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Chapter 1

Preliminaries

Today, many system functions have been automated, for example in power
plants, production facilities or in the transportation domain. While this
automation increases productivity and efficiency dramatically, it can cause
problems as well. Many of these automated systems have safety critical
constraints. A failure of these system can lead to accidents with severe con-
sequences like many causalities or long lasting environmental damages.
To avoid failures, many techniques can be used in the design process of sys-
tems and components. It is however impossible to build a ”perfect” system,
so the system design has to take into account that certain parts of it can and
will fail. By using such a design, the probability of catastrophic failures can
be minimised. Before using a safety critical system, trustful data about its
dependability is needed. Testing such systems is not an option. As failures
should occur only very rarely, tests would need to run for a very long time
for accurate results. Besides, running a safety critical system without any
certain knowledge about its dependability is highly risky.
This is the reason why models are used for evaluating such systems. Many
different possibilities for modelling exist. One of them is presented in this
work. Now we will explain why our approach is necessary and what contri-
butions we made.

1.1 Motivation

In order to avoid dangerous accidents safety critical systems are redundant.
If one component fails, normally a spare component can take over its function
so that the overall system will not fail. Furthermore, in many cases a safety
function is activated. This safety function tries to bring the system into a
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8 CHAPTER 1. PRELIMINARIES

safe state when a subsystem is not working correctly any more and could
threaten the integrity of the global system. In most applications this safety
function shuts down the system. In this case the system is not working any
more, but at least it does not cause any accidents.
These safety functions can fail in two different ways. It can happen that the
safety functions are not activated in presence of demand, leading to serious
accidents. There are many famous examples for such failures, for example
the nuclear disaster in Fukushima [9], in which an earthquake and the fol-
lowing tsunami breached all safety barriers. Due to this accident, the area
around the nuclear power plant is now uninhabitable, and many workers at
the power plant were exposed to high values of radiation. Another example
is the crash of the flight AF 447 from Rio de Janeiro to Paris [7], caused by
frozen speed indicators. 228 people were killed in this plane crash. Of course,
there are also many accidents on a much smaller scale: machines which cut
off a finger of an operator accidently or a car which crashes due to a failure
of the ABS-system. It is very important to minimise the probability of such
accidents with such serious consequences.
Besides causing serious accidents, safety critical systems can also fail by ac-
tivating their safety functions in absence of demand. In this case, it will
lead to a so called Spurious Trip. Normally this is not dangerous, as it will
only lead to the unavailability of the system. But still it is annoying and
can be very expensive for the owner of the system. A failure of a robot in a
production line could stop the whole production of the factory which can be
economically disastrous if this happens regularly. Note that in some cases
spurious trips can be dangerous too, like the crash of an Airbus A320-211 in
Warsaw in 1993. The safety mechanism which should prevent the unwanted
activation of the engine thrust reverser in the air prevented its activation as
the runway was wet and the wheels of the plane were not turning due to
aquaplaning. This was seen as sign that the plane has not landed yet, so the
engine thrust reverser was not activated and the plane crashed at the end of
the runway, causing two fatalities[4].
Furthermore too many spurious trips can lead to decline of the safety culture
of the operators. For example, a smoke detector which causes false alarms
regularly will be either ignored or switched of completely, so that there is a
increased risk that a real fire is not detected fast enough.
So it is important to include both failure modes into models of safety critical
systems and their safety functions. Furthermore it is necessary to take into
account that not only the global system itself, but also subsystems and basic
components of the system can fail in several ways. For example, a sensor can
give either too high or too low values, leading to different faulty behaviours.
Besides that, it is necessary for models to be easy to understand and to de-
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sign. Too complicated models are error prone - if they are used at all. So it is
very important that the properties of safety critical systems can be included
in the model in an not too complex way. Moreover, Large systems should be
possible to handle. This can be done by using a hierarchical model, so that
independent subsystems can be modelled on their own.

1.2 Contribution

In this thesis, a model taking into account the requirements presented in
chapter 1.1 is used as base, the IFD-model [35]. The IFD-model is modified
with two thoughts in mind: First, it should be improved in order to make it
easier to understand and to use. Furthermore, this model should be trans-
formable into a Binary Decision Diagram (BDD) [20].
The next step is to create algorithms for an efficient evaluation of the modi-
fied IFD-model. As this model includes all failure scenarios of the described
system there is a state space explosion regarding the number of used compo-
nents. A naive implementation would lead to an exponential complexity, so
such an implementation would be of no practical use. Instead, different BDD-
techniques are combined: zero suppressed BDDs (ZBDDs) [42] and Boolean
Expression Diagrams (BEDs) [11] to avoid the combinatorial explosion.
To be able to apply BDD-techniques, the model itself is transformed into a
Boolean form. This Boolean form is used as base for creating a BDD. This
creation process itself is hierarchic and uses properties of the IFD-model for
a very efficient evaluation.
To test the developed algorithms, they were implemented in a rudimentary
software. This software is mainly meant as proof of concept - but it was also
used for modelling several case studies. For example, we made a compari-
son of a novel concept for redundancy originally developed by the group of
Klaus Echtle of the University of Duisburg-Essen with classical redundant
architectures. Furthermore a chemical reactor was modelled, which was al-
ready used as example in the dissertation [35] of Karim Hamidi. Finally, the
developed algorithms were evaluated regarding their performance. We made
two different analysis: at first, the theoretical complexity was determined.
Afterwards, measurements were taken based on the implementation.
The next chapters explain these steps in detail and demonstrate the power
of the IFD-approach.
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1.3 Organisation of this thesis

The thesis is structured as follows: Chapter 2 explains the foundations of
dependability modelling and Binary Decision Diagrams. Chapter 3 presents
the IFD-approach developed by Karim Hamidi, on which this work is based.
Chapter 4 shows how the original IFD-model was modified, so that the algo-
rithms presented in Chapter 5 can be applied. Chapter 6 explains how these
algorithms were implemented. Chapter 7 presents two case studies and is
followed by an evaluation of the work in Chapter 8. Chapter 9 will give a
short summary followed by an outlook in Chapter 10.



Chapter 2

Foundations

This chapter explains important facts about two domains: reliability mod-
elling and Binary Decision Diagrams. Both are necessary to understand the
work presented in this dissertation. First some definitions in the domain of
reliability modelling are given. Afterwards, several widely used possibilities
to model systems for estimating their reliability are discussed. Afterwards a
few related works are presented which have similarities with this thesis.
The next section explains several BDD-techniques. These techniques are
used to avoid combinatorial explosions which can occur easily evaluating re-
liability models. Several versions of this widely used technique are presented
and compared.

2.1 Reliability and Safety Modelling

This section explains the important base for reliability and safety modelling.
First some definitions are given, followed by the introduction of two impor-
tant widely used distributions (Exponential and Weibull distribution) for
modelling single components. Afterwards, three general ways to model the
reliability of more complex systems are compared: state based methods, com-
binatorial methods and hybrid models. These different approaches differ in
intuitivity, computational demands and expressive power.

2.1.1 Definitions

There are several important terms and measures used in the domain of re-
liability modelling. They are used for both the whole system and single
components of the system. These measures have to be defined in a clear way
to avoid confusion.

11



12 CHAPTER 2. FOUNDATIONS

First we have to clarify what system means in the context of this thesis. Here
a System is an assembly of electronic, electrical, or mechanical components
with interdependent functions, usually forming a self-contained unit. [8]
Reliability [62] itself is defined as the probability that a system will work
satisfying for a specified time t. Let T be the random variable representing
the lifetime of the system, u(t) its probability density function and U(t) its
cumulative density function. Then the reliability, denoted as R(t), can be
defined as follows:

R(t) = Pr(T > t) = 1− U(t) =
∫∞
t
u(x)dx

U(t) is also called the unreliability, as it is equal to the probability that
the system will fail during the specified time interval [0, t].
The next important measure is the Mean Time to Failure [39], abbreviated
as MTTF. It is defined as the expected value of the lifetime of the system
and can be calculated by:

MTTF =
∫∞
0
R(t)dt

Many systems are repairable. In such systems, also a Mean Time To Re-
pair (MTTR)[50] can be defined. It is defined as the expected value for the
length of the repairing process, including the failure detection.
The next important measure is the availability, denoted as A(t). It is the
probability that the system is working at the time t. For non-repairable sys-
tems A(t) is obviously equal to R(t). For repairable systems, the following
inequality holds: A(t) ≥ R(t).
For repairable systems the so called steady state availability, denoted as A,
is especially interesting. It is defined as:

A = limt→∞A(t).

If we assume that repairs are always perfect, i.e. the system is as good
as new after each repair, the steady state availability can be calculated with
the following equation: [56]

A = MTTF
MTTF+MTTR

.

We can distinguish four different classes of failures [49]. Crash failures lead
to an immediate and uncontrolled shutdown of a system. A system with an
omission failure gives no results or orders at all. Systems with Timing fail-
ures give the correct results or reactions, but later as specified. If a Byzantine
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failure occurs, the system gives wrong results or orders.
These different types of failures have different consequences. While some
failures will just lead to unavailability other failures can cause dangerous ac-
cidents. The severity of these consequences depends on the tasks and the
architecture of the system and whether failures are detected so that safety
steps like a controlled shut down can be taken. Note that some failures can
not be detected at all. Also the detection process itself can fail.
This leads to the measure of safety S(t) [55][6]. A system is safe if it is not
causing harm, injuries or damage. We can also define it more formally as the
probability that a system is either working correctly or is shut down. For
non-repairable systems the following inequality holds: S(t) ≥ R(t).
This definition has an interesting consequence: the safety can be increased
by shutting down the system, leading to less reliability. For real fail-safe
systems this means that a very cautious approach where the system is shut
down as soon as there is a tiny doubt about its integrity will lead to a very
safe, but very unreliable system. It is even possible to create a system with
S(t) = 1 by never starting it at all. Obviously, such a system does not make
any sense. But it shows that analysing the safety without taking into account
the reliability is not enough. The following table depicts a safety-availability
matrix for a fail-safe system showing four different operating states. In this
context safe and unsafe describe the state of the system’s environment based
on the specification, not the state of the system itself. Unsafe demands for a
safety shutdown. Available and unavailable describe if the system is currently
working or if it has been shut down.

Unavailable Available
Safe Spurious trip Working correctly

Unsafe Safety shutdown Failure on demand

This matrix has four different cells. The overall system is reliable if it is in
the state Working correctly. It is safe if it is in one of the state Working
correctly, Spurious trip or Safety shutdown.
In two of the four states the system does not work like specified, i.e the safety
functions of the system have failed: Spurious trip and Failure on demand.
These two failure states have large differences. Spurious trips are annoying
and should occur only rarely as they lead to unnecessary unavailability and
costs, but at least they are not dangerous. In contrary, failures on demand
should hopefully never happen at all as they can cause severe accidents.
So, in order to analyse the safety functions of a system, it is necessary to
distinguish these two failure states. For evaluating the safety functions of
fail-safe systems, two different probabilities are defined, the probability of

1 1 



14 CHAPTER 2. FOUNDATIONS

failure on demand (PFD(t)) and the probability of a spurious trip (PFS(t))
[35].

• PFD(t) is the probability that a failure on demand occurs during the
time interval [0,t].

• PFS(t) is the probability that a spurious trip occurs during the time
interval [0,t].

With these two measures, it is possible to evaluate fail-safe systems and their
safety functions.

2.1.2 Probability Distributions

In order to evaluate reliability models in a quantitative way, it is necessary
to model the possible failures quantitatively. For this task probability distri-
butions are needed, so this subsection presents the two most important ones.
One of the most common probability distributions is the exponential dis-
tribution. It has only one parameter λ, representing the failure rate of the
component or system. Its probability density function is

f(t) = λe−λt.

This leads to the following reliability and unreliability:

R(t) = e−λt

U(t) = 1− e−λt

The failure rate λ is constant, i.e. it is independent of the component’s
or system’s age. This a reasonable assumption for many components, for ex-
ample electronic circuits which have almost no wearoff. Also external events
like cosmic rays can be modelled with the exponential distribution. It is not
suitable for modelling components or systems with non-constant failure rates
for their whole lifetime, though. Examples for such components are motors or
valves where mechanical wearoff has a strong influence on the reliability. But
even for these components and systems the exponential distribution can be
used to approximate their reliability. For many components first the failure
rate is decreasing fast as the early failures are mostly caused by faulty pro-
duction (”infant mortality”). Then the failure rate stays constant for some
time until the wearoff really kicks in. The curve of such a failure rate is also
called the bath tube curve[39]. The exponential distribution can be used for
the time in which the failure rate is constant. This is a good approximation
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as in most systems with high reliability demands components are introduced
only after strict testing and replaced before their failure starts to rise due to
wearoff. So for their lifetime in the system the components have a constant
failure rate.
One of the main advantages of the exponential distribution is that it simpli-
fies the calculation processes. It also allows the use of Markov Chains.
When the ageing effects have to be included in the model, the Weibull dis-
tribution[67] can be used. Its probability density function is

f(t) = βtβ−1

ηβ
e−(t/η)

β

where β > 0 is the shape parameter and η > 0 is the scale parameter.
This leads to the following reliability:

R(t) = e−(t/η)
β

U(t) = 1− e−(t/η)β

Note that sometimes the parameter λ = η−1 is used instead of η.
Depending on β, the failure rate of the Weibull distribution is changing with
time. For β < 1, the failure rate decreases. For β = 1 it stays constant, i.e. it
is equivalent to an exponential distribution with the failure rate η−1. If β > 1,
the failure rate increases. So the Weibull distribution can be used to model
each phase of the bathtub curve. The calculus with the Weibull distribution
is more complicated than for the exponential distribution, though.

