. They may be subject 

to radiation strikes, electrical noises from crosstalk or electromagnetic interferences with other running 

circuits in proximity. Among these interactions, radiation strikes are the most important sources of error 

in CMOS ICs. They create Soft errors which affect memories, registers and combinational logics of digital 

systems. 

Soft errors are triggered when high-energy alpha particles strike an IC. These particles can be found in 

cosmic rays, or can also be emitted by impurities in packaging material. The mechanism of error creation 

is illustrated in Figure 1.6 sourced from [BAU05]. When a particle hits a silicon atom, it can induce fission, 

shattering the atom into charged fragments that continue traveling through the substrate. Therefore, a 

cylindrical track of electron-hole pairs is formed (Figure 1.6-a). When the ionization track comes close to 

the depletion region, the electric field rapidly collects carriers and creates a current/voltage glitch at that 
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node. Note that a tunnel shape extending high field depletion region deeper into substrate is formed 

(Figure 1.6-b). This collection phase completes within tens of picoseconds, and another phase follows, in 

which diffusion begins to dominate the collection process (Figure 1.6-c). Figure 1.6-d shows the 

corresponding current pulse resulting from these three phases. 

 

Figure 1.6 Soft Error Mechanism, Source: [BAU05] 

With the mechanism described above, soft errors create voltage glitches at struck nodes. In 

combinational logic parts of digital systems, these glitches are called Single-Event-Transient (SET). If the 

glitches are captured by registers, they will change stored values in these elements (bit-flip). This 

behavior is called Single-Event-Upset (SEU). 

Note that to completely flip state of a node, a minimum quantity of charge Qcritical must be collected.  

This value depends on the capacitance and the voltage of the node. In nanoscale CMOS technology, both 

gate capacitances and supply voltage are downscaled. This feature explains why soft-errors have more 

and more impacts on digital circuit operations, and therefore must be prevented in order to improve 

robustness of digital systems. 

Aging�phenomena�

Different phenomena such as hot carriers injection, temperature variations, oxide wearout and 

electromigration are responsible for aging of ICs� components, which may lead to defects in digital 

systems [GIR10]. Their two most important impacts on circuits are: oxide and interconnect wearouts. 

During ICs� lifetime, gate oxides are subject to stress and gradually wear out. Consequently, the 

threshold voltage shift reduces the speed of transistors. As for PVT variations, this modification in timing 

characteristics of components may cause digital systems to fail. There are three main mechanisms 

responsible for oxide wearout of CMOS ICs: 

- Hot Carriers Injection (HCI): As transistors switch, high-energy (�hot�) carriers are occasionally 

injected into the gate oxide. These carriers are trapped in the oxide, and therefore change the 

current-voltage characteristics of the device. Note that, as electrons have higher mobility, 

they account for the most of the hot carriers. Consequently, the current in NMOS transistors 

decrease while the current in PMOS transistors increase. When the NMOS becomes too slow, 

the ICs may stop working correctly and cause system failures.   

- Negative Bias Temperature Instability (NBTI): This problem concerns mostly PMOS transistors 

because they almost always operate at elevated temperature with strong negative bias 

(current gate voltage is at 0 while drain and source voltages are at Vdd). In this situation, 
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dangling bonds called traps develop at the Si-SiO2 interface. As traps form, the threshold 

voltage Vth increases, reducing the drive current, and making transistors slower. This 

phenomenon becomes one of the major causes for temporal reliability degradations in 

nanoscale CMOS technologies where oxide thickness is aggressively downscaling [PAU07]. 

- Time-Dependant Dielectric Breakout (TDDB): With an electric field applied across the gate 

oxide, the gate current gradually increases. After sufficient stresses, this can result in 

catastrophic dielectric breakdown that short-circuits the gate and cause system failures 

[WES10].  

In digital ICs, electromigration caused by high unidirectional current flowing through wires is the main 

responsible for interconnect wearout. In fact, when the current density is sufficiently high, it will drift the 

metal ions in the direction of the electron flow. Consequently, metal atoms are displaced gradually 

during circuits� lifetime. Therefore, resistance of interconnect may vary, which leads to modification in 

timing characteristics of ICs. In extreme cases, metal wearout can also cause the formation of voids (i.e. 

open in the metal line) which change the logic function of circuits. 

Classification�

As we have discussed previously, manufacturing defects, variability, interference and aging 

phenomena may create different fault types in ICs. Although have different causes, these faults also have 

some common impacts on circuits. In the following, we classify faults into categories, depending on their 

duration as well as the nature of errors they may cause. 

Based on duration, faults can by classified into three groups: permanent, transient and intermittent 

[KOR07].  

- Permanent faults: As their names indicate, these faults are irreversible. Once they have 

occurred, none will vanish.  The most common sources of permanent faults are 

manufacturing defects. These faults can also be caused by aging phenomena at the end of 

circuits� lifetime when the device starts to wear out. 

- Transient faults: These are faults that cause IC components to malfunction during a short 

period of time. Unlike permanent faults, they disappear after that time and devices return to 

correct operation. Principle sources of transient faults are variability and interference 

phenomena.  

- Intermittent faults: These faults happen now and then during ICs� operation. They never 

disappear completely like transient faults, but they do not occur continuously like permanent 

fault either. However, intermittent faults often precede the occurrence of permanent faults. 

Aging phenomenon is the main cause of this reliability issue. 

In the scope of this thesis, we propose robustness improvement solutions for permanent and 

transient faults. Depending on their duration, intermittent faults can also be treated as one of these two 

types. For example, if an intermittent fault appears during two or more consecutive clock cycles in logic 

circuits, it will be considered as a permanent fault.  Otherwise, solutions for transient faults will be 

applied.  

Faults can also be classified by their resulting errors in ICs. There are three types of error: hard, soft 

and timing. 

- Hard errors: These are permanent errors which change permanently the logic function of ICs. A 

typical example is an error caused by a stuck-at-fault. Normally, permanent faults are responsible 

for this type of error.  

- Soft errors: As we have seen previously, soft errors are caused by transient faults. Depending 

on the place of error occurrence (in memories, combinational logics or registers), they may lead 
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to bit-flipping (in memories and registers) or voltage glitches (in combinational logics). SET in 

combinational logic part and SEU in registers are the most common soft errors observed in digital 

circuits. 

- Timing errors: Unlike hard and soft errors, components that suffer from timing error still 

provide correct logic outputs. However, they have higher delays between input and output signal 

establishments. Transient faults induced by PVT variability, manufacturing defects and aging 

phenomenon are responsible for this type of error. 

Table 1.1 summarizes different types of fault and error, as well as the four main reasons for these 

reliability issues. The first column presents different phenomena that induce faults and errors. The two 

other columns show possible errors created by these phenomena: the second column contains errors 

induced by permanent faults while the third column shows errors created by transient faults. 

 

 Permanent Transient 

Manufacturing defect Hard error Timing error 

Variability  Timing error 

Interference   Soft Error 

Aging phenomenon Hard error Timing error 

Table 1.1 Faults and Errors in Digital Systems  

1.1.3 Discussion�

In this section, we have seen that CMOS technology evolutions allow the realization of more complex 

systems at lower cost and with higher performance. At each new technology node, feature sizes of 

transistor are downscaled allowing us to integrate more devices in one chip. Besides, these small 

transistors are faster, consume less power and are cheaper to manufacture. This explains why the 

semiconductor industry keeps scaling CMOS technology further despite the fact that reliability of digital 

systems has become a more and more important issue.  

 However, each new technology node is facing reliability problems. Different factors are responsible 

for transient and permanent faults in integrated circuits. These faults may induce errors and cause digital 

systems to fail. First of all, smaller devices are more difficult to fabricate. This leads to a higher rate of 

manufacturing defects and a lower manufacturing yield. Furthermore, if these defects are not detected 

during production test, they may cause hard errors during ICs� operation. Secondly, defect free ICs may 

suffer from Process-Voltage-Temperature variations which are responsible to timing errors. During their 

lifetime, ICs are also affected by interference phenomena. Smaller transistors are more vulnerable to 

radiation effects which cause soft errors in both memories and logic circuits. Finally, aging phenomena 

are responsible to hard and timing error at the end of circuits� lifetime. 

Given the importance of CMOS technology in recent information technology revolutions, it is 

necessary to solve its reliability issues when emergent technologies are not ready for mass production. 

Fault-tolerant architectures which allow correct operation of digital systems despite the presence of 

faults may be a promising solution.�

1.2 Fault-tolerant�architectures�

Previous section has shown that permanent and transient faults in ICs must be treated in order to 

improve the robustness of digital systems. This can be achieved by: i) improving manufacturing 
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processes to reduce defects and variability; ii) putting more constraints in circuit utilization, maximum 

operating voltage for example, to avoid aging phenomenon; or iii) redesigning digital circuits in a way 

that they can operate correctly despite the presence of faults. 

In nanoscale CMOS, where device dimensions are of atomic size, improving manufacturing processes 

becomes extremely difficult. Furthermore, manufacturing improvements must be revised at each new 

technology node. Likewise, constraints in circuit utilization are not easy to apply and do not solve 

random failures. That is why in this thesis we aim to improve robustness of digital circuits and systems at 

the design level, using fault-tolerance methods. 

This section is divided into five sub-sections. In the first sub-section, we present the fundamental of 

fault-tolerance. After studying the principles of this technique, we classify different types of fault-

tolerant architecture into several categories, depending on which redundant resources they employ. 

Then, in the four remaining sub-sections, we present different fault-tolerant architectures corresponding 

to each type of redundancy: hardware, information, timing and hybrid. 

1.2.1 Fundamentals�

As we have seen in the last section, to cause failure of digital systems, faults must trigger errors in ICs. 

In the case where a fault exists, but does not cause any logic or timing faulty operations of circuits, we 

say that they are tolerated. An example of a tolerated fault is shown in Figure 1.7. In a fault free case, the 

circuit in Figure 1.7 provides an output . Suppose that due to manufacturing defects, the 

node x of the circuit is shorted to the ground. Consequently, x is always at logic-0 regardless of the inputs 

a, b and c (stuck-at-0 fault). However, even in this case, the output remains  and the fault 

never triggers an error.  

 

Figure 1.7 Example of a Tolerated Fault 

The principle of fault-tolerance techniques is to exploit and manage redundancy to tolerate faults in 

circuits and systems. Redundancy is the property of having more than the minimal resource necessary to 

perform an operation [KOR07]. For example, in the circuit of Figure 1.7, the AND gate and the OR gate 

are redundant because we can remove them and use the node y as primary output without modifying 

the logic function of the circuit. Fault-tolerances are traditionally used to deal with online faults, i.e.  

faults that occur during the working life of ICs. However, it has been proven in [FAN06, VIA08, VIA09] 

that they could also tolerate manufacturing defects and thus help improving yield. 

There are two ways to deal with faults: error masking and error detection/correction. In the first 

method, errors are masked by the redundant resources. Therefore, faults that are responsible for these 

errors become transparent at system level. In the second method, the tolerance process is divided in two 

phases: i) error detection and ii) error correction.  

Redundancy is the core of fault-tolerance techniques. There are four sources of redundancy: 

hardware, information, timing and software [KOR07]. 

- Hardware redundancy: This kind of redundancy consists of integrating extra hardware into 

the circuit.  An example is the Triple Modular Redundancy (TMR) structure where there are 

three identical circuits running in parallel to mask faults. 
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- Information redundancy: The principle of this redundancy is to generate additional 

information to detect and correct errors at circuit outputs. The best-known examples for this 

technique are error detection and correction codes. 

- Timing redundancy: This redundancy attempts to tolerate faults by using additional 

computation time. For example, we can repeat a calculation several times and compare the 

results to detect errors. 

- Software redundancy: Mainly used to prevent software failures, this redundancy can also be 

used to tolerate hardware faults in ICs. For example, let�s consider two programs (software) 

that realize the same function. During their executions, each program uses only one part of 

the hardware resources. Therefore, there are hardware faults that affect only one of the two 

programs. Consequently, these faults can be detected by comparing results generated by the 

two softwares. 

Beside these four types of redundancy, there exists a technique called hybrid fault-tolerance. It 

consists of combining different types of redundancy in the same fault-tolerant architecture in order to 

benefit from their advantages and overcome their drawback. 

In the scope of this thesis, we do not study software redundancy which requires particular knowledge 

on interactions between software and hardware parts of digital systems. Different examples of fault-

tolerant architecture using the other three redundancies and the hybrid technique are detailed in the 

following sub-sections. 

1.2.2 Hardware�redundancy�
Hardware is the most used redundant resource in the field of fault-tolerance. Many hardware fault-

tolerance techniques are employed widely in various applications, from consumer electronics to space 

satellites [MCH01]. In this sub-section, we present three important examples of this technique: M-of-N 

system, Duplex system and Neumann multiplexing architecture. 

M-of-N�system�

An M-of-N system is composed of N modules running in parallel and a voter [SIE75]. The modules 

receive a common input and realize the same operation. They can either be identical or different 

implementations of the same logic function. The voter has the following functionality. It receives all 

outputs of the N modules and compares them. If there are at least M identical outputs then the voter 

returns the common value of these outputs. Otherwise, the system fails. Note that to guarantee a 

correct operation of the system, even with fault occurrences, there must not be two different sets, each 

account more than M identical outputs. Consequently, we need: 

  (1.1) 

Due to the condition above, the function of the voter is called majority vote. Usually, N is an impair 

number: N=2.k-1, while M is equal to k.  

A widely used M-of-N system is the Triple Modular Redundancy (TMR) architecture [LYO62]. In this 

particular case, N=3 and M=2. The TMR architecture is illustrated in Figure 1.8. Note that when only one 

module of the TMR is faulty, the voter returns the common output of other two fault-free modules. 

Therefore, single and multiple errors in one module are masked in this fault-tolerance technique. 

Furthermore, in [VIA08, VIA09], the authors have shown that a TMR architecture can also tolerate an 

important set of multiple faults in its three modules. 
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Figure 1.8 TMR Architecture 

One variation of M-of-N systems is the unit-level modular redundancy architecture. Using this fault-

tolerance technique, we apply replication and voting at the sub-system (unit) level [LYO62]. Figure 1.9 

shows a subsystem-level TMR architecture applied for an original circuit combined of 4 units. One 

advantage of this architecture compared to the TMR is that the voter is no longer a critical element. In 

fact, in Figure 1.8, even if the three modules are fault-free, a single fault in the voter (a stuck-at-fault at 

one of its output bits for example) may cause failures of the entire architecture. This is no longer a 

problem in Figure 1.9 where there are always three voters working in parallel.  

 

 

Figure 1.9 Subsystem-level TMR Architecture 

Duplex�system�

Duplex (or Duplication/Comparison) is an error detection method widely used in fault-tolerant 

architectures [KOR07]. Figure 1.10 illustrates a Duplication/Comparison architecture. It consists of using 

two modules running in parallel and a comparator. As for M-of-N systems, the two modules can either 

be identical or different, but must realize the same function. The comparator compares outputs of 

modules in order to determine the presence of any errors. 

 

 

Figure 1.10 Duplication/Comparison Architecture 
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Compared to M-of-N systems, duplex system has the advantage of using less hardware redundancy. 

However, it only detects errors but does not correct them. Consequently, this technique is usually 

combined with other methods such as timing or information redundancy to form a complete hybrid 

fault-tolerant architecture [FOR09, TAH95]. This technique will be discussed more in details in the later 

sub-section. 

NAND�multiplexing�system�

In 1956, Von Neumann was the first person to consider using redundant components to tolerate 

defected devices. He proposed an architecture called NAND multiplexing (or Von Neumann multiplexing) 

system [NEU56].  

The principle of NAND multiplexing architecture is similar to unit-level modular redundancy system. 

Each processing unit is replicated Nbundle times, forming a bundle of units. However, instead of majority 

voters, a bundle of wires is used to connect two successive bundles of units.  

   

Figure 1.11 shows the example of a NAND multiplexing architecture, where the processing unit is a 

XOR gate and Nbundle=3. The architecture has two stages: Executive and Restorative. The Executive stage 

performs the function of the processing unit (XOR function) while the Restorative stage is used to reduce 

degradations caused by errors in both inputs and faulty devices. To carry out these operations:  

- The Executive stage contains Nbundle=3 copies of the XOR gates, and a random permutation 

module (U). With this structure, signals of input bundles A and B are randomly paired before 

being connected to the processing units. Output of the Executive stage is Bundle C which 

carries the computation result.  

- The Restorative stage is made using the same technique. Signals of Bundle C are duplicated at 

the beginning of this stage. After being permuted, these signals are connected to Nbundle=3 

NAND gates. Outputs of these NAND gates form Bundle D which carries inverted value of 

Bundle C. The same process is used one more time to invert Bundle C, and produce output 

Bundle Z that carries the computation result.   

 

 

Figure 1.11 NAND Multiplexing Architecture of a XOR Unit 

In [NEU56], the authors have shown that using this architecture, digital system can operate correctly 

even with an individual device failure rate of about 0.01. However, this solution requires enormous 

hardware redundancy level (about 10
3
-10

4 
times silicon area requirement compared to original circuits).  

Pros�and�cons�

The most important advantage of hardware fault-tolerance techniques is their fault-tolerance 

capability. Duplex systems can detect all single and multiple faults arriving in one of its modules while M-

of-N and NAND multiplexing systems also offer the possibility to mask errors induced by these faults. 

Furthermore, these fault-tolerant architectures can be effective for both transient and permanent faults, 
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making them the most used in critical systems that require high level of reliability such as aircraft or 

space satellite.  

Hardware redundancy is expensive in both silicon area and power consumption because it requires 

parallel operation of two or more copies of the circuits. That explains why in the past, these solutions 

were employed only by applications where the reliability is a critical factor. In advance CMOS 

technologies, where billions of transistors that can be put on a single chip, the area cost becomes less 

important, especially because techniques such as TMR can also improve manufacturing yield [VIA08, 

VIA09].  However, power consumption is still an important factor that needs to be improved when using 

hardware redundancy. 

1.2.3 Information�redundancy�
The most common form of information redundancy is coding, which consists of inserting redundant 

bits (check bits) into the data inside digital systems. This redundancy can be realized under the form of 

extra stored bits in memories, or supplementary output signals in logic circuits. The additional 

information is used to verify the correctness of data at each stage, before it propagates further in the 

system. In some fault-tolerance techniques, the redundant information also allows correction of faulty 

data. 

In a memory, information redundancy is implemented as additional check bits, stored with data bits. 

Figure 1.12-a shows an example of information fault-tolerant architecture for memories. The 

architecture is divided into two stages corresponding to the data writing and reading operations of the 

memory. During data writing, a coder calculates the check bits from the data. A code-word containing 

both data and check bits is then stored in the memory. During data reading, a decoder separates data 

and check bits from the code-word. Before providing the data bits to subsequent stages of the digital 

system, a checker verifies their correctness using the check bits.  

 

 
  

a) Memory b) Logic circuit 

Figure 1.12 Information Fault-Tolerant Architectures for Memories and Logic Circuits  

Figure 1.12-b presents a fault-tolerant architecture for logic circuits. In this architecture, redundant 

outputs are calculated by a predictor. This is done in parallel with the primary output computation of the 

logic circuit. Then, a checker compares redundant and primary outputs to validate a correct operation of 

the logic circuit. Note that the predictor does not calculate redundant bits from outputs of the logic 

circuit like a coder, but from the primary input bits. Therefore, its logic function may be much more 

complex than the former module. 

Various types of code are used in the field of information redundancy. Among them, parity codes, 

arithmetic codes, Berger codes and cyclic codes are the most common uses.   

Parity�codes�

Single-bit parity code is the simplest of all. It consists of adding one redundant bit (check bit) to the 

data bits. This additional bit contains the parity of the data. For example, in an even parity code, the 
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check bit is equal to logic-0 if and only if there is an even number of logic-1 bits in the data.  In this case, 

the check bit can be calculated by performing a logical sum of all data bits. Then, to verify the 

correctness of the data, we only have to sum all bits of the code-word. The result is logic-0 if the code-

word is correct and logic-1 otherwise. Note that single-bit parity code can detect all single faults, at both 

data bits and check bit. 

Although it is very simple, single-bit parity code has a limited fault-tolerance capability. First of all, it 

cannot detect multiple faults. For example, if due to soft errors, two bits of the code-word stored in the 

memory are flipped, then the logical sum of all bits will remain intact and consequently, the error will 

not be detected. Secondly, even in the good case, it only helps detecting errors but not correcting them. 

To overcome the first limitation, one solution is to divide the data into separate groups of bits and to 

use one single-parity check bit for each of them. As each group has a smaller number of bits, the 

probability of having multiple faults in one group is also smaller. Therefore, the error detection capability 

is improved. However, better error detection is achieved with a higher level of redundancy (number of 

check bits added). In the extreme case, one check bits is added to each data bits. For logic circuits, this 

fault-tolerance solution is equivalent to the duplex system presented previously.  

The second limit of single-bit parity code is more difficult to resolve. To be able to correct errors, we 

also need multiple check bits. However, the groups of bits must not be separated. And it�s the 

dependence between these groups that allows the correction of errors. Due to their complexity, in the 

field of fault-tolerance, error correction codes usually offer only detection of two erroneous bits with 

correction of one bit. These codes are called Single Error Correction � Double Errors Detection (SEC-DED) 

codes. One example is the Hsiao codes that are widely used in memories [HSI70]. 

Berger�and�Cyclic�codes�

With higher integration, the probability of multiple error occurrence increases significantly. This leads 

to the need of better detection and correction codes. For memories, Berger and cyclic codes are efficient 

solutions: 

- Berger codes [BER61, DE94] allow the detection of unidirectional errors, i.e. errors where all 

detected bits are flipped in the same direction from logic-1 to logic-0 or vice-versa. Compared 

to single-bit parity code, they have higher fault-tolerance capability because they can detect 

unidirectional errors affecting multiple bits and all single-bit errors. Compared to SEC-DEC 

code, Berger codes do not allow error correction. Besides, they also have the disadvantage of 

lacking of bidirectional double error detection. 

- Cyclic codes are non-separable: data and check bits are mixed together, and extracting data 

from the code-word requires decode operations that may induce additional delays. Despite 

this drawback, these codes are the most used in memory fault-tolerance because they allow 

detection and correction of multiple bits with low information redundancy [KOR07].    

Arithmetic�codes��

While parity, Berger and cyclic codes are the most used in memories, arithmetic codes are better 

suited to logic circuits. They employ arithmetic properties that are preserved under a set of arithmetic 

operations, such as addition or multiplication, to detect errors. Their advantage relies on the simple 

implementation of the predictor module (Figure 1.12-a) when used for arithmetic circuits [RAO70, 

RAO77, TAH95, FOR09]. However, these solutions are not applicable for random logic circuits.  

Pros�and�cons�

Compared to hardware redundancy, information redundancy has the advantage of using much less 

additional resources. Parity, Berger and cyclic codes are adapted for fault-tolerance in memories. In 
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these cases, the number of check bits is significantly smaller than the number of data bits while coders, 

decoders and checkers can be implemented easily using small number of simple logic gates. 

Furthermore, advanced parity and cyclic codes also allow correction of single or multiple defected bits. 

However, implementation of these techniques for logic circuits is more complex, especially in the 

generation of redundant outputs from primary inputs. For these circuits, arithmetic codes are more 

suitable. Nevertheless, these codes can only be used for arithmetic operations such as addition or 

multiplication.  

1.2.4 Timing�redundancy�
The principle of timing redundancy is, when an error is detected, to repeat the faulty operation 

several times before delivering the final good result. Computations are performed by the same 

processing units and their results are stored in different registers. These values are then compared in 

order to detect and correct errors. 

Figure 1.13-a shows an example of using timing redundancy to detect errors at logic circuits. In this 

architecture, each operation is repeated once by the processing unit Module. A control module and a 

demultiplexer are used to store the results in two output registers Reg1 and Reg2. These outputs are 

compared at the end of the calculation, using a comparator. If a transient error occurs at one of the two 

computations then it will be detected by this comparison. The functionality of this architecture is similar 

to the duplex system presented in Figure 1.10, but it only requires one instead of two modules. Hence, it 

allows significant reduction of area overhead and power consumption. However, the timing fault-

tolerant architecture can only detect transient errors. In fact, if Module suffers from a permanent fault 

then both computation results stored in Reg1 and Reg2 will be affected the same way. Consequently, the 

errors will not be detected by the comparator.  

Error detection can also be added to the architecture above by doing more than two computations 

for each input data and then using a majority voter to mask transient errors [HSU94, GAL98]. Figure 1.13-

b shows an example where each operation is repeated twice. This architecture is called Time shared 

Triple Modular Redundancy (TTMR) because it has similar functions compared to TMR architecture. Note 

that like the structure in Figure 1.13-a, although it offers significant cost reductions compared to TMR 

architecture, TTMR can only tolerate transient faults. 

 

 
 

a) Error detection b) Error correction 

Figure 1.13 Timing Fault-Tolerant Architectures 

Compared to two other types of redundancy, timing redundancy has smaller area and power 

consumption costs. However, they have significant delay costs because every calculation is repeated 

several times, even in fault-free cases. Furthermore, as each operation is repeated, their total energy 

consumption also increases several times.      
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1.2.5 Hybrid�fault-tolerance�
As we have seen in previous sub-sections, each type of redundancy has different advantages and 

disadvantages regarding their fault-tolerance capability, silicon area and power consumption. The 

principle of hybrid fault-tolerance technique is to combine these redundancies to complement their 

benefits and costs. 

Information�and�Timing�

One important drawback of timing redundancy is the lack of permanent fault detection capability. 

Meanwhile, information redundancy offers low cost detection for both permanent and transient faults, 

but it is not adapted for logic circuits. Combining information and timing redundancies allows to 

overcome these issues.  

Figure 1.14 shows an example where information and timing redundancies are combined to detect 

transient and permanent faults at logic circuits. Compared to the timing fault-tolerant architecture in 

Figure 1.13-a, this architecture does not re-compute the primary input data X but its encoded value C(X), 

where C is the logic function of the coder. Both data X and C(X) are selected for computations by an 

additional multiplexer. Then, the computation result of C(X) is decoded before being compared with the 

computation result of X.  The processing unit Module is proven fault-free if no difference is detected 

when comparing the results. 

 

 

Figure 1.14 Information-Timing Hybrid Fault-Tolerant Architecture for Error Detection 

Note that this simple architecture works under the hypothesis that the computation result of C(X) is 

C(Y) where Y represents the computation result of X. If we call F the logic function of Module then we 

need:  

    (1.2) 

One concrete application of the architecture in Figure 1.14 is error detection in alternating logic 

circuits [RAY75].   They are circuits that satisfy . For example, a circuit receiving three input 

bits a, b, c, which calculates , is an alternating circuit because

 . For this type of logic circuit, we can use complimentary code  to fulfill 

equation (1.2). Consequently, both coder and decoder can be easily implemented using inverters. 

Besides, this architecture has also been proven to be efficient for stuck-at-fault detection [RAY75].    

Although being efficient for both transient and permanent faults detection, the architecture in Figure 

1.14 does not offer error correction. For this purpose, Figure 1.15 proposes another way to combine 

information and timing redundancies.  
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Figure 1.15 Information-Timing Hybrid Fault-Tolerant Architecture for Error Correction 

Compared to the information fault-tolerant architecture shown in Figure 1.12-b, the new architecture 

employs an additional control module to manage re-computation by re-injecting affected primary input 

data in case an error is detected by the checker. As error correction is done by timing redundancy, we 

can use simple error detection codes as information redundancy. Hence, this method helps reducing 

area overhead thanks to the complexity of the predictor. 

Information�and�Hardware�

Although it offers efficient error correction capability, the principal drawback of hardware 

redundancy is its high costs in area and power consumption. To improve this, we can combine 

information and hardware redundancies. Figure 1.16 shows an example for such architecture [ALM03].  
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Figure 1.16 Hybrid Architecture Combining Duplication/Comparison and Parity Codes  

The architecture in Figure 1.16-a combines duplication/comparison method (hardware redundancy, 

Figure 1.10) and parity codes (information redundancy) to detect and correct errors in logic circuits. The 

processing unit is duplicated (Module1 and Module2). A comparator detects mismatches between their 

outputs (output1 and output2). If Module1, Module2 and the comparator are fault-free then signal 

error1 is at logic-0. If one and only one of these modules is affected by faults then error1 turns to logic-1. 

The correctness of output2 is also verified by a parity predictor (Parity Predictor) and a checker (Parity 

Checker). If these two modules are fault-free and output2 is correct then error2 is at logic-0. If there are 

faults in one of the modules Module2, Parity Predictor or Parity Checker then error2 switches to logic-1.  

With the architecture above, all single and multiple faults affecting any single module are detected 

and tolerated. The table in Figure 1.16-b shows how this is done: the first two columns present values of 

error1 and error2; the third column shows which module can be affected given the value of the error 

signals; the last column indicates which output is correct and should be used as primary output of the 

architecture. 
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The advantage of the presented architecture is that for some particular logic circuits, the parity 

predictor may have smaller silicon area than the processing units. Consequently, the complete 

architecture may have smaller area overhead than that of TMR architecture.  

Note that in the example above, parity codes are used as information redundancy. However, this 

solution can also be applicable for other error detection codes such as arithmetic codes, Berger codes, 

etc. Depending on the type of logic circuit, one type of code can be more suitable than the others if it 

allows simpler implementations of the predictor and the checker. In some cases where the predictor is 

much smaller than the processing units, the resulting fault-tolerant architecture has smaller area 

overhead compared to TMR architecture while offering comparable error detection/correction 

capability. 

1.2.6 Discussion�
In this section, we have studied the principle of fault-tolerance technique. Employing different 

redundant resources allows digital circuits to operate correctly despite the presence of permanent 

and/or transient faults. This is done by masking or detecting/correcting errors induced by faults.  

We have also classified fault-tolerant architectures in four categories depending on which 

redundancies are used. Hardware fault-tolerant architectures use one or more copies of the original 

circuit to detect or mask errors. Although providing efficient fault-tolerance for both transient and 

permanent faults, this solution requires considerably high costs in silicon area and in power 

consumption. Information fault-tolerant architectures employ codes to detect and correct errors created 

by faults. This method is efficient for memories thanks to their regular structure. For logic circuits, 

information redundancy may lead to high area overhead due to complex implementations of code 

predictors. Timing fault-tolerant techniques consist of using re-computation to detect and correct 

transient errors. Although having small area overhead, this method results in high calculation delays 

because both fault-free and faulty operations are repeated several times. To enhance the advantages 

and overcome the drawbacks of the three techniques above, hybrid fault-tolerance methods employ 

different redundancies at the same time to deal with faults. These techniques are efficient for logic 

circuits and can be used to tolerate both permanent and transient faults while optimizing area overhead 

and power consumption. 

