Thèse soutenue

Structure et dynamique du plasma induit par laser en propagation dans un gaz ambiant d’argon

FR  |  
EN
Auteur / Autrice : Qianli Ma
Direction : Jin Yu
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 03/12/2012
Etablissement(s) : Lyon 1
Ecole(s) doctorale(s) : École doctorale de Physique et Astrophysique de Lyon (Lyon ; 1991-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire de Spectrométrie Ionique et Moléculaire
Jury : Président / Présidente : Arnaud Couairon
Examinateurs / Examinatrices : Alexey Ilyin, Patrick Mauchien, Vincent Motto-Ros, Ronger Zheng, Matthieu Baudelet
Rapporteurs / Rapporteuses : Ludovic Hallo, Jörg Hermann

Résumé

FR  |  
EN

Ce travail de thèse a pour but d'étudier la structure et la dynamique du plasma induit par une impulsion laser nanoseconde d'éclairement d'une dizaine de GW cm-2, sur la surface d'une cible métallique plongée dans un gaz ambiant d'argon à pression atmosphérique. Comme source d'émission spectroscopique, un tel plasma constitue la base de l'approche laser-induced breakdown spectroscopy (LIBS), une technique d'analyse chimique en plein développement mais dont la maturation nécessite une compréhension approfondie des mécanismes mis en jeu dans la détente du plasma. Cependant la phase d'émission spectroscopique du plasma intéressante pour la technique LIBS n'occupe qu'un intervalle de temps limité dans la durée de vie de celui-ci, typiquement entre une centaine de nanosecondes et quelques microsecondes après l'impact de l'impulsion laser sur la cible. Au temps très courts, et notamment en présence de l'impulsion laser, la détente du plasma fait intervenir un grand nombre de processus physiques. Ces derniers sont largement partagés par des plasmas beaucoup plus énergétiques qui peuvent être soit produits artificiellement par des lasers hors norme, tels qu'un laser Mégajoule, soit présents dans des milieux difficilement accessibles, tels que le milieu interstellaire. L'étude du plasma à l'échelle du laboratoire peut donc fournir un système-modèle qui pourrait permettre des études fines et systématiques à moindre coût. Enfin, la phase de détente du plasma peut conduire à la formation de nanoparticules par recondensation ultrarapide. L'étude de la structure et la dynamique de la phase gazeuse facilitera ainsi la compréhension des mécanismes impliqués dans la condensation du plasma. Ce travail a été rendu possible avec l'utilisation des techniques de diagnostics reposant sur la spectroscopie d'émission et l'imagerie spectrale rapide du plasma. Cette approche expérimentale constitue aussi une des originalités de ce travail de thèse. Grâce à l'application de telles techniques, plutôt classiques, couplées avec un moyen de détection offrant une grande résolution temporelle et un montage expérimental à précision et à stabilité mécaniques extrêmement poussées, la structure d'un plasma a été révélée jusqu'à un degré de détail rarement atteint auparavant. La dynamique de la propagation du plasma dans un gaz ambiant a été ainsi étudiée en fonction du régime de l'onde d'absorption soutenue par laser. Un contrôle sur le régime de propagation a été notamment réalisé par ablations avec le fondamental et la troisième harmonique d'un laser Nd:YAG à 1064 nm et 355 nm