2.1.3 Combinatorial Methods

In this section we present several methods to model systems consisting of sev-
eral components. Basically, there are two different classes of modelling for-
malisms: combinatorial and state based formalisms. This subsection presents
two combinatorial formalisms. Combinatorial or Boolean formalisms are for-
malisms which create a model equivalent to a Boolean expression. They can
be evaluated with simple algorithms well known in the domain of stochastic.
The most common combinatorial (also called Boolean) formalisms are Fault
Trees (FTs, [58]) and Reliability Block Diagrams (RBDs, [59]). Both are
based on graphs for representing the modelled system.
Fault trees are trees in which the leafs represent the components of the sys-
tem. The inner nodes of the tree contain the Boolean operators and and or
and are called and-gates and or-gates. An example is shown in Figure 2.1.

The system modelled by this fault tree is a Triple Modular Redundancy-
system(TMR-system) [31], consisting of three identical sensors S1, S2 and S3



16 CHAPTER 2. FOUNDATIONS

Figure 2.1: A fault tree for a TMR-system

and a voter V. The voter takes the three results of the sensors and chooses
the median. The system will fail if either the voter or at least two of the
three sensors fail.
The root of the fault tree (node one) and node two are or-gates, while the
nodes three, four and five are and-gates. Basically, it represents a Boolean
expression consisting of variables for the components. These variables are
true if their corresponding components fail. If the expression for the fault
tree is satisfied, the system fails.
Reliability Block Diagrams are an alternative for fault trees. RBDs are
graphs with two special nodes s and t. The vertices of the RBD represent
the system’s components. The system works correctly if there is a working
path from s to t. An RBD for the TMR-system is depicted in Figure 2.2.

Like for Fault Trees, a Boolean expression describing the system can be

Figure 2.2: A reliability block diagram for a TMR-system

extracted from the RBD. If this expression is satisfied, the system is working
correctly.
Both Fault Trees and Reliability Block Diagrams can be evaluated in several
ways. Qualitative analysis are possible with minimal cut sets. These can

2 v 
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determine which components have to fail, so that the overall system will fail.
A quantitative evaluation for calculating reliability measures like availability
is possible, too. If failure probabilities for all components are known and all
the Boolean variables are stochastically independent, the failure probability
of the overall system can be calculated. Also it is possible to do qualitative
analysis to determine which component failures will lead to a global system
failure by using minimal cutsets. For these purposes, Binary Decision Dia-
grams are created. Section 2.2 will explain this process in more details.
Combinatorial reliability modelling has several advantages. First, the models
are easy to learn and to master. A deep knowledge about stochastic processes
is not a mandatory for creating fault trees or RBDs. It is sufficient to know
the system and its behaviour.
Furthermore, both RBDs and FTs can be created hierarchically. It is possible
to create a model of the global system architecture in which several subsys-
tems are included as single components. Afterwards, these subsystems can
be modelled themselves as RBDs or FTs. In the end, the subsystems in the
general model can be replaced by the appropriate RBDs or FTs, leading to
a large and detailed model.
Finally, for evaluating combinatorial formalisms efficient algorithms exist, so
less computing power is needed compared to state based formalisms. The
main reason for this is that these formalisms can be transformed into the
very efficient BDDs.
The combinatorial formalisms have some limits, though. At first, each com-
ponent has only two states, failed or working. Neither it is possible to include
different failure modes nor these formalisms can describe a continuous state
(E.g. ”Component is working at 62% capacity”).
For a quantitative evaluation it is necessary that there are no stochastic de-
pendencies in the model. For many systems this is not true, though. Common
cause failures, failure propagation, warm/cold standby or shared repairs lead
to stochastic dependencies between the variables in a FT or RBD. These
effects can not be modelled with combinatorial formalisms, but they occur
often in real-life applications. So these effects have either to be neglected, or
more powerful methods have to be applied.

2.1.4 State Based Methods

A more powerful alternative to combinatorial formalisms are state based
formalisms . The two most common methods are Markov chains (MCs) and
stochastic Petri nets.
Markov chains [57] are sequences of random variables X1, X2, ...Xn with the
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Markov property. This means that the next state in the chain depends only
on the current state:

Pr(Xn+1 = x|X1 = x1, X2 = x2, ..., Xn = xn) = Pr(Xn+1 = x|Xn = xn)

Markov chains are depicted as directed graphs in which the nodes represent
the different states and the edges represent the transitions between the states.
The transitions have different rates based on an exponential probability dis-
tribution. Figure 2.3 depicts a Markov chain representing a TMR-system:

The Markov chain has eight different states. The system is in the states

Figure 2.3: A Markov chain for a TMR-system

S0, S1, S2 or S3 if the voter is working and zero, one, two or three sensors
failed. The system is in the states S0V, S1V, S2V or S3V if the voter and
zero, one, two or three sensors failed. The transition rates are based on the
failure rates λS and λV and the repair rates µS and µV of the sensors and
the voter.
Markov chains can be evaluated regarding the probabilities that the system
is in a certain state at time t. This is the transient evaluation. Furthermore,
it is possible to calculate the probabilities for t → ∞, the so called steady
state evaluation. Reliability and Safety can be calculated by summing up the
probabilities of the reliable respective safe states. For example, the TMR-
system is working if it is in the states S0 or S1.
One possibility to get the probabilities for the transient and the steady state
analysis is a Monte Carlo simulation [34]. The results are not exact, though.
Their accuracy depends on the number of simulation runs. Furthermore the
accuracy is lower for states which occur only very rarely. So for very reliable
systems in which failures are very improbable a lot of simulation runs are
needed to receive an accurate result.
For Markov chains, there is an alternative to the simulation. It is possible

Às 
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to solve them analytically, both for the transient and the steady state eval-
uation. At first, the transient evaluation is explained. Be S1, S2, ..., Sn the
states of a Markov chain, λij the rate of the transition from the state Si to
the state Sj and pi(t) the probability that the Markov chain is in the state
Si at time t. For each state Sk with incoming transitions from the states
Si1, ..., Sil and outgoing transitions to the states So1, ..., Som the following
equation holds:

d

dt
pk(t) =

l∑
a=1

λiak · pia(t)−
m∑
b=1

λkob · pob(t)

For a Markov chain with n states, n such equations create a Differential
Equation System (DES). This DES can be solved numerically in order to
determine the probabilities of each state in the Markov chain.
The solution for the steady state case is even simpler. Be pi = limt→∞ pi(t).
For each state Sk with incoming transitions from the states Si1, ..., Sil and
outgoing transitions to the states So1, ..., Som the following equation holds:

l∑
a=1

λiak · pia =
m∑
b=1

λkob · pob

Furthermore, it holds obviously:
∑n

i=1 pi = 1. Together with the n equations
for the states a linear equation system can be defined, consisting out of n+ 1
equations for n variables. The linear equation systems can be evaluated for
determining the probabilities for all the states.
Markov Chains have several advantages over combinatorial formalisms. They
can model different states for components and the global system. They
can also include effects like common cause failures or failure propagation by
adding fitting transitions in the chain. Effects like delayed repair or different
standby strategies can be considered in MCs, too. In general, they are much
more powerful than FTs or RBDs.
The powerfulness has its disadvantages, though. MCs can not be created
hierarchically. In the FT- or RBD-model of the TMR-system, it is easy to
replace a component by a more complex system or to add a single component.
MCs can not be changed that easy as the state space is altered dramatically
by such a step. Besides that, the size of the MC grows exponential with the
number of components in the original system. For the TMR-system, a MC
only representing the three sensors would need fours states. Adding the voter
leads to eight states. For this reason, it is impossible to create MC-models
for large systems by hand. Markov chains also lack intiutivity. It is almost
impossible to recognize the original system architecture of a system by just
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looking at its Markov model. So modelling with MCs is quite error prone.
Another widely-used state based formalism are stochastic Petri nets (SPNs,
[45]). A SPN is a 4-tuple (S, T,W,M0) with:

• S is a finite set of places

• T is a finite set of transitions

• S ∩ T = {}

• W : (S × T ) ∪ (T × S) is a set of arcs. Arcs connect either places to
transitions or transitions to places.

• M0 is the initial marking of the stochastic Petri net.

Figure 2.4 shows a SPN modelling the TMR-system.
The places of the stochastic Petri net can contain markings. Markings can

Figure 2.4: A stochastic Petri net for a TMR-system

move around the net by firing the transitions. A transition can be fired if all
the places at the source of each incoming arc (input places) contain at least
one marking. After firing the transition, each input place loses one marking
while the places at the targets of the outgoing arcs of the transition (output
places) gain a marking. A transition is active if it can be fired. If several
different transitions are active, it is not determined which one will be fired
in the next step. The probability of each transition depends on the rates
defined for the transitions, hence the name stochastic Petri net.
Unlike Markov chains, the probability distributions for the rates of the tran-
sitions of SPNs are not restricted. This allows to model more complex system
or component behaviour.
For a quantified evaluation of SPNs, the so called reward rates are needed.

SWorking VWorking 

SFaiied VFailed 
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The example in Figure 2.4 has four places and four transitions. The places
SWorking and SFailed show how many sensors are working or have failed
by the number of markings. The places VWorking and VFailed show if the
voter has failed or not. The reward rate describing the global system is
SFailed ≥ 2 ∧ V Failed = 1. The system will fail if either the voter or two
sensors fail. The probability of a system failure can be calculated by calcu-
lating the probability that the reward rate is fulfilled.
In general, the probabilities for the reward rates can be estimated by a Monte-
Carlo-simulation. For the special case that the rates of the transitions are
exponential, it is possible to transform the SPN to a equivalent MC which
can be solved analytically [41]. Both ways for the evaluation have similar
properties like the evaluation for MCs. A simulation for rare events have
to run a long time. Converting a large SPN to a MC is not always faster,
though. As MCs grow exponential with the number of components, the cal-
culation costs are exponential too.
Stochastic Petri nets are a very powerful tool for modelling the reliability of
systems. Non-Boolean behaviour can be modelled as well as dependencies be-
tween different components in the system[59]. They are easier to handle than
Markov Chains, as they support modularized modelling to a certain degree.
There are limits to this, though: New components without dependencies can
be added easily, while adding dependencies into an existing model can lead
to a total different structure of the SPN.
While being more intuitive than MC, SPNs can still not compete with the
high level approaches of RBDs and FTs regarding the understandability. Cre-
ating and understanding models based on Petri nets is more difficult than
using combinatorial formalisms. Especially for large models this can be a
problem.

2.1.5 Hybrid Approaches

While state based formalisms are quite powerful, they are rarely used for
modelling the Reliability or Safety of systems in industrial applications.
These formalisms lack the simplicity and intuitivity of their combinatorial
counterparts. So several formalisms were developed to support a high level
modelling process like with FTs and RBDs, but which also allow to model
dependencies and non-Boolean behaviour in an easy way.
One possibility to create a powerful but intuitive model is to enrich existing
high level mechanisms like FTs and RBDs with new constructs for certain
non-Boolean behaviours or dependencies. For solving these models, state
based models are generated and solved automatically. The designer of the
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formers does not need to know anything about the latter. Examples for this
technique are Dynamic Fault Trees (DFTs, [25]), used in the tools DIFtree
[24] and Galileo [23] or the tool OpenSESAME [66].
Dynamic Fault Trees are fault trees with additional gates for different kind of
standby modes (cold, warm, hot). Furthermore, they contain Priority-And
and Priority-Or-gates. The OpenSESAME-model is based on an RBD, but
inter-component dependencies can be added in extra failure dependency di-
agrams. Besides that, repair groups can be defined to model shared repair
resources, and like in DFTs different kind of standby modes can be included.
To solve these models, Markov chains (for DFTs) or Petri nets (for OpenS-
ESAME) are created. The structure of these low-level models is based on the
kind of dependency or behaviour which the high-level formalism has speci-
fied. It is neither possible nor necessary for the user to change the low-level
models. The advantage of this method is that the user does not need to know
anything about the low-level mechanisms. The disadvantage is that only de-
pendencies and non-Boolean behaviour included in the high-level formalism
can be modelled. So these tools are limited in their usability. They were
developed for special application domains. For example, OpenSESAME has
been developed for modelling highly-available systems which can be easily
evaluated with this tool. It does not support several failure modes or dis-
joint events which are necessary for modelling safety critical systems, though.
Instead of creating just a high-level model and generating a low-level model
automatically, it is also possible to create a high-level formalism in which the
components or events can be described closer by a low-level model. An ex-
ample for this technique are the Boolean Driven Markov Processes (BDMPs,
[17][18]). With BDMPs a Fault Tree with extensions similar to Dynamic
Fault Trees is used to define the global system architecture. Single compo-
nents can be added as classic Boolean variables, but it is also possible to add
leafs in the tree which are described by State Space formalism. Furthermore,
different parts of the Fault Tree can be linked with so called triggers, which
allows to model the activation of different modes of the system. These trig-
gers can be adapted using MCs. For using such tools, the modeller has still
to use low-level formalisms. But at least only quite small systems have to be
modelled by them, which is not so difficult. These models can be combined
easily with the high-level model. An advantage of this method is that the
modeller is not restricted by the tool which dependencies or non-Boolean
behaviour he wants to include in his model.
Note that state based methods are not always necessary to describe depen-
dencies or non-Boolean behaviour. Boolean expressions can describe quite a
lot of these effects [58]. For example a component with two different failure
states can be simply represented by two Boolean variables instead of by just
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one. Of course, this leads to stochastic dependencies. If the component is
represented by two Boolean variables for its two failure states, at most one of
these variables may be true. For a quantified evaluation these dependencies
have to be taken into account [69]. It is not sufficient to create a model in a
standard FT- or RBD-tool which normally assume stochastic independence
of all components.
In this thesis, a Boolean method will be used to describe components with
several failure modes. It is just important to make sure that probability
calculations are adapted accordingly.

