Thèse soutenue

Une approche intrinsèque des foncteurs de Weil

FR  |  
EN
Auteur / Autrice : Arnaud Souvay
Direction : Wolfgang Bertram
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance le 23/11/2012
Etablissement(s) : Université de Lorraine
Ecole(s) doctorale(s) : École doctorale IAEM Lorraine - Informatique, Automatique, Électronique - Électrotechnique, Mathématiques de Lorraine (1992-....)
Partenaire(s) de recherche : Laboratoire : Institut Élie Cartan (1953-1996 ; Nancy, Vandoeuvre-lès-Nancy, Meurthe-et-Moselle)
Jury : Président / Présidente : Martin Bordemann
Examinateurs / Examinatrices : Lionel Bérard-Bergery
Rapporteurs / Rapporteuses : Martin Bordemann, Jan Slovák

Résumé

FR  |  
EN

Nous construisons un foncteur de la catégorie des variétés sur un corps ou un anneau topologique K, de caractéristique arbitraire, dans la catégorie des variétés sur A, où A est une algèbre de Weil, c'est-à-dire une K-algèbre de la forme A = K + N, où N est un idéal nilpotent. Le foncteur correspondant, noté T^A, et appelé foncteur de Weil, peut être interprété comme un foncteur d'extension scalaire de K à A. Il est construit à l'aide des polynômes de Taylor, dont nous donnons une définition en caractéristique quelconque. Ce résultat généralise à la fois des résultats connus pour les variétés réelles ordinaires, et les résultats obtenus dans le cas des foncteurs tangents itérés et dans le cas des anneaux de jets (A = K[X]/(X^{k+1})). Nous montrons que pour toute variété M, T^A M possède une structure de fibré polynomial sur M, et nous considérons certains aspects algébriques des foncteurs de Weil, notamment ceux liés à l'action du « groupe de Galois » Aut_K(A). Nous étudions les connexions, qui sont un outil important d'analyse des fibrés, dans deux contextes différents : d'une part sur les fibrés T^A M, et d?autre part sur des fibrés généraux sur M, en suivant l'approche d'Ehresmann. Les opérateurs de courbure d'une connexion sont induits par l'action du groupe de Galois Aut_K(A) et ils forment une obstruction à l'« intégrabilité » d'une connexion K-lisse en une connexion A-lisse