1.3 Robustness�improvement�of�digital�systems�

In previous sections, we have seen how faults and errors are responsible for failures in digital 

systems. We have also studied how fault-tolerance techniques can be used to deal with these issues and 

thus, improve digital system robustness. In this section, we detail how fault-tolerant architectures are 

used to protect different parts of digital systems from faults and errors.  

The section is divided in two parts. In the first sub-section, we study fault-tolerance in memories 

while in the second sub-section, we investigate robustness improvement in logic circuits. 

1.3.1 Fault-tolerance�in�memories�
In 2003, the Semiconductor Industry Association (SIA) reported that memory cores presented more 

than 70% silicon area of a digital system and that this ratio would increase to more than 90% after 2012 

([ITR03], Figure 1.17). In 2011, they predicted that this trend will continue in the future [ITR11]. This 

explains why reliability of memory is a very important factor in the semiconductor industry. 
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Figure 1.17 Logic/Memory Composition of System-on-Chip, Source: [ITR03]   

Robustness of memory circuits are affected the most by two types of error: soft errors caused by 

interference and radiation phenomena, permanent errors caused by manufacturing defects and aging 

phenomenon [SU05]. 

Soft�errors��

Table 1.2 shows Soft Error Rate (SER) in memories for different CMOS technology nodes. This rate is 

presented in number of failures in one million hours per megabit (FIT/Mb). It is shown that SER increases 

as the technology advances. In this table, we can also see that the percentage of Multiple Bits Upsets 

(MBU) on total SER increases very fast and will reach 100% in 2016. These trends explain why today, 

error detection/correction codes are systematically used in memories.  

 

Year  2007 2008 2009 2010 2013 2016 2019 2022 2024 

Technology node (nm) 65 55 50 45 35 25 18 13 10 

SER (FIT/Mb) 1150 1150 1150 1200 1250 1300 1350 1400 1450 

Percentage of MBU on total SER 16% 16% 16% 32% 64% 100% 100% 100% 100% 

Table 1.2 Soft Error Rate in Embedded Memory, Source [ITR11] 

Permanent�error��

Although information redundancy can tolerate both soft and permanent errors, the effectiveness of 

this method decreases during systems� lifetime. In fact, as memories age, the number of permanently 

defected bits increases. If this number exceeds the detection capability of codes then failures will occur. 

The most used solution for this problem is hardware redundancy. 

Hardware fault-tolerance in memories is implemented under the form of spare memory cells, words 

and columns [SCH01, NIC03, NIC05, SU05]. Traditionally, memory repair is performed right after the 

fabrication phase. External test equipments are used to detect and localize faults. Then defected 

elements (memory cells, words and columns) are replaced by redundant resources using different 

techniques such as laser beams, electrical fuses or anti-fuses.  For embedded memory, external test and 

repair have been replaced by Built-In Self-Test (BIST) and Built-In Self-Repair (BISR) [NIC05, SU05]. 

Additional modules are implemented so that the memory circuit can perform test and repair itself. Note 
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that, BIST/BISR can be run anytime during the lifetime of memories to tolerate both manufacturing 

defects and faults created by aging phenomena.  

1.3.2 Fault-tolerance�in�logic�circuits�
In general, a logic circuit is composed of combinational and sequential parts. At each moment, 

outputs of the combinational part depend only on its present inputs, while outputs of the sequential part 

also depend on its previous inputs. In other words, the sequential part has memory while the 

combinational part does not. Besides, operations of the sequential part are synchronized by clock 

signals.  Consequently, the logic circuit is subject to two timing constraints: 

- Setup time: Inputs of the sequential part must be established an amount of time (called setup 

time) before the clock events. 

- Hold time: Inputs of the sequential part must be held steady during an amount of time (called 

hold time) after the clock events. 

There are different types of logic circuits, depending on how the combinational and the sequential 

parts are connected. In the scope of this thesis, we study logic circuits with the architecture presented in 

Figure 1.18. In this architecture, the combinational part consists of a Combinational Logic module (CL) 

while the sequential part is made of an input register (Reg_in) and an output register (Reg_out).  Primary 

input PI of the logic circuits is captured by Reg_in. Then, output vin of this register is used to feed CL.  

Finally, Reg_out captures output vout of CL to provide primary output PO. The registers are synchronized 

by a clock signal CLK. Note that registers can be made by different elements such as flip-flops or latches. 

In this thesis, we consider only edge sensitive designs which employ D flip-flops.  

 

 

Figure 1.18 Logic Circuit Architecture 

There are three types of error that can affect the logic circuit in Figure 1.18: 

- Hard errors: These errors may modify logic functions of both combinational and sequential 

parts, and change the logic value of vin, vout and PO.  

- Soft errors: Two types of soft error may cause incorrect operations of the logic circuit. The 

first type is SEU which modifies the logic values (bit flipping) stored in the registers. The 

second type is SET which may induce glitches at output vout of CL and thus, responsible for 

timing violations (setup and hold times of Reg_out). 

- Timing errors: These errors cause additional calculation delays in CL which may also lead to 

timing violation in Reg_out.  

In the following parts, we detail different solutions proposed in the literature to protect registers and 

the combinational logic from the mentioned errors. 

Hard�error�protection�

As we have seen in the previous section, TMR architecture is an efficient fault-tolerance solution for 

hard errors. However, this method usually leads to high area and power consumption overhead (more 

than 200%). To overcome this problem, one solution is to triplicate only parts of the logic circuit that are 

more vulnerable to hard errors [DAS09].  
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Although occupy small silicon area compared to memories, logic circuits majorly contribute to power 

consumption in digital systems. Figure 1.19 sourced from [ITR11] shows that this trend will continue in 

the future, especially for consumer stationary applications. Consequently, power consumption will be an 

important drawback of TMR architecture in advance technology nodes. 

 

    
 

a) Consumer stationary b) Consumer portable 

Figure 1.19 Power Consumption Trends of System-on-Chip 

SEU�protection�

To protect registers from SEU, TMR architecture is also an effective solution. [WAN03] proposes to 

use subsystem-level TMR (Figure 1.9) to harden D flip-flops of the registers. These flip-flops are made of 

master and slave latches.  Each latch is hardened in an asynchronous manner (Figure 1.20).  Although 

effective for both hard errors and SEU, this method has an area overhead of about 400%. 

 

  

Figure 1.20 Latch Hardening Using TMR,  

Source: [WAN03] 

Figure 1.21 Flip-flop Hardening Using C-element, 

Source: [ZHA06] 

To overcome the high costs of TMR, [ZHA06] proposes BISER (Built-In Soft Error Resilience) 

architecture using C-elements to tolerate SEU in D flip-flops. In this solution (Figure 1.21), the hardened 

flip-flop is composed of two D flip-flops, a C-element and a keeper. As shown in its truth table (Table 

1.3), the C-element acts like an inverter when its inputs O1 and O2 are identical. If due to a SEU, one 

input bit is flipped, then output Q remains at its previous value retained by the keeper. Consequently, 

the soft error is tolerated.  
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O1 O2 Q 

0 0 1 

1 1 0 

0 1 Previous value retained  

1 0 Previous value retained  

Table 1.3 Truth Table of a C-element 

Compared to TMR solution, solution in Figure 1.21 has lower silicon area and power consumption 

costs. However, it does not allow the correction of hard errors because if O1 or O2 suffers from stuck-at-

faults then the value of Q will never change. 

SET�and�timing�error�protection�

Although caused by different phenomena, SET and timing errors have the same effect on operations 

of logic circuits: outputs of the combinational logic are not stable, violating setup and hold time of the 

output register. Consequently, to detect these errors, one solution is to discover glitches or invalid 

transitions that occur at inputs of the register. 

  In [ERN03], the authors propose RAZOR flip-flop architecture (Figure 1.22), which allows the 

detection of SET and timing errors. Each RAZOR flip-flop is augmented with a shadow latch controlled by 

a delayed clock (clk_del). This delayed capture assures that the shadow latch stores a correct value even 

if SET or timing errors occur during the main flip-flop capture (at clk event). Outputs of the main flip-flop 

and the shadow latch are compared to detect errors. In case an error is detected, a multiplexer is used to 

replace the faulty value of the main flip-flop by the correct value stored in the shadow latch. 

 

 

 

Figure 1.22 RAZOR Flip-flop, Source: [ERN03] Figure 1.23 RAZOR II Latch, Source: [DAS09] 

Figure 1.23 illustrates another technique proposed in [DAS09] which employs RAZOR II latches to 

detect errors. In this architecture, between two consecutive computations, outputs of the combinational 

logic L1 are supposed to be stable during a timing window (the detection window). Spurious transitions 

caused by SET and timing errors during this window may be discovered by a transition detector 

(TDetector).  To assure that TDetector reports only invalid transitions, a digital clock generator (DC 

generator) is used to define the detection window. 

1.3.3 Discussion�
In memory part of digital systems, the use of fault-tolerant architectures has been proven necessary 

and efficient. Information (error detection/correction) and hardware (spare memory words, columns and 

lines) redundancies are employed to deal with both transient and permanent faults. However, fault-

tolerance in logic circuits of digital systems remains a challenge for future technology nodes. Different 
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fault-tolerant architectures have been proposed but none of them are effective for both transient (SEU, 

SET, timing errors) and permanent (hard errors) faults in logic circuits:  

- TMR architecture may be used to tolerate both permanent faults in combinational part and 

SEU in sequential part of logic circuits. However, this solution is vulnerable to timing errors 

which may arrive at inputs of the combinational logic.  

- BISER structure allows SEU tolerance in registers with low area overhead than TMR. The 

tradeoff is that this structure cannot tolerate permanent errors in logic circuits.  

- RAZOR and RAZOR II architectures deal with both SEU in registers and SET/timing errors in 

combinational logics. However, these solutions only detect problems. Errors correction is 

done by re-computation. Furthermore, like BISER, both architectures are vulnerable to 

permanent errors. 

Beside fault-tolerance capability, power consumption of logic circuits is a rising issue in advanced 

technologies. As these circuits contribute the major consuming parts of digital systems, limiting their 

power budget is one of the key factors in digital design. However, existing fault-tolerant architectures 

are only optimized in term of area overhead.  

1.4 Summary�

In this chapter, we have discussed the importance of CMOS technology evolutions that have allowed 

the realization of more complex systems at lower costs and with higher performance. We have also seen 

that advanced technology nodes are facing reliability issues. Manufacturing defects, variability, 

interference and aging phenomena induce more and more transient and permanent faults which cause 

digital systems to fail. In order to continue taking advantage of new CMOS technology nodes, we must 

improve robustness of digital systems by dealing with hard, soft and timing errors.  

To solve reliability problem of digital systems, one solution is to use fault-tolerant architectures. 

These architectures employ redundant resources to guarantee correct operation of circuits despite the 

presence of faults. There are three type of redundancy: hardware, information and timing redundancy. 

Each type fault-tolerance method has different pros and cons with regards to errors. Hardware fault-

tolerance is efficient for both transient and permanent errors, but they often require high area overhead 

and power consumption. Information fault-tolerance requires less redundant resources but is only 

adapted for memories and arithmetic circuits. Timing fault-tolerance is the most cost effective solution 

in term of area overhead but it increases significantly IC delays and can only tolerate transient errors. To 

improve robustness of digital circuits and systems, the three types of redundancy can be employed 

together to compromise their pros and cons. This technique is called hybrid fault-tolerance. 

 While information and hardware redundancy provide efficient robustness improvement for 

memories, fault-tolerance in logic circuits remains a challenge for future technology nodes. Different 

fault-tolerant architectures have been proposed, but none of them are effective for both transient (SEU, 

SET, timing errors) and permanent (hard errors) faults in logic circuits. Besides, these techniques are only 

optimized in term of area overhead whilst power consumption of logic circuits is becoming a more and 

more important factor. 

In the rest of this thesis, we study the use of hybrid fault-tolerance techniques for robustness 

improvement of logic circuits. Our objective is to tolerate both transient and permanent errors in these 

circuits. Besides, both silicon area and power consumption of the solutions are subject to optimizations. 

Finally, we aim to provide a �plug and play� solution which can be applied without modification in the 

implementation of the logic circuits. 
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We have seen in the previous chapter that different types of fault, transient and permanent, affect 

normal operations of logic circuits. Consequently, redundancy resources are added to tolerate these 

faults and thus, improve circuits� robustness. Each type of redundancy is suitable for some particular 

fault categories. In this chapter, we propose a new architecture, which combines information, timing and 

hardware redundancies to tolerate both transient and permanent faults of digital systems. This solution, 

called hybrid fault-tolerant architecture, will be able to detect and correct hard, soft and timing errors 

which occur in combinational part of logic circuits. 

The chapter is organized as follows: In the first section, we present principles of the hybrid fault-

tolerance solution. It is divided into three phases: error detection using information redundancy, 

transient error correction using timing redundancy and permanent error correction using hardware 

redundancy. Then, in the three following sections we study in detail these phases. For each phase, we 

propose a complete fault-tolerant architecture with logic implementations of additional modules as well 

as their control logic and timing constraints.  

2.1 Principles�of�hybrid�fault-tolerance��

Our objective is to tolerate transient and permanent fault in logic circuits which consist of 

combinational logic (CL) and input/output registers (Figure 1.18). As described in 1.3.2, there are 

different efficient methods to protect registers from hard and soft errors. Therefore, in this chapter, we 

consider only hard, soft and timing errors, which may occur in CL part of the circuits. The integration of 

SEU protection into the proposed architecture will be studied further in Chapter 4. 

 

Figure 2.1 Principles of Hybrid Fault-tolerance  

The hybrid fault-tolerant architecture uses error detection/correction method to deal with faults. The 

fault-tolerance operation is divided into three phases (Figure 2.1). In the first phase, we use Concurrent 

Error Detection (CED) techniques to detect errors, regardless of their nature. In a fault-free case, the 

architecture continues to operate normally in Phase 1. If errors are detected, the second phase will be 

activated. The architecture will re-compute the affected input vector in order to tolerate transient faults. 

If errors disappear after the re-computation, the architecture will return to its normal operation. If errors 

remain, the architecture will then enter the third phase. A re-configuration will replace hardware which 
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may contain permanent faults by fault-free resources. A re-computation will then allow the architecture 

to come back to normal operation. 

In the following sections, we construct the complete hybrid fault-tolerant architecture through three 

stages. At each stage, we integrate one of the three phases presented above to obtain: 

- An error detection architecture capable of detecting transient and permanent errors. 

- A transient error correction architecture that detects both type of error and tolerates 

transient errors. 

- A permanent error correction architecture, i.e. the complete hybrid fault-tolerant 

architecture, which detects and tolerates both transient and permanent errors. 

2.2 Error�detection�

2.2.1 Concurrent�Error�Detection�

Concurrent Error Detection (CED) methods are widely used to enhance logic circuits� reliability 

[MIT00a] by continuously checking for errors during its operation. Their principle is illustrated in Figure 

2.2:  

- From an input vector vin, the circuit CL must realize a function f and produce an output vector 

vout: 

  (2.1) 

- The CED employs an additional Predictor module to predict some particular characteristics C 

of a fault-free vout. Let�s call the Predictor�s logic function P and its output vector CB. We will 

have: 

  (2.2) 

or:  

  (2.3) 

- Finally, a Checker will make sure that the output vout has the characteristics predicted, which 

means verifying that: 

  (2.4) 

 

Figure 2.2 Concurrent Error Detection Scheme 

Depending on the characteristic function C, we have different CED techniques [MIT00a], such as 

parity codes [DE94, TOU97, NIC97], duplication/comparison [SEL68], Berger codes [BER61, DE94], Bose-

Lin codes [BOS85], or arithmetic codes [FOR09, TAH95, RAO77]. Berger and Bose-Lin codes can only 

error
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detect unidirectional errors while the use of arithmetic codes requires sufficient knowledge of the logic 

function f. As our architectures target general logic circuits, we will only consider parity codes and 

Duplication/Comparison scheme. 

2.2.2 Parity�codes�

Predictor�synthesis�

As we have seen in 1.2.3, single-bit parity code is the simplest way to detect errors in memories 

because its implementation only requires an additional bit (code-word) for a data word. Even with more 

advanced techniques, such as Hsiao codes [HSI70], the cost remains relatively low. For example, 10-bit 

Hsiao codes are able to detect double-errors in 120-bit data word.  In order to use parity codes for logic 

circuits, we also use additional code bits for their output vector. The generation of these parity bits by a 

predictor must be performed independently to the logic circuits so that a single fault can not affect both 

the output and the parity code-words.  

In [KO04], the authors suggested a predictor synthesis using AND/XOR expressions and Davio�s 

expansion theorem. But the proposed method targets only FPGA implementations. Another method is to 

use logic synthesis tools to build parity predictors. This synthesis flow is described in Figure 2.3. For a 

combinational logic circuit CL, the predictor is obtained by adding a logic structure XORT which can 

calculate parity check bits CB from circuit outputs vout. The simplest way is to use XOR-trees to realize 

XORT. Then, a logic synthesis tool is run to generate the gate level description of parity predictors. 

 

Figure 2.3 Parity Predictor Synthesis Flow 

Area�overhead��

 

Circuit Single-bit parity 

code 

Hsiao  

code 

c17 176% na 

c432 113% 133% 

c499 60% 149% 

c880 116% 151% 

c1355 124% 148% 

c1908 114% 143% 

c2670 119% 156% 

c3540 101% 114% 

c6288 103% 109% 

c7552 113% 139% 

Table 2.1 Parity Predictors' Area 

We used the synthesis flow described above to build predictors for single-bit parity and Hsiao codes 

(with the minimum number of check bits). The targeted circuits are from ISCAS�85 benchmark [ISCAS85]. 

The logic synthesis is performed by Synopsys Design Compiler [DCSYN] using a 90nm technology from 

CL CL PredictorXORT
vin vout vin vout CB CBvin

Add

XOR-tree

Logic
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STMicroelectronics. Results are presented in Table 2.1, where the predictors� area (�Single-bit parity 

code� and �Hsiao code�) is presented in percentage of the original circuit. We note that in most case, the 

predictors are larger than the original logic circuits. 

Common-mode�failures�

Parity codes are vulnerable to common-mode faults (CMF), i.e. faults that may cause more than one 

erroneous bits. For example, single-bit parity code can only detect an impair number of CL output faulty 

bits. In [MIT00a, TOU97], the authors proposed a CED systems based on parity codes that deal with 

CMFs. Although the proposed techniques promise small parity predictors, they require a re-synthesis of 

the combinational logic CL into separate logic cones which increase its total area significantly. 

Furthermore, these techniques are not applicable because we target a �plug and play� fault-tolerance 

method. 

Discussion�

We have seen in this sub-section that parity predictors have similar silicon area compared to original 

logic circuits. Thus, using parity code in CED leads to an area overhead equivalent to a 

Duplication/Comparison scheme. Besides, we will see in Chapter 3 that the Duplication/Comparison 

technique allows better fault detection of CMFs. Therefore, in our hybrid fault-tolerant architecture, we 

will use this technique for errors detection. 

2.2.3 Duplication/Comparison�

Error�detection�scheme�

Figure 2.4 illustrates our error detection method using the Duplication/Comparison technique 

detailed in 1.2.2. Our targets are logic circuits composed of a combinational logic CL and input/output 

registers Reg_in/Reg_out (Figure 1.18). Compared to Figure 1.18, the combinational logic CL is 

duplicated (CL1 and CL2). These two copies realize the same logic function as CL but they can be 

implemented differently. Both CLs are fed by output vin of the input register. However, only output 

vout1 of CL1 will feed the output register. Output vout2 of CL2 is instead used to validate data integrity 

of the complete architecture. This validation is performed by comparing the primary output PO with 

vout2 during a comparison window. If the two vectors matches up during this time window, error stay at 

logic-0 indicating �No error detected�. If they are different, error will switch to logic-1 alerting the 

problem. 

 

 

Figure 2.4 Duplication/Comparison Scheme for Logic Circuits 

Note that the comparison is placed after data capture of the output register. In this configuration, 

error detection process will finish after CLK rising edge when the next computation has be launched. 

Therefore re-computation phase (details in 2.3) will take two instead of one CLK cycles: one to calculate 

new input and one to repeat the affected input.  
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An alternative solution is to finish the comparison before the data capture (by comparing vout2 with 

vout1 instead of PO). At CLK rising edge, either new computation will be launched if no error is detected 

or re-computation is activated otherwise. Although only one CLK cycle is taken for transient error 

correction, this solution requires a longer CLK period, even for fault-free operation, because delay time 

of the comparator must be taken into account with CLs calculation time.  

Supposing that fault-free operations happen most of the time, we will choose to keep the 

architecture in Figure 2.4 which operates at the same CLK period as the original logic circuit (Figure 1.18). 

The�error�signal�

The comparator itself consists of two stages: a local (bit to bit) comparison and a global comparison 

which accumulates all local comparisons into a one-bit-signal error. The basic structure of a comparator 

is presented in Figure 2.5. In the first stage, XOR gates are used to realize n bit-to-bit comparisons 

between vout1 and vout2. Then, the n signals Ci (i=1..n) are combined in the second stage by an OR-tree, 

in order to provide the error signal. The presented circuit is called static comparator because it is made 

of static CMOS gates. 

 

 

Figure 2.5 Static Comparator Structure 

While combinational logics CL1 and CL2 realize the same logic functions, their timing characteristics 

often differ. In fact, CL1 and CL2 might be structurally different due to area/power optimizations. Even if 

they are structurally identical, both circuits are likely to be affected by intra-die variations. The different 

timing characteristics of the CLs conduct to differences between vout1 and vout2 during the 

computation time tCL of the CLs. Consequently, error signal is not stable during that period. In addition, 

the comparator itself has a propagation delay tCOMP during which glitches may occur at the error signal. 

Therefore, error must be used only during a stable period called �comparison window�, after tCL + tCOMP 

and before the next computation. 

In a fault-free context, error is constantly at logic-0 during the comparison window. If a hard error 

occurs, the problem is detectable since error will change to a logic-1. For soft and timing errors, the 

detection may be effective since glitches and delay transitions are observable at error signal during the 

comparison window. Fault-free and faulty (hard, soft and timing errors) cases are highlighted in Figure 

2.6. 

Although it is capable of detecting hard, soft and timing errors that affect CLs, the static comparator 

has a drawback: electrical mask. In fact, soft and timing errors result in small differences (glitches or late 

transitions) between vout1 and vout2 during the comparison window. These slight differences might be 
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filtered out by the XOR gates. If they are not, small glitches produced by the local comparison might also 

be masked by the multi-layer Or-tree. This results in undetectable errors. In order to solve this problem, 

we integrate dynamic CMOS gates to the comparator structure illustrated in Figure 2.5. 

 

Figure 2.6 Error Signal 

Dynamic�CMOS�

Dynamic or clocked CMOS gates are used to increase speed, decrease power dissipation while 

reducing the complexity of combinational logic circuits [BAK10]. The basic idea is to use capacitive inputs 

of the MOSFET to store a charge and thus remember a logic level for later use. 

Figure 2.7 illustrates the principle of a dynamic gate using a pull-down network (PDN). In this Figure, 

CL presents the input capacitance of the next logic stage or of an output inverter. When the clock � is at 

logic-0 (pre-charge phase), T1 is opened while T2 is closed. CL node is therefore charged to VDD and 

output is at logic-1. When � switches to logic-1 (evaluation phase), T1 is closed while T2 is opened. 

Depending on the NMOS logic, the pre-charged capacitance CL might be discharged to GND (output 

switches logic-0) or stay at VDD (output remain logic-1). 

 

 

Figure 2.7 Dynamic CMOS Logic Figure 2.8 Dynamic OR 

 

Compared to static CMOS structures, the dynamic CMOS presented in Figure 2.7 does not have a pull-

up network made of PMOS logic. This simplification gives dynamic CMOS gates with higher switching 

speed and lower power consumption. 

In Figure 2.8, we present the concrete example of a 4-input dynamic OR (DOR). The gate is controlled 

by reset and DC signals. During the pre-charge phase, reset is at GND. Input capacitance of inverter INV1 
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is pre-charged to VDD, which puts output Z to logic-0. During the evaluation phase, reset and DC are both 

at VDD, which means T1 is closed while T2 and T3 are opened. If all inputs Ci (i=1..4) are at logic-0 then 

the PDN is closed and N is kept at logic-1 while Z remains at logic-0. If at least one of the inputs Ci turns 

to logic-0 then a discharge current path exists. Consequently, N is pulled down to VDD and Z switches to 

logic-1. Note that once the discharge happens, Z will remain at logic-0 until the next pre-charge phase. 

During the evaluation phase, dynamic CMOS logic suffers from leakage currents. Even if the PDN is 

closed, these currents still slowly discharge node N and causes a false logic value at output Z. Therefore, 

we need a �keeper� to maintain N at logic-1 when the PDN is closed. Besides, the keeper must be weak 

enough so that when the PDN is opened, node N can be pulled down to logic-0. In [DAS09], the authors 

proposed a �weak keeper� formed by a two-inverter loop. However, in order to reduce the area 

overhead, we decided to use a feedback transistor T8 as proposed in [BAK10]. 

Pseudo-dynamic�comparator�

There are different ways to use dynamic CMOS gate to improve the comparator. One method consists 

of using the transition detector proposed in [DAS09]. This detector, presented in Figure 2.9, is capable of 

detecting all transition arriving at input N during the high phase of clock DC. By adding this detector to 

every output bits of the CLs, we can detect small glitches at these signals during the comparison 

windows and thus detect soft and timing errors. However, this method leads to a very high area 

overhead as the output number of CLs is normally high. We can also combine output signals of CLs into a 

one-bit signal using a parity tree before employing the transition detector, as suggested in [PAL11]. 

Although less costly in term of area overhead, this method also has electrical masking problem caused by 

the parity tree itself. 

 

 

Figure 2.9 Transition Detector Structure 

Another approach to implement the pseudo-dynamic comparator is to use dynamic gates inside the 

static comparator structure. This is achieved by replacing one part of the static comparator with dynamic 

CMOS logic. The obtained circuit is called pseudo-dynamic comparator. 

Figure 2.10 shows our proposed pseudo-dynamic comparator. Similarly to the static comparator 

presented in Figure 2.5, the pseudo-dynamic comparator has two stages: local and global comparison. 

The local comparison stage consists of static XOR gates whilst the global comparison stage is an OR-tree 

combining dynamic and static gates. The first layer of the Or-tree is made of dynamic OR gates (DOR) 

while other layers use static OR gates. Compared to the static comparator, the pseudo dynamic 

comparator has two more inputs, which control reset and DC inputs of the DOR gates. For the reason of 

clarity, these control signals are not presented in Figure 2.10. 
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As mentioned above, DOR gates� outputs are stable at logic-0 due to the keeper during the pre-

charge phase (reset�s low phase). During the evaluation phase (reset and DC�s high phase), if vout1 and 

vout2 are stable and identical then all signals Ci (i = 1..n) are also at logic-0 which maintain DOR outputs 

unchanged. Therefore, error remains constant logic-0 representing a fault-free case. Otherwise, if vout1 

and vout2 differs, there will be either a constant logic-1 (presence of hard error) or glitches (presence of 

soft or timing error) at the Ci signals. At least one of the DOR outputs will then turn to logic-1, which 

makes error signal switch to logic-1 indicating �Error detected�. The Error signal will remain at logic-1 

until the next reset signal is applied. Note that DC defines comparison window of the comparator during 

its high phase. 

 

 

Figure 2.10 Pseudo-Dynamic Comparator Structure 

In the pseudo-dynamic comparator structure (Figure 2.10), only the first layer of the global 

comparison stage is implemented using dynamic gates. In fact, when a glitch is captured by these gates, 

their outputs remain logic-1 even if the glitch has disappeared. Therefore inputs of the second layer are 

stable signals which will not be filtered by the OR tree. Consequently, static gates of this layer can also 

guaranty correct operation of the global comparison. 

As error detection is place right after the XOR gates, our pseudo-dynamic comparator is more 

sensitive to small glitches caused by soft and timing errors compared to the static comparator. This 

improvement will be proven in Chapter 3. Besides, our architecture also promises lower power 

consumption. In fact, the global comparison stage is only active during the comparison window. 

Moreover, in fault free conditions, which happen most of the time, DOR�s gate outputs are at constant 

logic-0, which means that the Layer 2 of the global comparison stage (Figure 2.10) does not consume 

dynamic power. Finally, we will show in the next chapter that our dynamic OR gate can be implemented 

with no area overhead compared to a static gate. Therefore our pseudo-dynamic comparator obtains 

better performance without introducing any area penalty.  

Figure 2.11 present the complete error detection architecture using the pseudo-dynamic comparator. 

Compare to Figure 2.4, a control module is added to generate DC and reset signals, which command this 

comparator. Its logic implementation will be discussed in the next part. 
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Figure 2.11 The Complete Error Detection Architecture 

Control�logic�and�timing�constraints�

In order to use the pseudo-dynamic comparator for error detection, we must control the comparison 

window by generating a DC signal. The comparison must start (DC at logic-1) only when both PO and 

vout2 are stable. Otherwise, valid transitions (while combination logics are calculating) may be flagged as 

errors. Applied to our architecture in Figure 2.11: 

- The comparison must start when both outputs PO of register Reg_out and vout2 of 

combinational logic CL2 are established. During a fault-free operation, CL1 and CL2 must 

finish their calculation before the CLK capture edge. After this CLK edge, Reg_out will add a 

delay tdff before PO is established, where tdff represents the CLK-to-Q delay of output D flip-

flops. Consequently, this condition requires the comparison windows (DC high phase) to 

begin later than tdff after CLK rising edge. 

- The comparison must finish before PO and vout2 start changing value. When both signals are 

established, PO will only vary at next CLK capture edge. However, as the previous CLK capture 

edge has released a new input vin, vout2 will start changing value after a delay tshort compared 

to this edge (tshort represents the short path of CL2). Therefore, to satisfy this condition, the 

comparison window (DC high phase) must finish earlier than tshort after CLK rising edge. 

Besides, after each comparison, reset signal must be applied so that the pseudo-dynamic comparator 

is ready for new error detection. This must happens between each comparison window and the next 

one.  

 

Figure 2.12 Timing Constraints for Error Detection Scheme 

Figure 2.12 presents a correct timing scheme for our error detection method: 
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- After each CLK rising edge, input vin of CLs and primary output PO of the complete 

architecture are unstable during the switching time tdff of Reg_in/Reg_out. Note that we 

suppose here that both registers are made of same D flip-flops and thus have similar delays. 