2.2 BDD-Techniques

Binary Decision Diagrams (BDDs) are an efficient way to represent Boolean
expressions. This section gives a short overview about different BDD-techniques
and how these can be used in the domain of reliability modelling.
The base for BDDs is the Shannon Decomposition[58]. Be ΦXi resp. ΦXi

the
expression which results from substituting the variable Xi in the Boolean
expression Φ with true resp. false. For a Boolean function Φ : Bn → B it
holds:

Φ = (Xi ∧ ΦXi) ∨ (Xi ∧ ΦXi
) (2.1)

where Xi is a variable of Φ.
This decomposition can be applied recursively on the remaining expressions
ΦXi and ΦXi

.

The decomposition is demonstrated for the expression Φ = (a∧b∧c)∨(a∧c).
At first, a is substituted:

Φ = (a ∧ Φa) ∨ (a ∧ Φa) with
Φa = b ∧ c
Φa = c
We continue by replacing b in Φa and Φa. As the latter does not contain the
variable b, the resulting expressions are equal to Φa. For Φa, the decompo-
sition is not so trivial:

Φab = false
Φab = c
Φab = Φab = c

Finally in these four expressions c can be replaced by true and false. This
process can be illustrated with a tree, the so called Binary Decision Tree
(BDT). The BDT for the example is depicted in Figure 2.5.
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This tree has got leaves representing the Boolean constants true (also called

Figure 2.5: A BDT for the expression (a ∧ b ∧ c) ∨ (a ∧ c)

One-Node) and false (also called Zero-Node). The inner nodes of this tree
contain the variables and represent different subexpressions. Each variable
has two children, one One-Child representing the expression after substi-
tuting the variable of this node with true, and one Zero-Child representing
the expression after substituting the variable of this node with false. The
One-Child is connected with a plain edge while the edge to the Zero-Child
is dashed.
Obviously this is a very inefficient way to represent the Boolean expression.
For an expression with n different variables, O(2n) nodes are needed. But
the size of the tree can be reduced drastically with simple techniques. In this
thesis, three of these techniques are explained in more detail.

2.2.1 ROBDDs

The first BDD-technique discussed here is the Reduced Ordered Binary De-
cision Diagram(ROBDD)[20][19]. It uses the Shannon Decomposition[61] to
create a Directed Acyclic Graph (DAG) similar to the BDT. Two differences
exist to the BDT, though:

1. If a newly created node v2 is equivalent to an already existing node v1
(i.e. their variable and their children are identical), v2 is removed and
its incoming edges are linked to v1 instead.

2. If both outgoing edges of a node v1 have the same target node v2, v1
is removed and its incoming edges are linked to v2 instead. v1 is also
called Don’t-care-node.

Figure 2.6 depicts these so called reduction rules.
These rules lead to a much slimmer diagram than the BDT. In the worst
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Figure 2.6: The reduction rules for an ROBDD

case, an exponential number of nodes is still needed. But for most practical
cases, ROBDDs need fewer nodes. Figure 2.7 shows how the BDT for the
presented example can be reduced to an ROBDD.
Note that the ordering of the variables influences the size and the struc-

Figure 2.7: An ROBDD for the expression (a ∧ b ∧ c) ∨ (a ∧ c)

ture of the ROBDD. For example, an ordering b, c, a for the expression
(a ∧ b ∧ c) ∨ (a ∧ c) would lead to an ROBDD with six nodes instead of
five. A good ordering of the variables is essential for the efficiency of ROB-
DDs. With a good ordering, the decomposition will lead to many equivalent
subexpressions enabling a lot of reductions. On the other hand, a poor or-
dering will lead to almost no reduction of size. Unluckily, there is no easy
way to estimate the optimal ordering as this problem is co-NP-complete [20].
Only quite costly approaches exist (for example [12]). So in most applica-
tions heuristics are used for finding a good ordering.
For an efficient implementation the BDT is not constructed in advance and
minimised afterwards like Figure 2.7 could imply, as this would still need ex-
ponential time and memory. For an efficient implementation Bryant’s apply-
algorithm is used. This recursive algorithm can transform a Boolean expres-
sion f1 < op > f2 with a binary Boolean operator < op > and two Boolean
expressions f1 and f2 into an ROBDD. By splitting the original expression

/' 

--
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into two subexpressions, an ROBDD for the whole expression can be created.
The basic idea is to use the Shannon decomposition for the given Boolean
expression the following way:

f1 < op > f2 = xi · (f1|xi=0 < op > f2|xi=0) + xi · (f1|xi=1 < op > f2|xi=1)

The decomposition is continued recursively with the expressions (f1|xi=0 <
op > f2|xi=0), (f1|xi=1 < op > f2|xi=1) and the next variable xi+1 in the
variable ordering. A ROBDD-node is created for xi, too. Its two children
are the two ROBDDs of the subexpressions. Furthermore, a hash table is
created which contains an entry for each created ROBDD-node u of the form
(f1, f2, u). This table is looked up after a call of the apply-function first.
If there is a hit, i.e. the two functions f1 and f2 were already combined,
the already created node u is used instead of creating a new node. So the
first reduction rule of ROBDDs is applied implicitly. This leads to a smaller
diagram and the expansion of the children of n1 respective n2 has to be done
only once instead of twice. This can reduce the complexity of the apply-
algorithm dramatically if there are a lot of such node equivalences.
The recursion stops if the expression to decompose is reduced to a single
Boolean variable or a Boolean constant. For these trivial cases simple sub-
ROBDDs are created directly. These small sub-diagrams are merged, so that
finally a diagram representing the whole original expression is created. Also
the don’t-care-nodes are eliminated on the fly while the algorithm is working,
so that the graph created by the apply algorithm is a proper ROBDD.
This algorithm has the time- and space-complexity of O(|G1| · |G2|) where
|G1| and |G2| are the number of nodes of the ROBDDs for the subexpressions
f1 and f2. In the worst-case this can still lead to an exponential complexity
for the whole ROBDD-creation process regarding the number of variables in
the original Boolean expression. But for most cases ROBDDs are much more
compact than BDTs.
In the literature BDD is often used as a synonym for ROBDD. In this work
this is not the case. BDD is used as generic term for different types of
diagrams based on BDD-techniques.

2.2.2 ZBDDs

An alternative to ROBDDs are the zero-suppressed Binary Decision Dia-
grams (ZBDDs)[42]. They are created similar like ROBDDs using the apply-
algorithm, but they use different reduction rules:

1. If the one-child of a node v1 is the Zero-Node, it is removed. Its incom-
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ing edges are linked with the zero-child of v1 instead.

2. If a newly created node v2 is equivalent to an already existing node v1
(i.e. their variable and their children are identical), v2 is removed and
its incoming edges are linked to v1 instead.

Figure 2.8 depicts the reduction rules for ZBDDs.
If these reduction rules are applied to the presented example, the ZBDD

Figure 2.8: The reduction rules for a ZBDD

shown in Figure 2.9 is created.
Whether an ROBDD or a ZBDD is more efficient for representing an ex-

Figure 2.9: A ZBDD for the expression (a ∧ b ∧ c) ∨ (a ∧ c)

pression, depends on its structure. If the corresponding BDT contains a lot
of nodes with two equivalent children, an ROBDD is superior. If it contains
many nodes with the zero-node as one-child, a ZBDD is better. In general,
both have the same worst-case-complexity. In the worst case, exponential
time and memory is needed for creating both the ROBDD and the ZBDD.
But for most practical examples the complexity of both BDD-types is much
better.
Once created, the different types of BDDs can be used for several analysis,

> 
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including reliability evaluation. Many systems can be described by Boolean
expressions in which the variables represent their basic components. If there
is no stochastic dependency between these different variables and probabili-
ties for each variable are given, a BDD can be used to calculate the probability
of the overall expression very fast.[52] Furthermore, it is possible to create
a conjunction or disjunction out of two given expressions in BDD-form very
fast by using the apply-operator.

2.2.3 BEDs

The apply-algorithm presented in the previous sections can be realised in a
visual way by using Boolean Expression Diagrams (BEDs, [11]). BEDs are
extended ROBDDs which also contain binary operator-nodes. Inner nodes
can either contain a Boolean variable x or a Boolean operator op. Operator
nodes have always two children a1 and a2 just like variable nodes and rep-
resent the Boolean function a1 op a2. It is possible to remove the operator
nodes in the BED and transform it to a regular ROBDD by using two re-
duction rules:
By applying the rules from Figure 2.10 iteratively the operator nodes can

Figure 2.10: The reduction rules for BEDs

be pushed down until they reach the terminal nodes. After that they can be
removed totally by using the Boolean logic.
This process of pushing down the operator nodes and replacing it with vari-
able nodes is exactly the same as in the apply algorithm, the resulting ROB-
DDs are equal. But one major difference exists which is used in this work:
To use the apply-algorithm the basic Boolean expression has to be known in
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advance and it has to be in an explicit form. This algorithm starts to create
the BDD from the bottom. For BEDs this explicit form is not necessary. It
is sufficient to know only parts of the expression explicitly while the rest of
the expression can be still encoded into another form. So it is possible to
start the construction of the BDD from top. In certain circumstances [68]
- like in our application - in which it is complicated or inefficient to extract
the whole Boolean expression in one step this can be a major advantage.

2.3 Related Work

This section presents other projects related to this thesis in regards to the
usage of BDD-techniques and safety modelling. Both the similarities and the
differences to this thesis are explained. Overall, three different projects are
presented: SafeMe, a modelling formalism for safety critical systems; Hip-
HOPS, an annotation technique for systems with several failure modes; and
an approach to evaluate multi-phased missions with BDDs.

2.3.1 SafeMe

In [65] the authors present a formalism to describe safety critical systems
based on standard fault trees or RBDs. This approach is an extension of the
modelling environment OpenSESAME already explained in Chapter 2.1.5.
As safety critical systems normally have more than one undesirable event,
each of it can be described with a FT or an RBD. Furthermore, relations be-
tween these different failure modes can be defined in interrelation diagrams,
e.g. that a system in the state ”safety shutdown” can not create an accident.
Besides that, several other dependencies can be defined using the diagrams of
OpenSESAME, like fault propagation, common cause failures, shared repair
or necessary time spans for fault detection.
After defining the high level model, an equivalent state based model can be
created automatically. The SBM can evaluate the modelled system taking
into account all the different effects in the SafeMe-model. This makes SafeMe
very powerful while it remains easy to understand.
Like in IFDs which are explained afterwards, SafeMe supports several fail-
ure modes and a hierarchical modelling approach. But it is not possible to
describe the whole system with one high level model, though. Instead, each
global failure mode needs its a own high level model. Furthermore SafeME
does not support multiple failure modes for single components directly.
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2.3.2 Hip-HOPS

Hierarchically Performed Hazard Origin and Propagation Studies (Hip-HOPS)
presented for example in [43] or [44] can be applied to several different high
level models like RBDs, FTs or data flow diagrams. These can be annoted
so that the failures of components in these high level components can be dis-
criminated into different types like omission or timing failures. Afterwards,
the model can be evaluated in two steps. First, the local failure behaviour
of each component is evaluated. Afterwards, a global model is created based
on the connections of the components. For this global model different fault
trees can be derived automatically. These FTs can be connected to a larger
graph, which is used as base for a BDD. With the BDD an overall quantita-
tive evaluation can be done in order to estimate the safety of the modelled
system.
The main target of this approach is to facilitate the step from the first very
abstract and simplified models like fault trees to a more detailed model in-
cluding several failure modes. Hip-HOPS only support one global failure
mode, though.

2.3.3 Multi-Phased Missions

At Loughborough University, a method for evaluating multi-phased missions
has been developed[48][26]. The reliability structure of systems with multi-
ple, different phases in their mission time can change, so it is necessary to
model all the different phases on their own.
In the method presented in [48], each phase is described with a fault tree.
These fault trees can be transformed into BDDs. The main target is to gather
a global BDD for the whole mission time.
To reach this aim, the BDDs for the different phases are combined. The
zero-node in the BDD for the n-th phase (i.e. the system is still working)
is replaced by the root of the BDD for the n + 1-th phase. By this process,
large and complex systems with multiple phases can be described easily. Fur-
thermore, this methods allows a fast estimation of the probability of mission
success for systems in operation, which can be used to determine if the mis-
sion should be aborted or not. The responding global BDD is created in
advance, and as soon as a component fails, the failure probabilities for this
component are changed in the whole BDD to one. Afterwards, the new suc-
cess probability can be calculated directly.
In this work, we also create a BDD by combining several small BDDs. But
unlike in [48] we can not simply change failure probabilities of the compo-
nents during the calculus. Furthermore, we have more than one failure mode
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for one component.

2.3.4 Mode Automata

Mode automata are a quite powerful formalism for describing safety critical
systems. A mode automaton is an input/output automaton with several pos-
sible discrete states, called modes. Furthermore, there are continuous flow
variables for input and for output flows. Events change modes taking into
account the current mode and the values of the flow variables. In each mode,
a transfer function determines the values of the output flows from the values
of the input flows[53].
One advantage of mode automata is that they can be assembled hierar-
chically, just like fault trees or reliability block diagrams. There are three
possible ways to compose two mode automata: parallel, serial and by syn-
chronisation.
Mode Automata are more powerful than Boolean methods. The problem of
this is that the analysis of such automata is harder as there are much more
possible states. To avoid this combinatorial explosion, it is possible to trans-
form the automata into a Boolean form. By doing this, some information
of the original automaton is lost. Still it is a good way to get a Boolean
description of a complex system which includes as many of its properties as
possible.
Mode automata are the base for the language AltaRica[33][13]. AltaRica
allows a textual description of mode automata. One advantage of this possi-
bility that AltaRica-models can be created automatically from other repre-
sentations. Besides that, often it is easier to describe all important properties
of a node in a textual way than using graphic means. An example for a com-
plex model is [16].
AltaRica is interesting as a powerful high-level formalism can be transformed
into a simpler Boolean form for evaluation. A similar process is also necessary
for the IFD-formalism.

2.3.5 Fault tolerant stack processor

The information flow approach was also used for evaluating a model of a
fault tolerant stack processor. [15][29][28]
In this work, a stack processor was modelled in VHDL-RTL. This VHDL-
description was used as base for an information flow model of this processor.
In this special case, the number of potential states was extended in compar-
ison to the standard IFD-model:
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• Working correctly

• Detected and tolerated failure

• Detected and non-tolerated failure

• Non-detected and non-tolerated failure

• Spurious shutdown

• Stop of system

For quantified results, a state automaton was extracted out of the IFD. These
results were applied to several different machine programs for this stack pro-
cessor. So it was possible to estimate a reliability of each program, not only
a general reliability of the whole processor.

2.3.6 CASPA

Stochastic process algebras (SPA)[38] are capable of describing systems in
order to evaluate their reliability and performance. A textual model is cre-
ated which specifies the system to model by describing the behaviour of its
processes. For example it is possible to include different kind of compositions
of processes, interruptions, deadlocks and several other features.
On example of a SPA is CASPA.[40][14] CASPA is quite powerful as SPAs
can be mapped to equivalent Continuous time Markov Chains (CMTS). In
order to solve them, efficient algorithms are necessary, though.
In CASPA, a so called Stochastic Labelled Transition System (SLTS) is cre-
ated, based on the textual description. The SLTS can be used to create multi
terminal ZBDDs (MT-ZBDDs). MT-ZBDDs are like normal ZBDDs, their
only difference is that the leaves of this BDD are not limited to contain only
the Boolean constants true and false, but also Boolean variables.
By using such BDD-techniques, even complex systems can be evaluated with
CASPA in a quantitative way efficiently. CASPA also uses and modifies ZB-
DDs just like we will do for our application. This shows that ZBDDs can be
a viable and practicable alternative to ROBDDs.



Chapter 3

Information Flow Diagrams

The task of this thesis is to enhance the evaluation process of Information
Flow Diagrams (IFDs) introduced by Karim Hamidi [35]. The IFD-model
is well adapted to solve the problem of estimating the PFD and PFS for
safety critical systems mentioned in Chapter 1.1. The system is described by
its logical structure based on the information flow. It is possible to extract
different scenarios leading to different system states out of this model.
Its target is to extract two lists: La and Ld of scenarios leading respectively
to spurious trips and to dangerous failures. These lists are used to calculate
the PFD and PFS. This chapter presents the original IFD-approach in de-
tail and explains how it can handle several failure modes for both the global
system and its components.
The IFD-model is a hierarchic model. It consists of a high-level model de-
scribing the system structure and a low level model for single functional
entities. Furthermore, atomic components can be defined by using Markov
chains. First the high-level model, a block diagram representing the infor-
mation flow, is presented. Afterwards, the low-level model based on finite
automata is shown, followed by the model for hardware resources. This Chap-
ter also explains how these two different models are combined for an overall
solution. Finally a short evaluation about the advantages and disadvantages
will follow.

3.1 The High Level Model

The high-level model depicts the information flow through the different func-
tional entities of the modelled system. It consists of blocks representing the
functional entities and directed edges between these blocks representing the
information flow. This graph is acyclic. An example, modelling a chemical
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reactor, is shown in Figure 3.1.
The IFD-approach distinguishes between three different types of informa-

Figure 3.1: An IFD of a chemical reactor

tion:

• D-information are used for diagnostic purposes. Information about
detected faults is classified in this category. It is drawn as wide dashed
arrows.

• F-information represents information about the current system state
and the necessity for shutting down the system. It is drawn as plain
arrows.

• Control instructions for special entities in the system. Its graphical
representation are pointed dashed arrows.

Figure 3.2 shows how these three types are represented in the graph. The
information type and its content can be altered in the different blocks. The
information can also be split between two blocks. This allows to forward the
output information of one block to several other blocks in the IFD.
The blocks can represent electronic (e.g. controllers, memory), electrical

Figure 3.2: The arrows for F-information (left), D-information (middle) and
control instructions (right).

(e.g. electric motors) or mechanical (e.g valves) subsystems. They are also
distinguished: There are SRC1-, SRC2-, TF-, ST-, SB-, CT- and IP-blocks.
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SRC1-blocks: SRC1-blocks represent the sensors of the system. They
have no input and one output. They deliver F-information which is con-
sidered to be faultless. This information tells if a shutdown is necessary
(presence of demand) or not (absence of demand) based on the environment
of the system.

SRC2-blocks: SRC2-blocks deliver faultless information about detectable
existing faults in the system. They have no input and one output of diag-
nostic D-information. They do not represent the actual testing procedures,
though. These are represented by ST-blocks which can produce faults.

TF-blocks: TF-blocks represent entities transforming signals. TF-blocks
have always one input and most times one output. The input information
can be either F- or D-information, the type of the output information is al-
ways the same as the type of the input information. TF-blocks transform the
incoming signal (e.g. by amplification, encoding, ...), including even changes
of the nature of the signal (electronic, electric, mechanical,...). A TF-block
in the IFD is defined as the final block and has no output. The final block
represents the actuators of the modelled system.

ST-blocks: ST-blocks represent self test entities in the system which can
detect faulty components. They have one incoming and one outgoing edge.
The predecessor block is always of type SRC2, i.e its input information is al-
ways of the type D. Its output is also a signal with diagnostic D-information.

SB-blocks: SB-blocks represent entities storing information for a short
time. They memorise the incoming signal which can be either F- or D-
information and forwards it afterwards without changing it or its type. These
blocks are used for synchronizing the system.

CT-blocks: CT-blocks control the information flow. They can detect the
loss of signals and are used to model functions like watchdogs. Their input
are control instructions, their output are diagnostic results, i.r D-information.
The control instructions are split from either F- or D-information between
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two blocks. Figure 3.3 shows how CT-blocks are represented in the diagram.

Figure 3.3: Possible use of CT-blocks.

IP-blocks: IP-blocks are used for decision entities. They have two inputs
and one output signal. The type of the input and output signals have to be
F- or D-information. It is also possible to have one input of F- and one input
of D-information for an IP-block. The outgoing information can also be of
both types.

The high level model represents the system structure based on the system’s
information flow. In each block the system can be in one faulty state: S, D
or I. The state S is used for spurious trips, i.e. the system has detected and
reacted on non existing failures. D represents dangerous failures in which
failures are not detected and the system is not shut down although it would
be necessary. The so called inhabitant state I is used for the loss of signals.
To define in which state each block is, a low level model is defined. For all
blocks but SRC1- and SRC2-blocks, an automaton exists which is used to
extract up to three different lists (L1, L2, L3) with several failure events,
based on the actual resources of the system. These lists define under which
circumstances the state of the blocks can change. The next section explains
how these lists are created.

3.2 The Low Level Model

Before explaining the low level model for the IFD-formalism, we have to
define finite automata. A Deterministic Finite State Automaton[37] is a
quintuple (Σ, S, s0, δ, F ) where:

• Σ is the input alphabet (a finite, non-empty set of symbols)

• S is a finite, non empty set of states

• s0 ∈ S is the initial state
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• δ is the state transition function: δ : S × Σ→ S

• F is the set of final or accepting states

Finite automata are often illustrated as directed graphs in which nodes repre-
sent the states and edges annoted with symbols from the alphabet Σ represent
the state transitions.
Finite state automata are used to test if a given input consisting out of sym-
bols from Σ are part of a regular language[63].
For the IFD-formalism, deterministic finite state automata are used as low
level model. In this case, the automata are also always acyclic. One of these
automata is depicted in Figure 3.4. Each automaton has one initial state
and three accepting states E1, E2 and E3. E1, E2 and E3 accept a language
describing all events leading to the states D (E1), S (E2) and I (E3).
The automata use the following alphabet:

Figure 3.4: A finite automaton for a TF-block

• init(b), b ∈ {true, false} (only for TF, ST, SB and CT-blocks)

• init(i1i2) i1, i2 ∈ {1, 2} (only for IP-blocks)

• fin(b), b ∈ {true, false}

• d(xi, y), i ∈ N, y ∈ {0, S,D, I}

• bf(ei) for a bit-flip resource e, i ∈ N

• tf(k), k ∈ N

• other events, noted with small letters

E3 
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Initial events init(b)/init(i1i2) represent the state of the input signal. The
value of b determines the state, depending on the type of block. For blocks of
the type TF or SB, init(true) describes the state D, init(false) the state S. For
ST-blocks, only init(true) is allowed, describing the state D. CT-blocks also
allow only init(true), but for these blocks the state I is meant. As IP-blocks
have two entries, they use tuples, in which i1 describes the first incoming
signal and i2 the second. 1 represents the the state D and 2 the state S.
Final events (fin(b)) lead to the accepting states E1 and E2. For edges lead-
ing to E1, b has got always the value true, for edges leading to E2 its value
is false.
The so called transient events (d(xi, y)) represent hardware failures. xi is a
hardware resource, y its state. The state can be either one of the faulty ones
(S,D,I) or it can be 0, i.e. the hardware resource is working properly. One
special event is x0. It is used to model the absence (d(x0, S)) or the presence
(d(x0, D)) of demand.
Transient events are capable of modelling multiple failure modes for atomic
components which is needed in complex safety critical systems. With these
events, it is possible to introduce non-Boolean behaviour of components.
Environmental faults (bf(e)) like bit-flips are also included in the automa-
tons. They are used mainly for representing bit-flips. There can be several
possible occurrences of bit-flips, so several bit-flip resources ei can be defined.
Test faults (tf(k)) only occur in automata for ST-blocks. The predecessors of
ST-blocks are always SRC2-blocks which define a list of n components which
are periodically tested. The parameter k ≤ n tells which of these compo-
nent tests has failed. Events of the type others model signal transmissions in
functional sub-entities. They allow to add additional ways to the nodes E1,
E2 and E3. In the end, they will not influence the generated list, though. So
basically the use of these events in the automaton is equivalent to the empty
word ε.
Using these automatons, the local lists L1, L2 and L3 can be extracted by
generating the languages for the nodes E1, E2 and E3. The following exam-
ple illustrates this process.
Figure 3.4 depicts an automaton for a TF-block. There are two different
ways possible from the initial node to the Node E1. Each way defines a
word. These words are sequences of events which will cause the block to
switch to the state D. If the different words are combined in one set, an
accepted language is created. This language contains all possible sequences
leading to the state D. Out of the example, the following three lists can be
extracted using the concept explained above:

L1 = {Init(True)d(x5, 0)Fin(True); Init(False)d(x5, S)Fin(True)}
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L2 = {Init(True)bf(e2)Fin(False); Init(False)d(x5, 0)Fin(False)}
L3 = {Init(True)d(x5, I); Init(False)d(x5, I)}

For SRC1- and SRC2-blocks, the lists are defined directly without using
automatons. SRC1-blocks always have the following lists:

L1 = {d(x0, D)}
L2 = {d(x0, S)}
L3 = {}

For SRC2-blocks, L2 and L3 are empty. L1 contains transient events rep-
resenting the resources tested in this blocks. Unlike the other blocks, the
lists of SRC1- and SRC2-blocks do not give any sequences leading to a state
change. Instead they define the original state of the environment.