After this short duration, vin and PO remain stable until the next CLK rising edge. 

- At n
th

 CLK edge (t=0), vout1 and vout2 are stable at the (n-1)
th 

computation result. These 

signals remain stable until t=tshort and then start varying. They return to stable state (n
th

 

result) at t=tdff+tCL where tCL represents the maximum between the computation times of 

combinational logics CL1 and CL2. 

- DC signal defines the comparison window of the Comparator during its high phase between 

tDC- and tDC+ after each CLK rising edge. The timing constraints for this signal are: 

 

  (2.5) 

- Reset signal is activated (logic-0) each period before the comparison window which means 

earlier than tDC- after each CLK rising edge. 

Figure 2.13 illustrates a simple implementation of the control module which generates DC and reset 

signal in Figure 2.12. In Figure 2.13-a, DC is generated using a buffer bufDC which adds a delay tbufDC to 

CLK signal. In order to respect the condition (2.5), we must have: 

  (2.6) 

and 

  (2.7) 

 Condition (2.6) can be obtained by adjusting the delay of bufDC while condition (2.7) requires either thigh 

reduction by controlling CLK duty cycle or tshort increase by adding delay buffers to LCs� short path 

[DAS09]. In Figure 2.13-b, reset is created using a glitch generator combined of a buffer bufRComp, an 

inverter invRComp and an NAND gate. Timing constraint of reset is obtained by fine-tuning delay time of 

these gates.  

 
a) DC signal 

 
b) Reset signal 

Figure 2.13 Control Module for Error Detection Architecture 

Note that the reset signal will be applied every CLK cycle, regardless of errors occurrence. Therefore, 

error is at logic-0 at the beginning of each period. If this signal turns to logic-1 during n
th

 period then the 

(n-1)
th

 computation result is not correct.  

2.2.4 Conclusion�

The complete error detection architecture studied in this section is presented in Figure 2.11. Using 

Duplication/Comparison, it allows both transient and permanent error detections. Moreover, this 

concurrent error detection method is more adapted for logic circuits with better detection capability and 

lower area cost compared to coding techniques. Furthermore, to improve the detection of SET and 

timing error, we use pseudo-dynamic comparator which detects small glitches better than classic static 

comparators. We have also proposed control logics and different timing constraints for the error 

detection scheme (Figure 2.13). 
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2.3 Transient�error�correction�

As we have seen in the last chapter, transient errors only affect circuits during a short period of time. 

Therefore, by re-computing the affected input vectors when these errors have been removed, we will 

obtain a correct operation. The advantage of this method is that it does not require particular knowledge 

of the logic circuit and hence, respects our �Plug and Play� constraint. Moreover, this timing redundancy 

is only used when an error is detected. Thus, it will not affect circuit�s performance during fault-free 

operations which happen most of the time. Finally, integrating the re-computation scheme into our 

existing error detection architecture does not require much area overhead compared to fault masking 

techniques such as TMR. 

 

Figure 2.14 Transient Error Correction Architecture 

Figure 2.14 illustrates an implementation of the re-computation technique integrated into the 

duplication/comparison error detection scheme presented previously. Compared to the last structure, 

new control signals are introduced to drive the input register Reg_in. In a fault-free case, the structure 

works exactly like the one presented in Figure 2.11. However, if an error is detected, the Control logic 

will be informed by the error signal and the structure will enter into the �Transient Error Correction� 

phase. The new signals will order Reg_in to repeat the affected input vector. Hence, a re-computation 

will tolerate transient errors, and the complete structure will then return to normal operation. 

2.3.1 Input�register�
As we have seen in 2.2.3, the pseudo-dynamic comparator is placed after Reg_out so that the logic 

circuit�s performance is not affected during fault-free operations. However, this configuration leads to a 

difficulty for the re-computation scheme. Let�s suppose that when our circuit is computing the n
th

 input 

vector, an error occurs at CL1. The faulty n
th

 output will be captured at (n+1)
th

 CLK rising edge. At the 

same time, Reg_in has passed a new input vector to CLs. Consequently, when the error is detected at 

(n+1)
th

 period, the n
th 

input is no longer available for a re-computation. This problem is illustrated in 

Figure 2.15. 
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Figure 2.15 Re-computation Problem 
Figure 2.16 Modified D Flip-Flop mDFF for Re-

computation 

In order to use re-computation technique for transient error correction, we must resolve the problem 

above. One solution is to use additional memories to preserve previous input data until the computation 

result has been proven correct. As our architecture targets logic designs using D flip-flop based registers, 

we propose in Figure 2.16 a modified D flip-flop mDFF that satisfies this requirement. 

In Figure 2.16, a low level sensitive D latch (DLL) is used to store previous input in Qm when the 

original D flip-flop (DFF) has captured a new value for Q. The time period during which Qm is maintained 

in DLL is defined by a new clock signal CLKRegin and a control signal CRegin. The last signal controls also 

a 2:1 multiplexer which decides whether the new data D or the memorized value Qm will be passed to Q 

at the next CLK rising edge. Note that while the additional latch and the 2:1 multiplexer must be added 

for each modified flip-flop, the OR gate which control enable input of DLL can be shared between them. 

  
a) Fault-free case b) Error detected case 

Figure 2.17 Modified D Flip-Flop�s Function 

Figure 2.17 explains how a modified D flip-flop works in: a) Fault free case and b) Error detection case: 

- In a fault free case (Figure 2.17-a), CRegin remains at logic-0. Hence, the multiplexor always 

selects input D. Consequently, at CLK rising edge (t=tperiod), the main flip-flop DFF captures 

new data from D and hence, Q switches from D1 to D2. Before this moment, the prior data D1 
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has been captured by DLL during its transparent window (low phase of CLKRegin) from 

tCLKRegin- to tCLKRegin+. This data is stored in DLL as long as CLKRegin remains logic-1.  

- In the situation of Figure 2.17-b, a fault becomes active while CLs are computing D0. The 

erroneous result is then detected during the next CLK period, between t=0 and t=tperiod. 

CRegin will turn to logic-1 during this period so that the enable input of DLL is also kept at 

high level. Consequently, D1 is not captured during the next CLKRegin low phase from tCLKRegin- 

to tCLKRegin+. Therefore, data D0 will be maintained by DLL. At the next CLK rising edge (t=tperiod), 

the multiplexer will select this data for re-computation. 

Our method requires two CLK cycles for transient error correction: the first cycle consists in raising 

error signal while the second cycle is for re-computation. Also note that in Figure 2.17, when the error is 

detected, input D does not change from D1 to D2 and hence, D1 remains available after the error 

correction process. This must be controlled at system level and will be discussed further in Chapter 4. 

The complete transient error correction architecture using modified input register is presented in 

Figure 2.18. The additional control signals CRegin and CLKRegin are also driven by the control logic which 

generates DC and reset for the pseudo-dynamic comparator.  A resetControl signal is added which allow 

initialization of the control module. 

 

Figure 2.18 The Complete Transient Error Correction Architecture 

2.3.2 Reset�signal��
With the error detection mechanism presented in the last section, error signal is reset to logic-0 at the 

beginning of every CLK cycle. This is necessary because the architecture computes new input vector at 

each period, regardless of errors occurrence. However, when we integrate errors correction to the 

architecture, this periodic reset signal is no longer validate. In fact, as explained previously, each time an 

error is detected for n
th

 input, the combinational logics will lost one CLK cycle running the (n+1)
th

 input 

before re-computing the prior one. Once the error is corrected, the architecture will return to normal 

operation and run the (n+1)
th

 input. Consequently, at system level, the (n+1)
th

 result must be ignored 

when error correction mechanism takes place. One solution is to keep error signal at logic-1 indicating 

invalid output during this period. To do that, we need to dismiss (keep at logic-1) the periodic reset signal 

for one CLK period every time an error is detected. Furthermore, to minimize dynamic power 

consumption of the comparator, we can keep reset at logic-1 during normal operation and active it only 

when an error is detected (one period after the detection). 

2.3.3 Transient�error�correction�mechanism�
Figure 2.19-a illustrates the complete transient error correction mechanism of our architecture: 

- As the first period is fault-free, we have the same waveforms as those of the error detection 

scheme. Note that even if Reg_in is modified, the registers still have similar delay time tdff 
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because it depends mainly on the CLK-to-Q delay of the D flip-flops, which remains identical 

for both of them.   

- During the second period, a transient fault occurs at combinational logic CL1 at t=t0. After in2 

computation, this fault causes an error at output vout1 under the form of a faulty value of 

out2 (out2*).  

- The erroneous output out2* is captured by Reg_out at the third CLK rising edge. Although the 

error is detected during this CLK cycle, a new calculation of input in3 has been launched at 

the beginning of the period. Consequently, both CLs work as if no error were detected and 

answer with out3.    

- Error detection of the last cycle has triggered the error correction mechanism. Hence, during 

the fourth period, Reg_in passes input in2 to CLs again. The re-computation happens during 

this period. At the end of the cycle, both CLs provide the correct value out2.  

- At the fifth period, Reg_out captures the corrected result out2 while Reg_in release input in3. 

The system returns to its normal operation mode. 

Note that during the fourth and the fifth CLK edges, PI does not change value so that in3 remain 

available after the error correction process.  

 

 

 

a) Error correction scheme b) Control signals 

Figure 2.19 Transient Error Correction Mechanism 

In Figure 2.19-b, we explain how the control signal manages the operations detailed above: 

- For each period, CLKRegin turns to logic-0 between tCLKRegin- and tCLKRegin+ after CLK rising edge 

so that at fault-free operation, prior input data will be captured by the additional latches DLL 

of Reg_in before its main flip-flops DFF pass to new input. The stored data will be available 

until the next CLKRegin falling edge. 

- The transient fault (t=t0) causes a difference between PO and vout2 during the third CLK 

period. The pseudo-dynamic comparator detects this error during its comparison window and 

raises error signal to logic-1, triggering the error correction process. 

- When error turns to logic-1, it makes CRegin switch to high level too (t=t1). So, during the next 

CLKRegin low phase, data capture DLL is ignored. Therefore, previous input data in2 remains 

stored at these latches. Consequently, at the forth CLK rising edge, this stored input data is 

selected for re-computation because CRegin is still at logic-1. After this edge, CRegin returns 

to logic-0 (t=t2) so that new input will be computed at the next period. 

- As the error is detected at the third CLK period, reset signal of the pseudo-dynamic 

comparator is not activated (i.e. is kept at logic-1) until the fifth cycle. That�s why at the third 
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and the fourth CLK cycle, error remains at logic-1 indicating that primary output PO must be 

ignored. The fact that error remains at logic-1 during these periods is also used at system 

level to control primary input flow PI so that no new input vector comes during the error 

correction process. At the fifth period, the comparator is reset and the architecture returns to 

normal operation. 

2.3.4 Control�logic�and�timing�constraints�

DC�signal�

Compared to the error detection architecture, DC signal in transient error correction scheme has the 

same constraints. Its high phase must be placed when:  

- Primary output PO has been established (tdff after CLK rising edges where tdff represents the 

CLK to Q delay of output D flip-flops)  

- Output vout2 of combinational logic CL2 has not changed value (tshort after CLK rising edges 

where tshort represents the short path of CL2)  

We can use the same control logic as in Figure 2.13-a to generate DC signal, i.e. use a buffer bufDC to 

delay the CLK signal. To satisfy the timing constraints, we must also assure (2.6) and (2.7) by adjusting 

the delay tbufDC of the buffer, high phase duration thigh of CLK and short path tshort of the combinational 

logics.   

CLKRegin�signal�

The additional clock CLKRegin must guarantee a valid capture of the prior data by DLLs before the 

input register releases new value. Therefore, three timing constraints must be satisfied: 

- First of all, the data capture of additional latches DLL must happen when the prior data is still 

available. As illustrated in Figure 2.16, these additional latches are placed at output of the 

main flip-flops DFF. Consequently, to insure this timing constraint, the transparent window of 

DLLs (CLKRegin low phase) must be placed before the capture edge of DFFs (CLK rising edge) 

after which new data has arrived at Q.  

- Then, a new data capture must happen only when the computation result of the last data has 

been proven correct by the pseudo-dynamic comparator. As the comparator has a delay tComp, 

the falling edge of CLKRegin must take place at least tComp after DC falling edge. 

- Finally, the signal Q must be stable (at prior data value) during the setup and hold time 

(tsetupDLL and tholdDLL) of latches to assure a good data capture. As Q changes value at CLK rising 

edge and the falling edge of CLKRegin will be placed when Q is established, this constraint 

means that: 

§ CLKRegin low phase duration must be at least tsetup  

§ CLKRegin rising edge must happen at least thold before CLK rising edge 

 

Figure 2.20 CLKRegin Generator for Transient Error Correction Architecture 

In Figure 2.20, we propose a simple generator for CLKRegin. The main idea is to use a glitches 

generator to create CLKRegin low phase while DC is at logic-0. The buffer bufCLKRegin1 adds a delay 
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tbufCLKRegin1 to DC so that CLKRegin falling edge happens at least tComp after the comparison window. Thus, 

we must have: 

   (2.8) 

The duration of CLKRegin low phase is assured by bufCLKRegin2. As this phase must last at least tsetup, 

the delay tbufCLKRegin2 must satisfy: 

  (2.9) 

 Finally, we must assure that CLKRegin rising edge happens at least thold before CLK rising edge. As in 

our generator, CLKRegin rising edge corresponds to the falling edge of DC after being delayed by the 

buffers, the inverter and the OR gate, this condition means that: 

 (2.10) 

Reset�signal�

As we have seen before, once an error is detected, we will wait for one CLK cycle before applying a 

reset to the pseudo-dynamic comparator. To do that, we can employ the circuit presented in Figure 2.13-

b to generate a periodic signal CLKComp, and then introduce an additional Control signal to create reset 

from CLKComp. The method is illustrated in Figure 2.21. 

 

 
a) Control logic b) Waveform 

Figure 2.21 Reset and CRegin Generator for Transient Error Correction Architecture 

We see in Figure 2.21-b that during normal operation (before (n-1)
th

 period), Control is at logic-1. 

When an error is detected at n
th

 period (t=t0), Control remains at logic-1 until t=t2 to keep reset at high 

level during (n+1)
th

 period. It switches to logic-0 (t=t2) before the (n+2)
th 

CLK rising edge so that a reset 

will be applied to the comparator during this
 
period. After the re-computation, at t=t5, Control returns to 

logic-1 and the architecture comes back to normal operation. 

For a correct function of the architecture, Control must satisfy two conditions: 

- First of all, its falling edge (t=t2) must happen after the rising edge of CLKComp during the 
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 period so that no reset is applied for this cycle. 
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period to make sure that a reset is applied correctly. 
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CRegin�signal�

We have explained previously that CRegin controls both prior data capture by additional latches DLL 

and new data capture by main flip-flops DFF. When an error is detected at n
th

 CLK cycle for (n-1)
th

 output: 

- CRegin turns from logic-0 to logic-1 to disable the n
th

 input captured by the latches. Thus, 

CRegin rising edge must take place before the beginning of this capture at tCLKRegin-.  

- CRegin remains at logic-1 until the next CLK rising edge so that the (n-1)
th

 input stored at DLLs 

(Qm outputs of the latches) will be selected by the multiplexers. After this edge, CRegin must 

return to logic-0 so that n
th

 input data (D inputs of the modified flip-flops) will be selected for 

subsequent calculations. 

CRegin signal can be easily generated using the Control signal discussed before. Figure 2.21 shows 

how we can do that by simply combining error and Control using an AND gate ANDCRegin. We see that at 

t=t0, when an error is detected, error turns to logic-1 while Control remains at logic-0 until t=t2 after the 

(n+1)
th

 CLK rising edge. Consequently, CRegin rises to logic-1 at t=t1, just after t0. This rising edge must 

happen before the beginning of CLKRegin low phase at tCLKRegin- after the CLK n
th

 edge. When Control is 

switched to logic-0 at t=t2, CRegin also comes back to logic-0 at t=t3 during the (n+1)
th

 period. Therefore, 

at (n+2)
th

 the architecture can return to normal operation. Note that before Control comes back to logic-

1 (t=t5), error has been reset to logic-0 at t=t4 and hence, CRegin remains at logic-0. 

To guarantee a correct function of the architecture, we must assure that: 

- The rising edge of CRegin happens earlier than tCLKRegin- after CLK n
th

 rising edge. For each 

period, the latest error can be detected at tDC+ after CLK rising edge and the comparator has a 

delay tComp. Therefore, this condition means that: 

  (2.11) 

where tANDCRegin represents the delay of ANDCRegin. As tCLKRegin- is controlled by the buffer 

bufCLKRegin1, we can satisfy the equation above by controlling this gate so that:  

  (2.12) 

- CRegin remains at logic-0 after t=t3, which means that error falling edge (t=t4) must happen 

before Control falling edge (t=t5). 

Control�signal�

As explained previously, in fault-free operations, Control is stable at logic-1. When an error is 

detected (error at logic-1), this signal drops to logic-0 during the next period and then returns to logic-1 

one cycle later. This characteristic can be easily described by the finite state machine (FSM) in Figure 

2.22-a where A represents the normal operation (error=�0�) when Control is at logic-1 and B represents 

the cycle after an error is detected (error=�1�). Note that from B, regardless of the value of error (1=1), 

the system will return to normal state A at the next clock edge. 

 

 
 

a) Finite State Machine b) Control logic 

Figure 2.22 Control Signal Generator for Transient Error Correction Architecture 
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To realize the FSM described above, we will need a clock signal. As both rising and falling edges of 

Control must happen after the rising edge of CLKComp (in two adjacent periods), one option is to use DC 

signal which has the same characteristics. Moreover, by adjusting the delay of DC compared to CLK, we 

can also guarantee that Control falling edge will take place after the falling edge of error signal (Figure 

2.21). 

In Figure 2.22-b, we propose a logic circuit that realizes the FSM. It is composed of an AND gate and a 

D flip-flop (DFFR) whose asynchronous reset input is driven by resetControl signal. Control signal is 

connected to the output  of the flip-flop. Therefore, Control will be at logic-0 (or logic-1) if a logic-1 (or 

logic-0) is captured by the flip-flop. During the initialization phase of the FSM, resetControl is at logic-0, 

and Control will be set to logic-1 (state A). During normal operations, error is at logic-0 and output of the 

AND gate will remain at low phase too. At DC rising edge, this logic-0 will be captured by the flip-flop 

which makes Control remain at logic-1 (state A). If an error is detected then error will rise to logic-1 and 

thus, input of DFFR will turn to logic-1 too. Therefore, at new DC edge, logic-1 is captured which pulls 

Control to logic-0 (state B). Consequently, the output of the AND gate returns to logic-0 regardless of the 

value of error. At next DC edge, this logic-0 will be captured and hence, Control will come back to logic-1 

(state A). 

Complete control logic for the transient error correction architecture is presented in Figure 2.23. 

 

Figure 2.23 Control Module for Transient Error Correction Architecture 

2.3.5 Conclusion�

The complete transient error correction architecture studied in this section is presented in Figure 

2.18. Using a timing redundancy based fault-tolerance method, the architecture needs two CLK cycles to 

tolerate transient errors. The error signal is kept at logic-1 during these two periods to inform the system 

so that new primary inputs will be hold until the correction process is done. Besides, the input register is 

modified to capture prior input data necessary for re-computation. Control signals for this register and 

that of the pseudo-dynamic comparator are produced by the control module in Figure 2.23. New timing 

constraints have been studied to assure good operation of the whole architecture. 

2.4 Permanent�error�correction�

In the previous section, we explained how to use timing redundancy to tolerate transient faults in 

logic circuits. Although simple and effective for temporary errors, this method does not work for faults 

which last for more than two clock cycles such as permanent or intermittent faults. For example, let�s 

suppose that aging phenomenon causes a permanent stuck-at-fault at combinational logic CL1. When 

the fault becomes active, Duplication/Comparison mechanism will detect errors. However, when the 

affected vector is re-computed, the fault remains in CL1 and causes a new error. Consequently, the 
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complete architecture stops working for this input vector. Note that even though CL2 still operates 

correctly, it does not help tolerating faults because there will always be mismatches between outputs of 

CLs which lead to error detection. 

In order to resolve the problem above, our solution is to integrate hardware redundancy in the 

existing architecture. The idea is to replace the affected combinational logic by a third one CL3 before 

performing a new re-computation. This time, as both CLs operate correctly, the fault will be tolerated. 

Figure 2.24 shows how we combine this permanent error correction technique and the ongoing transient 

error correction structure to form a hybrid fault-tolerant architecture.  

 

Figure 2.24 The Hybrid Fault-Tolerant Architecture 

Compared to the transient error correction architecture presented in Figure 2.18, the hybrid fault-

tolerant architecture has three instead of two copies of the combinational logic (CL1, CL2 and CL3). 

However, during normal operation, only two CLs (CL1 and CL2) run in parallel while the third one (CL3) is 

put on standby. Consequently, only two out of three CLs consume dynamic power. This is how our 

proposed method saves power consumption compared to the TMR technique. When an error is 

detected, the architecture will perform a re-computation which tolerates transient faults. In the case 

where errors persist after re-computation, a re-configuration will replace one of the two running 

combinational logics (CL1 for example) by the third one (CL3). If the replaced CL1, which is now on 

standby, is the faulty one then this re-configuration has eliminated the faults and the system can return 

to normal operation after a new re-computation. Otherwise, we will need a new re-configuration to 

finally put the affected CL2 on standby and use CL1 and CL3 to tolerate the fault. 

The method described above works with the help of two additional modules (Figure 2.18) Demux and 

Mux which represent respectively an input demultiplexer and an output multiplexer. Their roles are 

selecting two running CLs while keeping the third one on standby. These modules receive control signals 

from the control logic which now uses a new finite state machine (FSM) to decide which CLs run and 

which CL does not.  

In the following sub-section, we present details of Demux, Mux, FSM and the control logic. 

2.4.1 Input�de-multiplexer�
In the proposed hybrid fault-tolerant architecture, the input demultiplexer Demux has two functions. 

First of all, it selects two functioning combinational logics (CL1 and CL2 for example) by driving input 

signal vin to their input vectors (i1 and i2). Then, it must keep the third circuit (CL3) in standby by 

applying logic-0 to all of its input bits.  
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d1 d2 d3 Configuration 

1 1 0 CL1-CL2 

0 1 1 CL2-CL3 

1 0 1 CL3-CL1 
 

Figure 2.25 Elementary input demultiplexer  

To realize the function above, Demux consists of many elementary demultiplexers eDmux, one for 

each input bit.  In Figure 2.25 we propose a gate-level schematic for this circuit. The proposed eDmux is 

made of three AND gates which all receive n
th

 bit of vin (vin[n]) as one input. Their remaining inputs are 

driven by control bits d1, d2 and d3 provided by the control logic. In the table of Figure 2.25, we see that 

to put a combinational logic, CL1 for example, on operation (or standby), we only have to keep its 

corresponding control bit d1 at logic-1 (or logic-0).  

Note that even at standby state, combinational logic still consumes leakage power. To optimize this 

kind of power consumption, one idea is to find out an input vector for which the leakage power of CLs is 

the smallest. Then, we can modify the Demux so that it applies this input vector while putting the CLs on 

standby. Figure 2.26 shows an example of an optimized Demux for three-bit input vectors vin. The 

control bits used for this Demux are the same as those in Figure 2.25. Using this demultiplexer, when a 

circuit is put on standby, its input vector will be kept at �010� instead of �000�. 

 

 

Figure 2.26 Example of an Optimized Input Demultiplexer 

2.4.2 Output�multiplexer�
While the input demultiplexer selects two running circuits (CL1 and CL2 for example) by applying vin 

to their inputs (i1 and i2), the output multiplexer Mux must drive their output vectors (o1 and o2) to its 

outputs vout1 and vout2. These vectors will then be compared to detect errors. Vout1 is also captured by 

the output register Reg_out to provide the primary output PO. 

As for the input demultiplexer, Mux is also combined of several elementary multiplexers eMux, one 

for each primary output bits of the hybrid fault-tolerant architecture. In the flowing, we will present 

different ways to implement eMux.  

Method�1�

In Figure 2.27, we present a simple elementary multiplexer eMux for the n
th

 output bit. It is made of 

two 2:1 multiplexers mux1 and mux2 which are controlled by m1 and m2 signals. Output vout1[n] of 

mux1 is connected to o1[n] or o2[n] when m1 is at logic-0 or logic-1, respectively. Meanwhile, output 

vout2[n] of mux2 is connected to o3[n] or o2[n] when m1 is at logic-0 or logic-1, respectively. The table 

of Figure 2.27 summarizes different values of the control bits and the corresponding configurations. 
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m1 m2 vout1 vout2 Configuration 

0 1 o1 o2 CL1-CL2 

1 0 o2 o3 CL2-CL3 

0 0 o1 o3 CL1-CL3 
 

Figure 2.27 Elementary output multiplexer � Method 1 

The eMux presented above is very simple. But using this structure, vout1 is never connected to o3 

while vout2 cannot be connected to o1. This constraint will limit the performance of our hybrid fault 

tolerant architecture with regard to timing issues. Let us suppose that for a certain input vector, CL1 has 

a longer calculation time due to process variations. As a result, its output o1 is established after CLK 

rising edge but still before the comparison window. When o1 is connected to vout1, Reg_out always 

captures a faulty result. Therefore, there is only one configuration of Figure 2.27 that can operate 

correctly: CL2-CL3. A possible solution that allows error correction when CL1 is running consists in 

connecting o1 to vout2. As vout2 is used for comparison after CLK edge, this configuration allows 

additional time for CL1 to finish its computation. 

Method�2�

We propose another eMux that is composed of four 2:1 multiplexers in Figure 2.28. This circuit is 

control by the same signals m1 and m2 as in the previous method. The table of Figure 2.28 shows 

different configurations corresponding to various values of these signals. The first two configurations 

work exactly like in Method 1. The third configuration is slightly different. In fact, when both m1 and m2 

are at logic-0 we will still have CL1 and CL3 work in parallel. However, output o1 of CL1 is connected to 

vout2 while output o3 of CL3 is connected to vout1. Consequently, by using this bigger eMux, we can 

improve the performance of the hybrid fault-tolerant architecture.  

 

 

m1 m2 vout1 vout2 Configuration 

0 1 o1 o2 CL1-CL2 

1 0 o2 o3 CL2-CL3 

0 0 o3 o1 CL3-CL1 
 

Figure 2.28 Elementary output multiplexer � Method 2 

Tri-state�buffer�

Another way to implement an elementary multiplexer is to use active-low tri-state buffers. Controlled 

by a signal c, these buffers have two states. When c is at logic-0, they work like normal buffers and 

hence, their outputs and inputs have the same logic values. However, when c is at logic-1, their output 

will be held in a high-impedance state (i.e. disconnected from the rest of the circuit). We can simply think 

of the tri-state buffer as a switch. The switch is opened when c is at logic-0 and closed when c is at logic-

1. 
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m1 m2 m3 vout1 vout2 Configuration 

1 1 0 o1 o2 CL1-CL2 

0 1 1 o2 o3 CL2-CL3 

1 0 1 o3 o1 CL3-CL1 
 

Figure 2.29 Elementary output multiplexer � Tri-state buffer 

Figure 2.29 explains how we can use active-low tri-state buffers to make an eMux. The circuit is 

controlled by three signal m1, m2 and m3. To make two circuits (CL1 and CL3 for example) run together, 

we must keep their respective control signals (m1 and m3) at logic-1 and the third one (m2) at logic-0. 

Therefore, we can use the same control signal as those of the input demultiplexer Demux (Figure 2.25). 

However, the control logic must assure that in no case, two control signals can be at logic-0 at the same 

time. Because otherwise, there will be more than one signal connected to the same bus, which is not 

allowed. The table of Figure 2.29 shows that with the proposed circuit, we can have the same 

configurations as Method 2, with optimized performance of the hybrid fault-tolerant architecture. 

Note that we can also realize the same circuit using transmission gates (pass-gates) instead of tri-

state buffers. However, while usually being more costly in term of silicon area, the tri-state buffers have 

advantages of output drive-strength compared to transmission gates. 

2.4.3 Reconfiguration�finite�state�machine�
The Finite State Machine (FSM) manages the re-configuration of the hybrid fault-tolerant architecture 

by deciding which two circuits run in parallel. When an error is detected, two tolerant schemes are 

investigated: 

- In the first scheme (FSM1), the architecture will not be re-configured when the first error 

occurs. Two working circuits will run the affected input vector one more time. If the error is 

transient then it will be corrected after this re-computation and hence, the architecture can 

return to normal operation. However, if the error remains, the FSM must re-configure the 

architecture before applying the re-computation. This time, the faulty circuit will be 

eliminated and the architecture can then operate correctly. Note that when an error is 

detected, we do not know which combinational logic was affected by faults. Consequently, it 

might take two re-configurations in order to tolerate permanent faults.  

- The second fault-tolerant scheme (FSM2) consists of changing the configuration each time an 

error is detected.  This method also takes one re-configuration to correct transient errors, 

and maximum two re-configurations to tolerate permanent faults in one of the CLs. However, 

supposing that the possibility of having permanent faults are equal for the three 

combinational logics, we have 50% of chance that one re-configuration is enough to eliminate 

the faulty one. Therefore, this method might be faster for permanent fault-tolerance. 
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a) FSM1 b) FSM2 

Figure 2.30 Finite state machine diagrams 

Diagrams of both FSMs are illustrated in Figure 2.30 while their functioning examples are shown in 

Table 2.2 (FSM1) and Table 2.3 (FSM2). 

In both diagrams of Figure 2.30, states of FSMs are represented by circles. The initial state is in gray 

while the final state (the one when no more correction/tolerance is possible) is in black. Transitions 

between different states at each clock edge are illustrated by arrows. Solid arrows correspond to error 

detected situations while dotted arrows are used when there is no error occurrence. There are three 

branches in each diagram, corresponding to the three possible configurations (1-2, 2-3 and 3-1). For 

example, 1-2 means that CL1 and CL2 are running in parallel while CL3 is on standby.  