3.3 Generation of the Global Lists

Figure 3.5: A small serial IFD

The final step is to create the two lists La and Ld, using the high level
model and the local lists. Ld represents all scenarios leading to a dangerous
failure, while La consists of all scenarios leading to spurious trips of the global
system. These two lists can be generated automatically from the model by
the so called aggregation. This generation process starts with the lists L1 and
L2 of the final block. L1 is used for Ld, L2 is the base for La. The method-
ology to generate the lists is explained with two short examples illustrating
the generation for serial IFDs and for IP-blocks. The first example, depicted
in Figure 3.5 consists only out of three blocks SRC, A and B. The lists of
the final block are equivalent to the lists defined by the automaton in Figure
3.4. The lists of the block A are like follows:

L1 = {Init(True)d(x5, 0)d(x2, S)Fin(True);
Init(False)d(x5, S)d(x2, 0)Fin(True)}

L2 = {Init(True)d(x2, D)aFin(False); Init(False)d(x2, S)bF in(False)}

L3 = {}

SRC A B 

ISRC1H TF H TF 
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The events a and b are events of the type other.
Ld can be generated by replacing the initial events in L1(B). In TF-, SB- and
ST-blocks, Init(true) is substituted with the sequences of L1(A), Init(false)
with the sequences of L2(A) the following way:

La = {Init(True)d(x5, 0)d(x2, S)Fin(True)d(x5, 0)Fin(True);
Init(False)d(x5, S)d(x2, 0)Fin(True)d(x5, 0)Fin(True);
Init(True)d(x2, D)aFin(False)d(x5, S)Fin(True);
Init(False)d(x2, S)bF in(False)d(x5, S)Fin(True)}

Ld = {Init(True)d(x5, 0)d(x2, S)Fin(True)bf(e2)Fin(False);
Init(False)d(x5, S)d(x2, 0)Fin(True)bf(e2)Fin(False);
Init(True)d(x2, D)aFin(False)d(x5, 0)Fin(False);
Init(False)d(x2, S)bF in(False)d(x5, 0)Fin(False)}

Note that for CT-blocks Init(true) is replaced with the sequences of L3 of its
predecessor.
The next step is to replace the new initial events with the sequences of
the lists of SRC. As this block is a SRC1-block, Init(true) is replaced with
d(x0, D) and Init(false) with d(x0, S), leading to the following result:

La = {d(x0, D)d(x5, 0)d(x2, S)Fin(True)d(x5, 0)Fin(True);
d(x0, S)d(x5, S)d(x2, 0)Fin(True)d(x5, 0)Fin(True);
d(x0, D)d(x2, D)aFin(False)d(x5, S)Fin(True);
d(x0, S)d(x2, S)bF in(False)d(x5, S)Fin(True)}

Ld = {d(x0, D)d(x5, 0)d(x2, S)Fin(True)bf(e2)Fin(False);
d(x0, S)d(x5, S)d(x2, 0)Fin(True)bf(e2)Fin(False);
d(x0, D)d(x2, D)aFin(False)d(x5, 0)Fin(False);
d(x0, S)d(x2, S)bF in(False)d(x5, 0)Fin(False)}

The final step is to reduce the two lists using the reduce operator RED
in order to remove invalid sequences and simplify valid ones. The following
simplifications are possible:

• other- and final-events can be removed.

• Sequences which contain one transient resource multiple times in two
different states (e.g. d(x5, S)d(x5, 0)), it can be removed as this is an
impossible sequence.
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• If a sequence contains a transient resource multiple times in the same
state (e.g. d(x5, 0)d(x5, 0)), all but one of the transient events can be
removed.

Applying these simplifications, the lists La and Ld can be reduced to the
following form:

La = {d(x0, D)d(x5, 0)d(x2, S);
d(x0, D)d(x2, D)d(x5, S);
d(x0, S)d(x2, S)d(x5, S)}

Ld = {d(x0, D)d(x5, 0)d(x2, S)bf(e2);
d(x0, S)d(x5, S)d(x2, 0)bf(e2);
d(x0, D)d(x2, D)d(x5, 0);
d(x0, S)d(x2, S)d(x5, 0)}

For IFDs with IP-blocks, the generation of the lists is similar. The differ-
ence is that for IP-blocks there are four possible values for the initial event
instead of two. The following example illustrates the generation of the lists
for IP-blocks. It consists of three blocks: A, B and C, depicted in Figure
3.6. We assume that the lists L1 and L2 for the blocks A and B are already
aggregated. The aim is to estimate the aggregated lists for the IP-block.
The lists L1 and L2 of the blocks A, B and C are defined like that:

Figure 3.6: A sub IFD containing an IP-block

L1(A) = {d(xo, S)d(x5, 0); d(xo,D)d(x5, S)d(x1, D)}
L2(A) = {d(xo,D)d(x5, 0)d(x1, S); d(xo, S)d(x5, D)}

L1(B) = {d(xo, S)d(x5, 0)d(x3, D); d(xo,D)d(x5, S)}
L2(B) = {d(xo,D)d(x5, 0); d(xo, S)d(x5, D)d(x3, S)}

L1(C) = {Init(11)d(x4, 0)aFin(True); Init(12)d(x4, 0)aFin(True);
Init(21)d(x4, 0)aFin(True); Init(22)d(x4, S)Fin(True)}

A 

~ C 
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L2(C) = {Init(11)d(x4, D)Fin(False); Init(12)d(x4, D)Fin(False);
Init(21)d(x4, D)Fin(False); Init(22)bd(x4, 0)Fin(False)}

To substitute the initial events Init(ij) is replaced by the list Lij. It holds:

Lij = RED(Li(A)⊗ Lj(B))

where ⊗ is the operator for the set product. This leads to the following
four lists:

L11 = {d(xo, S)d(x5, 0)d(x3, D); d(xo,D)d(x5, S)d(x1, D)}
L12 = {}
L21 = {}
L22 = {d(xo,D)d(x5, 0)d(x1, S); d(xo, S)d(x5, D)d(x3, S)}

Now these lists can be used to replace the initial events in L1(C) and L2(C),
and the RED-operator can be applied on these lists. This leads to the fol-
lowing result:

RED(L1(C)) = {d(xo, S)d(x5, 0)d(x3, D)d(x4, 0);
d(xo,D)d(x5, S)d(x1, D)d(x4, 0);
d(xo,D)d(x5, 0)d(x1, S)d(x4, S);
d(xo, S)d(x5, D)d(x3, S)d(x4, S)}

RED(L2(C)) = {d(xo, S)d(x5, 0)d(x3, D)d(x4, D);
d(xo,D)d(x5, S)d(x1, D)d(x4, D);
d(xo,D)d(x5, 0)d(x1, S)d(x4, 0);
d(xo, S)d(x5, D)d(x3, S)d(x4, 0)}

After using these aggregations, the lists La and Ld can be generated. These
can be used for quantified analysis if the failure probabilities of the single
components are known. The next section will explain how these can be
gained.

3.4 Model of the Hardware Resources

In classical models the components of a system are simply modelled with
Boolean variables. This is possible as in these models the components nor-
mally have just two states, failed or working. In the IFD-approach, there



3.4. MODEL OF THE HARDWARE RESOURCES 43

are four different states for hardware resources: S, D, I and 0. To represent
these states, Markov Chains are used.
Markov chains are very versatile and can be used for including a lot of dif-
ferent aspects into the model. Depending on effects like repairability, main-
tenance or failure detection, the resulting MC can look different. The easiest
example is a MC for a non-repairable component depicted in Figure 3.7:

This MC consists of four states 0, S, D and I and three transitions with

Figure 3.7: A Markov chain for a non-repairable component.

rates λS, λD and λL.
Of course more complicated component behaviour can be expressed by us-
ing MCs. It is even possible to model the MCs themselves in a hierarchical
way, in which several states are grouped in four macro states. An example
is a component which can fail either detected or undetected. If it fails unde-
tected, a regular test routine can find the failure. Once a failure is known,
the component is switched into a safe state. Afterwards, it is repaired. A
Markov model for such a component is shown in Figure 3.8.

In the figure, the states DU and DD are in the macro state D, SU, SD

Figure 3.8: A Markov chain for a component with failure detection and
repair.

and R are in the macro state S, IU and ID are part of the macro state I
and finally the macro state 0 consists only of the state 0. The probability
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that this component is e.g. in state S can be easily calculated by adding the
probabilities that its MC is in the states SU, SD or R. So MCs can be used
in a wide variety for modelling the components.
It is easy to change the model for the hardware resources. For a quantified
solution of the global model, only the probabilities for the three failure modes
are necessary. How these probabilities are estimated is not important. So it
would be theoretically possible to use a total different approach to model the
components without any changes to the other two layers of the IFD-model.

3.5 Evaluation of the IFD-model

The presented model has two main advantages. At first, it uses a hierarchical
approach. A system can be divided into multiple functional entities, consist-
ing of different components. Afterwards these entities and the components
can be modelled on their own. This allows the user to model even large
systems in a structured and easy way.
Besides that, it allows for multiple failure modes for resources and the global
system. In conventional high-level modelling approaches like fault trees or
reliability block diagrams, only two failure modes are supported. State based
methods like Petri nets and Markov chains support such a feature directly,
but they have other severe disadvantages. Chapter 2.1 gives more informa-
tion about other modelling methods.
The IFD-approach has also some weaknesses, though. Some of the formalisms
are a little bit confusing. For example, the three faulty states are called S,D
and I, the accepting states in the automata are called E1, E2 and E3, the
values of initial events are either Boolean constants or a pair of numbers and
the global lists are called La and Ld. More structured naming conventions
would make it much easier to understand this model.
The IFD-approach has a lot of different blocks and events. At one hand, it
makes the model very powerful, at the other hand, it makes it less clear. The
model should be checked if it is possible too remove some of the blocks or
events without weakening its expression power.
The most serious problem is the combinatorial explosion while creating the
lists, though. The examples showed that already one extra block could lead
to a doubling of the list’s size. For large systems, such a complexity is not
acceptable. Luckily, there is much room for improvement. The sequences in
the lists often contain the same subsequences. With BDD-techniques such
equivalences can be used to create a much smaller formal representation of
the model.
The main target of this thesis is to deal with the disadvantages of the IFD-
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approach. Chapter 4 explains how the model was changed to improve it.
Chapter 5 shows how the combinatorial explosion was avoided.
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Part II

Hierarchical Modelling and
Evaluation

47





Chapter 4

Formalisation of the IFD-Model

To be able to increase the efficiency of the information flow model’s evaluation
process, we have to formalise and simplify it. In its original form, it is
extremely complex with a lot of different types of blocks, information flows
and atomic events. In order to use BDD-techniques, this model has to be
transformed into a Boolean model. This transformation process should keep
the most significant features of the IFD-model presented in the previous
chapter, though. The most important ones are:

• Multiple failure modes for components

• Two failure modes for the global system

• Hierarchical structure

So we need to be cautious which parts of the model can be simplified, and
which parts have to remain in order to keep the characteristics of the IFD-
model.
The modifications can be applied at three different parts of the original IFD-
model: The information flow itself, the blocks and the low level model. But
first, two simple renamings are made to increase intiutivity: Inhabitant fail-
ures (failure mode I) are called Loss of information failures (failure mode
L) as this name is much clearer. Furthermore, CT -blocks which represent
watch dog functions are renamed to Watch Dog-blocks (WD-blocks).
Originally, there are three types of information flow: F-information, D-
information and control instructions. For each kind of block only one or
two types of information are allowed as in- and output. Besides this, the
kind of information is of no importance, no expressive power is gained by
distinguishing these different types. These types may be interesting for un-
derstanding a modelled system, but for this task it is sufficient to add remarks
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to the high level model. In the low level model, it is even impossible to take
the kind of information into account for creating the local lists. So, from a
functional point of view, the three kind of information flows can be seen as
equivalent. From now on, only a general information flow is used in the IFD-
model, we will not discriminate between the different kinds of information
anymore.
The possibilities to simplify and formalise the model regarding the blocks
and the low level model are explained in the following sections.

4.1 Formalisation and Simplification of the

Low Level Model

In chapter 3, the low level model is based on finite automata. For the purpose
of this work, it is not really important how the low level model is exactly
designed. It is only important to know the local lists generated from these
automata, not how these are obtained. So this section will concentrate on
the lists itself.
Originally, there are three lists for each block (L1, L2 and L3) and two lists
for the whole IFD (La and Ld). Each list describes several event sequences
which can lead to one of the three failure modes (S, D or L). In an alternate
point of view, they can be seen as a pseudo-Boolean expression in disjunctive
normal form (DNF)[5]. For example the list

{init(true)d(a, 0)d(b, S)final(true); init(false)d(a, S)(final(true)}

can also be interpreted as:

(init(true) ∧ (a = 0) ∧ (b = S) ∧ final(true)) ∨ (init(false) ∧ (a = S) ∨
final(true)).

From an computer scientist’s point of view, expressions are more practi-
cal. Algorithms can be described much more formally and standard Boolean
operations can be used. Besides, the whole lists should be transformed into
a BDD. As BDDs describe expressions themselves, it is more practical and
elegant to use expressions instead of lists. So from now on these lists will be
transformed into equivalent expressions.
The lists L1, L2 and L3 of the block B are transformed to the local expres-
sions S(B), D(B) and L(B). The lists La and Ld are transformed to the
global expressions S and D. This naming shows which state is described with
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these expressions immediately.
In order to transform the lists into expressions, the events have to be adapted.
Here only changes made to non-IP-blocks are explained, as IP-blocks will be
modified much more significantly than other kind of blocks. These modifica-
tions are explained in the next subsection.
The initial events describe the state of the input signal. In order to increase
intuitivity and readability of the model, the syntax is changed. For ST-, TF-
and SB-blocks init(true) and init(false) are replaced with input(S) and
input(D), for WD-blocks init(true) is replaced with input(L). So it is much
clearer in which state the system has to be for the following event sequence
to be valid.
The events final(true) and final(false) were used to indicate that the au-
tomaton will be in the final state E1 respective E2, i.e. that the according
block will be in the state S respective D. In fact, these are not needed as
the resulting state is already defined by the type of expression (S, D or L).
So the final-events are simply removed.
Events of the type ”other” should represent exchanged signals between HW-
resources. But while aggregating the global lists, the RED-operator (chapter
3.3) will remove them. In the end, they will not influence the outcome of the
list. So they can simply be removed totally.
There are three types of failures in the original model: The so called transient
errors, bit flips and fault tests. While transient errors have got three different
failure states, bit flips have only one. Fault tests refer to other failure events
with one failure mode. To reduce the complexity of the model, it is possible
to transform bit flip and fault test failures into transient ones by defining a
component c, for which only one of the three failure states can occur, i.e.
the probability of the other two failure modes is zero. Besides, the syntax is
changed: A component c, representing either hardware or software, in state
s ∈ {S,D,L, 0} is noted as (c = s). Transient failures will just be called
failures, as they represent any possible hardware or software failure, and as
the name ”transient failure” is a little bit misleading anyway.
Now a short example is given to show how the lists are transformed into
expressions. The following lists for a block B are given:

L1(B) = {init(true)d(a, 0)d(b, S)final(true); init(false)d(a, S)(final(true)}
L2(B) = {init(true)d(a,D)final(false); init(false)d(b, S)bf(e)(final(false)}
L3(B) = {}

The equivalent expressions looks like this:

S(B) = (input(S) ∧ (a = 0) ∧ (b = S)) ∨ (input(D) ∧ (a = S))
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D(B) = (input(S) ∧ (a = D)) ∨ (input(D) ∧ (b = S) ∧ (e = S))
L(B) = false

The empty set is simply transformed to false. For the bit flip failure, a com-
ponent is created for which only one failure mode, in this case S, is possible.
Test faults can be modelled similarly by creating a functional component
representing the test which can fail in one mode. The transient failures and
the initiating events are written in the new syntax. So the expressions are
absolutely equivalent to the respective lists. It just uses another formalism
which is more practical for the purpose of this work.
Furthermore, one restriction is removed: In the original model, each sequence
in the lists for non-SRC-blocks had to start with an initial event. This is not
necessary anymore, as there are many systems in which a failure of one com-
ponent will always lead to the same system state, no matter what input
information the component gets. So the models can be created with shorter
expressions.
The assumption that the expressions have to be in DNF is not changed, it
will make it easier to handle them this way.

4.2 Formalisation and Simplification of Blocks

In chapter 3, seven kind of blocks were defined: SRC1, SRC2, ST , TF , SB,
WD and IP . The next step is to examine these for possible simplifications.
Blocks of the type SRC1 and SRC2 both create information. The only
difference is that blocks of the type SRC1 create F-information while blocks
of the type SRC2 create D-information. As we do not discriminate between
different kind of information anymore, only one type of source block is needed,
which is called SRC. Furthermore, the information created of the blocks of
the type SRC1 and SRC2 just defines the state of the environment of the
system, i.e if the system should be stopped or not. This allows for a direct
calculation of the PFD and PFS. For evaluating the safety of a control system,
it is better to concentrate just on the reliability of the safety functions and
the probabilities of the two global failure modes, though. The failure of these
functions in absence of demand is still a failure of the control system which
needs to be repaired, although no accident has happened. It is still possible
to calculate the PFD and PFS, if both the probabilities of the two different
failure modes S and D and the frequency of dangerous situations is known.
So the expressions of SRC-blocks can be arbitrarily complex representing
actual sensors in the modelled system, their only limit is that they can not
contain any input-events.



4.2. FORMALISATION AND SIMPLIFICATION OF BLOCKS 53

Blocks of the type ST , TF , SB and WD have all one input and one output.
There is an important difference between blocks of the type WD and the
other three types, though. WD-blocks can detect only loss of information
(failure mode L), the other three types can detect only the failure modes S
and D.
The three different types ST , TF and SB are functionally equivalent, though.
They all have one input signal and one output signal, and all of them can
only handle signals in the state S and D. So these three types can be merged
to a standard block, abbreviated as ST -block.
IP -blocks are used to merge two different paths, so they are quite unique.
Obviously, such blocks need to remain in the model if it should not lose to
much usability. IP -blocks have some serious drawbacks, though:

• They can only merge two paths. If three or more paths need to be
merged, for example in a 2-out-of-3-system, several IP-blocks have to
be combined. The number of IP -blocks needed grows exponentially
with the number of paths to merge.

• The creation of the automatons for the IP -blocks is quite cumber-
some. Four different initiating events are needed instead of two like in
the other blocks. It is necessary to have an order of the two predecessor
blocks to initialise the values for these events correctly, as Init(12) is
not equal to Init(21). But it is quite impossible to see which predeces-
sor block initiates the first value and which block initiates the second
one.

This is the reason that IP -blocks were strongly overhauled. Three major
changes were made:

• They can have arbitrarily many predecessor blocks.

• Their low level model is changed to expressions consisting of the pre-
decessor blocks and their possible states.

• Component failures can not be included in these blocks anymore.

Furthermore, they are renamed to decision nodes (DEC-nodes). In the
graphical representation, they are shown as circles. The reason for this re-
naming and the different graphical representation is that we want to highlight
the fact that decision nodes have very different characteristics compared to
SRC-, ST - and WD-blocks. The low-level model of DEC-nodes is defined
with three expressions per node, one for each failure mode.
Now an example will visualise show such expressions. The expressions of the
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Figure 4.1: A decision node D with three predecessor blocks A, B and C

DEC-node D in Figure 4.1 can look like this:

S : ((A = S) ∧ (B = S)) ∨ ((A = D) ∧ (C = S))
D : (A = D) ∧ (B = D) ∧ (C = D)
L : ((B = D) ∧ (C = L)) ∨ ((A = D) ∧ (B = S) ∧ (C = L))

In the original IP -blocks, it was possible to integrate component failures
into the block’s automaton. Now this is impossible as the decision nodes do
not represent an actual component or subsystem, so they can not fail and
take the ”wrong” decision. If there is an actual subsystem or component
taking a decision based on several inputs, like a voter, it has to be added
as successor block after the decision node. For example, a 1-out-of-2-voter
monitoring a larger system can be modelled with the IFD in Figure 4.2: Two

Figure 4.2: The IFD for an 1-out-of-2-voter

sensors deliver their measurements to the voter, demanding either a system
shutdown or to continue the operation. If at least one of the sensors demands
a shutdown, the voter will stop the monitored system. Both the sensors and
the voter can fail in two different ways. The sensor can demand an unnec-
essary shutdown (failure mode S) or fail to demand a necessary one (failure
mode D). The voter, represented by the component vot, can either start a
spurious shutdown (failure mode S) or not stop the system if it has to (failure
mode D). This set-up of the voting system leads to the depicted IFD and
the following expressions for the decision node Dec:

A 
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S : (Sen1 = S) ∨ (Sen2 = S)
D : (Sen1 = D) ∧ (Sen2 = D)
L : false — This failure mode is impossible

This means that the voter should stop the system unnecessarily if one of
the sensors is demanding such an unwanted shutdown. The voter should not
stop the system in a dangerous situation if no sensor demands it. But as
the voter vot itself can fail, it is included in the block V ot with the following
expressions:

S : (input(S) ∧ (vot = 0)) ∨ (vot = S)
D : (input(D) ∧ (vot = 0)) ∨ (vot = D)

So, the voting system will fail dangerously either if both sensors fail dan-
gerously and the voter works correctly or if the actual voter does not start
a shutdown in presence of demand. The system will fail spuriously if either
one of the sensors fail spuriously and the voter works correctly or if the voter
shuts down the monitored system unnecessarily.
In the original model, only TF-blocks could be final blocks. This limitation
is removed, theoretically any type of block can be chosen to be the final
block. In real examples, the final block should be normally a ST-block or
a DEC-node. Allowing DEC-nodes to be the final node in the IFD has the
advantage, that systems with multiple redundant final actuators like motors
or valves can be modelled easier by adding a final DEC-node which is linked
to the blocks representing the the actuators.
Graphically, the different kind of blocks and nodes are distinguished like that:

• ST- and SRC-blocks are drawn as boxes with a plain border with their
name written inside the box. SRC- and ST-blocks can be simply dis-
tinguished by the fact that ST-blocks have incoming edges while SRC-
blocks only have outgoing edges.

• WD-blocks are drawn as boxes with a dashed border with their name
written inside the box.

• DEC-nodes are drawn as circles with their name written outside the
circle.

• The final block or node is highlighted by a double border for the re-
spective box or circle.

All edges are drawn as plain one-directional arrows. A whole IFD with this
layout is shown in Figure 4.3.
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Of course even a more drastic simplification and formalisation would be

Figure 4.3: A complete IFD of a chemical reactor. (Also see Section 7.2)

possible. WD- and ST-blocks could be unified, leading to blocks with ex-
pressions containing all three types of input-expressions. It would be even
possible to allow arbitrarily many failure modes and stop limiting these to
three. But for performance reasons, these changes were not made. This is
explained in the next chapter.
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4.3 Overview of the Modifications

Old model New Model Explanation
lists expressions
D-Information
F-information Information
control instructions
SB-blocks
TF-blocks ST-blocks Standard-blocks
ST-blocks
SRC1-blocks SRC-blocks Source of information
SRC2-blocks
CT-blocks WD-blocks Watchdog-Blocks
IP-blocks DEC-nodes Decision nodes
init(true) input(S) Initial values
init(false) input(D) in the low level

input(L) model
Transient failures
bitflips failures
test faults
d(c,D) (c = D) Component c in failure mode D
bf(e) (e = S) Bitflip in component e
ft(i) (fi = S) Failure of test-component fi
final(true) removed Leading always to the
final(false) same state ⇒ redundant
”other”-events removed No influence on result
L1 S Safe failure mode for single blocks
L2 D Dangerous failure mode for single blocks
L3 L Loss of information mode for single blocks
La S Spurious trip for whole system
Ld D Dangerous failure for whole system

Comparison between the old and the changed model

Both the low and the high level model were reduced quite a lot, while the
main characteristics of the IFD-model were preserved. This subsection will
present a table with a short overview of the changes which were made. In
the left column, formalisms and vocabulary of the old model can be found.
In the middle column, the respective expressions for the changed model are
presented. The right column shows explanations.
Obviously, a lot of elements have been removed or were merged in the process
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of simplification and formalisation. This means that it is much easier to
develop efficient algorithms for evaluating such a model. Still, it has kept its
most important and unique characteristics. It is hierarchical and it supports
several failure modes for single components in the system and for the global
system itself.
Note that the following convention is used in this thesis: The names of basic
components are written in small letters and the names of the blocks are
written in capital letters.
In Chapter 7.2 a case study is presented in which the same system is modelled
in both the old and the new way. That example will highlight the differences
between the original and formalised model further.

4.4 Overview of the New Formalism

This section gives an overview about the modified formalism without refer-
ring to the original model. It is defined and explained both formally and
using brief examples.
The modified formalism is able to describe a system’s architecture and be-
haviour by using the internal information flow. In this context, the informa-
tion flow can be electronic (e.g. data sent over a bus), electric (e.g. starting
an electric motor), mechanic (e.g. an activated lever), or even physical (e.g.
a chemical which is heated and changes the state of the system). An example
is shown in Figure 4.4.

Figure 4.4: A complete IFD of a chemical reactor. (Also see Section 7.2)

4.4.1 The high level formalism

An IFD is a directed, acyclic graph. Its nodes represent either different
functional entities or rules about the behaviour of the global system. Each
node is always in one and only one of the following states:

• 0 (working correctly)
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• S (spurious trip resp. safe failure mode)

• D (absence on demand resp. dangerous failure mode)

• L (Loss of information)

Each node passes its state to its successors. The state of a node can change
due to failures and events. This is explained further in chapter 4.4.2. Besides
that, every node can be identified with a name. By convention these names
always start with an upper case letter.
Overall, there are four different kind of nodes:

• Source blocks (SRC-blocks) represent the sensors of the system. They
have no incoming edge. They are drawn as boxes with a plain border
and their name written in this box.

• Standard blocks (ST-blocks) represent all kind of functional entities in
the IFD. They have always exactly one input. They are drawn as boxes
with a plain border and their name written in this box.

• Watchdog blocks (WD-blocks) represent watchdog entities in the sys-
tem. They have always exactly one input. They are drawn as boxes
with a dashed border and their name written in this box.

• Decision nodes (DEC-nodes) represent the logical behaviour of the sys-
tem. They can have multiple inputs. They are drawn as circles with
their name written outside the circle.

Furthermore, one of the nodes in the IFD is marked as final node without
an outgoing edge. It is represented graphically by drawing it with a double
border. There are no restrictions about the type of this final node, although
normally it should be either a standard block or a decision node.
The state of the final node is equivalent to the state of the global system.
By calculating the probabilities for the states S and D of the final node it is
possible to estimate the PFD and PFS of the system.