In Table 2.2 and Table 2.3, the first row indicates the computation cycle; the second row specifies the 

current configuration; the third row highlights the input sequence; the last row points out the active 

state in the corresponding diagram in Figure 2.30. In both examples, when the first transient error (T) 

occurs at the 3
th

 cycle, input vector V3 is repeated for re-computation. However, the configuration 

remains 1-2 for FSM1 (state A1 and B1) while switches from 1-2 (state A2) to 2-3 (state B2) for FMS2. In 

both cases, the transient error is corrected after one re-computation. From 5
th

 computation, a 

permanent fault (P2) is activated at CL2 by input vector V4. FMS1 realizes four faulty computations of V4 

using configurations 1-2 and 2-3 before operating correctly with configuration 3-1 at the 9
th 

computation. 

Meanwhile, FSM2 take only one computation cycle to switch from 2-3 to 3-1 at 5
th

 period. 

In the finite state machine diagrams above, the architecture stops working (black state in Figure 2.30) 

after six re-computations. This is our choice so that the hybrid fault-tolerant architecture can tolerate 

transient errors which occur once during the tolerance of a permanent error. This will be discussed 

further in Chapter 4. However, note that depending on the application, we can choose to stop the FSM 

after another number of re-computations. 
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Computation 1 2 3 4 5 6 7 8 9 10 

Configuration 1-2 1-2 1-2 1-2 1-2 1-2 2-3 2-3 3-1 3-1 

Input vector V1 V2 V3 V3 V4 V4 V4 V4 V4 V5 

Current state A1 A1 A1 B1 A1 B1 C1 D1 E1 F1 

   ñ  ñ ñ ñ ñ   

   T  P2 P2 P2 P2   

Table 2.2 FSM1 Functioning Example 

Computation 1 2 3 4 5 6 7 8 9 10 

Configuration 1-2 1-2 1-2 2-3 2-3 3-1 3-1 3-1 3-1 3-1 

Input vector V1 V2 V3 V3 V4 V4 V5 V6 V7 V8 

Current state A2 A2 A2 B2 C2 D2 E2 E2 E2 E2 

   ñ  ñ      

   T  P2      

Table 2.3 FSM2 Functioning Example 

2.4.4 Control�logic�and�timing�constraints�
Unlike the error detection architecture (Figure 2.11) and the transient error correction architecture 

(Figure 2.18), the complete hybrid fault-tolerant architecture has to insert two modules in the data path, 

between primary input PI and primary output PO: the input demultiplexer Demux and the output 

multiplexer Mux. This affects the calculation time of the complete structure. However, delays (tDemux and 

tMux) of the two modules are normally negligible compared to the logic circuit�s calculation time. It is 

because they are made of small elementary circuits (eDmux and eMux) running in parallel. Moreover, as 

the hybrid fault-tolerant is capable of tolerating timing errors, in non critical applications, we can use 

more aggressive timing for the combinational logics which may results in a total delay of the fault-

tolerant architecture equal to the delay of the original logic circuit. To summarize, the additional 

modules Demux and Mux do not affect significantly functional frequency of the logic circuit. 

In the hybrid fault-tolerant architecture, we still need control signals of the transient error correction 

architecture: DC and reset for the pseudo-dynamic comparator; CRegin and CLKRegin for the input 

register; resetControl for the control logic. We can reuse the same logic circuits proposed in the last 

section (Figure 2.23) for the new architecture: 

-  DC signal can be generated with respect to timing constraints in (2.6) and (2.7). However, in 

(2.7) we must take into account the delay of Demux and Mux. Hence, tshort will represent the 

short path between vin and vout2. 

- CLKRegin must satisfy timing constraints in (2.8), (2.9) and (2.10). 

- Reset and CRegin must respects (2.11) and (2.12). 

Besides these four control signals, we will need to generate control bits of Demux and Mux in order to 

perform architectural re-configurations. To do that, first of all, we will need to realize the finite state 

machine FSM. Then, from the output of this FSM, we will produce these control bits. 

Logic�circuit�of�the�finite�state�machine�

To design logic implementations of the FSM from the state diagram in Figure 2.30, we must define 

firstly the clock signal that drives transitions of the FSM. As for the transient error correction scheme 

presented in the previous section, fault correction in the hybrid fault-tolerant architecture also requires 

two clock cycles. Suppose that a fault becomes active at (n-1)
th

 CLK cycle, it will be detected (error turns 
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to logic-1) at n
th

 period and the re-computation will take place at (n+1)
th

 period. Consequently, the re-

configuration must happen during n
th

 cycle after the error detection. As the latest detectable error is at 

DC falling edge and the comparator has a delay tComp, the FSM must change state at least tComp after DC 

low phase. This condition is the same as that of the data captured by additional latches DLL of Reg_in. 

Therefore, we can use CLKRegin falling edge to drive the FSM. 

We also need to define conditions that decide which state of the FSM will be active after each 

CLKRegin falling edge. Let�s consider again the last example where a fault occurs at (n-1)
th

 CLK cycle. As 

the re-configuration happens only at n
th

 CLK cycle, we need a signal which has a fixed logic value during 

fault-free operation but changes to the opposite value at n
th

 period. The switching must take place 

before CLKRegin falling edge of n
th 

period and finish earlier than the next CLKRegin falling edge. CRegin is 

such a signal. In fact, during fault-free operations, CRegin is at logic-0. When the error is detected at n
th 

period, it switches to logic-1 before the transparent phase of Reg_in�s DLLs which begins at CLKRegin 

falling edge. Then, it returns back to logic-0 before the next CLKRegin falling edge. The example above is 

illustrated in Figure 2.31. 

 

f1 f2 Configuration Comments 

0 1 1-2 LC1 and LC2 work together 

1 0 2-3 LC2 and LC3 work together 

0 0 3-1 LC3 and LC1 work together 

1 1 �Final state� FSM stops working 
 

Figure 2.31 Clock and Condition 

Signals of the Finite State Machine 
Table 2.4 Outputs of the Finite State Machine 

 As explained above, we will use CLKRegin falling edge to drive the FSM and CRegin as condition to 

define the next active state at each clock edge. If CRegin is at logic-0 at CLKRegin falling edge then the 

transition will correspond to dotted arrows (�No error�) in the diagrams of Figure 2.30. Otherwise, it is 

defined by solid arrows (�Error detected�) of these diagrams. Besides these two signals, we can also use 

the existing resetControl signal to define an asynchronous reset for the FSM during initialization of the 

architecture. 

The fact that we use CLKRegin as the FSM clock signal imposes an additional constraint for this signal. 

From CLKRegin rising edge, the FSM outputs will be established after a delay tFSM which represents the 

calculation time of the machine. Because these outputs must be ready before the next CLK rising edge 

where re-computation process starts, CLKRegin rising edge must happen at least tFSM earlier than this 

moment. This condition is similar to the one described by (2.10) which guarantees that CLKRegin rising 

edge takes place at least thold before CLK rising edge. Therefore, it can be expressed by: 

 (2.13) 

We have seen in the last sub-section that the FSM defines three possible configurations of the 

architecture as well as a final state when it stops working. Therefore, we will need two outputs bits f1 

error

(n-1)
th

 

period

n
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th
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and f2 to define these four situations. The values of these two bits and the corresponding configuration 

are presented in Table 2.4. 

In order to obtain a concrete gate level implementation of the FSMs, we use VHDL descriptions of the 

modules and logic synthesis tools to generate the netlists. VHDL code for both FSMs of Figure 2.30 can 

be found in Appendix A. 

Control�signal�of�the�input�demultiplexer�

To control the input demultiplexer Demux, we need to generate the control bits d1, d2 and d3 for its 

elementary module eDmux (table of Figure 2.25). To produce these bits, we use output signal f1 and f2 

of the finite state machine (Table 2.4). Combining the two tables above, we obtain the truth table in 

Figure 2.32-a. Note that in the last row of this table, the �Final state� is reached by applying logic-0 to all 

control bits of Demux. This means that all CLs will be put on standby. The simple circuit in Figure 2.32-b 

realizes our proposed truth table using two inverters and one XOR gate.  

f1 f2 Configuration d1 d2 d3 

0 1 LC1-LC2 1 1 0 

1 0 LC2-LC3 0 1 1 

0 0 LC3-LC1 1 0 1 

1 1 �Final state� 0 0 0 
  

a)Truth table b) Circuit 

Figure 2.32 Control Logic for Input Demultiplexer 

Control�signal�of�the�output�multiplexer�

Depending on the method used for the output multiplexer Mux, we will need different control 

signals. For Method 1 (Figure 2.27) and Method 2 (Figure 2.28), we can see that control signals m1 and 

m2 correspond exactly to output f1 and f2 of the FSM (Table 2.4). Meanwhile, to use tri-state buffers for 

the Mux (Figure 2.29), we can use the same control bits d1, d2 and d3 of the input demultiplexer Demux. 

2.5 Summary�

In this chapter, we have developed a hybrid-fault tolerant architecture capable of detecting and 

correcting hard, soft and timing errors in combinational part of logic circuits. To obtain this objective, we 

proposed three architectures, corresponding to three phase of the hybrid fault-tolerance:  

- Error detection architecture: Employing Duplication/Comparison CED technique (Information 

redundancy), this architecture detects both transient and permanent errors. To improve its 

error detection capability, a pseudo-dynamic comparator is proposed to deal with small 

glitches produced by soft and timing errors.  

- Transient error correction architecture: Adding timing redundancy to the error detection 

architecture, this architecture corrects transient error by re-computation. Our method 

employs modified input register capable of keeping one previous input vector at each clock 

cycle. This vector will be used for re-computation when an error is detected. While having the 

same operation frequency as the original logic circuit, the architecture requires two clock 

cycles to tolerate each transient error. 

- Permanent error correction architecture (hybrid fault-tolerant architecture):  A third copy of 

the combinational logic CL is added to the previous architecture to tolerate both transient 

and permanent errors. This CL is kept on standby state during normal operation. When 

f1

f2

d1

d2

d3
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permanent errors are detected in one of the two running CLs, a re-configuration is done to 

replace the faulty CL by the third one. This process is performed by additional input 

demultiplexer and output multiplexer. Different re-configuration schemes have been studied 

with corresponding Finite State Machine. 

For each one of the architectures above, we have proposed detailed logic implementation for 

additional modules as well as their control logic and timing constraints. The use of these architectures 

will depend on application fields of the original logic circuit. Tradeoff between their fault-tolerance 

ability and their silicon area, power consumption costs must be considered. These tradeoffs of the hybrid 

fault-tolerant architecture will be studied in the next chapter. 
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In this chapter, we evaluate the hybrid fault-tolerant architecture presented in Chapter 2 using 

simulations with Electronic Design Automation (EDA) tools. The objective is to prove that this 

architecture can be used for pipeline-style logic circuits (Figure 1.18) regardless of their logic function, 

without any modification on the combinational part of circuits. This chapter also proves that 

implemented hybrid fault-tolerant architectures have the predicted fault tolerance ability with regard to 

transient and permanent faults. Besides, the hybrid solution is compared with TMR techniques in terms 

of area overhead and power consumption to highlight the pros and cons of each solution.  

The chapter is organized as follows. The first section presents the concept of fault-tolerant 

architecture evaluation which is divided into four phases: RTL descriptions, logic synthesis, timing 

behavior and power consumption simulations. Then, in the four following sections we study in detail 

each of these phases. For each phase, we present different simulation steps and the required EDA tools. 

Important results of each simulation are then discussed to highlight the conformity of hybrid fault-

tolerant methods with the objective defined in Chapter 2. 

3.1 Context�

Our evaluation of fault-tolerant architectures is based on simulations using EDA tools. The simulation 

process is divided into four phases: 

- Architecture description: In this phase, we create a Register-Transfer Level (RTL) description 

of fault-tolerant architectures combining of logic circuits and redundant modules. These 

descriptions are written using Hardware Description Languages (HDL) such as Verilog or 

VHDL.  

- Logic synthesis: This step consists of converting RTL descriptions into gate-level 

implementations (netlist). For this, we use logic synthesis tools that map abstract logic 

functions to concrete gates of standard cell libraries while optimizing silicon area and delays 

of the architecture. During synthesis, different timing constraints must be applied to 

guarantee correct operations of fault-tolerant architectures.   

- Functional and timing behavior simulations: Using netlists generated in previous phases, we 

simulate functional and timing behaviors of architectures. Simulations are performed at 

transistor-level using SPICE or SPICE-like simulators. Different types of fault are injected 

during simulations to verify fault-tolerance capability of architectures. 

- Power simulation: This phase is similar to the previous, except that no fault is injected. A set 

of random input vectors are run to compare the power consumption of different 

architectures. This comparison is performed by monitoring average and peak currents at 

power node VDD during simulation runs.  

The complete simulation flow is illustrated in Figure 3.1 where we also specify different files needed 

in each phase. In the following subsections, we detail methods and simulation tools used for each 

simulation. 
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Figure 3.1 Fault-tolerant Architecture Evaluation Flow 

3.2 Architecture�description�

For evaluation purpose, the hybrid-fault tolerant (Figure 2.24) and the TMR architecture (Figure 1.8) 

are used to tolerate transient and permanent faults in logic circuits whose structure is illustrated in 

Figure 1.18. Such logic circuits are created using combinational logic (CL) part of ISCAS�85 [ISCAS85] and 

ITC�99 [ITC99] benchmark circuits and input/output registers made of D flip-flops.  

ISCAS�85 benchmark contains only combinational logics and hence no modification is needed. 

However, ITC�99 benchmark circuits are circuits. Thus, we must remove sequential elements (D flip-flops) 

from these circuits before using them. For each D flip-flop removed, one primary input nPI[n] and one 

primary output nPO[n] will be added to the resulting CL. The new primary input corresponds to output Q 

of the removed flip-flop while the new output corresponds to its input D. The combinational part 

extraction is illustrated in Figure 3.2.  

 

 

Figure 3.2 Combinational Logic Extraction from Sequential Circuits 

Note that logic circuits created using extracted CLs and input/output registers do not have the same 

logic function as original benchmark circuits because all feedback signals have been removed. However, 

this does not affect our objective which consists of comparing different fault-tolerant architectures, 

regardless of CL functions.  
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In Appendix A, we illustrate an example of how Verilog netlists of CLs are created from original netlist 

of benchmark circuits. 

To create RTL descriptions of fault-tolerant architectures, beside HDL codes of CLs, we also require 

descriptions of redundant modules as well as HDL codes of top-level modules. The creation of these 

modules is detailed in the following sub-sections. 

3.2.1 Hybrid�Fault-Tolerant�Architecture�
As illustrated in Figure 2.24, the hybrid fault-tolerant architecture employs three copies CL1, CL2 and 

CL3 of logic circuits� combinational part CL. For these modules, we can use the same CL Verilog 

descriptions extracted from benchmark circuit netlists (Figure 3.2). Note that using the same HDL code 

we can create different gate-level implementations during logic synthesis to simulate variability. This will 

be explained further in the next section.  

Input register Reg_in, input demultiplexer Demux, output multiplexer Mux and output register 

Reg_out are created using identical sub-modules. Reg_in is made of nbInput identical modified flip-flops 

mDFF (Figure 2.16), where nbInput represents input number of CLs. Demux is made of nbInput 

elementary demultiplexers eDmux (Figure 2.25). Mux is made of nbOutput elementary multiplexers 

eMux (Figure 2.27, Figure 2.28 or Figure 2.29), where nbOutput represents output number of CLs. 

Reg_out is made of nbOutput D flip-flop. We use generic logic functions and behavioral Verilog to 

describe sub-modules, and then generate complete modules using nbInput and nbOutput as parameters.  

HDL description of the control module is divided into three sub-modules: 

- The first sub-module consists of control logic for transient error correction (Figure 2.23), 

which generates DC, reset, CRegin and CLKRegin signals from CLK, resetControl and error. To 

guarantee correct timing behavior of this sub-module, we do not use generic logic functions 

but specific gates from standard cell library. Note that this sub-module must be keep 

untouched during logic synthesis. This will be detailed further in the next section. 

- The second sub-module is the Finite State Machine FSM. Two versions of FSM corresponding 

to state diagrams in Figure 2.30 can be described in behavioral Verilog. Output values f1 and 

f2 of this sub-module corresponding to different FSM states are shown in Table 2.4.  

- The third sub-module receives FSM outputs and provides control signals for Demux and Mux 

modules that re-configure the hybrid fault-tolerant architecture in case of errors occurrence. 

It can be described with Verilog generic logic functions, using Figure 2.32. 

Unlike other modules, the pseudo-dynamic comparator (Figure 2.10) cannot be described in Verilog 

using generic logic functions. This is due to the dynamic characteristics of DOR gates. These gates must 

be created, added to the standard cell library and instanced together with generic XOR, OR gates in 

structural Verilog description of the dynamic comparator. The creation of DOR gates will be detailed 

further in this chapter. 

After making all modules, we describe the complete hybrid fault-tolerant architecture (top-level) 

using structural Verilog. Examples of concrete HDL codes of each module and the complete architecture 

are presented in Appendix A. 

3.2.2 TMR�architecture��
There are different methods to implement TMR architecture for logic circuits, depending on which 

part of this circuit is triplicated.  In Figure 3.3, we present two TMR structures that will be compared with 

the hybrid fault-tolerant architecture. The first implementation (Partial TMR, Figure 3.3-a) consists of 

triplicating only combinational logic (CL) part of the logic circuit while the second one (Full TMR, Figure 
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3.3-b) requires triplications of both combinational and sequential parts. While having smaller area 

overhead, the Partial TMR solution introduces a module Voter in the data path of the structure. 

Consequently, this architecture requires longer CLK period which results in slower operation. Moreover, 

a timing error at the Voter will be captured by Reg_out without being tolerated. Problems above can be 

solved using Full TMR solutions. By putting the Voter after output registers, it preserves functioning 

speed of logic circuits while avoiding timing error. Furthermore, triplicated registers will be immune to 

single SEU because they can only affect at most one vector among vout1, vout2 and vout3. Note that in 

Full TMR architecture, input registers are also triplicated so that timing errors caused by each register 

can also be tolerated. 

 

  
a) Partial TMR b) Full TMR 

Figure 3.3 TMR Structure for Logic Circuits  

For comparison purpose, we use the same CLs as those previously created for the hybrid fault-

tolerant architecture. Besides, we can also reuse output register Reg_out of this architecture for TMR 

solutions (Reg_out for Partial TMR and Reg_out1, Reg_out2, Reg_out3 for Full TMR).  

Input registers of TMR architectures (Reg_in for Partial TMR and Reg_in1, Reg_in2, Reg_in3 for Full 

TMR) are simpler than that of the hybrid fault-tolerant structure. Only one D flip-flop is needed for each 

CL input in structural Verilog description of this module. Consequently, we can use the same HDL code as 

for output registers. 

There are two types of voter that can be used for fault tolerance: bit-wise and word-wise voters. The 

first solution consists of independent bit-by-bit votes, while the second solution is based on vote of three 

whole input vectors. Table 3.1-a and b show examples that distinguish the two schemes. In both tables, 

the first three columns present input vectors of the voter while the forth column corresponds to its 

output vector. The word-wide voter has an additional output error which turns to logic-1 when and only 

when the vote is impossible (there are not a couple of identical input vectors). In both table, correct bits 

are in black while faulty bits are in red.  

 

Input 1 Input 2 Input 3 Output 

1100 1111 1100 1100 

1100 1000 1010 1000 
 

Input 1 Input 2 Input 3 Output error 

1100 1111 1100 1100 0 

1100 1000 1010 xxxx 1 
 

a) Bit-wise Voter b) Word-wise Voter 

Table 3.1 Bit-wise vs. Word-wise Voter 

In Table 3.1-a and b, both voters work correctly in the first two cases where only one input vector is 

erroneous.  In the second case where both Input2 and Input3 are faulty, the word-wise voter does not 
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found two identical inputs and thus, raises an error signal. Meanwhile, the bit-wise voter continues 

voting and answer a value. As the second bit of Input2 and Input3 are identical faulty logic-0, the second 

bit of Output is also faulty logic-0.  

In [MIT00b], authors demonstrated that the word-wise voter is more suitable for fault-tolerance 

because it increases data integrity of TMR structures. Consequently, we will use this voter for our TMR 

architectures. Verilog description of such voter can be created using generic logic functions and the 

structure illustrated in Figure 3.4. 

 

 

Figure 3.4 Word-Voter Architecture, Source: [MIT00b] 

As for the hybrid fault-tolerant architecture, top-level descriptions of both TMR architectures are 

created using structural Verilog. Examples of concrete HDL codes of the modules and the complete 

architecture are presented in Appendix A. 

3.2.3 Discussion�
In this section, we have create RTL descriptions of hybrid fault-tolerant as well as Partial and Full TMR 

architectures for combinational part of ISCAS�85 and ITC�99 benchmark circuits. HDL codes of different 

modules and complete architectures are presented in Appendix A. These codes only specify logic 

functions and connections between modules regardless of the technology used to implement them. 

Area, timing and power consumption information of architectures can only be extracted after logic 

synthesis phase which will be detailed in the next section. 

3.3 Logic�synthesis�

Logic synthesis is a process where we translate RTL descriptions of digital circuits and systems to 

concrete implementations using specific gates. For this, we require standard cell libraries which contain 

information about logic function, silicon area, power consumption and different delays of each gate. A 

synthesis tool is then used to translate HDL codes to gate-level netlist of circuits. 

In the scope of this thesis, we use commercial synthesis tool Synopsys Design Compiler® [DCSYS] and 

the Nangate 45nm Open Cell Library (NOCL, [NOCL]) which contains standard cells of a 45nm technology 

specified by Predictive Technology Model (PTM, [PTM]).  

Our logic synthesis flow for fault-tolerant architectures is divided into 4 steps: 

- Dynamic CMOS standard cells creation:  In NOCL, there are only static CMOS gates. However, 

to create pseudo-dynamic comparator (Figure 2.10) of the hybrid fault-tolerant architecture, 
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we require dynamic CMOS OR gates (Figure 2.8). These gates must be created using full 

custom design style, characterized, and added to the library. 

- Combinational logic synthesis: To guarantee correct comparison of different architectures, 

the same gate-level netlists of CL must be use for the hybrid fault-tolerant and TMR 

structures. Consequently, this module must be synthesized independently, and then kept 

untouched during subsequent synthesis steps. 

- Redundant module synthesis: In this step, we synthesize different versions of redundant 

modules of the hybrid fault-tolerant architecture. Then, we compare these versions in terms 

of silicon area and delay in order to decide which implementation should be used for the 

fault-tolerant architecture. 

- Fault-tolerant architecture synthesis: This step consists of synthesizing the complete fault-

tolerant architectures and comparing their silicon area. 

In the following sub-section, we detailed each step together with synthesis results. 

3.3.1 Dynamic�CMOS�standard�cell�creation�
As detailed in Chapter 2, we need dynamic OR gates to create pseudo-dynamic comparators. A 4-

input dynamic OR gate (DOR4_X1) is proposed in [TRA12]. It is designed according to design and 

electrical rules of FreePDK process design kit [PDK], which was also used to create NOCL. DOR4_X1 

transistors are also sized according to typical transistor dimensions of NOCL gates. These dimensions are 

illustrated in Figure 3.5-a. For each transistor, W represents its channel width in nanometer. All 

transistors have minimum channel length of 50nm.  

Figure 3.5-b shows the layout of DOR4_X1 standard cell. The transistors from Figure 3.5-a are placed 

as follows: The small N-well in the upper left corner contains pull-up transistor T9 of the inverter, 

feedback transistor T8 as well as charge transistor T1; The Pwell at the bottom holds pull-down transistor 

T10 of the inverter together with discharge transistors T2 and T3; The right hand side implements NMOS 

transistors T4-T7 used for the inputs. With this design, DOR4_X1 has the same silicon area as a static 4-

input OR gates (OR4_X1) from NOCL. 

The layout in Figure 3.5-b is characterized to extract parasite parameters as well as area, power 

consumption and delay information. DOR_X1 can then be used in logic synthesis as other standard cells 

from NOCL. 

   
 

a) Transistor-level schematic b) Layout 

 Figure 3.5 4-input dynamic OR gate DOR4_X1  
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Note that in the scope of this thesis, we use 4-logic-input DOR gates because the highest fan-in static 

OR gate in NOCL also has four inputs. However, higher fan-in DORs can also be used to optimize silicon 

area and power consumption of pseudo-dynamic comparators.  

3.3.2 Combinational�logic�synthesis�
During logic synthesis, different conditions must be specified to Design Compiler to guarantee correct 

timing behavior of combinational logic CLs used in stand-alone logic circuits as well as in fault-tolerant 

architectures.  

Timing�constraints�in�logic�circuits��

Delays of combinational logic CLs must respect both setup and hold time constraints of logic circuits� 

output register (Figure 1.18). While setup time violation can be easily avoided by increasing operational 

clock period, hold time violations require more effort to be corrected during synthesis.  

Small delay paths (short paths) between CL inputs and outputs are responsible for hold time violation 

in output register of logic circuits. An example of short path is feedthroughs which are direct connections 

between CL inputs and outputs. In our CLs, feedthroughs may come from both original benchmark 

circuits� structure and the combinational part extraction. Let us consider the example of a logic circuit 

illustrated in Figure 3.6 in which a feedback signal connects output Q of the n
th

 flip-flop to input D of the 

m
th

 flip-flop (note that they may be the same flip-flop). After combinational logic extraction process 

(Figure 3.2), a feedthrough path is created between nPI[n] and nPO[m].  

 

 

Figure 3.6 Feedthrough Path Created by Combinational Part Extraction 

Hold time violations in logic circuits can be handled automatically by EDA tools. In our case, Design 

Compiler does this by inserting buffers or resizing gates to increase CL short path delays.  

Timing�constraints�in�fault-tolerant�architectures��

Beside hold time violations, CL short paths must also be dealt with to guarantee correct function of 

the pseudo-dynamic comparator in hybrid fault-tolerant architectures (Figure 2.24). In Chapter 2, we 

have seen that CL outputs must be held stable during the comparison window of this comparator (Figure 

2.12). This condition is specified by equation (2.7), which defines the minimum CL short path delay. 

Similar to previous timing constraints, (2.7) can also be handled during logic synthesis by specifying a 

minimum delay between all inputs and outputs of CLs using the command set_min_delay of Design 

Compiler. Note that CL short path fixing may lead to higher silicon area and power consumption of CL 

due to buffer insertions. However, it has been proven that these overhead are negligible for large circuits 

[ERN03]. Besides, we can also reduce the duty cycle of CLK signal in the hybrid fault-tolerant architecture 

to reduce the minimum delay defined by (2.7). 

nPO[m] 

POPI CL

nPI[m] nPO[n] nPI[n] 
D Q D Q
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Logic�synthesis�results�

As discussed above, during logic synthesis of CLs, minimum delay constraints are applied. For all 

circuits, this parameter is set at 2ns. These chosen values correspond to the 1.5ns hold time of typical D 

flip-flop DFF_X1 from NOCL library.   

Table 3.2 shows logic synthesis result for CL part of biggest ISCAS�85 and ITC�99 benchmark circuits. 

The first three columns present CL characteristics: name of original benchmark circuit, input and output 

number of combinational part. The fourth column corresponds to area in square micrometer of 

synthesized CL with applied timing constraints. The last column presents maximum delay in nanosecond 

between inputs and outputs of CL. 

 

Circuit Nb. Input Nb. Output 
Area CL 

(µm
2
) 

Delay max 

(ns) 

c5315 178 123 5312 11.19 

c6288 32 32 2928 8.18 

c7552 206 107 4798 8.67 

b14s 278 300 15000 9.00 

b15s 486 520 27189 11.57 

b20s 523 513 28096 11.03 

b21s 523 513 27956 10.26 

b22s 768 758 41729 9.92 

Table 3.2 Area and Delay of Synthesized Combinational Logic 

Discussion�

During logic synthesis of CLs, we have chosen important timing margins for short path delays, which 

lead to high area overhead between CLs synthesized with and without constraints. There are two 

reasons for this choice. First, due to important number of gates, our transistor-level power evaluations 

are done at low SPICE-level in order to reduce simulation time. Consequently, large timing margins are 

needed to prevent simulation errors due to the lost of precision. Second, all evaluations are done at 

front-end stages of digital design flow, before place and route. Therefore, wire delays between gates are 

not taken into account. This means short paths are under-estimated during synthesis, and hence, more 

buffers are required to compensate the difference.  

The important area overhead induced by short path correction is mainly due to our choice of 

benchmark circuits, and does not represent area overhead of fault-tolerant architecture compared to 

stand-alone logic circuits. In fact, in [ERN03] and [DAS09], similar minimum delay constraints are 

performed for state-of-the-art processors with negligible area and power overhead.  

Redundant�combinational�logics�

An important phenomenon that must be taken into account during logic synthesis of redundant CLs is 

variability. We have seen in previous chapters that this phenomenon may result in different timing 

characteristics of identical CL modules in the same fault-tolerant architecture. These variations cause 

CLs� outputs to differ during transient phase of computation, and therefore affect power consumption of 

the pseudo-dynamic comparator and the voter. To simulate this phenomenon, various minimum delays 

are defined for different CL copies in a fault-tolerant architecture so that buffers are inserted unequally, 

and result in variations of CL timing characteristics.    
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Note that the same set of timing constraints is used to synthesize CLs in TMR and the hybrid fault-

tolerant architectures to guarantee fair comparisons. For all architectures, the minimum path delay of 

three CL copies CL1, CL2 and CL3 (Figure 2.24, Figure 3.3) are set at 2ns, 2.2ns and 2.1ns respectively. 

Table 3.3 shows synthesized area of combinational logics with different timing constraints. The first 

column presents original benchmark circuits� name while the three next column detail silicon area of 

CL1, CL2 and CL3 in square micrometer. The fifth column shows average area of the three CL copies used 

in fault-tolerant architectures. The last column details maximum delay in nanosecond of CLs, which 

define operating frequency of fault-tolerant architectures. 

 

Circuit 
Area CL1 

(µm
2
) 

Area CL2 

(µm
2
) 

Area CL3 

(µm
2
) 

CL 

(µm
2
) 

Delay max 

(ns) 

c5315 5312 5737 5579 5543 11.88 

c6288 2928 3090 3004 3007 8.18 

c7552 4798 5246 5005 5016 9.44 

b14s 15000 16969 15889 15953 10.59 

b15s 27189 29644 28227 28353 12.11 

b20s 28096 30322 28699 29039 11.48 

b21s 27956 30325 29020 29100 10.42 

b22s 41729 44520 42977 43075 11.54 

Table 3.3 Area and Delay of Synthesized Redundant Combinational Logics  

3.3.3 Redundant�modules�synthesis�
In this subsection, we detailed logic synthesis results of redundant modules. Different versions of 

these modules, whose structure are presented in Chapter 2, are compared in term of area overhead and 

delay. 

Registers�

We have seen in Chapter 2 that there are two types of register used in fault-tolerant architectures. 

The first type consists of using one D flip-flop for each input/output bits. Output register Reg_out of 

hybrid fault-tolerant architectures (Figure 2.24) as well as input registers Reg_in, Reg_in1, Reg_in2, 

Reg_in3 and output registers Reg_out, Reg_out1, Reg_out2, Reg_out3  of TMR architectures (Figure 3.3) 

belong to this type. The second type of register is made of modified D flip-flops (Figure 2.16) that enable 

re-computation possibility in hybrid fault-tolerant architectures.   

In Table 3.4, we present synthesized input and output registers� area. The first three columns 

correspond to characteristics of original logic circuits: name, CL input and output numbers. The fourth 

column shows input register area of hybrid fault tolerant architectures while the fifth column presents 

input register area of TMR architectures. The last column details output register area of all architectures. 

All synthesized areas are expressed in square micrometer.  

We can see in Table 3.4 that due to additional latches and multiplexers, second type registers (Reg_in 

of hybrid fault-tolerant architectures) are twice larger than first type registers ( Reg_in of TMR 

architectures) of the same input number.  
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Circuit Nb. Input Nb. Output 
Reg_in Hybrid 

(µm
2
) 

Reg_in TMR 

(µm
2
) 

Reg_out 

(µm
2
) 

c5315 178 123 1623 805 556 

c6288 32 32 292 145 145 

c7552 206 107 1879 931 484 

b14s 278 300 2539 1257 1357 

b15s 486 520 4440 2198 2351 

b20s 523 513 4769 2365 2320 

b21s 523 513 4769 2365 2320 

b22s 768 758 7008 3473 3428 

Table 3.4 Area of Synthesized Input and Output Registers 

Input�demultiplexer�

Input demultiplexers Demux of hybrid fault-tolerant architectures (Figure 2.24) are made of 

elementary demultiplexers eDmux (Figure 2.25), one for each CL input bit. Structure of eDmux after logic 

synthesis is presented in Figure 3.7. Compared to Figure 2.25, AND gates are replaced by NOR gates and 

inverters to reduce eDmux area. Note that inverters that generate cd1, cd2 and cd3 from d1, d2 and d3 

signals can be shared between eDmuxes of a Demux. To enhance drive strength of cd1, cd2 and cd3 

signals provided by the shared logic, additional buffers are automatically inserted by Design Compiler for 

high input number CL.  

 

 

Figure 3.7 Synthesized Elementary Input Demultiplexer  

Beside silicon area, delay of input demultiplexer Demux is also an important factor. There are two 

types of Demux delay that have influences on operations of hybrid fault-tolerant architectures: 

- The first type is IN/OUT delay that consists of delay between data inputs (vin) and outputs i1, 

i2, i3 of this module (Figure 2.24). For each eDmux in Figure 3.7, it corresponds to the delay 

between vin[n] and i1[n], i2[n], i3[n]. This type of delay increases data path delay between 

input and output registers of hybrid fault-tolerant architectures. Consequently, it affects 

computation speed of architectures during fault-free operation. 

- The second type is SELECT/OUT delay that exists between control bits d1, d2, d3 and outputs 

of Demux. Beside inverters and NOR gates between d1, d2, d3 and i1[n], i2[n], i3[n] (Figure 

3.7), inserted buffers at outputs of shared logic  also contribute to this delay. This type of 

delay does not exist during fault-free operations when d1, d2 and d3 are stable. 

Consequently, it does not influence computation speed of hybrid fault-tolerant architectures. 
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However, it defines the time needed for re-configuration of the architectures when errors 

occur. 

Logic synthesis results of Demuxes are presented in Table 3.5. The first and second columns of Table 

3.5 correspond to original logic circuit name and CL input number. The third column shows synthesized 

area in square micrometer of Demux. The two last columns present IN/OUT and SELECT/OUT delays in 

picoseconds. 

   

Circuit Nb. Input 
Demux 

(µm
2
) 

IN/OUT  

(ps) 

SELECT/OUT  

(ps) 

c5315 178 561 70 340 

c6288 32 95 70 160 

c7552 206 650 70 390 

b14s 278 892 70 280 

b15s 486 1555 70 380 

b20s 523 1673 70 390 

b21s 523 1673 70 390 

b22s 768 2469 70 320 

Table 3.5 Area and Delays of Synthesized Input Demultiplexer 

In Table 3.5, synthesis results have proven our hypothesis that IN/OUT delay is negligible compared to 

maximum CL delay (Table 3.2). This allows hybrid fault-tolerant architectures to operate at almost the 

same frequency as standalone logic circuits. We can also observe that SELECT/OUT delay varies with CL 

input number, due to buffer insertion. However, this delay remains lower than 0.5ns. In further sections, 

we will prove that this value satisfies different timing constraints that guarantee correct re-

configurations of hybrid fault-tolerant architectures before re-computation phase.   

Output�multiplexer�

In Chapter 2, we have seen that there are three methods to implement output multiplexer Mux of the 

hybrid fault-tolerant architecture (Figure 2.24), corresponding to three elementary output multiplexers 

eMux presented in Figure 2.27 (Method 1), Figure 2.28 (Method 2) and Figure 2.29 (Method 3). 

Table 3.6 compares synthesized area of Muxes created using the three methods. Name and CL output 

number of original logic circuits are presented in the first two columns. The three next columns show 

areas the three Mux versions. The two last columns detail area overhead of Method 2 and Method 3 

compared to Method 1. Both overheads are expressed in percentage of Method 1 Mux area. 

In Table 3.6, we can see that Method 1 provides significantly smaller Muxes area compared to other 

methods. Area overhead of Method 3 compared to Method 1 is 157% for all circuits while overhead of 

Method 2 compared to Method 1 is 73% for largest CL output numbers. 

 Note that the constant ratio between area of Method 3 and Method 1 Muxes is due to the fact that 

for each method, the area of synthesized Muxes is proportional to CL output number. This is because the 

structures in Figure 2.27 (Method 1) and Figure 2.29 (Method 3) are optimized. No logic sharing among 

eMuxes is possible and hence, total Mux area is equal to CL output number time the area of an eMux.  

 

 



Chapter 3 � Evaluation of the Hybrid Fault-Tolerant Architecture 

 

69 

 

Circuit Nb. Output 
Area (µm

2
) Area overhead 

Method 1 Method 2 Method 3 2/1 3/1 

c5315 123 458 789 1178 72% 157% 

c6288 32 119 195 306 64% 157% 

c7552 107 398 675 1025 70% 157% 

b14s 300 1117 1921 2873 72% 157% 

b15s 520 1936 3345 4979 73% 157% 

b20s 513 1910 3299 4912 73% 157% 

b21s 513 1910 3299 4912 73% 157% 

b22s 758 2823 4879 7259 73% 157% 

Table 3.6 Area of Synthesized Output Multiplexer 

 

For Method 2, Mux area does not vary linearly with CL output number. In fact, after logic 

optimization, the structure of eMux in Figure 2.28 is transformed into that structure in Figure 3.8. In a 

Mux, the logic part that generates cm1, cm2 and cm3 signals from m1 and m2 signals can be shared 

among eMuxes. However, when CL output number increases, buffers are inserted to preserve drive 

strength of cm1, cm2 and cm3 signals. This explains the non linear variation of Method 2 Mux area. Note 

that when CL output number is large, area of shared logic and inserted buffers are negligible compared 

to total Mux area. For this reason, we have the same area overhear between Method 2 and Method 1 

Muxes for high fan-out CLs. 

 

Figure 3.8 Synthesized Elementary Output Multiplexer � Method 2   

Beside area overhead, delays between inputs and outputs of Muxes are also an important selection 

criterion. Similar to input demultiplexer Demux, there are two types of Mux delay that affect functions of 

hybrid fault-tolerant architectures. The first type is delays between data input o1, o2, o3 and output 

vout1, vout2 of Mux (Figure 2.24). These IN/OUT delays affect hybrid fault-tolerant architectures during 

fault-free operations. They increase data path between input and output registers and thus, reduce 

functional CLK frequency of the architectures. The second type consists of delays between selection bits 

and outputs of Mux. These SELECT/OUT delays increase switching configuration time of hybrid fault-

tolerant architectures when errors occur.   

Table 3.7 shows maximum delays estimated by Design Compiler (in picoseconds) for synthesized 

Muxes for c6288, b14s and b22s benchmark circuits. In this table, the second line presents name and CL 

output number of logic circuits. The three next lines correspond to different delays of Muxes created 
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with Method 1, Method 2 and Method 3. For each of these lines, second, third and fourth columns show 

IN/OUT delay while the last three columns present SELECT/OUT delay. 

 

 
IN/OUT (ps) SELECT/OUT (ps) 

Circuit 
c6288 

(32) 

b14s 

(300) 

b22s 

(758) 

c6288 

(32) 

b14s 

(300) 

b22s 

(758) 

Method 1 100 100 100 120 120 120 

Method 2 130 130 130 560 810 760 

Method 3 90 90 90 280 280 280 

Table 3.7 Delays of Synthesized Output Multiplexer 

From Table 3.7, we can see that IN/OUT delays of all methods do not vary with CL output number 

because there is no logic sharing between data inputs and outputs of eMuxes. IN/OUT delay of Method 3 

(90ps) is smaller than that of Method 1 (100ps) and Method 3 (130ps). However, differences between 

these delays are negligible compared to maximum delays of CLs which are at order of 10ns. 

Table 3.7 also shows that SELECT/OUT delay of Method 1 and Method 3 are constant while delay of 

Method 2 varies with CL output number. This is due to buffers that are inserted to increase drive 

strength of cm1, cm2 and cm3 signals in Method 2 (Figure 3.8). For this reason, SELECT/OUT delay of this 

method is significantly higher than that of Method 1 and Method 3. However, this comparison does not 

taken into account buffers that need to be inserted to enhance drive strength of m1, m2 and m3 signals 

when using Method 1 and Method 3. Consequently, to keep a fair comparison, we consider SELECT/OUT 

delay of Method 2 without inserted buffers. After Design Compiler, this delay is only 190ps.  

Although Method 1 is the most cost effective and provides fastest Muxes, we have seen in Chapter 2 

that it limits the performance of the hybrid fault-tolerant architecture with regard to timing errors. 

Between two other methods, Method2 has smaller area overhead and lower SELECT/OUT delay. For this 

reason, despite its delay which is slightly higher IN/OUT compared to Method 3, in subsequent 

simulation, Method 2 Muxes are used for hybrid fault-tolerant architectures. 

Comparator�

Using the 4-input dynamic OR gate DOR4_X1 presented in Figure 3.5, we create pseudo-dynamic 

comparators for hybrid fault-tolerant architectures. Silicon area of these comparators is compared with 

that of traditional static comparators whose structure is shown in Figure 2.5. 

Table 3.8 shows area comparison between synthesized comparators. The first two columns show CL 

characteristics: original benchmark circuit name and output number. The two third and fourth columns 

detail synthesized area in square micrometer of static and pseudo-dynamic comparators used to detect 

errors at CL outputs. The last column presents area overhead of pseudo-dynamic comparator compared 

to static comparators. This overhead is measured in percentage of static comparators� area.    

  Although DOR4_X1 is designed with the same area cost as a 4-input static OR (OR4_X1) from NOCL 

library, pseudo-dynamic comparators still require some area overhead compared to static comparators. 

This is mainly due to the fact that DOR4_X1 has a dynamic logic function that cannot be optimized during 

logic synthesis. 
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Circuit Nb. Output 
Static 

(µm
2
) 

Pseudo-dynamic 

(µm
2
) 

Area overhead 

c5315 123 251 260 4% 

c6288 32 65 67 3% 

c7552 107 219 227 4% 

b14s 300 622 638 3% 

b15s 520 1062 1096 3% 

b20s 513 1046 1082 3% 

b21s 513 1046 1082 3% 

b22s 758 1551 1608 4% 

Table 3.8 Area of Synthesized Comparator 

 Although they require small area overhead of 3%-4%, pseudo-dynamic comparators have higher 

error detection capability and lower power consumption compared to static comparators. This will be 

proven in subsequent sections. Moreover, since both comparator areas are negligible with regard to CLs� 

area (Table 3.3), this overhead is insignificant compared to total area of fault-tolerant architectures. 

Control�logic�

As stated in previous section, control logic module of hybrid fault-tolerant architectures is divided 

into three sub-modules: 

- The first sub-module generates DC, reset, CRegin and CLKRegin signals that control input 

register and pseudo-dynamic comparator of hybrid fault-tolerant architectures. To guarantee 

correct timing between these signals, instead of using Design Compiler to do logic synthesis, 

we simply replace generic logic gate in Figure 2.23 by concrete instance of standard cells from 

NOCL library. Different cells with various drive strength are used to modify delays between 

signals. Buffers are also inserted for the same purpose. During logic synthesis of hybrid fault-

tolerant architectures in further step, this sub-module must be keep untouched to avoid any 

area optimization that may modify its timing characteristics. In Appendix A, we provide the 

implementation that has been proven work for our evaluation logic circuits which have 

similar CL delays. The verification, which is performed using SPICE-like simulation of complete 

fault-tolerant architecture with fault injection, is detailed in further sections. The total area of 

the mentioned sub-module is 59µm
2
. 

- The second sub-module corresponds to the FSM that defines configuration of hybrid fault-

tolerant architectures (Figure 2.24). Output value of this sub-module is presented in Table 

2.4. Unlike other redundant modules, FSM implementations do not depend on original logic 

circuits. Two versions of FSM correspond to state diagrams in Figure 2.30 are synthesized.  

Area (in square micrometer) and maximum delay (in picoseconds) of synthesized FSMs are 

presented in Table 3.9. We can see that the FSMs have similar silicon areas which are both 

negligible compared to CL areas (Table 3.3). Their delays of about 500ps contribute to the re-

configuration time of hybrid fault-tolerant architectures in case of error occurrence. It will be 

proven in further sections that these delays satisfy different time constraints established in 

Chapter 2. In subsequent simulation, we use FSM2 as case study to control hybrid fault-

tolerant architectures. 
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Area (µm

2
) Delay(ps) 

FSM 1 93.896 500 

FSM 2 101.080 560 

Table 3.9 Area and Delay of Synthesized Finite State Machine 

- The third sub-module generates control signals d1, d2, d3 of input demultiplexer Demux and 

m1, m2 of output multiplexer Mux from outputs f1, f2 of the second sub-module. As we use 

the method in Figure 2.28 to implement Mux, f1 and f2 can directly be used as control signals 

m1 and m2 respectively. Control logic circuit for d1, d2 and d3 (Figure 2.32) is synthesized by 

Design Compiler. The resulted logic has a silicon area of 3µm
2 

and a maximum delay of 70ps 

which are both negligible compared to area and delay of CLs. 

Voter�

We have seen that there are two possible voter implementations for TMR architectures. Synthesized 

area and maximum delay of both implementations are presented in Table 3.10 for different logic circuits. 

In this table, the first two columns show name and CL output number of original logic circuits. The third 

column presents CLs� average area in fault-tolerant architectures (Table 3.3).  The three next columns 

detail area of synthesized bit-wise and word-wise voters as well as area overhead of word-wise solutions. 

This overhead is expressed in percentage of bit-wise voters� area. The three final columns correspond to 

maximum delay of bit-wise and word-wise voter together with delay overhead of word-wise 

implementations. The delay overhead is also calculated in percentage of bit wise-voters� maximum 

delay.  

Circuit 
Nb. 

Output 

CL 

(µm
2
) 

Area Delay 

Bit-wise 

(µm
2
) 

Word- 

wise (µm
2
) 

Overhead 
Bit-wise 

(ps) 

Word- 

wise (ps) 
Overhead 

c5315 123 5543 393 984 150% 90 740 722% 

c6288 32 3007 102 255 150% 90 610 578% 

c7552 107 5016 341 858 152% 90 740 722% 

b14s 300 15953 958 2447 155% 90 920 922% 

b15s 520 28353 1660 4199 153% 90 1170 1200% 

b20s 513 29039 1637 4139 153% 90 1130 1156% 

b21s 513 29100 1637 4139 153% 90 1130 1156% 

b22s 758 43075 2419 6152 154% 90 1190 1222% 

Table 3.10 Area of Synthesized Voters 

From Table 3.10, we can see that word-wise voters are significantly larger and slower than bit-wise 

solutions. However, while voter areas remain small compared to CL areas, additional delays induced by 

voters may have important influences on CLK frequency of TMR architectures. In fact, since CL maximum 

delays are at orders of 10ns (Table 3.2), word-wise voters may cause TMR architectures to operate at 

7%-10% lower speed compared to standalone logic circuits. Despite these drawbacks, in further 

simulations, we will use word-wise voter which offer higher reliability for TMR architectures [MIT00b]. 

3.3.4 Fault-tolerant�architecture�synthesis�
Using implementation of different modules established in previous sub-section, we synthesize fault-

tolerant architectures for ISCAS�85 and ITC�99 benchmark circuits. Synthesis results are presented in 

Table 3.11.  
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In Table 3.11, the first three columns detail characteristics of original benchmark circuits: name, CL 

input and output numbers. The fourth column shows average area of three CL copies using in fault-

tolerant architectures (Table 3.3). The fifth column presents area of hybrid fault-tolerant architectures 

while the sixth column details area of Partial TMR solutions. Area overhead of hybrid fault-tolerant 

technique compared to Partial TMR is shown in the next column. This overhead is expressed in 

percentage of Partial TMR architectures� area. The two last columns correspond to area of Full TMR 

architectures and area reduction of hybrid fault-tolerant structures compared to them. This reduction is 

calculated in percentage of Full TMR architectures� area. 

    

Circuit Nb. Input Nb. Output 
CL 

(µm
2
) 

Hybrid 

(µm
2
) 

Partial TMR Full TMR 

Area 

(µm
2
) 

Overhead 
Area 

(µm
2
) 

Reduction 

c5315 178 123 5543 20322 18973 7,1% 21695 6,3% 

c6288 32 32 3007 9931 9567 3,8% 10147 2,1% 

c7552 206 107 5016 18886 17322 9,0% 20152 6,3% 

b14s 278 300 15953 54776 52919 3,5% 58147 5,8% 

b15s 486 520 28353 96960 93808 3,4% 102906 5,8% 

b20s 523 513 29039 99377 95941 3,6% 105311 5,6% 

b21s 523 513 29100 99561 96125 3,6% 105495 5,6% 

b22s 768 758 43075 147234 142279 3,5% 156081 5,7% 

Table 3.11 Area of Synthesized Fault-Tolerant Architectures 

We can observe that area overheads of hybrid fault-tolerant architectures compared to Partial TMR 

solutions are negligible for largest ITC�99 benchmark circuits (about 3.5%). This is not the case for c5315 

and c7552 circuits of ISCAS�85 benchmarks. This can be explained by additional area of input register, 

input demultiplexer and output multiplexer in hybrid fault-tolerant architectures which are important 

compared to CLs� size. 

Compared to Full TMR architectures, the area reduction realized using hybrid fault-tolerant technique 

is of about 6% except for c6288 which has small CL input and output numbers. 

3.4 Timing�behavior�of�hybrid�fault-tolerant�architecture�

The objective of this section is to verify the correct function of synthesized hybrid fault-tolerant 

architectures. It is divided into three parts: 

- Comparator simulation: This part consists of using SPICE simulations to study glitch detection 

capability of the pseudo-dynamic comparator. Comparisons with static comparator are 

performed to justify our choice of this module in hybrid fault-tolerant architectures. 

- Control logic simulation: This part verifies the correct timing of different control signals 

generated by synthesized logic modules. Due to the large size of this module, SPICE-like 

simulations performed by Synopsys NanoSim [NNSIM] are used to reduce simulation time.  

- Hybrid fault-tolerant architecture simulation: In this part, we use SPICE-like simulations to 

verify the correctness of hybrid fault-tolerant architectures� operations in case of error 

occurrence. During these simulations, glitches are injected at CL outputs to simulate different 

type of faults.        
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3.4.1 Comparator�simulation�

Dynamic�OR�

We have seen in Chapter 2 that the sensitivity of DOR gates with regard to glitches is the key factor 

that determines detection capability of pseudo-dynamic comparators. To evaluate this sensitivity, we 

perform SPICE simulations of the DOR4_X1 gate presented in Figure 3.5. These simulations are 

performed by Linear Technology LTSpice [LTSPICE]. 

In the simulations, the DOR4_X1 gate is reset once at t=50ps (logic-0 at reset input). Its evaluation 

phase (logic-1 at DC input) is set between t=100ps and t=350ps. As the four inputs D0, D1, D2 and D3 of 

DOR4_X1 are symmetric, we only apply glitches at D0 while the others are kept at logic-0 during the 

entire simulation time. These 0-1-0 glitches are applied at t=200ps (during the evaluation window).  

Figure 3.9 shows simulation results for two glitches with different durations: �1=50ps (large glitch, 

Figure 3.9-a) and �2=15ps (small glitch, Figure 3.9-b). Waveforms of input D0 and output Z are presented 

as V(d0) and V(z), respectively. We can observe that when a large glitch appears at D0, Z turns from logic-

0 to logic-1. After a transient phase which takes about 35ps, Z remains at high level. In the case of a small 

glitch, Z also changes value but then returns to logic-0 when the glitch disappears.  This can be explained 

by the fact that the glitch duration is too small for Z to completely switch to logic-1. Consequently, it is 

pulled down to logic-0 by the feedback transistor T8 (Figure 3.5) when D0 has returned to logic-0. In fact, 

our simulations show that DOR4_X1 gate can detect a minimum glitch size of 16ps. 

 

  

a) Large glitch b) Small glitch 

Figure 3.9 Glitches Detection Capability of DOR Gate 

Another factor that may affect DOR4_X1 function is the reset duration necessary to pull down its 

output Z to logic-0 after error detection. Figure 3.10 presents our simulation results where a reset of 

50ps is applied when Z is at stable logic-1. We can observe that this duration is enough to reset 

DOR4_X1. In further simulations, we will prove that the synthesized control logic is able to provide such 

reset signal.  

 

Figure 3.10 Reset of DOR Gate 
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Pseudo-dynamic�versus�static�comparator�

To compare error detection capability of pseudo-dynamic (Figure 2.10) and static comparators (Figure 

2.5), we use SPICE simulations for two comparators of two 4-input vectors. The Local comparison stage 

of both comparators is made of four 2-input XOR gates XOR2_X1 from NOCL. In addition, a 4-input OR 

gate OR4_X1 from NOCL and a 4-input DOR gate DOR4_X1 created according to Figure 3.5 are used as 

Global comparison stage of the static and pseudo-dynamic comparators.  

In the simulations, the pseudo-dynamic comparator is reset at t0=50ps and t4=400ps (logic-0 at reset 

input of DOR4_X1 gates) while its comparison phase is set between t1=100ps and t3=350ps (logic-1 at DC 

input of DOR4_X1 gates). Both comparators are used to compare two input vectors A[3:0] and B[3:0]. 

Input pair (A0, B0) is kept at logic-1 while the others are at logic-0. In addition, 0-1-0 glitches are applied 

at A1 at t2= 200ps to simulate error occurrence. 

Figure 3.11 shows simulation results for a glitch of duration �=50ps. Waveforms of reset and DC 

inputs of the pseudo-dynamic comparator are present as V(reset) and V(dc), respectively. Plot V(a1) and 

V(b1) correspond to signals applied at input pair (A1, B1) of both comparators. Comparator outputs are 

shown in V(comp_s) and V(comp_pd) for the static and the dynamic comparators, respectively. 

 

  

Figure 3.11 Detection Capability of Pseudo-Dynamic and Static Comparators 

Figure 3.11 shows that the pseudo-dynamic comparator is able to detect the glitch of �=50ps while 

the static comparator filters it. By varying the glitch duration, we observe that the pseudo-dynamic 

comparator can detect glitches of 42ps while the static comparator detects only 55ps or larger glitches. 

Moreover, due to their un-symmetric internal structure, both comparators have detection capability that 

depends on the glitch form. Simulations with B1 and A1 kept at logic-1 and 1-0-1 glitches reveal that the 

pseudo-dynamic comparator can detect glitches of 44ps wide. In the same conditions, the static 

comparator can only detect larger than 58ps glitches. 

Note that in the simulations above, Global comparison stages of both comparators contain only Layer 

1 (Figure 2.10, Figure 2.5). However, Layer 2 is needed for comparators with higher input number. This 

layer which consists of static OR-tree may also filter glitches at Layer 1 outputs. Consequently, detection 

capability of larger static comparators may decrease. This degradation depends on the CMOS technology 

used to implement the gates. In our case, it remains small. In fact, for a static comparator of 1024-bit 

input vectors, the smallest glitch detectable is of 60ps size. For pseudo-dynamic comparators, the 

50ps

t0 t1 t2 t3 t4

Comparison window
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sensitivity is not affected by electrical mask because DOR outputs are stable signal. Therefore, in all 

cases, pseudo-dynamic comparators always detect smaller glitches than static comparators.  

3.4.2 Control�logic�simulation�
The objective of this sub-section is to verify that timing characteristics of control signals provide by 

the synthesized control module satisfy different timing constraints established in Chapter 2. For this, we 

run SPICE-like simulations of this module with Synopsys NanoSim. In these simulations, we use a CLK 

signal of 10ns period whose high phase duration is 1ns (10% duty cycle). To initialize the module, its 

resetControl input is asserted (logic-0) during the first CLK period and then remains at logic-1 for the rest 

of the simulation. To simulate error occurrences, error signal is switched from initial logic-0 to logic-1 at 

t=32ns, during the third CLK period.  

In Figure 3.12, waveform of CLK, reset and DC signals are presented as v(clk), v(reset) and v(dc). We 

can observe that reset is asserted (logic-0) during the fifth period (two CLK periods after error 

occurrence). This corresponds exactly to expecting timing behaviors shown in Figure 2.21-b. Besides, we 

have proven in the previous sub-section that low phase duration of more than 100ps allows reset signal 

to completely pull down error signal to logic-0 (Figure 3.10). This process takes about 50ps, which is 

smaller than the delay between reset falling edge and DC rising edge. Therefore, error signal is at correct 

low level during DC high phase which allows hybrid fault-tolerant architectures to return to normal 

operation. 

 

 

Figure 3.12 Generated Control Signals for Pseudo-Dynamic Comparator  

Figure 3.12 also shows that the high phase of DC signal happens from 0.4ns to 1.6ns after each CLK 

positive edge. This guarantee that transient phase of CL outputs are not detected as errors because our 

CLs have minimum short path delays of 2ns.  

Figure 3.13 shows simulation results of CLKRegin and CRegin signals that control hybrid fault-tolerant 

architectures� input registers. Waveform of CLK, reset, CLKRegin and CRegin are present as v(clk), 

v(error), v(clkregin) and v(cregin) respectively. We can see that CLKRegin low phase happens from 3ns to 

3.7ns after each CLK rising edge. Consequently, there are 1.4 ns between the end of the comparison 

window (Figure 3.12) and CLKRegin falling edge. This gap allows error signals that are triggered at the 

end of the comparison window to reach high level and switch CRegin to logic-1 before CLKRegin negative 

edge. This condition is satisfied in our simulation where CRegin turns to high level at t=32.2ns while 

CLKRegin falling edge happens at t=33ns. Note that as constrained in Chapter 2 (Figure 2.21), CRegin 

Comparison window 



Chapter 3 � Evaluation of the Hybrid Fault-Tolerant Architecture 

 

77 

 

signal only remains at logic-1 during one CLK period and then returns to logic-0 before the next CLKRegin 

negative edge.  Therefore CLKRegin and CRegin satisfy timing conditions that guarantee correct function 

of hybrid fault-tolerant architecture. 

 

 

Figure 3.13 Generated Control Signals for Input Register  

With correct timing of CLKRegin and CRegin signals, the control logic module is able to generate 

appropriate control signals d1, d2, d3 and m2, m1 to control input demultiplexer and output multiplexer 

of the hybrid fault-tolerant architecture. This is proven in Figure 3.14 where CLK, error and the control 

signals are presented as v(clk), v(error), v(d1), v(d2), v(d3), v(m1) and v(m2). 

 

 

Figure 3.14 Generated Control Signals for Input Demultiplexer and Output Multiplexer 

Figure 3.14 shows that when an error is detected at the third CLK period, the control signals are 

changed so that the hybrid fault-tolerant architecture is re-configured. In fact, (d1,d2,d3,m1,m2) switch 



Chapter 3 � Evaluation of the Hybrid Fault-Tolerant Architecture 

 

78 

 

from logic (1,1,0,0,1), which means CL1 and CL2 are running in parallel, to logic (0,1,1,1,0) that orders 

CL2 and CL3 to run in parallel (Figure 2.25, Figure 2.28).  Note that the re-configuration finishes before 

the end of the third period. Consequently, the architecture is ready for re-computation at the next 

period.  

3.4.3 Hybrid�fault-tolerant�architecture�simulation�
The previous sub-section has proven that critical modules of the hybrid fault-tolerant architecture 

function correctly. In this sub-section, we study error detection capability of the complete architecture 

with regard to transient and permanent errors. The simulations in this sub-section are also SPICE-like 

simulations performed by NanoSim. The hybrid fault-tolerant architecture studied is the synthesized 

architecture for c6288 circuit of ISCAS�85 benchmark. 

In the following simulations, the architecture is run with CLK signal of 10ns period and 10% duty cycle. 

Note that this period is larger than maximum CL delay of c6288 (Figure 3.2). This guarantees that no 

timing error can occur without fault injection. Before running different input vectors from t=70ns, the 

architecture is initialized so that its pseudo-dynamic comparator is reset and its configuration order CL1 

and CL2 to run in parallel. 

Simulation results of the fault-tolerant architecture in a fault-free case are presented in Figure 3.15. 

Signals shown in this figure correspond to that presented in Figure 2.24: CLK signal (clk); primary input 

(PI) and output (PO) vectors (pi[31:0] and po[31:0]); error signal (error); input vectors i1, i2 and i3 of CL1, 

CL2 and CL3 (i1[31:0], i2[31:0] and i3[31:0]); output vectors vout1 and vout2 of Mux (vout1[31:0] and 

vout2[31:0]). Logic value of vectors in this figure is expressed in Hexadecimal. 

In Figure 3.15, error signal is stable at logic-0 confirming that the architecture is fault-free. Besides, 

we can see that only input i1 and i2 of CL1 and CL2 are receiving input value from PI. CL3 is at stand-by 

because its input i3 is stable at 0000000016. Finally, we can observe that outputs vout1 and vout2 of Mux 

remain stable for more than 2ns after each CLK rising edge, which guarantee correct function of the 

pseudo-dynamic comparator.   

 

Figure 3.15 Hybrid Fault-Tolerant Architecture�s Behavior in Fault-Free Case 

In order to simulate function of the hybrid fault-tolerant architecture with error occurrence, we inject 

transient and permanent faults to output o2 of CL2. For this, an additional 2-input XOR gate is inserted 

between CL2 and Mux. The XOR gate uses an additional input fault to flip the 0
th

 output bit o2[0] of CL2. 

Modified RTL description of the hybrid fault-tolerant architecture is detailed in Appendix A. 

To simulate an error caused by a transient faults (SEU, timing error) at CLs, a 0-1-0 glitch is injected to 

fault signal at the beginning of a period from t=90ns to t=100ns. Besides, primary input vector PI is kept 
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unchanged during two CLK periods of error detection and correction. Simulation results are shown in 

Figure 3.16. In addition to signals presented in Figure 3.15, this figure also shows fault signal (fault). 

 

 

Figure 3.16 Hybrid Fault-Tolerant Architecture�s Behavior with Transient Error Occurrence 

In Figure 3.16, we can see that error signal turns to logic-1 signaling that vout2 and captured PO have 

different values during the comparison window. During the same period between t=90ns and t=100ns, 

CL1 is put in stand-by (stable logic 0000000016 at i1) while CL3 is turn on (i3 receives captured primary 

input). The re-configuration successfully finishes before the beginning of new CLK period. At next CLK 

positive edge (t=100ns), the previous value of primary input (33EC884A16) is applied to CL2 and CL3. This 

shows that the input register and the control logic module have correctly triggered a re-computation. 

Note that error remains at logic-1 during this period. The re-computation finishes before next CLK edge 

at t=110ns. As vout2 and PO are identical, error returns to logic-0 signaling that the captured output is 

correct. The transient error is tolerated by the architecture with two additional CLK periods.         

To simulate a permanent fault at CLs, fault signal is kept at logic-1 from t=90ns. Consequently, CL2 

output is permanently affected. Simulation results are presented in Figure 3.17 with the same signal of 

Figure 3.16.  

 

Figure 3.17 Hybrid Fault-Tolerant Architecture�s Behavior with Permanent Error Occurrence 

In the first two periods after error occurrence (from t=90ns to t=110ns), the architecture works 

exactly like in case of transient errors. It is re-configured so that CL2 and CL3 run in parallel to re-
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compute the input vector 33EC8B4A. However, after CLK edge at t=110ns, error signal is briefly reset to 

logic-0, then return to logic-1, signaling that PO and vout2 are not identical. This is caused by the 

permanent error that remains in CL2. Consequently, a new re-configuration is done during the period 

between t=110ns and t=120ns. CL2 is put on stand by while CL1 is turned on. After re-computation 

during next period, the permanent error is tolerated and error returns to logic-0 at t=130ns. 

3.4.4 Discussion�

In this section, we have studied timing behavior of pseudo-dynamic comparator, control logic module 

as well as complete hybrid fault-tolerant architecture. SPICE and SPICE-like simulation at transistors level 

of synthesized modules and architectures have shown that implemented hybrid fault-tolerant 

architectures respect all timing constraints specified in Chapter 2 and provide expected error correction 

capability for both transient (SET and timing errors) and permanent (hard errors) faults. 

3.5 Power�simulation�

Beside error detection/correction capability, power saving is another important advantage of the 

hybrid fault-tolerant architecture compared to other solutions. In this section, we compare power 

consumption of the proposed architecture (Figure 2.24) with Partial and Full TMR architectures (Figure 

3.3).  In order to perform such comparison, we use NanoSim to run SPICE-like simulation of synthesized 

architectures obtained earlier. For each original logic circuit, the three corresponding fault-tolerant 

architectures are fed by the same set of 100 random input vectors. Average currents at power supply 

node VDD are monitored to deduce average power consumption of the architectures. Note that the 

number of random input vectors is chosen so that simulation results may represent typical power 

consumption of fault-tolerant architecture during normal operations, while simulations can be done with 

available resources of our simulators (time and memories).   

Due to limit of time and memories available for simulation, we only evaluate power consumption of 

largest ISCAS�85 benchmark circuits. Table 3.12 presents results of these simulations. In this table, the 

first three columns correspond to name, input and output number of the benchmark circuits. The three 

next columns detail average power consumption of the hybrid fault-tolerant, the partial TMR and the 

Full TMR architectures. All power consumptions are calculated in milliwatt. The two final columns show 

average power saving of hybrid fault-tolerant architectures compared to Partial and Full TMR 

architectures. These values are expressed in percentage of corresponding TMR architecture�s average 

power consumption. 

 

Name 
Nb. 

Input 

Nb. 

Output 

Average Power Consumption 

(mW) 
Average Power Reduction 

Hybrid Partial TMR Full TMR Partial TMR Full TMR 

c5315 178 123 3.5 5.0 5.4 30.3% 35.4% 

c6288 32 32 5.5 8.4 8.4 34.7% 35.3% 

c7552 206 107 4.9 7.1 7.9 30.3% 37.6% 

Table 3.12 Power Saving of Hybrid Fault-Tolerant Compared to TMR Architectures 

In hybrid fault-tolerant architecture, only two CLs are running in parallel. This gives us about 33.3% 

power saving compared to three operating CLs in TMR architectures. In Table 3.12, we observe that the 

average power saving values are comparable to this ratio.  
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For c5315 and c7552 benchmark circuits, hybrid fault-tolerant technique reduces about 30% of power 

consumption compared to Partial TMR solution. This value, which is smaller than expected, may be 

explained by power consumption overhead introduced by redundant modules such as input 

demultiplexer, output multiplexer and shadow latches in input register of hybrid fault-tolerant 

architectures. This is not the case for c6288 because its input and output number are small, which lead 

to much less additional hardware in hybrid fault-tolerant architecture. Besides, we can see that for this 

circuit, power reduction value is slightly higher than expected. This may be explained by the fact that 

pseudo-dynamic comparators consume less than word voters. 

For Full TMR solution, power reduction values that are higher than 33.3% are due to the fact that 

additional registers in TMR architectures consume more power than input demultiplexer and output 

multiplexer in hybrid fault-tolerant architectures. 

3.6 Summary�

In this chapter, we have evaluated the hybrid fault-tolerant architecture proposed in Chapter 2 using 

combinational part of ISCAS�85 and ITC�99 benchmark circuits. The evaluations have allowed us to: 

- Create RTL descriptions of the hybrid fault-tolerant architecture that can be used for all 

benchmark circuits: These descriptions only take as parameters input and output numbers of 

logic circuits regardless of their logic functions. Consequently, the concept of plug-and-play 

has been proven for the proposed fault tolerance solution. 

- Implement the hybrid fault-tolerant architecture in the 45nm technology library using 

commercial synthesis tool: By comparing our solution with Partial and Full TMR architectures, 

we show that our solution has small or even negative area overhead compared to TMR 

methods. 

- Verify timing behavior and fault-tolerance capability of the hybrid fault-tolerant architecture: 

Using SPICE and SPICE-like simulations, we show that its synthesized critical redundant 

modules function correctly and all timing constraints for control signals specified in Chapter 2 

are respected. We also prove that the hybrid fault-tolerant architecture can tolerate 

efficiently both permanent (hard) and transient (timing, SET) errors at its CLs. 

- Monitor power consumption of the hybrid fault-tolerant architecture: Using SPICE-like 

simulation with random input vectors, we compare this architecture with Partial and Full TMR 

solution using different benchmark circuits. Simulation results show important dynamic 

power saving of about 30% for Partial TMR and 35% for Full TMR. 

Despite its advantage of fault tolerance capability and power saving have been proven, the hybrid-

fault-tolerant architecture only dealt with permanent and transient faults in CLs. Besides, its power 

saving consist only of dynamic power reduction. Improvement of the architecture is proposed in the next 

chapter. 
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In previous chapters, we have proposed a hybrid fault-tolerant architecture for robustness 

improvement of digital logic circuits and systems. This architecture targets stand-alone pipeline-style 

circuits, i.e. circuits that are combined of an input register, a combinational logic module and an output 

registers (Figure 1.18). The proposed technique is able to detect and correct hard, SETs and timing errors 

in combinational part of these circuits, with advantageous silicon area and power consumption costs 

compared to existing solutions. Beside these objectives, the hybrid fault-tolerant method can also be 

used in others contexts such as lifetime improvement of logic circuits and fault-tolerance of pipeline 

architectures. Furthermore, it can be combined with SEU protection techniques to provide an ultimate 

solution that target hard, soft and timing errors in all part of logic circuits. In this chapter, we investigate 

the possibility to extend the use of the hybrid fault-tolerant architecture for these objectives. 

The rest of this chapter is divided in three sections. The first section consists in using the proposed 

hybrid fault-tolerant architecture to deal with aging phenomenon. It studies how re-configuration 

mechanism can be used for robustness improvement of circuits against material wearout. This section 

also discusses how the two FSMs proposed in 2.4.3 can be used with regards to different aging effects. 

The second section extends the concept of hybrid fault-tolerance architecture to pipeline architectures. 

The proposed technique is compared to state-of-the-art solutions, such as clock gating using Razor flip-

flops or architectural replay using Razor II flip-flops. Finally, the last section discuss about the possibility 

to include SEU protection of sequential elements in the hybrid fault-tolerant architecture. It explains how 

register-level SEU tolerance techniques can be used for such purpose with optimized area overhead 

compared to bit-level solutions such as TMR, Razor or Razor II. 

4.1 Aging�phenomenon�

We have seen in Chapter 1 that during the last phase of digital circuits and systems� lifetime, their 

reliability decreases because of increasing wearout failure rate (Figure 1.4). Aging phenomenon such as 

oxide or interconnect wearout may cause permanent defects, which result in hard errors during circuit 

operations. These errors may either reduce robustness of digital circuits and systems or make them not 

usable. In this section, we discuss how the hybrid fault-tolerant architecture can help increasing the 

useful life of logic circuits. We will also see how different FSMs proposed in 2.4.3 can be used with 

regards to different aging effects.  

4.1.1 Lifetime�improvement�
In the context of this section, lifetime (or the useful life) of logic circuits is defined as the duration, 

during which these circuits operate correctly with all possible input vectors, supposing that there is no 

transient error occurrence. For logic circuits without redundant resource, this notion represents the total 

running time before appearance of the first permanent fault caused by aging phenomenon. After this 

moment, usage of these circuits must be limited to a subset of input vectors, which do not activate the 

fault and produce erroneous output.  

Fault-tolerant architectures employ redundant resources to guarantee correct operation of logic 

circuits, despite the presence of faults.  Consequently, they may also help increasing lifetime of digital 

logic circuits. The followings of this sub-section provide qualitative comparison between impacts of TMR 

and the hybrid fault-tolerant architecture on this factor. Note that this discussion only considers 

permanent faults in combinational logic modules of the architecture. Other redundant modules (voter, 

pseudo-dynamic comparator, control logic module, etc.) as well as sequential elements are supposed to 

be fault-free.  
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TMR�architecture�

As detailed in previous chapters, TMR architecture with word-wise voter (see 3.2.2) operate correctly 

as long as at least two of its combinational logic modules provide fault-free outputs. Consequently, all 

single and multiple permanent faults that affect only one CL can be corrected successfully. Moreover, 

multiple faults across modules can also be tolerated if they are never active at the same time. Therefore, 

lifetime of TMR architecture is measured by the total running time until at least two of its CLs are 

affected by permanent faults, which can be activated by the same input.  

At every moment, all CLs of TMR architecture are running in parallel and hence, age at the same rate.  

Consequently, expected time before the first permanent fault caused by aging phenomenon appears at 

any of these modules is equal to lifetime of the original logic circuit. However, the probability that faults 

at different CLs can be activated by the same input vector is smaller than 100%. Depending on the 

concrete CL structures, this probability can be considerably small. In this case, significantly lifetime 

improvement can be archived using TMR architecture.  

The�hybrid�fault-tolerant�architecture�

Similar to TMR techniques, the hybrid fault-tolerant architecture can be used as long as at least two 

of its CLs can operate correctly for each possible input vector. However, in this architecture, only two CLs 

are running in parallel while the remaining is on standby. The last CL does not have any switching 

activities and hence, ages slower than the others. If the hybrid fault-tolerant architecture is re-

configured periodically then each CL only have to run 2/3 of the total running time of the architecture. 

Consequently, these modules suffer much less from aging phenomenon compared to CLs of TMR 

architecture. Therefore, the hybrid fault-tolerant architecture offers better solution for lifetime 

improvement of logic circuits.  

In order to balance aging of CL modules in the hybrid fault-tolerant architecture, it must be re-

configured periodically. This can simply be done using a counter which defines the number of CLK cycles 

after which a re-configuration is performed even is fault-free case.  

4.1.2 Usage�of�FSMs�
As second discussion on aging phenomenon, we analyze further the impact of using FSM1 and FSM2 

proposed in 2.4.3 (Figure 2.30) on different fault-tolerance scenarios. We have seen that FSM1 only 

changes the configuration when two consecutive errors are detected while FSM2 changes the 

configuration each time an error occurs. Depending on current configuration and nature of errors, each 

FSM may require different number of re-configuration/ re-computation before errors are tolerated. As 

the hybrid fault-tolerant architecture suffers from aging phenomenon, error occurrence rate may 

increase significantly. Consequently, the capability to tolerate errors in a minimum number of re-

configuration/re-computation of FSMs becomes an important factor. 

This sub-section studies different examples of error occurrence during the computation of an input 

vector. Without losing generality, we suppose that the hybrid fault-tolerant architecture is at the 

configuration where CL1 and CL2 are running in parallel for the first computation of the input vector. 

Each time an error is detected (PE for permanent error, TE for transient error) during computation of the 

input vector, the architecture is re-configured. Re-configuration/re-computation repeats until all errors 

are tolerated (OK).   

Let us consider the following notations used in the rest of this sub-section: 

- Configuration j-k is the configuration when the jth and kth combinational logic modules of the 

hybrid fault-tolerant architecture are running parallel.  

- Pi represents a permanent fault affecting the ith combinational logic module. 
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- Tjk represents a transient fault that occurs at first period when the configuration j-k is active. 

Table 4.1 and Table 4.2 present different re-configurations done by FSM1 and FSM2 during the 

computation of an input vector, for seven error occurrence scenarios. In each table, the first row 

indicates the current configuration used at each computation. The remaining rows indicate the 

simulated scenarios. For example, scenario P1-S23 means that CL1 is affected by a permanent fault and 

that a soft error occurs when the configuration is switched to 2-3. 

 

Configuration 1-2 1-2 2-3 2-3 3-1 3-1 

T12 TE OK     

P1 PE PE OK    

P2 PE PE PE PE  OK  

P3 OK      

P1-S23 PE PE SE OK   

P2-S31 PE PE PE PE SE OK 

P3-S12 SE OK     

Table 4.1 Re-configuration by FSM1  

Configuration 1-2 2-3 3-1 1-2 2-3 3-1 

T12 TE OK     

P1 PE OK     

P2 PE PE OK    

P3 OK      

P1-S23 PE SE PE PE OK  

P2-S31 PE PE SE PE PE OK 

P3-S12 SE PE PE  OK   

Table 4.2 Re-configuration by FSM2 

The second row of both tables shows that only one re-configuration is needed for a transient error 

that occurs at the first computation. 

The third to fifth rows of the tables show how re-configuration/re-computation is done for single 

permanent error that affects one of the CLs. We can see that FSM2, which re-configures at each error 

detection, allows faster fault-tolerance. Therefore, this FSM is suitable in case the hybrid fault-tolerant 

architecture suffers from aging phenomenon which creates high density of permanent faults.  

In the three last scenarios, a transient error occurs after the previous hard error is tolerated. These 

scenarios correspond to the cases where aging phenomenon increase apparent rate of both permanent 

and transient errors equally. From the tables above, we can see that FSM1 is the suitable solution for 

efficient fault-tolerance in these cases. 

4.1.3 Discussion�

In this section, we have discussed effects of aging phenomenon on usage of the hybrid fault-tolerant 

architecture. We have seen that using periodical re-configuration to balance aging of combinational logic 

module in this architecture may help increasing circuit lifetime. This improvement is proven better than 

results archived using TMR architectures. 
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As second discussion, we have seen how different FSM versions can be use in case of high error 

apparent rate due to aging phenomenon. In the case where hard errors are dominant, FSM2, which re-

configures the architecture at each error detection, is the suitable solution. However, if apparent rate of 

transient errors is also important then FSM1 may allow faster fault-tolerance scheme. 

4.2 Application� of� the� hybrid� fault-tolerant� method� in� pipeline�

architectures�

In Chapter 1, we have seen that frequency scaling process in advanced CMOS technology nodes is 

limited by a �power wall�. Consequently, the semiconductor industry must find other solutions for speed 

improvement of digital circuits and systems. Pipeline architecture is one of the key methods used to 

make faster digital systems such as microprocessors. In subsequent sub-sections, we detail basics of 

pipeline methods, reliability issues in these techniques, as well as how the hybrid fault-tolerant 

architecture can be employed to resolve these problems. 

4.2.1 Basic�of�pipeline�architecture�
In computer systems, pipelining is defined as �an implementation technique whereby multiple 

instructions are overlapped in execution; it takes advantages of parallelism that exists among actions 

needed to execute an instruction� [HEN07].  

To clarify the definition above, Figure 4.1 illustrates the difference between pipeline architectures 

and stand-alone logic circuits.  

 

 

a) Stand-alone logic circuit 

  

b) Pipeline architecture 

Figure 4.1 Stand-Alone Logic Circuit versus Pipeline Architecture 

The stand-alone logic circuit in Figure 4.1-a is combined of an input register (Reg_in), an output 

register (Reg_out) and a combinational logic between these registers. The combinational part can be 

divided into three independent combinational logics connected in series (CL_A, CL_B and CL_C). This 

stand-alone circuit is cadenced by clock signal CLK1. The clock period tperiod is defined by the sum of 

combinational logics� computation time.  

Figure 4.1-b shows a pipeline implementation of the stand-alone circuit presented above. It is divided 

into three stages (A, B and C) corresponding to three combinational logic parts (CL_A, CL_B and CL_C). 
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Each stage consists of a combinational logic part, an input and an output registers. Moreover, output 

register of each stage is used as input register of its next stage. The pipeline architecture is cadenced by 

clock signal CLK2 whose period is defined by the maximum computation time among CL_A, CL_B and 

CL_C. In the case where these logics have similar delay, CLK2 period is one third of tperiod. 

 With the presented structure, each n
th

 task (or instruction) of the pipeline architecture is divided into 

three smaller actions An, Bn and Cn. These actions are consecutively executed in three pipeline stages A, 

B and C. Therefore, computation time for each instruction of the pipeline architecture is equal to three 

times of CLK2 period. Consequently, the pipeline architecture have similar calculation delay compared to 

the stand-alone logic circuit. However, actions of different instructions can be overlapped in execution, 

which helps increasing the architecture throughput, i.e. the number of instruction done in a given time. 

This key concept of pipeline technique is illustrated by examples in Table 4.3. 

 

CLK2 Period 1 2 3 4 5 6 7 8 

Stage A A1 A2 A3 A4 A5 A6 A7 A8 

Stage B  B1 B2 B3 B4 B5 B6 B7 

Stage C   C1 C2 C3 C4 C5 C6 

Output    D1 D2 D3 D4 D5 

Table 4.3 Operation of Pipeline Architecture 

Table 4.3 presents normal operation of the pipeline architecture (Figure 4.1-b) in fault-free case. The 

first line of this table shows the number of CLK2 period. The three next lines detail to actions being 

executed at Stage A, B and C of the architecture during corresponding periods. For example, during the 

second period, Stage A is executing action A2 of the second instruction while Stage B is performing 

action B1 of the first instruction. The last line of Table 4.3 corresponds to outputs of finished instructions 

that are be stored in output register Reg_D at each CLK2 period. 

We can observe in Table 4.3 that during fault-free operation, each instruction requires three CLK2 

periods to complete. For example, action A1 of the first instruction is started at the beginning of the first 

period while output D1 is only available at the beginning of the fourth period. As CLK2 is three times 

faster than CLK1 of the stand-alone circuit (Figure 4.1-a), this confirms that both architectures have the 

same calculation time. However, we can see in Table 4.3 that after seven CLK2 cycles (from the beginning 

for the first period to the beginning of the eighth period) the pipeline architecture has finished five 

instructions. This work load takes five CLK1 cycles or fifteen CLK2 cycles for the stand-alone circuit to 

complete. Therefore, this example have shown that the pipeline have higher throughput than the stand-

alone circuits.  

By extending the previous example for a larger number of periods, we can prove that the pipeline 

architecture archives three times higher throughput compared to the stand-alone circuits during fault-

free operations. Furthermore, if the combinational part of the stand-alone circuit is divided into N parts 

with similar delays, the corresponding pipeline architecture may have N times higher throughput.    

4.2.2 Fault-tolerance�for�pipeline�architecture�

Error�propagation�

Similar to stand-alone logic circuits, pipeline architecture may also suffer from transient and 

permanent errors. Furthermore, in these structures, there are errors propagations between pipeline 

stages which require special re-computation schemes for error correction.  
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Table 4.4 illustrates an example for error propagation in the pipeline architecture of Figure 4.1-b. This 

table has the same lines as Table 4.3. However, it shows in bold red police the action executions affected 

by faults. Meanwhile, executions which receive faulty inputs caused by error propagation are presented 

in regular red police with an �*� symbol.   

 

CLK2 Period 1 2 3 4 5 6 7 8 

Stage A A1 A2 A3 A4 A5 A6 A7 A8 

Stage B  B1 B2 B3 B4 B5 B6 B7 

Stage C   C1 C2 C3 C4* C5 C6 

Output    D1 D2 D3 D4* D5 

Table 4.4 Error Propagation in Pipeline Architecture 

In the example of Table 4.4, we can see that during the fifth period, a fault becomes active at Stage B 

while it is performing action B4 of the fourth instruction. Consequently, at the next period, input vector 

for action C4 is affected by errors. These errors are then propagated to the output of the pipeline 

architecture. Therefore, output D4 of the fourth instruction is faulty. Note that in this example, we only 

consider transient faults. As a result, the pipeline architecture returns to normal operation at the eighth 

period when errors have reached the final register.   

State�of�the�art�

Different works have studied fault-tolerance techniques for pipeline architectures, especially from 

timing errors at their combinational parts. Among them, the most prominent solutions are Razor 

[ERN03] and Razor II [DAS09]. We have seen in Chapter 1 that both architectures provide efficient SETs 

and timing errors detection at combinational part of stand-alone logic circuits. Razor method performs 

this detection by comparing circuit outputs with a reference value captured by shadow latches. 

Meanwhile, Razor II detects invalid transitions caused by errors at circuit outputs. While employing 

different error detection strategies, both Razor and Razor II techniques use timing redundancy for error 

correction in pipeline architectures. In order to deal with error propagation in these structures, Razor 

method uses global clock gating while Razor II technique performs architectural replay for re-

computation. These detection/correction schemes are presented in flowing parts. 

Global�clock�gating�with�Razor��

Figure 4.2 shows how Razor and global clock gating methods are implemented for error 

Detection/Correction in the pipeline architecture of Figure 4.1-b. 

 

 

Figure 4.2 Razor and Global Clock Gating Implementation for Pipeline Architecture [ERN03] 
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Compared to the original pipeline structure, the architecture in Figure 4.2 employs Razor flip-flops for 

output register of all stages (Razor_Reg_B, Razor_Reg_C and Razor_Reg_D). Each register provide SETs 

and timing errors detection for the corresponding stage. Their error signals are combined by a NOR gate 

to form a global error signal. This signal is then used to disable global clock signal CLK2 in case of error 

occurrence (one of the error signals at logic-1 and the global error signal at logic-0). While CLK2 is gated, 

faulty values stored in Razor registers are recovered using correct values stored in their shadow latches 

(see Figure 1.22). Error signals are then reset to logic-0, which allows CLK2 to control the registers. At 

next CLK2 rising edge, all values stored in registers are correct. Hence, the architecture can return to its 

normal operation. 

Table 4.5 shows how the previously described scheme helps correcting errors in the example of Table 

4.4. As a fault become active at Stage B during the fifth period, its erroneous output is captured by 

Razor_Reg_C at the beginning of the sixth period. This Razor register detects this error during the same 

CLK2 cycle. After error detection, the seventh CLK2 rising edge is gated. Consequently, Reg_A, 

Razor_Reg_B and Reg_D conserve their previous value. Meanwhile, the correct value of Razor_Reg_C is 

restored from its shadow latches. Consequently, at the eighth CLK2 cycle, all errors are corrected and the 

architecture returns to its normal operation. 

 

CLK2 Period 1 2 3 4 5 6 7 8 

Stage A A1 A2 A3 A4 A5 A6 A6 A7 

Stage B  B1 B2 B3 B4 B5 B5 B6 

Stage C   C1 C2 C3 C4* C4 C5 

Output    D1 D2 D3 D3 D4 

Table 4.5 Error Correction in Pipeline Architecture Using Razor and Clock Gating 

As shown in the previous example, error detection/correction scheme using global clocking for Razor 

technique only requires one clock cycle. It is due to the fact that the correct output of pipeline stages can 

be restored from shadow latches of Razor registers. However, this is only applicable for SET and timing 

errors but not hard errors in combinational logics. 

Architectural�replay�with�Razor�II�

Figure 4.3 illustrates how Razor II registers and architectural replay are employed in the pipeline 

architecture of Figure 4.1-b. Similar to the structure in Figure 4.2, this solution also replaces pipeline 

stages� output registers by Razor II registers (Razor_II_Reg_B, Razor_II_Reg_C, Razor_II_Reg_D). Error 

signals which alert SET and timing error occurrences at each pipeline stage are then combined together 

in order to form a global error signal. However, instead of being used to disable CLK2 after error 

occurrences, the global error signal is driven toward a system control module. Then, this module 

performs an architectural replay process, which consists of �flushing� the entire pipeline and restart 

from the first action of infected instruction. An example of such process is shown in Table 4.6. 

 

Fault occurrence 

Error detection 
Recovery 

Clock edge gated 
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Figure 4.3 Razor II and Architectural Replay Implementation for Pipeline Architecture [ERN03] 

Table 4.6 shows the use of architectural replay to tolerate errors in the example of Table 4.4. As a 

fault becomes active at Stage B during the fifth period, Razor_II_Reg_C register detects errors during the 

sixth period. Consequently, the global error signal turns to logic-0 and actives architectural replay 

process. At the seventh CLK2 positive edge, Stage A re-executes the first action A4 of the (affected) 

fourth instruction. Meanwhile, other stages stop their current executions and wait for task propagation 

from the first stage. It takes two additional periods before the fourth instruction is propagated to Stage 

C. Then, the pipeline architecture returns to its normal operation.  

 

CLK2 Period 1 2 3 4 5 6 7 8 9 10 

Stage A A1 A2 A3 A4 A5 A6 A4 A5 A6 A7 

Stage B  B1 B2 B3 B4 B5  B4 B5 B6 

Stage C   C1 C2 C3 C4*   C4 C5 

Output    D1 D2 D3    D4 

Table 4.6 Error Correction in Pipeline Architecture Using Razor II and Architectural Replay 

Compared to clock gating technique, architectural replay do not require correct value restoration 

from shadows latches. This helps reducing area overhead of the solution. However, this technique 

requires higher re-computation time. In the example above, architectural replay requires three clock 

cycles to tolerate SETs and timings errors because errors are detected at the third stage of the pipeline 

architecture. In general case, error correction using this method takes n clock cycles if errors are 

detected at the n
th

 pipeline stage.  Besides, similar to Razor technique, Razor II method only allows 

detection/correction of transient faults in digital circuits. 

4.2.3 Hybrid�fault-tolerant�design�for�pipeline�architecture�
As we have seen in previous sub-sections, Razor and Razor II techniques provide efficient solutions for 

transient fault-tolerance in pipeline architecture. However, they are not applicable for permanent faults 

created by manufacturing defect or aging phenomenon. One possible solution for this problem consists 

of combine these techniques with the use of TMR method for combinational part of pipeline 

architectures. However this solution significantly increases silicon area and power consumption of the 

architectures. 

We have shown in previous chapter that the hybrid fault-tolerant architecture allows detection and 

correction of permanent faults at advantageous are overhead and power consumption compared to 

TMR methods. Besides, it also tolerates SETs and timing errors at combinational part of logic circuits. 

Consequently, using the hybrid fault-tolerant method in pipeline architectures may helps improving 
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robustness of these architectures with regards to hard, SETs and timing errors at reasonable costs. Figure 

4.4 illustrates the implementation of this solution for the original pipeline architecture in Figure 4.1-b. 

 

 

Figure 4.4 Hybrid Fault-Tolerant Implementation for Pipeline Architecture 

In Figure 4.4, combinational part of each pipeline stage is triplicated (CL_Ai, CL_Bi, CL_Ci with i=1,2,3). 

Similar to the hybrid fault-tolerant architecture for stand-alone circuits, only two combinational logic 

copies of each stage are running in parallel at every moment. Others combinational logic parts are kept 

at standby mode and thus, do not consume dynamic power. The configuration of each stage is controlled 

by its input demultiplexer and output multiplexer (see Section 2.4 in Chapter 2). In this architecture, 

errors are detected by comparing output of the two running combinational logics at each stage (one 

before and one after capturing by corresponding output register). The comparison is performed by 

pseudo-dynamic comparators (see Sub-section 2.2.3 in Chapter 2), which allows better SETs and timing 

errors detections. As errors are detected after output capturing, input registers (Modified_Reg_A, 

Modified_Reg_B, Modified_Reg_C) of all stages are implemented using modified D flip-flop (see Sub-

section 2.3.1 in Chapter 2). Error signals of all stages are combined by an OR-tree in order to provide a 

global error signal. This signal is used by the control logic module to perform re-configuration and re-

computation of the complete architecture for error correction. For this purpose, this module provides 

control signals for all input registers, input demultiplexers, output multiplexers and pseudo-dynamic 

comparators. For the reason of clarity, these signals are not presented in Figure 4.4. 

With the architecture presented above, transient and permanent errors are tolerated as follows. At 

each stage, error detection for execution results of n
th 

period is performed at the beginning of the (n+1)
th

 

period. If an error is detected at any pipeline stage then the global error signal is turned to logic-1. 

Consequently, the control logic module forces all input registers to switch to their value of n
th

 period, 

which are stored in their shadow latches (see Sub-section 2.3.1 in Chapter 2). This process restores the 

whole pipeline architecture to its last fault-free state before error occurrence and thus, prevents error 

propagations. Besides, during the same period, all pipeline stages are re-configured for permanent faults 

tolerance. This process must finish before the end of (n+1)
th

 period. At the next clock edge, pipeline 

stages re-execute actions of n
th

 period. If no error is detected, then the architecture returns to its normal 

operation. Otherwise, the previous processes are re-applied. 

Table 4.7 presents error correction operation of the hybrid fault-tolerant pipeline architecture for the 

example in Table 4.4. As a fault become active during the fifth CLK2 period at stage B, the affected result 

captured by Modified_Reg_C is detected at the beginning of the sixth period. During the same CLK2 

cycle, the architecture is re-configured. Depending on the FSM of the control logic module, some running 

combinational logics may be replaced by their redundant logics, which are currently on standby.  

Meanwhile, modified input registers of all stages switch their value to the input of the fifth CLK2 cycle. 

Control signals for modified input registers, input 

demultiplexers, output multiplexers and pseudo-

dynamic comparators 
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This re-configuration process finishes before the seventh CLK2 rising edge. Consequently, during the 

seventh period, all stages re-execute the same action as in the fifth period. Note that at the seventh CLK2 

capture edge, Stage 3 has just been re-configured and its output signals are unstable. This explains the 

unknown value stored in output register Reg_D during this period. In this example, as the error is 

transient, the architecture returns to normal operation at the eight clock cycle. 

 

CLK2 Period 1 2 3 4 5 6 7 8 9 

Stage A A1 A2 A3 A4 A5 A6 A5 A6 A7 

Stage B  B1 B2 B3 B4 B5 B4 B5 B6 

Stage C   C1 C2 C3 C4* C3 C4 C5 

Output    D1 D2 D3 unknown D3 D4 

Table 4.7 Error Correction in the Hybrid Fault-Tolerant Pipeline Architecture 

4.2.4 Conclusion�
In this section, we have studied the possibility to use the hybrid fault-tolerant architecture for 

robustness improvement of pipeline architectures. The principle of a complete fault-tolerance scheme 

has been proposed where transient errors correction requires two clock cycles, which is faster than 

architectural replay using Razor II technique. Moreover, this scheme based on re-configuration/re-

computation allows permanent error correction, which is not possible using clock gating with Razor 

architecture. Finally, similar to the hybrid fault-tolerant architecture for stand-alone circuits, this 

architecture promises lower power consumption compared to TMR techniques. 

4.3 SEU�protection�

In previous chapters, we have seen how different kinds of faults and errors affect robustness of logic 

circuits. Among them, hard, SETs and timing errors in combinational part as well as SEUs in sequential 

part are the most encountered. It has been proven that the hybrid fault-tolerant architecture provides 

efficient solution for faults and errors in combinational part of logic circuits, at advantageous silicon area 

and power consumption costs. In this section, we study the possibility to combine this architecture with 

SEU detection/correction methods in order to form more advanced fault-tolerance solutions. 

4.3.1 SEU�protection�techniques�
Different techniques have been proposed in the literature to protect sequential elements of logic 

circuits, i.e. latches and flip-flops, from hard errors and/or SEUs. As we have discussed in Chapter 1, the 

most prominent techniques include TMR, BISER, Razor, GRAAL and Razor II [LYO62, ZHA06, ERN03, 

NIC07, DAS09]. These methods consist of employing hardware and timing redundancy to tolerate SEUs 

by errors masking or detection/correction. Some of them even provide SETs and timing errors protection 

for combinational part of logic circuits [ERN03, NIC07, DAS09]. Although having different ways to deal 

with errors, these techniques all protect registers at bit-level, i.e. redundant resources are added to each 

latch and flip-flop of the register under protection. Consequently, silicon area and power consumption 

overhead grow linearly with register size.  

Fault occurrence Re-computation 

Error detection 

and re-configuration 
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In [IMH11], authors have proposed a novel method, which tolerates SEUs in sequential elements at 

register-level and hence, allows significant silicon area saving compared to bit-level techniques such as 

TMR, BISER and Razor. This technique employs both hardware (additional latches) and information 

redundancy (linear code) to detect flipped bits in level sensitive registers. Two correction schemes are 

proposed: 1) Re-computation or 2) Using bit-flipping latches. Figure 4.5 presents principle configuration 

for protection schemes. 

 

 

Figure 4.5 Register-Level SEU Protection [IMH11] 

Figure 4.5-a shows an unprotected register, which is combined of n latches. Figure 4.5-b presents 

error detection scheme using linear code. The code word is computed from data of the register under 

protection using a XOR-tree and stored in redundant latches. During opaque phase of latches, the stored 

code word (called reference characteristic cref) is compared with the continuously computed code word 

(called current characteristic ccur). If any mismatch is detected, a fail signal is used to triggered re-

computation process. Note that SEUs can also arrive at redundant latches and cause faulty error 

detection. To avoid this problem, [IMH11] proposes to compute the parity of cref as p(cref) which is stored 

in an additional latch. This configuration, illustrated in Figure 4.6 allows the detection of all single SEU at 

any latches. 

 

  

Figure 4.6 Detailed SEU Detection Scheme at Register-Level [IMH11]  

In case re-computation is not feasible or is too time consuming, another error correction scheme is 

proposed in Figure 4.5-c. In this scheme, the n latches are replaced by n bit-flipping latches which are 

inherently able to invert their stored value. The difference diff between cref and ccur is decoded and thus, 
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allow identification of the affected bits that must be inverted. Proposed design of the bit-flipping latch 

using transmission gates is presented in Figure 4.7.  

 

 

Figure 4.7 Bit-flipping latches for SEU Correction [IMH11]  

This bit-flipping latch in Figure 4.7 is controlled by two signals: the main clock L and an additional 

signal HI. In fault free case, HI is kept at a constant value so that the second transmission gate (TG2) is 

opened while TG3 is closed. Consequently, the bit-flipping latch operates exactly like a conventional 

latch with clock L. In order to flip the stored bit during opaque phase of the latch (TG1 is closed while 

TG5 gate is opened), a short glitch must be applied at HI. The complement value of Qi is fed to the 

inverter chain formed by the first and second inverters (when HI changes state) and then stored in the 

latch (when HI returns to its normal state). 

In [IMH11], authors propose the use of module-2 characteristic as error detection and correction 

code. This code allows not only error detection, but also error localization, which is needed to error 

correction using bit-flipping latches. Besides, it only requires log2(n) check bits for information words of n 

bits. Consequently, only log2(n) redundant latches are needed. This leads to significant silicon area saving 

compared to bit-level methods, especially when register size is important. For example, for 127-bit 

register, the proposed error detection scheme (Figure 4.5-b) only requires 127% area overhead 

compared to unprotected register. Error correction scheme (Figure 4.5-c) employs larger bit-flipping 

latches and thus have an area overhead of 183%. Meanwhile, the overhead is more than 300% for bit-

level methods such as TMR, Graal or Razor [IMH11]. 

4.3.2 SEU�protection�for�the�hybrid�fault-tolerant�architecture�
As the hybrid fault-tolerant architecture is able to detect and correct all kinds of fault in 

combinational part of logic circuits, adding SEUs protection to this scheme does not require bit-level 

methods such as Razor or Razor II. In fact, it can be combined with the fault-tolerance technique 

proposed in [IMH11], which allows optimization of the additional silicon area required for SEU 

protection. Sub-sequent parts of this sub-section details how this can be done for output and input 

registers of the hybrid fault-tolerant architecture.  

Output�register�

Output register (Reg_out) of the hybrid fault-tolerant architecture is made of positive edge sensitive 

D flip-flops (DFFs). Each DFF is combined of a low level sensitive (DLL) and a high level sensitive D-latch 

(DLH). Both latches are controlled by the same clock signal CLK. Principle of a DFF during different CLK 

phases is illustrated in Figure 4.8. In this figure, a latch is presented as a switch followed by a memory 

point. The switch is opened during the latch�s opaque phase, and closed during its transparent phase. 
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a) During CLK high phase b) During CLK low phase 

Figure 4.8 D flip-flop function 

During CLK high phase, DLL is opaque while DLH is transparent (Figure 4.8-a). Consequently, all SEUs 

that arrive at either DLL or DLH cause output D to flip. As a result, primary output vector PO of the hybrid 

fault-tolerant architecture (see Figure 2.24 in Chapter 2) switches value. Besides, in Chapter 2, we have 

seen that PO is continuously compared with output vector vout2 of one running combinational logic 

during the comparison window (see Sub-section 2.2.3 in Chapter 2). As this window is set until the end of 

CLK high phase (see Figure 2.12 in Chapter 2), all changes in PO caused by SEUs during this period are 

detected by the pseudo-dynamic comparator. Re-computation process is then activated, which allows 

errors to be corrected. 

During CLK low phase, DLL is transparent while DLH is opaque (Figure 4.8-b). Therefore, all SEUs that 

arrive at DLL during this period do not have any impact on operation of the hybrid fault-tolerant 

architecture. However, SEUs in DLH may cause output D to flip. This problem cannot be detected by the 

pseudo-dynamic comparator because its comparison window finishes at the beginning of CLK low phase 

(see Figure 2.12 in Chapter 2). Therefore DLH latches of the output register must be protected against 

SEU using the scheme proposed in [IMH11]. 

In order to use the register-level SEU protection technique for DLH latches of the output register, 

additional latches and error detection modules (XOR-tree for detection and correction code 

computation, comparator for error detection) are added following Figure 4.6. Besides, the new 

architecture still requires an SEU correction scheme, either by re-computation (Figure 4.5-a) or by using 

bit-flipping latches (Figure 4.5-b).  

In Sub-section 2.3.1 of Chapter 2, we have seen that re-computation of the hybrid fault-tolerant 

architecture is only possible as long as previous input vector is still stored in shadow latch DLLs of its 

input register (see Figure 2.16 in Chapter 2). Figure 2.17 in Chapter 2 shows that this period finishes 

before the end of each CLK period (at CLKRegin low phase). Consequently, SEUs detected in DLH latches 

of the output register at the end of CLK low phase cannot be corrected by re-computation. Therefore, 

the only solution is to use bit-flipping latches (Figure 4.7) as DLH latches of the output register. 

Input�register�

The hybrid fault-tolerant architecture use modified D flip-flop mDFFs (Figure 2.16) for its input 

register. Each mDFF is combined of a regular positive edge sensitive flip-flop DFF and a low level sensitive 

latch DLL.  

The input register�s DFFs also have principle schematic as presented in Figure 4.8. However, different 

than previous case, output of this register is not compared to any reference value during operations. 

Therefore, both DLL and DLH latches of each DFF must be protected against SEUs. Besides, as no re-

computation is possible for this register, each latch must be replaced by bit-flipping latches (Figure 4.7). 

Shadow latch DLLs of the input register stored previous input vector for re-computation. In case of 

single fault occurrence, if SEUs occur at these latches, then the rest of the architecture is supposed to be 

fault-free. As no re-computation is needed, the SEUs do not have any impact on data integrity of the 

hybrid fault-tolerant architecture. However, to protect the architecture from multiple faults, these 

latches also require the SEU tolerance method proposed in [IMH11]. 

Q D

DLL DLH

Q D

DLL DLH
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4.3.3 Discussion�
This section discusses about the possibility to add SEU protection in the hybrid fault-tolerant 

architecture. We have seen that bit-level techniques such as Razor and Razor II allow not only SEUs 

detection/correction but also SETs and timing errors tolerance. However, they all require very important 

additional redundant resources compared to register-level protection methods, which use information 

redundancy to detect SEUs in registers. Error correction can be performed either by re-computation or 

bit-flipping. As the hybrid fault-tolerant architecture is able to tolerate SETs and timing errors, we 

propose to combine it with the register-level SEU tolerance technique presented in [IMH11]. Besides, we 

have seen that only high level sensitive latches in output register of the hybrid fault-tolerant architecture 

require SEU protection whilst all latches in its input register must be protected. 

4.4 Summary�

In this chapter, we have extended the usage of the proposed hybrid fault-tolerant architecture in 

three axes: 

- To dealt with aging phenomenon: As only two out of three combinational logic modules are 

running in parallel at any moments, the hybrid fault-tolerant architecture suffers less from 

aging phenomenon. Using a periodically re-configuration for this architecture allows all CLs to 

aging at smaller rates and thus, increases the useful life of the architecture compare to TMR 

method. Besides, we have seen that the FSM use for re-configuration also have impacts on 

fault-tolerance performance of the architecture.  If the number of hard errors is dominant 

than re-configure the architecture at each error detections is the optimum methods. 

However, if the number of transient errors has the same importance than re-configuration 

after two consecutive detections is better solution. 

- To tolerate faults in pipeline architectures: We have seen that beside SETs and timing errors, 

the hybrid fault-tolerant architecture also provides hard errors protection in combinational 

part of pipeline architectures, which is not possible for technique such as Razor and Razor II. 

Besides, its correction scheme using re-computation is proven to be faster than architectural 

replay method. 

- To be combined with SEU protection technique: The hybrid fault-tolerant architecture detects 

and corrects all faults in combinational part of logic circuits. Consequently, we do not need 

bit-level SEU tolerance techniques such as Razor, Razor II, which also detect/correct SETs and 

timing errors. Instead, we can combine the hybrid fault-tolerant architecture with register-

level technique, which use information redundancy to detect SEU. Error correction are 

performed using either re-computation (for low level sensitive latches of the output register) 

or using bit-flipping latches (for high level sensitive latches of the output register and all 

latches of the input register). 

For each extension axes, qualitative studies for possible solution are provided. Quantitative studies, 

concrete implementations, as well as evaluations that confirm advantages of these solutions for each 

problem can be subjects of further researches.  

 



 

 

Conclusion�

Chapter�5 Conclusion�

Evolution of CMOS technology is one of the most important factors that are conducting the recent 

technological revolution. At each new technology node, transistor feature sizes are down scaled further, 

allowing the integration of more and more devices on chip. Together with frequency and power supply 

scaling, it allows the realization of more and more complex digital systems at lower costs and higher 

performance. These advantages explain why the semiconductor industry keeps scaling CMOS technology 

further despite the fact that reliability of digital systems has become an important issue. 

Different factors are responsible for transient and permanent faults that degrade reliability of digital 

CMOS circuits and systems. First of all, manufacturing devices at nanometer scale is much more difficult, 

and thus leads to high rate of manufacturing defects. Together with aging phenomenon, these defects 

cause permanent fault in ICs. Secondly, PVT variations as well as aggressive timing requirements are 

responsible for increasing rate of timing errors. Finally, radiation and interference effects may cause 

more and more soft errors as small transistor are more vulnerable.  

Given the importance of CMOS technology in recent information technology revolutions, it is 

necessary to solve problems of hard, soft and timing errors in advanced CMOS technology nodes. As 

targeting these issues at physical level is no longer feasible, fault-tolerant techniques, which deal with 

faults and errors at design level, become the best solutions. These techniques employ information, 

timing and hardware redundancy to guarantee correct operation of digital circuits and systems despite 

the presence of faults. Each type of redundancy has its pros and cons with regards to particular types of 

errors. Consequently, hybrid fault-tolerant methods, which combine the use of these redundancies, are 

one of the best solutions to targets different types of faults simultaneously. 

In this manuscript, we have developed a hybrid fault-tolerant architecture that targets hard, soft and 

timing errors in order to improve robustness of digital circuits. The proposed method employs 

information redundancy for errors detection, timing redundancy for transient errors correction and 

hardware redundancy for permanent errors correction: 

- Information redundancy is implemented under the form of duplication/comparison structure 

that detects error in combinational part of logic circuits. The detection is enhanced by the use 

of pseudo-dynamic comparator. This comparator, which employs dynamic CMOS gates to 

detect transitions at its input vector during a comparison window, allow the detection of 

hard, SETs and timing errors. 

- Timing redundancy consists in performing re-computation for error correction. This is done 

with helps of a modified input register, which can store previous input vector until the 

corresponding output is proven correct by the pseudo-dynamic comparator. The re-

computation scheme takes two clock cycles: one to restore affected input vector after error 

detection and one to re-compute this vector. This scheme allows the correction of SETs and 

timing errors in combinational part of logic circuits. 

- Hardware redundancy requires a third copy of logic circuit�s combinational part. This 

redundant module is used to replace the two other combinational logic modules in case of 

hard error occurrence. Note that, different than TMR technique, only two out of three CLs are 

running in parallel in the hybrid fault-tolerant architecture. The third one is put on standby 

and hence, does not consume dynamic power. Re-configuration of the hybrid fault-tolerant 

architecture is performed with help of a FSM. Two version of the FSM is proposed: 1) FSM1 
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consists in changing configuration only in case of two consecutive error occurrences, and 2) 

FSM2 re-configures the architecture each time an error is detected. 

The proposed hybrid fault-tolerant architecture is evaluated using simulation with EDA tools. It is 

compared with TMR techniques using ISCAS�85 and ITC�99 benchmark circuits and a 45nm standard cell 

library. Simulation results have shown that the hybrid fault tolerant architecture is able to tolerate hard, 

SETs and timing errors. Compared to TMR architectures, it provides significant power saving of about 

33% while having negligible area overhead. In fact, compared to TMR1 (Partial TMR) architecture where 

only combinational part of logic circuits is triplicated, the proposed method only requires from 3% to 9% 

additional silicon area. Meanwhile, it allows 2% to 6% area reduction compared to TMR2 (Full TMR) 

structure where sequential elements of logic circuits are also triplicated. 

Beside advantages of fault-tolerant capability, silicon area and power consumption, the hybrid fault-

tolerant also offer the possibility to deal with aging phenomenon. As only two out of three 

combinational logic modules are running in parallel at any moments, they all suffers less from aging 

phenomenon. By balancing running time of the modules, we can have them running only 2/3 of time 

compared to the same operations performed by original logic circuits or TMR structures. Consequently, 

the hybrid fault-tolerant architecture may have longer useful life.  As a second discussion, we have seen 

that the two FSMs proposed may be used differently in various aging phenomenon effects: FMS2 is 

suitable for the case where hard errors occurrences are dominant while FSM1 is better solution if 

transient errors occurrences are of the same importance. Further fault modeling and qualitative analysis 

of aging phenomenon are required to confirm the qualitative studies above. 

The hybrid fault-tolerant architecture is originally designed for stand-alone logic circuits. However, 

advanced digital systems such as microprocessors, pipeline architectures are used to increase system 

speed without frequency scaling, which is limited by the power wall. Existing fault-tolerant techniques 

such as Razor and Razor II allow the detection and correction of SETs and timing errors at combinational 

part of these architectures. However, none of them is effective for hard error. In this manuscript, we 

have qualitatively demonstrated that the hybrid fault-tolerant can be implemented for pipeline 

architectures, and provide protections for hard, SETs and timing errors. Concrete implementation as well 

as evaluation of this method may be the subject of further researches. 

Finally, we have study the possibility to add SEU tolerance for sequential elements of the hybrid fault-

tolerant architecture. As this method is already able to deal with SETs and timing errors, we can 

combined it with register-level SEU protection methods in order to reduce area overhead compared to 

bit-level techniques such as Razor and Razor II, which also target SETs and timing errors. Using the 

register-level method proposed in [IMH11], we have demonstrated that high level sensitive latches of 

the input register and all latches of the output registers must be protected. Reducing the area overhead 

of such architecture may also be studied further in other researches. 

 



 

 

Appendix�A�

Chapter�6 Appendix�A�

HDL�Description�of�Fault-Tolerant�Architectures�
This appendix provides HDL codes that are used to describe different architectures used for 

evaluations in Chapter 3. It is divided in three sections. The first section consists of combinational logics 

extraction from original logic circuits. The second and third section detail HDL codes for the hybrid fault-

tolerant and TMR architectures, respectively.  

A1. Combinational�logic�extraction�

As we have seen in Chapter 3, combinational parts are extracted from ITC�99 benchmark circuits by 

removing all D flip-flops from the original netlist (Verilog). For each flip-flop removed, a new primary 

output (nPO) and a new primary input (nPI) are added.  

An example of combinational logic extraction is detailed below for circuit b01 of ITC�99 benchmark. In 

this example, differences in the extracted netlist compared the orginal netlist are in bold police. 

Original netlist Netlist of extracted combinational part  

 

module  b01 (LINE1, LINE2, OUTP_REG, 

OVERFLW_REG, CLK); 

 

 

input  LINE1,LINE2,CLK; 

output  OUTP_REG,OVERFLW_REG; 

 

 

 

 

//Begin sequential part 

 

dff  dff_1 (STATO_REG_2_,U34,CLK); 

 

 

dff  dff_2 (STATO_REG_1_,U35,CLK); 

 

 

dff  dff_3 (STATO_REG_0_,U36,CLK); 

 

 

dff  dff_4 (OUTP_REG,U37,CLK); 

 

 

dff  dff_5 (OVERFLW_REG,U48,CLK); 

 

 

//End sequential part 

 

//Begin combinational part 

 

module  b01 (LINE1, LINE2, OUTP_REG, OVERFLW_REG, 

CLK, nPI1, nPI2, nPI3, nPI4, nPI5, nPO1, nPO2, nPO3, 

nPO4, nPO5); 

 

input  LINE1,LINE2,CLK; 

output  OUTP_REG,OVERFLW_REG; 

 

input  nPI1, nPI2, nPI3, nPI4, nPI5; 

output  nPO1, nPO2, nPO3, nPO4, nPO5 

 

//Begin sequential part 

 

buf buf_1 (nPO1, U34); 

buf buf_2 (STATO_REG_2_, nPI1); 

 

buf buf_3 (nPO2, U35); 

buf buf_4 (STATO_REG_1_, nPI2); 

 

buf buf_5 (nPO3, U36); 

buf buf_6 (STATO_REG_0_, nPI3); 

 

buf buf_7 (nPO4, U37); 

buf buf_8 (OUTP_REG, nPI4); 

 

buf buf_9 (nPO5, U48); 

buf buf_10 (OVERFLW_REG, nPI5); 

 

//End sequential part 

 

//Begin combinational part 
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�����. 

 

//End combinational part 

endmodule 

 

 

 

�����. 

 

//End combinational part 

endmodule 

 

 

 

A2. RTL�descriptions�of�the�hybrid�fault-tolerant�architecture�

As detailed in Chapter 2, the hybrid fault-tolerant architecture is divided in different modules: input 

register Reg_in, input demultiplexers Demux, combinational logics CL1, CL2 and CL3, output multiplexer 

Mux, output register Reg_out, the pseudo-dynamic comparator, the control logic module (Figure 2.24). 

Consequently, HDL codes of the hybrid fault-tolerant architecture are composed of: different sub-

modules and a top-level module that connect them together. Note that there is two version of top-level 

module: with and without fault injections. 

Top-level�module�without�fault�injections�
The following Verilog codes describe the fault-free top-level module of the hybrid fault tolerant 

architecture (Figure 2.24). Note this description use two parameters nbIn and nbOut, which correspond 

to input and output numbers of the original combinational logic. 

module hybrid(CLK, resetControl, PI, PO, error); 

 

//parameter declarations 

parameter nbIn=0;   //input number of combinational part  

parameter nbOut=0; //output number of combinational part 

 

//input declarations 

input CLK, resetControl; 

input [nbIn-1:0] PI; 

 

//output declarations 

output [nbOut-1:0] PO; 

output error; 

 

//internal signal declarations 

wire [nbIn-1:0] vin; 

wire CLKRegin, CRegin; 

wire d1,d2,d3; 

wire [nbIn-1:0] i1,i2,i3; 

wire [nbOut-1:0] o1,o2,o3; 

wire [nbOut-1:0] vout1,vout2; 

wire m1,m2; 

wire error,DC,reset; 

 

//input register Reg_in 

  shadow_reg  #(nbIn)  (.CLK(CLK), .CLKRegin(CLKRegin), .CRegin(CRegin), .vin(PI), .vout(vin));  

 

//input demultiplexer Demux 

  demux  #(nbIn)  (.vin(vin), .vout1(i1), .vout2(i2), .vout3(i3), .d1(d1), .d2(d2), .d3(d3));  

 

//combinational logic CLs  
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cl1     (.vin(i1), .vout(o1)); 

cl2     (.vin(i2), .vout(o2)); 

cl3     (.vin(i3), .vout(o3)); 

 

//output multiplexer Mux 

mux   #(nbOut)  (.vin1(o1), .vin2(o2), .vin3(o3), .vout1(vout1), .vout2(vout2), .m1(m1), 

.m2(m2)) 

 

//output register Reg_out 

  simple_reg  #(nbOut)  (.CLK(CLK), .vin(vout1),.vout(PO)); 

 

//pseudo-dynamic comparator 

  comp   #(nbOut)  (.reset(reset), .DC(DC), .vin1(PO), .vin2(vout2), .vout(error)); 

 

//control logic module 

  control  #(nbOut)  (.CLK(CLK), .resetControl(resetControl), .error(error), .DC(DC), 

.reset(reset), .CRegin(CRegin), .CLKRegin(CLKRegin), .m1(m1), .m2(m2), .d1(d1) ,.d2(d2) , .d3(d3)); 

 

endmodule 

Top-level�module�with�fault�injections�
The following Verilog codes describe the top-level module of the hybrid fault tolerant architecture 

with fault injection. Differences with the fault-free version are in bold police. 

module hybrid(CLK, resetControl, PI, PO, error); 

 

//parameter declarations 

parameter nbIn=0;   //input number of combinational part  

parameter nbOut=0; //output number of combinational part 

 

//input declarations 

input CLK, resetControl 

input [nbIn-1:0] PI; 

input fault; 

 

//output declarations 

output  [nbOut-1:0] PO; 

output error; 

 

//internal signal declarations 

wire [nbIn-1:0] vin; 

wire CLKRegin, CRegin; 

wire d1,d2,d3; 

wire [nbIn-1:0] i1,i2,i3; 

wire [nbOut-1:0] o1,o2,o3; 

wire [nbOut-1:0] o2f; 

wire [nbOut-1:0] vout1,vout2; 

wire m1,m2; 

wire error,DC,reset; 

 

//input register Reg_in 

  shadow_reg  #(nbIn)  (.CLK(CLK), .CLKRegin(CLKRegin), .CRegin(CRegin), .vin(PI), .vout(vin));  

 

//input demultiplexer Demux 

  demux  #(nbIn)  (.vin(vin), .vout1(i1), .vout2(i2), .vout3(i3), .d1(d1), .d2(d2), .d3(d3));  

 

//combinational logic CLs  

cl1     (.vin(i1), .vout(o1)); 
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cl2     (.vin(i2), .vout(o2)); 

cl3     (.vin(i3), .vout(o3)); 

 

//fault injection 

assign o2f[nbOut-1:1] = o2[nbOut-1:1]; 

assign o2f[0] = fault^o2[0]; 

 

//output multiplexer Mux 

  mux   #(nbOut)  (.vin1(o1), .vin2(o2f), .vin3(o3), .vout1(vout1), .vout2(vout2), .m1(m1), 

.m2(m2)) 

 

//output register Reg_out 

  simple_reg  #(nbOut)  (.CLK(CLK), .vin(vout1),.vout(PO)); 

 

//pseudo-dynamic comparator 

  comp   #(nbOut)  (.reset(reset), .DC(DC), .vin1(PO), .vin2(vout2), .vout(error)); 

 

//control logic module 

  control  #(nbOut)  (.CLK(CLK), .resetControl(resetControl), .error(error), .DC(DC), 

.reset(reset), .CRegin(CRegin), .CLKRegin(CLKRegin), .m1(m1), .m2(m2), .d1(d1) ,.d2(d2) , .d3(d3)); 

 

endmodule 

Input�register�
The following Verilog codes describe sub-module �shadow_reg�, which is used in the top-level 

module of the hybrid fault-tolerant architecture for its input register Reg_in. This sub-module is 

composed of N modified D flip-flops (Figure 2.16), where N represents its input number. 

//top-level module 

module shadow_reg (CLK, CLKRegin, CRegin, vin, vout);  

 

//parameter declarations 

  parameter N=0; //input number 

 

//intput declarations 

  input CLK, CLKRegin, CRegin; 

  input [N-1:0] vin; 

 

//output declarations 

  output  [N-1:0] vout; 

 

//generate N modified D flip-flop (Figure 2.16) 

  genvar i; 

  generate 

    for (i=0;i<N;i=i+1) 

    begin 

     eRegin (.CLK(CLK), .CLKRegin(CLKRegin), .CRegin(CRegin), .D(vin[i]), .Q(vout[i])); 

    end; 

  endgenerate; 

endmodule 

 

//Modified D flip-flop (Figure 2.16) 

module eRegin( CLK, CLKRegin, CRegin, D, Q ); 

 

 //input and output declarations 

    input CLK, CLKRegin, CRegin, D; 

    output Q; 
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  //internal signal declarations 

    wire   enable; 

    reg D_DFF,Q, Q_DLL; 

 

 //main D flip-flop DFF 

    always @(posedge CLK) 

     begin: DFF 

      Q=D_DFF; 

     end; 

 

   //shadow latch DLL 

    always @(enable) 

     begin: DLL 

    if (enable==1'b0) 

    begin 

     Q_DLL=Q; 

     end;   

     end; 

 

 //multiplexer 

    always @(D or Q_DLL or Cregin) 

     begin: MUX 

    if (CRegin==1'b1) 

     begin 

      D_DFF=Q_DLL; 

     end 

    else 

     begin 

      D_DFF=D; 

     end; 

     end; 

 

 // OR gate 

    or (enable, CLKRegin, CRegin); 

endmodule 

Input�demultiplexer�
The following Verilog codes describe sub-module �demux�, which is used in the top-level module of 

the hybrid fault-tolerant architecture for its input demultiplexer Demux. This sub-module is composed N 

elementary demultiplexers (Figure 2.25), where N represents its input number. 

//top-level module 

module demux (vin, d1, d2, d3, vout1, vout2, vout3); 

 

//parameter declarations 

  parameter N=0; //input number 

 

//input declarations 

  input d1,d2,d3; 

  input [N-1:0] vin; 

 

//output declarations 

  output  [N-1:0] vout1,vout2,vout3; 

 

//generate N elementary input demultiplexers eDmux (Figure 2.25) 

genvar i; 

generate 

for (i=0;i<N;i=i+1) 
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begin 

 eDmux (vin[i], d1, d2, d3, vout1[i], vout2[i], vout3[i]); 

end; 

endgenerate; 

 

endmodule 

 

//elementary input demultiplexer eDmux (Figure 2.25) 

module eDmux(vin, d1, d2, d3, i1, i2, i3); 

 

//input declarations 

  input vin;  //data 

  input d1,d2,d3;  //control bits 

 

//output declarations 

  output i1,i2,i3; 

 

 and gat1 (i1,vin,d1); 

 and gat2 (i2,vin,d2); 

 and gat3 (i3,vin,d3); 

endmodule 

Output�multiplexer��
The following Verilog codes describe sub-module �mux�, which is used in the top-level module of the 

hybrid fault-tolerant architecture for its output multiplexer Mux. This sub-module is composed of N 

elementary multiplexers, where N represents its input number The following parts detail three possible 

versions of mux, correspond to three types of elementary multiplexer (Figure 2.27, Figure 2.28, Figure 

2.29). 

Method�1�
//top-level module 

module mux ( vin1, vin2, vin3, m1, m2, vout1, vout2); 

 

//parameter declarations 

  parameter N=0; //input number 

 

//input declarations 

 

  input m1,m2;    //control bits 

  input [N-1:0] vin1, vin2, vin3; //data 

 

//output declarations 

  output  [N-1:0] vout1,vout2; 

 

 //generate N elementary output multiplexers eMux 

  genvar i; 

  generate 

  for (i=0;i<N;i=i+1) 

  begin 

   eMux (.vin1(vin1[i]), .vin2(vin2[i]), .vin3(vin3[i]),.m1( m1), .m2(m2), .vout1(vout1[i]), .vout2(vout2[i]) ); 

  end; 

  endgenerate 

 

endmodule  

 

//elementary output multiplexer eDmux using Method 1 (Figure 2.27) 

module eMux (m1, m2, vin1, vin2, vin3, vout1, vout2); 
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//input declarations 

  input m1, m2;  //control bits 

  input vin1, vin2, vin3; //data  

 

//output declarations 

  output vout1, vout2; 

 

//internal signal declarations 

  wire x1,x2; 

 

mux2 ( .A(vin1), .B(vin2), .S(m1), .Z(vout1) );  

mux2 ( .A(vin3), .B(vin2), .S(m2), .Z(vout2) ); 

 

endmodule 

 

//2:1 multiplexer  

module mux2 (S, A, B, Z); 

 input S, A, B; 

 output Z; 

 assign Z= (S & B)|(~S & A); 

endmodule 

Method�2�

// top-level module  

module mux ( vin1, vin2, vin3, m1, m2, vout1, vout2); 

 

//parameter declarations 

  parameter N=0; //input number 

 

//input declarations 

 

  input m1,m2;    //control bits 

  input [N-1:0] vin1, vin2, vin3; //data 

 

//output declarations 

  output  [N-1:0] vout1,vout2; 

 

 //generate N elementary output multiplexers eMux 

  genvar i; 

  generate 

  for (i=0;i<N;i=i+1) 

  begin 

   eMux (.vin1(vin1[i]), .vin2(vin2[i]), .vin3(vin3[i]),.m1( m1), .m2(m2), .vout1(vout1[i]), .vout2(vout2[i]) ); 

  end; 

  endgenerate 

 

endmodule  

 

//elementary output multiplexer eDmux using Method 2 (Figure 2.28) 

module eMux (m1, m2, vin1, vin2, vin3, vout1, vout2 ); 

 

//input declarations 

  input m1, m2;  //control bits 

  input vin1, vin2, vin3; //data  

 

//output declarations 

  output vout1, vout2; 
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//internal signal declarations 

  wire x1,x2; 

 

mux2 ( .A(vin3), .B(vin2), .S(m1), .Z(x1) ); 

mux2 ( .A(vin1), .B(vin3), .S(m1), .Z(x2) ); 

mux2  ( .A(x1), .B(vin1), .S(m2), .Z(vout1) ); 

mux2 ( .A(x2), .B(vin2), .S(m2), .Z(vout2) ); 

 

endmodule 

 

//2:1 multiplexer  

module mux2 (S, A, B, Z); 

 input S, A, B; 

 output Z; 

 assign Z= (S & B)|(~S & A); 

endmodule 

Method�3�(with�tri-state�buffers)�
// top-level 

module mux ( vin1, vin2, vin3, m1, m2, m3, vout1, vout2); 

 

//parameter declarations 

  parameter N=0; //input number 

 

//input declarations 

 

  input m1, m2, m3;    //control bits 

  input [N-1:0] vin1, vin2, vin3; //data 

 

//output declarations 

  output  [N-1:0] vout1, vout2; 

 

 //generate N elementary output multiplexers eMux 

  genvar i; 

  generate 

  for (i=0;i<N;i=i+1) 

  begin 

  eMux (.vin1(vin1[i]), .vin2(vin2[i]), .vin3(vin3[i]),.m1( m1), .m2(m2),.m3(m3), .vout1(vout1[i]), 

.vout2(vout2[i]) ); 

  end; 

  endgenerate 

 

endmodule  

 

//elementary output multiplexer eDmux using tri-state buffers (Figure 2.29) 

module eMux (m1, m2, vin1, vin2, vin3, vout1, vout2 ); 

 

//input declarations 

  input m1, m2, m3;  //control bits 

  input vin1, vin2, vin3; //data  

 

//output declarations 

  output vout1, vout2; 

 

tbuf (.S(m3), .A(vin1), .Z(vout1)); 

tbuf (.S(m1), .A(vin2), .Z(vout1)); 

tbuf (.S(m2), .A(vin3), .Z(vout1)); 

 

tbuf (.S(m3), .A(vin2), .Z(vout2)); 
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tbuf (.S(m1), .A(vin3), .Z(vout2)); 

tbuf (.S(m2), .A(vin1), .Z(vout2)); 

 

endmodule 

 

//tri-state buffer 

module tbuf (S, A, Z); 

input S, A; 

output Z; 

assign Z=(S)?1'bz:A; 

endmodule 

Output�register�
The following Verilog codes describe sub-module �simple_reg�, which is used in the top-level module 

of the hybrid fault-tolerant architecture for its output register Reg_out. This sub-module is composed of 

N D flip-flops where N represents its input number. 

//top-level module 

module simple_reg (vin,vout, CLK); 

 

//parameter declarations 

  parameter N=0; //input number 

 

//input declarations 

  input CLK;  //clock 

  input [N-1:0] vin; //data 

 

 //output declarations 

  output [N-1:0] vout; 

  reg [N-1:0] vout; 

  

 always@(posedge CLK) 

  begin 

   vout<=vin; 

  end; 

 

endmodule 

Pseudo-dynamic�comparator�
The following Verilog codes describe sub-module �comp�, which is used in the top-level module of 

the hybrid fault-tolerant architecture for its pseudo-dynamic comparator (Figure 2.10). This description 

uses a parameter N corresponding to size of the two input vectors to be compared. 

//top-level module 

module comp ( reset, DC, vin1, vin2, vout); 

 

//parameter declarations 

  parameter N=0; //number of bits per input vetor 

 

//input declarations 

  input reset,DC;  //control signals 

  input [N-1:0] vin1,vin2; //data 

 

//ouput declarations 

  output  vout; 

  

 //internal signal declarations 

  wire [N-1:0] oXor;     //output of XOR gates 
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  wire [((N+3)-(N+3)%4)/4-1:0] oDor;   //output of DOR gates 

 

 //local comparison stage (Figure 2.10) 

  assign oXor= vin1^vin2; 

 

 //generate DOR gates for the first layer of global comparison stage (Figure 2.10) 

genvar i; 

generate 

for (i=0;i<((N+3)-(N+3)%4)/4-1;i=i+1) 

begin 

DOR4_X1 ( .DC(DC), .RESET(reset), .D0(oXor[i*4]), .D1(oXor[i*4+1]), .D2(oXor[i*4+2]), .D3(oXor[i*4+3]), 

.OUT(oDor[i]));  

end 

  for (i=((N+3)-(N+3)%4)/4-1;i<((N+3)-(N+3)%4)/4;i=i+1) 

  begin 

    if (N%4==0) 

    begin 

DOR4_X1 ( .DC(DC), .RESET(reset), .D0(oXor[i*4]), .D1(oXor[i*4+1]), .D2(oXor[i*4+2]), 

.D3(oXor[i*4+3]), .OUT(oDor[i]));  

    end 

    if (N%4==1) 

    begin 

DOR4_X1 ( .DC(DC), .RESET(reset), .D0(oXor[i*4]), .D1(oXor[i*4]), .D2(oXor[i*4]), 

.D3(oXor[i*4]), .OUT(oDor[i]));  

    end 

    if (N%4==2) 

    begin 

DOR4_X1 ( .DC(DC), .RESET(reset), .D0(oXor[i*4]), .D1(oXor[i*4]), .D2(oXor[i*4+1]), 

.D3(oXor[i*4+1]), .OUT(oDor[i]));  

    end 

    if (N%4==3) 

    begin 

DOR4_X1 ( .DC(DC), .RESET(reset), .D0(oXor[i*4]), .D1(oXor[i*4+1]), .D2(oXor[i*4+2]), 

.D3(oXor[i*4]), .OUT(oDor[i]));  

    end 

  end; 

  endgenerate; 

 

 //XOR tree for the second layer of global comparison stage (Figure 2.10) 

  assign vout = |oDor[((N+3)-(N+3)%4)/4-1:0]; 

 

endmodule 

Control�logic�module�
The following HDL codes describe sub-module �control�, which is used in the top-level module of the 

hybrid fault-tolerant architecture for its control logic module. As discussed in Chapter 2, this sub-module 

is divided in three parts. The first part (�submodule1�) generates control signals for the input register 

and the pseudo-dynamic comparator (Figure 2.20, Figure 2.21). In order to meet different timing 

constraints of these signals, it is implemented using different buffers in the standard cell library [NOCL]. 

The second part (�submodule2�) corresponds to the FSM. There are two version of FSM as described in 

Figure 2.30. The third part (�submodule3�) generates control signals for the input demultiplexers and the 

output multiplexer from outputs of the FSM. Except of FSM modules which are described in VHDL, 

others modules are described in Verilog. 

//top-level module 

module control (CLK, error, resetControl, CLKRegin, CRegin, d1, d2, d3, m1, m2, DC, reset); 
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 //input declarations 

  input CLK;    //global clock signal  

  intput error;    //output of the pseudo-dynamic comparator 

  input  resetControl;  //reset the complete architecture (Figure 2.24)  

 

 //output declarations 

  output CLKRegin, CRegin;  //control signals for input register Reg_in 

  output d1,d2,d3;    //control signals for input demultiplexer Demux 

  output m1,m2;   //control signals for output multiplexer Mux 

  output DC,reset;   //control signals for the pseudo-dynamic comparator 

 

 //internal signal declarations 

  wire f1,f2;    //signal generated by the FSM (Table 2.4) 

 

 //submodule1: clock generator (Figure 2.20, Figure 2.21) 

submodule1 sub1 (.CLK(CLK), .resetControl(resetControl), .error(error), .DC(DC), .reset(reset), 

.CRegin(CRegin), .CLKRegin(CLKRegin)); 

 

 //submodule2: FSM (Figure 2.30)  

  submodule2 sub2 ( .CLKRegin(CLKRegin), .CRegin(CRegin), .resetControl(resetControl), .f1(f1), .f2(f2) ); 

  

 //submodule3: Control signals generator for input demultiplexers and output multiplexer (Figure 2.32) 

  submodule3 sub3 (.f1(f1), .f2(f2), .m1(m1), .m2(m2), .d1(d1), .d2(d2), .d3(d3)); 

 

endmodule 

 

//submodule1: clock generator (Figure 2.20, Figure 2.21) 

//depending on different standard cell library , buf1 and buf2 in of this module are replaced by different buffer cells to 

satisfy timing constraints stated in Chapter 2 [NOCL] 

module submodule1 (CLK, resetControl, error, DC, reset, CRegin, CLKRegin); 

  

 //input declarations 

  input CLK, resetControl, error; 

 //output declarations  

  output DC, reset, CRegin, CLKRegin; 

  

 // DC generator 

  buf2 bufDC (.A(CLK), .Z(DC));   

 // CLKRegin generator 

  buf2 bufDC1 (.A(CLK), .Z(DC1)); 

  buf1 bufCLKRegin1 (.A(DC1), .Z(CLKRegin1)); 

  buf2 bufCLKRegin2 (.A(CLKRegin1), .Z(CLKRegin2)); 

  INV_X1 invCLKRegin (.A(CLKRegin2), .ZN(CLKRegin3)); 

  OR2_X1 ORCLKRegin (.A1(CLKRegin1), .A2(CLKRegin3), .ZN(CLKRegin)); 

 

 //CLKComp 

  buf1 bufRComp (.A(CLK), .Z(CLKComp1)); 

  INV_X1 invRComp (.A(CLKComp1), .ZN(CLKComp2)); 

  NAND2_X1 andRComp (.A1(CLK), .A2(CLKComp2), .ZN(CLKComp)); 

 

 //Control 

  DFFR_X1 DFFR (.CK (DC), .QN(Control), .RN (resetControl), .D(CRegin)); 

 

 //reset 

  OR2_X1 orReset (.A1(CLKComp), .A2(Control), .ZN(reset)); 

 

 //CRegin 

  AND2_X1 ANDCregin (.A1(Control), .A2(error), .ZN(CRegin)); 
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endmodule 

 

//submodule2 version FMS1 (Figure 2.30-a) 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

 

entity fsm is 

    Port ( CLKRegin : in  STD_LOGIC; 

           CRegin : in  STD_LOGIC; 

     resetControl: in STD_LOGIC; 

           f1 : out  STD_LOGIC; 

           f2 : out  STD_LOGIC); 

end fsm; 

 

architecture behavior of fsm is 

 

 type typeState is (A1,A2,A3,A4,A5,A6,B1,B2,B3,B4,B5,B6,C1,C2,C3,C4,C5,C6,STOP); 

  -- State Ax: f1=0;f2=1; (CL1 and CL2) 

  -- State Bx: f1=1;f2=0; (CL2 and CL3) 

  -- State Cx: f1=0;f2=0;  (CL3 and CL1) 

  -- State STOP: f1=1;f2=1; 

 signal currentState,nextState : typeState; 

  

begin 

  

  state_reg: process (CLKRegin,resetControl) 

   begin 

      if (CLKRegin'event and CLKRegin='0') then 

      if resetControl='0' then 

       currentState<=A1; 

      else 

       currentState <= nextState; 

      end if; 

      end if; 

       

   end process; 

    

  state_define: process (currentState,CRegin) 

   begin 

     case currentState is 

      when A1 =>  f1<='0';f2<='1';  

          if CRegin='0' then nextState <= A1; end if; 

          if CRegin='1' then nextState <= A2; end if; 

      when A2 =>  f1<='0';f2<='1';   

          if CRegin='0' then nextState <= A1; end if; 

          if CRegin='1' then nextState <= B3; end if; 

      when A3 =>  f1<='0';f2<='1';   

          if CRegin='0' then nextState <= A1; end if; 

          if CRegin='1' then nextState <= A4; end if; 

      when A4 =>  f1<='0';f2<='1';   

          if CRegin='0' then nextState <= A1; end if; 

          if CRegin='1' then nextState <= B5; end if; 

      when A5 =>  f1<='0';f2<='1';   

          if CRegin='0' then nextState <= A1; end if; 

          if CRegin='1' then nextState <= A6; end if; 

      when A6 =>  f1<='0';f2<='1';   

          if CRegin='0' then nextState <= A1; end if; 

          if CRegin='1' then nextState <= STOP; end if; 
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      when B1 =>  f1<='1';f2<='0';   

          if CRegin='0' then nextState <= B1; end if; 

          if CRegin='1' then nextState <= B2; end if; 

      when B2 =>  f1<='1';f2<='0';   

          if CRegin='0' then nextState <= B1; end if; 

          if CRegin='1' then nextState <= C3; end if; 

      when B3 =>  f1<='1';f2<='0';   

          if CRegin='0' then nextState <= B1; end if; 

          if CRegin='1' then nextState <= B4; end if; 

      when B4 =>  f1<='1';f2<='0';   

          if CRegin='0' then nextState <= B1; end if; 

          if CRegin='1' then nextState <= C5; end if; 

      when B5 =>  f1<='1';f2<='0';  

          if CRegin='0' then nextState <= B1; end if; 

          if CRegin='1' then nextState <= B6; end if; 

      when B6 =>  f1<='1';f2<='0';   

          if CRegin='0' then nextState <= B1; end if; 

          if CRegin='1' then nextState <= STOP; end if; 

       

       

       

      when C1 =>  f1<='0';f2<='0';  

          if CRegin='0' then nextState <= C1; end if; 

          if CRegin='1' then nextState <= C2; end if; 

      when C2 =>  f1<='0';f2<='0';  

          if CRegin='0' then nextState <= C1; end if; 

          if CRegin='1' then nextState <= A3; end if; 

      when C3 =>  f1<='0';f2<='0'; 

          if CRegin='0' then nextState <= C1; end if; 

          if CRegin='1' then nextState <= C4; end if; 

      when C4 =>  f1<='0';f2<='0';  

          if CRegin='0' then nextState <= C1; end if; 

          if CRegin='1' then nextState <= A5; end if; 

      when C5 =>  f1<='0';f2<='0';  

          if CRegin='0' then nextState <= C1; end if; 

          if CRegin='1' then nextState <= C6; end if; 

      when C6 =>  f1<='0';f2<='0'; 

          if CRegin='0' then nextState <= C1; end if; 

          if CRegin='1' then nextState <= STOP; end if; 

       

      when STOP =>  f1<='1'; f2<='1';  

          nextState<=STOP; 

 

    end case; 

   end process; 

    

    

end behavior ; 

 

//submodule2 version FMS1 (Figure 2.30-b) 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

 

entity fsm is 

    Port ( CLKRegin : in  STD_LOGIC; 

           CRegin : in  STD_LOGIC; 

     resetControl: in STD_LOGIC; 

           f1 : out  STD_LOGIC; 
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           f2 : out  STD_LOGIC); 

end fsm; 

 

architecture behavior of fsm is 

 

 type typeState is (A1,A2,A3,A4,A5,A6,B1,B2,B3,B4,B5,B6,C1,C2,C3,C4,C5,C6,STOP); 

  -- State Ax: f1=0;f2=1; (CL1 and CL2) 

  -- State Bx: f1=1;f2=0; (CL2 and CL3) 

  -- State Cx: f1=0;f2=0;  (CL3 and CL1) 

  -- State STOP: f1=1;f2=1; 

 signal currentState,nextState : typeState; 

  

begin 

  

  state_reg: process (CLKRegin, resetControl) 

   begin 

      if (CLKRegin'event and CLKRegin='0') then 

      if resetControl='0' then 

       currentState<=A1; 

      else 

       currentState <= nextState; 

      end if; 

      end if; 

       

   end process; 

    

  state_define: process (currentState,CRegin) 

   begin 

     case currentState is 

      when A1 =>  f1<='0';f2<='1';  

          if CRegin='0' then nextState <= A1; end if; 

          if CRegin='1' then nextState <= B2; end if; 

      when A2 =>  f1<='0';f2<='1';   

          if CRegin='0' then nextState <= A1; end if; 

          if CRegin='1' then nextState <= B3; end if; 

      when A3 =>  f1<='0';f2<='1';   

          if CRegin='0' then nextState <= A1; end if; 

          if CRegin='1' then nextState <= B4; end if; 

      when A4 =>  f1<='0';f2<='1';   

          if CRegin='0' then nextState <= A1; end if; 

          if CRegin='1' then nextState <= B5; end if; 

      when A5 =>  f1<='0';f2<='1';   

          if CRegin='0' then nextState <= A1; end if; 

          if CRegin='1' then nextState <= B6; end if; 

      when A6 =>  f1<='0';f2<='1';   

          if CRegin='0' then nextState <= A1; end if; 

          if CRegin='1' then nextState <= STOP; end if; 

       

       

      when B1 =>  f1<='1';f2<='0';   

          if CRegin='0' then nextState <= B1; end if; 

          if CRegin='1' then nextState <= C2; end if; 

      when B2 =>  f1<='1';f2<='0';   

          if CRegin='0' then nextState <= B1; end if; 

          if CRegin='1' then nextState <= C3; end if; 

      when B3 =>  f1<='1';f2<='0';   

          if CRegin='0' then nextState <= B1; end if; 

          if CRegin='1' then nextState <= C4; end if; 

      when B4 =>  f1<='1';f2<='0';   
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          if CRegin='0' then nextState <= B1; end if; 

          if CRegin='1' then nextState <= C5; end if; 

      when B5 =>  f1<='1';f2<='0';  

          if CRegin='0' then nextState <= B1; end if; 

          if CRegin='1' then nextState <= C6; end if; 

      when B6 =>  f1<='1';f2<='0';   

          if CRegin='0' then nextState <= B1; end if; 

          if CRegin='1' then nextState <= STOP; end if; 

       

       

       

      when C1 =>  f1<='0';f2<='0';  

          if CRegin='0' then nextState <= C1; end if; 

          if CRegin='1' then nextState <= A2; end if; 

      when C2 =>  f1<='0';f2<='0';  

          if CRegin='0' then nextState <= C1; end if; 

          if CRegin='1' then nextState <= A3; end if; 

      when C3 =>  f1<='0';f2<='0'; 

          if CRegin='0' then nextState <= C1; end if; 

          if CRegin='1' then nextState <= A4; end if; 

      when C4 =>  f1<='0';f2<='0';  

          if CRegin='0' then nextState <= C1; end if; 

          if CRegin='1' then nextState <= A5; end if; 

      when C5 =>  f1<='0';f2<='0';  

          if CRegin='0' then nextState <= C1; end if; 

          if CRegin='1' then nextState <= A6; end if; 

      when C6 =>  f1<='0';f2<='0'; 

          if CRegin='0' then nextState <= C1; end if; 

          if CRegin='1' then nextState <= STOP; end if; 

       

      when STOP =>  f1<='1'; f2<='1';  

          nextState<=STOP; 

 

    end case; 

   end process; 

    

    

end behavior ; 

 

 

// submodule3: Control signals generator for input demultiplexers and output multiplexer (Figure 2.32) 

module submodule3 (f1,f2,m1,m2,d1,d2,d3); 

 

 input f1,f2; 

  

 output m1,m2,d1,d2,d3; 

 

 assign m1=f1; 

 assign m2=f2; 

 assign d1=~f1; 

 assign d2=f1^f2; 

 assign d3=~f2; 

endmodule 



Appendix A 

114 

 

A3. RTL�descriptions�of�TMR�architectures��

This section details Verilog description of Partial (Figure 3.3-a) and Full TMR architectures (Figure 3.3-

b). Each architecture is combined of input registers, combinational logic modules, output registers and 

word voter. In TMR methods, all registers are made of D flip-flop. Consequently, �simple_register� sub-

module described in previous section can be used. Therefore, the following sub-sections only detail 

Verilog descriptions for top-level modules (�TMR1� and �TMR2�) of the two TMR versions, as well as the 

word voter (�voter_tmr�) which is identical for both versions. 

Top-level�module�of�Partial�TMR�architecture�
//top-level module 

module TMR1 (PI, PO, CLK, error); 

 

 //parameter declarations 

  parameter nbIn=0;  //input number of combinational logic module 

  parameter nbOut=0; // output number of combinational logic module 

 

 //input declarations 

  input CLK;   //global clock signal 

  input [nbIn-1:0] PI; //primary input vector 

 

 //output declarations 

  output [nbOut-1:0] PO; //primary output vector 

  output error;  //error signal 

  

 //internal signal declarations 

  wire [nbIn-1:0] i; 

  wire [nbOut-1:0] o1, o2, o3, vout; 

 

 //input register 

  simple_reg  #(nbIn)  reg_in (.CLK(CLK), .vin(PI), .vout(i)); 

 

 //combinational logics 

  cl1    cl1 (.vin(i), .vout(o1)); 

  cl2    cl2 (.vin(i), .vout(o2)); 

  cl3    cl3 (.vin(i), .vout(o3)); 

 

 //voter 

  voter_tmr #(nbOut) voter (.vin1(o1), .vin2(o2), .vin3(o3), .vout(vout),.error(error)); 

 

 //output register 

  simple_reg #(nbOut)   reg_out (.CLK(CLK), .vin(vout),.vout(PO)); 

 

endmodule 

Top-level�module�of�Full�TMR�architecture�
//top-level module 

module TMR2 (PI, PO, CLK, error); 

 

 //parameter declarations 

  parameter nbIn=0;  //input number of combinational logic module 

  parameter nbOut=0; // output number of combinational logic module 

 

 //input declarations 

  input CLK;   //global clock signal 

  input [nbIn-1:0] PI; //primary input vector 
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 //output declarations 

  output [nbOut-1:0] PO; //primary output vector 

  output error;  //error signal 

  

 //internal signal declarations 

  wire [nbIn-1:0] i1, i2, i3;    

  wire [nbOut-1:0] o1, o2, o3 

  wire [nbOut-1:0] vout1, vout2, vout3; 

 

 //input registers 

  simple_reg #(nbIn)  (.CLK(CLK), .vin(PI), .vout(i1)); 

  simple_reg #(nbIn)  (.CLK(CLK), .vin(PI), .vout(i2)); 

  simple_reg #(nbIn)  (.CLK(CLK), .vin(PI), .vout(i3)); 

 

 //combinational logics 

  cl1    cl1 (.vin(i1), .vout(o1)); 

  cl2    cl2 (.vin(i2), .vout(o2)); 

  cl3    cl3 (.vin(i3), .vout(o3)); 

 

 //output registers 

  simple_reg #(nbOut) (.CLK(CLK), .vin(o1),.vout(vout1)); 

  simple_reg #(nbOut) (.CLK(CLK), .vin(o2),.vout(vout2)); 

  simple_reg #(nbOut) (.CLK(CLK), .vin(o3),.vout(vout3)); 

 

 //voter 

  voter_tmr #(nbOut) voter (.vin1(vout1), .vin2(vout2), .vin3(vout3), .vout(PO),.error(error)); 

 

endmodule 

Word-voter�
//top-level module 

module voter_tmr (vin1, vin2, vin3, vout, error); 

  

 //parameter declarations 

  parameter N=0; 

 

 //input declarations 

  input [N-1:0] vin1, vin2, vin3; 

  

 //output declarations 

  output  [N-1:0] vout; 

  output error; 

 

 //internal signal declarations 

  wire match12, match23, match31; 

  wire [N-1:0] M31; 

 

 //verify if there is at least two identical input vectors 

 //using submodule Match: compare two vectors, returns logic-1 if they are identical and logic-0 otherwise 

  Match #(N) gateMatch12 (.vin1(vin1), .vin2(vin2), .vout(match12)); 

  Match #(N) gateMatch23 (.vin1(vin2), .vin2(vin3), .vout(match23)); 

  Match #(N) gateMatch31 (.vin1(vin3), .vin2(vin1), .vout(match31)); 

  nor gateNor (error, match12, match23, match31); 

 

 //generate output vector 

  assign M31= {N {match31} }; 

  assign vout= (M31&vin1)|(~M31&vin2); 
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endmodule 

 

//submodule Match: compare two vectors, returns logic-1 if they are identical and logic-0 otherwise 

module Match (vin1, vin2, vout); 

 

 parameter N=0; 

 Input [N-1:0] vin1, vin2; 

 output vout; 

 wire [N-1:0] oXnor; 

 assign oXnor= vin1~^vin2; 

 assign vout=&(oXnor); 

 

endmodule 
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Architecture Hybride Tolérante aux Fautes pour l�Amélioration de la Robustesse  

des Circuits et Systèmes Intégrés Numériques 

RESUME : L�évolution de la technologie CMOS consiste à la miniaturisation continue de la taille des 

transistors. Cela permet la réalisation de circuits et systèmes intégrés de plus en plus complexes et plus 

performants, tout en réduisant leur consommation énergétique, ainsi que leurs coûts de fabrication. 

Cependant, chaque nouveau n�ud technologique CMOS doit faire face aux problèmes de fiabilité, dues 

aux densités de fautes et d�erreurs croissantes. Par conséquence, les techniques de tolérance aux fautes, 

qui utilisent des ressources redondantes pour garantir un fonctionnement correct malgré la présence 

des fautes, sont devenus indispensables dans la conception numérique. 

Ce thèse étudie une nouvelle architecture hybride tolérante aux fautes pour améliorer la robustesse des 

circuits et systèmes numériques. Elle s�adresse à tous les types d�erreur dans la partie combinatoire des 

circuits, c'est-à-dire des erreurs permanentes (« hard errors »), des erreurs transitoires (« SETs ») et des 

comportements temporels fautifs (« timing errors »). L�architecture proposée combine la redondance de 

l'information (pour la détection d'erreur), la redondance de temps (pour la correction des erreurs 

transitoires) et la redondance matérielle (pour la correction des erreurs permanentes). Elle permet de 

réduire considérablement la consommation d'énergie, tout en ayant une surface de silicium similaire 

comparée aux solutions existantes. En outre, elle peut également être utilisée dans d'autres applications, 

telles que pour traiter des problèmes de vieillissement, pour tolérer des fautes dans les architectures 

pipelines, et pour être combiné avec des systèmes avancés de protection des erreurs transitoires dans la 

partie séquentielle des circuits logiques (« SEUs »). 

Mots clefs : Robustesse, tolérance aux fautes, circuits logiques. 

 

A Hybrid Fault-Tolerant Architecture for Robustness Improvement  

of Digital Integrated Circuits and Systems 

ABSTRACT: Evolution of CMOS technology consists in continuous downscaling of transistor features 

sizes, which allows the production of smaller and cheaper integrated circuits with higher performance 

and lower power consumption. However, each new CMOS technology node is facing reliability problems 

due to increasing rate of faults and errors. Consequently, fault-tolerance techniques, which employ 

redundant resources to guarantee correct operations of digital circuits and systems despite the presence 

of faults, have become essential in digital design. 

This thesis studies a novel hybrid fault-tolerant architecture for robustness improvement of digital 

circuits and systems. It targets all kinds of error in combinational part of logic circuits, i.e. hard, SETs and 

timing errors. Combining information redundancy for error detection, timing redundancy for transient 

error correction and hardware redundancy for permanent error corrections, the proposed architecture 

allows significant power consumption saving, while having similar silicon area compared to existing 

solutions. Furthermore, it can also be used in other applications, such as dealing with aging 

phenomenon, tolerating faults in pipeline architecture, and being combined with advanced SEUs 

protection scheme for sequential parts of logic circuits. 

Keywords: Robustness, fault-tolerance, logic circuits. 
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