4.4.2 The low level formalism

For SRC-, ST- and WD-blocks special Pseudo-Boolean expressions are used
to model state changes in these blocks. For each block B, three expressions
are defined: S(B), D(B), and L(B), describing which events will lead to the
failure modes S, D and L. These expressions have to be in DNF. Formally,
they can be defined with the following Backus-Naur-Form(BNF)[36][51]:
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<expr> ::= (<conj-expr>) [∧ (<conj-expr>)]+

<conj-expr> ::= (<conj-expr>) [∨ (<conj-expr>)]+| <input-expr>

| <failure-expr> | <bool-const>

<input-expr> ::= input(<fail-state>)

<failure-expr> ::= <comp-name> = <state>

<state> ::= S | D | L | 0

<fail-state> ::= S | D | L

<bool-const> ::= true | false

<comp-name> represents the names of the components. This means, that
there a basically two different types of sub-expressions: failure expressions
and input expressions.
Failure expressions represent basic components of the system and their cur-
rent state (0, S, D, L). By convention components are always written in lower
case. A component c in the state D is noted as follows: (c = D). Input ex-
pression describe the state of the predecessor block resp. node. input(S)
means that the predecessor block has to be in the state S so that this expres-
sion can be satisfied. An example for such expressions is given here:

S(B) = (input(S) ∧ (a = 0) ∧ (b = S)) ∨ (input(D) ∧ (a = S))
D(B) = (input(S) ∧ (a = D)) ∨ (input(D) ∧ (b = S) ∧ (e = S))
L(B) = false

This means that the block B is in the state S if either the predecessor block
is in the state S, the component a is in the state 0, and the component b is
in the state S, or if the predecessor block is in the state D and a is in the
state S. The block B can be never in the state L as this expression is simply
the Boolean constant false.
Note that there are certain restrictions to input expressions. SRC-blocks can
obviously do not have any input expressions as they lack predecessor nodes.
For performance reasons, input expressions of ST-blocks can only contain
the states S and D, while WD-blocks can can only contain input expressions
in the state L.
For Decision nodes, another low level formalism was chosen. Unlike the
blocks DEC-nodes do not include any hardware or software resources. They
only describe in which state the system currently is given the states of the
predecessor nodes. For this, we also use expressions, although with another
syntax:
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<dec-expr> ::= (<dec-expr>) [<bool-op> (<dec-expr>)]+

| <block-name> = <state> | <bool-const>

<bool-op> ::= ∧ | ∨
<state> ::= S | D | L

<bool-const> ::= true | false

<block-name> represents the names of the predecessor blocks.
As example, a system with a one out of two voter is selected, shown in Figure
4.5:
The expressions for the node Dec are as follows:

Figure 4.5: The IFD for an 1-out-of-2-voter

S : (Sen1 = S) ∨ (Sen2 = S)
D : (Sen1 = D) ∧ (Sen2 = D)
L : false — This failure mode is impossible

The sub-expressions like (Sen1 = S) are also called Decision expressions.
This means, that there will be a spurious trip if at least one of the two Sen-
sors produce a spurious trip. A dangerous failure will occur if both sensors
fail dangerously. A failure of type L is not possible in this system.
Note that failures of the voting process itself can not be handled in the
DEC-node Dec, but they can be modelled by adding them to the block V ot.

4.4.3 Combining high and low level

With the new formalism, we want to calculate PFD(t) and PFS(t) for a given
time t. To do so, it is necessary to extract the expressions D and S for the
global system. For this purpose, the expressions D and S of the final node
are used. Now Input expressions (in case the final node is of the type ST or
WD) resp. Decisions expressions (in case the final node is of the type DEC)
have to be substituted. For ST- and WD-blocks, the respective expressions
S, D or L of the predecessor block are used to replace the input expressions.

1 ~ 
Vot 
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This is done similar with decision expressions. This substitution process is
continued recursively, until the source blocks are reached.
To illustrate this, a very simple model is chosen, the 1-out-of-2-voter. The
expressions for the DEC-node is already given, the expressions for the other
blocks look like this:

S(V ot) : (input(S) ∧ (vot = 0)) ∨ (vot = S)
D(V ot) : (input(D) ∧ (vot = 0)) ∨ (vot = D)
S(Sen1) : (s1 = S)
D(Sen1) : (s1 = D)
S(Sen2) : (s2 = S)
D(Sen2) : (s2 = D)

The expressions L are false for all blocks. Now, the input expression in
S(V ot) can be substituted, leading to the following expression:

S(V ot) : (((Sen1 = S) ∨ (Sen2 = S)) ∧ (vot = 0)) ∨ (vot = S)

With a further substitution, we receive the following result:

S(V ot) : (((s1 = S) ∨ (s2 = S)) ∧ (vot = 0)) ∨ (vot = S)

In this expression, there is no substitution possible, as all sub-expressions
only contain basic components. We have the expression S for the global sys-
tem. If the failure probabilities of the basic components are known, we can
calculate the PFS(t) based on this expression.

4.4.4 Modelling basic components

Figure 4.6: A Markov Chain for a non-repairable component.

In order to calculate PFD(t) and PFS(t) it is necessary to know the
failure probabilities of the components at the time t. In order to estimate
these values we used a simple Markov model for the components. We assume
that no repairs will happen, and that a component will not switch from one

s 
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faulty state to another faulty state. Furthermore, three failure rates for each
component are defined, λS, λD, and λL. This leads to the Markov Chain
depicted in Figure 4.6.
Note that it would not be a computational problem to use more complex
Markov Chains for including effects like repairs or switching between different
failure states. The calculation algorithms for analysing MCs could easily
handle larger models.
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Chapter 5

Developed Algorithms

The present chapter explains the algorithms used to transform the IFD-model
into a compact Boolean form. Today, BDD-techniques are the state of the
art for efficient treatment of large Boolean expressions. In our case, two dif-
ferent BDD-techniques were combined: ZBDDs and BEDs. The developed
algorithm has already been presented in several articles (for example [46]).
Now it will be explained in more detail.
The chapter is divided in several sections. First, the transformation of the
expressions from Chapter 4 to Boolean expressions is explained. Afterwards
the creation of BDDs is shown in several steps. At first a method is pre-
sented to transform a IFD without DEC-nodes into a BDD. For this case
we assume that each component occurs only in the expressions of one block.
Afterwards, the algorithm is extended to serial IFDs without the last as-
sumption. The next section will deal with DEC-nodes and how these can
be transformed into a BDD. Finally all these results will be combined for an
algorithm powerful enough to handle all possible IFDs. The creation process
will be demonstrated using a small example which contains all features of
IFDs.
After explaining the creation of the BDDs, it is necessary to evaluate them
for getting quantitative results. The last section will deal with this problem.

5.1 Boolean Interpretation of Local Expres-

sions

Decision Diagrams are used for representing Boolean expressions. To apply
them for describing IFDs, it is necessary to transform the local expressions
of the blocks into Boolean expressions. Basically, the local expressions con-
tain two types of subexpressions: input expressions like Input(S) and failure

65
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expressions like (a = S). For now, input expressions are ignored; they remain
in the expression and will be handled later. For failures, we need a Boolean
variable based on the component and its state. This would be easy if each
component had only two states. Components have four states, though. So
three different boolean variables c0, cS, and cD are defined for every compo-
nent c. These variables are true if c is in the state 0, S or D. Note that
three variables are enough, a variable cL is not necessary. As c can only be
in one state at one time, the value of cL can be deduced from the values
of the other three variables. It holds: cS1 ∧ cS2 = false for S1 6= S2 for
S1, S2 ∈ {0, S,D}.
Of course it would be possible to express four different states just with two
Boolean variables. There are four possible permutations for two boolean
variables, so every permutation could represent one state. But the main aim
of reducing the number of variables is to effectively reduce the number of
nodes in the final BDD. Surprisingly, it does not make any difference regard-
ing the number of BDD-nodes if three or just two variables are used. Besides
that the solution with three variables is less error prone to implement and
has a major advantage for the quantified evaluation. We will give a detailed
explanation later in this chapter.
The transformation is demonstrated with an example. Given are the follow-
ing expressions of a block B:

S(B) = (input(S) ∧ (a = 0) ∧ (b = S)) ∨ (input(D) ∧ (a = S))
D(B) = (input(S) ∧ (a = D)) ∨ (input(D) ∧ (b = L) ∧ (e = S))
L(B) = false

The subexpressions representing the failures can now be transformed to
Boolean variables. The input expressions remain unaltered, the next section
will explain how these are handled. This leads to the following expressions:

S(B) = (input(S) ∧ a0 ∧ aS ∧ aD ∧ b0 ∧ bS ∧ bD) ∨ (input(D) ∧ a0 ∧ aS ∧ aD)
D(B) = (input(S) ∧ a0 ∧ aS ∧ aD) ∨ (input(D) ∧ b0 ∧ bS ∧ bD ∧ e0 ∧ eS ∧ eD)
L(B) = false

As each Boolean variable represents a state of a component, a probabil-
ity for this variable can be defined. With these probabilities it is possible to
evaluate the BDD quantitatively if the variables are stochastic independent.
For this application this is not true, though. Luckily, section 5.6 will show
that this causes no real problems as there is a workaround.
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5.2 ZBDDs for Simple Serial Systems

To describe the algorithm for creating a ZBDD equivalent to the IFD, some
restrictions regarding to the IFD are made. These restrictions are loosened
in the next sections. At first, two assumptions are made:

• The IFD does not contain any DEC-blocks.

• Each Boolean variables only occurs in the expression of one block.

Figure 5.1: The high level model for a simple serial IFD

With these assumptions, it is very easy to use the structuring of the IFD in
order to create a ZBDD very efficiently. First two ZBDDs for the final block
based on the local expressions S and D are created in parallel. These two
ZBDDs share equivalent nodes if possible.
The ZBDDs are created by decomposing the expressions S and D. As these
expressions can contain input-subexpressions it is possible that the created
ZBDD contains extra leaves besides the trivial one- and zero-node. For
ST-blocks, three non-trivial leaves can appear: Input(S), Input(D) and
Input(S) ∨ Input(D). For WD-blocks, only one extra leaf (Input(L)) is
possible.
Note that the number of non-trivial leaves depends on the number of input-
states which are allowed in one block. If in a type of block Input-expressions
can take n different values, 2n − 1 non-trivial leaves are possible. This is
the reason that WD- and ST-blocks are still distinguished and not unified
to a type of block allowing all three failure modes for Input-expressions. In
this case, up to seven non-trivial leaves would have been possible, leading to
broader and probably larger BDDs.
We have chosen ZBDDs and not ROBDDs as they are better suited for our
application. For a component c, three boolean variables c0, cS and cD are
created. There are eight different possibilities to set these variables true or
false. Four of them (c0∧cS∧cD, c0∧cS∧c0, c0∧cS∧cD, c0∧cS∧cD) are always
invalid, though, as only at most one of the variables can be true. So these
four combinations will always lead to the zero-node which can be reduced in
ZBDDs. Figure 5.2 shows the general structure of a ZBDD and a ROBDD
for three generic variables c0, cS and cD. Note that the rectangular nodes
x = 0, x = S, x = D and x = L do not have to be really different nodes
- it is possible that some or even all of them are in fact identical. While a
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ROBDD needs up to seven nodes for these three variables, a ZBDD needs at
most three. Besides, as the structure is known in advance, it is possible to
optimise the BDD-construction-process. If c0 has been set to true, setting cS
or cD to true will lead to the zero node followed by a reduction of the ZBDD.
Instead of creating a node which will be removed immediately afterwards, cS
and cD will be set to false while c0 is set to true. In the end this will lead to
exactly the same ZBDD with less effort necessary for creating it.
Of course it would be possible to create a ROBDD with only three nodes
representing four different states by using only two Boolean variables c1 and
c2 for a component c. But this would only be equally good in comparison to
three variables and a ZBDD regarding the performance. In the mean time it
would be much less intuitive to program the algorithm probably leading to
more bugs which can be hard to find. So this is the reason why three and
not two Boolean variables were chosen to represent one component.
One disadvantage of ZBDDs still exists in the context of this work, though.

Figure 5.2: The structure of a ZBDD and an ROBDD for a generic failure
expression

If an expression is reduced to the value true after a decomposition of a vari-
able x, the node for x can not be linked directly to the node one-node. All
variables with a lower variable order than x have to be included in the way
to the node one-node. In a normal ZBDD, a chain of nodes is created, in
which both outgoing edges of each node lead to the next node in the chain.
For this work, this chain looks a little bit different, as dependencies have to
be taken into account. The true-chain for n different components (x(1) to
x(n)), leading to 3n boolean variables, is shown in Figure 5.3.
The true-chain has to take into account the problem that no component is

allowed to be in more than one state, i.e x(i)s1 ∧ x(i)s2 = false for s1 6= s2
and s1, s2 ∈ {0, S,D}. So the depicted structure has to be used.
Regarding the needs for extra memory and computing power, this is not a
large problem, though. Only one true-chain is needed for the whole ZBDD.
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Figure 5.3: The true-chain

If the expression of a node v with a variable x(i)s is reduced to true, it can
be linked to the node for the variable x(i+ 1)0 in the true-chain.
In this work, the true-chain will not be shown in the figures explicitly, as
it takes a lot of space without really giving any valuable information to the
reader. Edges to nodes in the true-chain will end in rectangular boxes instead
of ellipses. The name of the variable in the true-chain to which the incoming
edges are leading is written inside the rectangle.
Now the decomposition itself is explained in more detail. An example, de-
picted in Figure 5.1, will demonstrate this process. Given is the following
expression S for block C:

S(C) : (Input(S) ∧ x = S) ∨ (Input(S) ∧ x = D ∧ y = S)∨
(Input(D) ∧ x = s) ∨ (Input(D) ∧ x = D ∧ y = D) ∨ (x = S ∧ y = L)

This expression is transformed to the following Boolean form:

S(C) = (Input(S) ∧ x0 ∧ xS ∧ xD) ∨ (Input(S) ∧ x0 ∧ xS ∧ xD ∧ y0 ∧ yS ∧
yD)∨ (Input(D)∧ x0 ∧ xS ∧ xD)∨ (Input(D)∧ x0 ∧ xS ∧ xD ∧ y0 ∧ yS ∧ yD)∨
(x0 ∧ xS ∧ xD ∧ y0 ∧ yS ∧ yD)

Now the decomposition can be used to create a ZBDD. Before starting the
decomposition, the variables have to be ordered, for this example the follow-
ing order was chosen: x0, xS, xD, y0, yS, yD. Note that the variable order is
restricted: The three Boolean variables c0, cS and cD representing one com-
ponent c will always be ordered one after the other. An ordering like x0, yS,
xD, y0, xS, yD would be invalid. We furthermore assume that the sequence
of the three Boolean variables is always c0, cS, cD.
Normally, in ZBDDs or ROBDDs only one variable is set at one time. For
this special application the substitution process can be accelerated as it al-
ready has been explained, though. The decomposition starts with x0. Once
it is substituted with true, in the other case it is substituted with false. If x0
is set to true, xS and xD is automatically set to false. After the substitution,
the following two expressions remain:

X(2lo 
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S(C|x0) = (Input(S) ∧ xS ∧ xD) ∨ (Input(S) ∧ xS ∧ xD ∧ y0 ∧ yS ∧ yD) ∨
(Input(D)∧xS∧xD)∨(Input(D)∧xS∧xD∧y0∧yS∧yD)∨(xS∧xD∧y0∧yS∧yD)
S(C|x0xSxD) = false

In one case, the whole expression is unsatisfiable. The other case can be

Figure 5.4: A local ZBDD for one block

decomposed further. The next variable is xS. For xS, the same optimisation
like for x0 can be applied: if it is set to true, xD is automatically set to false.
This leads to the two following expressions:

S(C|x0xSxD) = Input(S) ∨ Input(D) ∨ (y0 ∧ yS ∧ yD)
S(C|x0xS) = (Input(S)∧xD ∧ y0∧ yS ∧ yD)∨ (Input(D)∧xD ∧ y0∧ yS ∧ yD)

The decomposition process is continued recursively with the variable xD for
S(C|x0xS) and with y0 for S(C|x0xSxD).
The resulting ZBDD shown in 5.4 has three non trivial leaves. The zero-
edge of node four leads to a node in the true-chain; its expression has been
reduced to true by setting yD to false, but as already explained it can not
be linked directly with the node N1. The next step is to eliminate the three
input-nodes. The Input-expressions are basically placeholders for the expres-
sions of the previous block, so the easiest way to eliminate the input-nodes
is to replace them with the ZBDDs of the expressions they represent. Still
equivalent nodes are shared. Let us assume that the expressions S and D of
block B look like this:

S(B) : (Input(S) ∧ z = S ∧ a = 0)
D(B) : z = D ∨ (z = S ∧ a = D)
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These expressions are transformed into a Boolean form and afterwards the
decomposition is continued just like for the block C. The result is shown
in Figure 5.5. For this ZBDD, only one non-trivial leaf remains, Input(S).
By continuing the process of replacing the non-trivial leaves with the local
ZBDDs of the predecessor blocks, all of these leaves can be eliminated. The
algorithm will stop if it reaches the SRC-block in which no input-expressions
are allowed.
This algorithm can be described with the following pseudo code:

Figure 5.5: A ZBDD for two blocks

CreateSerialZBDD(Block finalBlock, Mode x)\ \ x ∈ {S,D}
1 ZBDD global = CreateZBDD(finalBlock.getExpression(x));

2 Queue inputNodes = global.getInputNodes();

3 While (!inputNodes.isEmpty())

4 Node inputNode = inputNodes.getNext();

5 ZBDD local = CreateZBDD(getExpression(inputNode));

6 for all incoming edges e of inputNode:

7 e.setTarget(local.getRoot());

8 inputNodes.add(local.getInputNodes());

, 
1 
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9 return global;

CreateZBDD(Expression e) creates a local ZBDD for the given expres-
sion e by decomposition. This method will use already existing equivalent
nodes in the global ZBDD if possible. getInputNodes(ZBDD zbdd) returns all
Input-nodes of the ZBDD zbdd, and getExpression() delivers the applicable
expression.
For each of the two global failure modes a own ZBDD is needed as these can
only describe one kind of failure. But it is possible to create two different
ZBDDs which share equivalent nodes if possible, leading to one ZBDD with
two different roots.
Note that it is not necessary to implement a reduce-operator like in the orig-
inal model. By using the decomposition, invalid combinations are removed
automatically, and no variable can occur at two different levels of the BDD.
This is another advantage of the BDD-technique.

5.3 ZBDDs for Generalised Serial IFDs

In Chapter 5.2 we assumed that no component will occur in more than one
block. However, IFDs do not have such a limitation in general. This section
explains how the algorithm presented in the last section can be extended in
order to handle general serial IFDs. The assumption that no DEC-nodes
exist still holds, though.
To be able to handle components occuring in multiple blocks of the IFD, the
ZBDD needs to be extended. It is not possible to just add the ZBDDs for
the local expressions if these local ZBDDs contain variables which already
occurred in the global ZBDD. In this case there could be paths in which one
variable could get two different values which is invalid. So two new attributes
are added to the ZBDD:

• An array localExpr containing all local expressions.

• A hash table compMap mapping components to blocks in which they
appear.

The construction of the ZBDD begins like in the simple case. The decom-
position of the local lists starts at the final block and ends with the source
blocks. The only difference is that before every decomposition of a variable
the compMap is checked to find other blocks which use it, too. If there are
other blocks with the same variable, the decomposition is also applied to
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copies of the local lists of these blocks, stored in localExpr. All descendants
of the current node will use these modified expressions instead of the original
ones as soon as the blocks using these lists are reached. In order to achieve
this, every node stores an array with pointers to the expressions which have
to be used in the future. Children inherit these arrays from their parents and
alter them only if their variable will also occur in other blocks of the IFD.
To clarify this idea, the example of Chapter 5.2 section is extended. The
expression S of block A is defined as follows:

S(A) : (x = S ∧ b = 0) ∨ (x = D ∧ b = S)

This means that the component x occurs not only in block C but also in
b The equivalent Boolean form of this expression is as follows:

S(A) = (x0 ∧ xS ∧ xD ∧ b0 ∧ bS ∧ bD) ∨ (x0 ∧ xS ∧ xD ∧ b0 ∧ bS ∧ bD)

The decomposition starts like in the simple case with the block C. The main
difference is that before substituting any variables, compMap is checked. If
x0, xS and xD are substituted in S(C), the same substitution is made for
S(A). The results of the decompositions are shown here:

S(A|x0xSxD) = false
S(A|x0) = (xS ∧ xD ∧ b0 ∧ bS ∧ bD) ∨ (xS ∧ xD ∧ b0 ∧ bS ∧ bD)
S(A|x0xSxD) = b0 ∧ bS ∧ bD
S(A|x0xS) = xD ∧ b0 ∧ bS ∧ bD
S(A|x0xSxD) = b0 ∧ bS ∧ bD
S(A|x0xSxD) = false

If the decomposition reaches block A, the appropriate modified expressions
have to be used for a correct result. To make sure that the right expressions
are used, each ZBDD-node contains an array with pointers to the three local
expressions of each block in the IFD. At the beginning of the decomposition,
they point to the original expression-triples EA, EB and EC , representing
the three expressions S, D and L of the blocks A, B and C. But as soon as
a variable is substituted in more than one block, the respective pointers are
changed to the modified expressions.
Figure 5.6 shows the ZBDD for the presented example. In this figure, each

node shows its pointer array, too. For example, node one contains a pointer
to a triple which contains S(A|x0) instead of the original expression S(A).
These arrays are inherited by the children of the nodes and they are only
modified if a substitution is done in more than one block. For example, node
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Figure 5.6: A ZBDD for a serial system with multiple occurrences of one
variable

three contains the variable yS which only occurs in block C. So it is not
necessary to change the pointers, and the children of node three inherit the
pointer array without any modifications. In the figure the changed arrays
are visualised by including the state of x, as it is the only difference between
the different arrays.
If an Input-node is reached in the ZBDD, it is replaced with the ZBDD equal
to the appropriate expression in its own pointer array. So, the nodes 15 and
17 use the expressions S(A|x0xSxD) respectively S(A|x0xSxD) instead of the
original expression S(A). In these modified expressions, x0, xS and xD have
been already eliminated, so these variables will not occur on two different
levels of the ZBDD which would be invalid.
Note that two nodes with equivalent children can still be unified, even if
their pointer arrays are different. If this is the case, their expressions are not
affected by the settings of their pointer arrays anymore, like for node eleven
in the example. Its remaining expression is zD, so it does not matter how
the expressions for block C look like.

15 
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5.4 BDDs for Non-Serial IFDs

The last sections only explained how to handle serial IFDs without any DEC-
nodes. As these are very important, though, a solution is needed which can
also include non-serial IFDs.
DEC-blocks are specified by different expressions than ST-, WD- and SRC-
blocks. They do not contain any components which can be translated in
Boolean variables. Instead they define how the results of the predecessor
blocks have to be combined.
For this combination, a special form of BEDs can be used. The second re-
duction rule of BEDs have to be altered in order to use them with ZBDDs.
This modified BED is called Zero-suppressed Boolean Expression Diagram
(ZBED) The rules for ZBEDs are shown in Figure 5.7.
For DEC-nodes three ZBEDs are created, one for each expression (S, D and

Figure 5.7: The reduction rules for ZBEDs

L) of the block. The leaves of the ZBED represent the predecessor blocks
of the DEC-node in a certain state (S,D,L). Operator nodes are used to link
the leaves according to the expressions of the DEC-block. An example for
a rule of a DEC-node with three predecessor nodes X, Y and Z is shown in
Figure 5.8. The ZBED is created like an operator tree for the represented
expression.
The linking process with the predecessors and the successor block is similar

to the method described in 5.2. The leaf representing the predecessor non-
DEC-block B in a certain state X is substituted with the appropriate ZBDD
for the expression X(B). A leaf representing the predecessor DEC-node D in
state X is replaced by the ZBED for the expression X. If a non-DEC-block
B is the successor of a DEC-node D, the ZBED for the expression X of D

f~ 
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Figure 5.8: A local ZBED for the expression X = S ∧ (Y = D ∨ Z = D)

substitutes the Input(x)-node of B. So in general, the following algorithm
was used:
CreateZBED(Block decBlock, Mode x)

01 ZBED zbed = ExpressionToZBED(decBlock.getExpression(x));

02 Queue inputNodes = zbed.getInputNodes();

03 While (!inputNodes.isEmpty())

04 Node inputNode = inputNodes.getNext();

05 ZBDD local = CreateZBDD(getExpression(inputNode));

06 for all incoming edges e of inputNode:

07 e.setTarget(local.getRoot());

08 inputNodes.add(local.getInputNodes());

09 while minimisation is possible:

10 ApplyZBEDRules(zbed);

11 return zbed;

The main difference between serial IFDs and IFDs with DEC-blocks can
be recognized in the lines 9 and 10 of the algorithm: before continuing the
substitution, the operator nodes are pushed down as far as possible in order
to transform the ZBED into a ZBDD. For the application of the reduction
rules there are two possibilities in general:

• Apply the reduction rules once after all local ZBDDs and ZBEDs have
been linked.

• Apply the reduction rules iteratively after new local ZBDDs or ZBEDs
have been added, and stop this reduction at Input-nodes or ZBED-
leaves.

In this work, the second approach was used as the reduction rules can already
simplify the diagram significantly while constructing it. As soon as operator
nodes are linked to the terminal nodes N0 or N1, parts of the BDD can be
removed totally.
It is possible to apply Boolean operators directly to ZBDDs, so theoretically
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it would not be necessary to use the BED-technique. In this case it has a
major advantage, though. In order to apply Boolean operators directly, the
two sub-ZBDDs on which the operator is used has to be known in advance.
In this case, it would not be possible to build the BDD block by block which
is a severe disadvantage. In contrast, the BED-technique allows us efficient
local substitutions.

5.5 Illustrative Example

In this section, the presented techniques from the previous sections are com-
bined. A detailed explanation is done with the help of an artificial and
small, but still rather complex example including a DEC-node and a compo-
nent which occurs in two blocks.
The high level model of the example is depicted in Figure 5.9. The expres-

Figure 5.9: The high level model for the illustrative example

sions for the single blocks look like this:

S(B) : (Input(S) ∧ b = 0) ∨ b = S
D(B) : (Input(D) ∧ b = D) ∨ (Input(S) ∨ b = S)
S(DEC) : A = S ∨WD = S
D(DEC) : WD = D
S(A) : (Input(S) ∧ a = 0) ∨ a = S
D(A) : (Input(D) ∧ a = 0) ∨ a = D
S(WD) : wd = S ∧ b = S
D(WD) : input(L) ∧ wd = D ∧ b = D
S(SRC) : s = S
D(SRC) : s = D
L(SRC) : s = L

All the other expressions are set to false.
The aim is to create a ZBDD representing this model. At first a variable
ordering has to be chosen. The following order is used: b0, bS, bD, a0, aS,
aD, wd0, wdS, wdD, s0, sS, sD.
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The construction starts at the final block B. Both S(B) and D(B) are trans-
formed into their Boolean form. Afterwards, the decomposition commences
for each expression, resulting in two ZBDDs. As these two ZBDDs share
equivalent nodes, we will see them as one ZBDD with two different roots.
Figure 5.10 shows the resulting ZBDD for the block B. As the component b

Figure 5.10: The ZBDD for the expressions S(B) and D(B)

occurs also in block WD, it is necessary to make also a substitution of the
expressions of block WD like presented in Section 5.3. As the only Boolean
variables affected by this are the variables b0, bS and bD, not the whole pointer
array is shown in the diagram, but only the state of the component b.
The nodes one and two are the roots for the expressions S resp. D. The
input-nodes show not only their input-value, bot also the state of b. So five
and six are not equivalent as in five b was set to 0 and in six it was set to S.
The next step is to replace the input-nodes with the appropriate ZBEDs

Figure 5.11: The BDD for the blocks B and Dec

of Dec. The resulting BDD is depicted in Figure 5.11. As no variables are
changed in this step, the pointer arrays of the input nodes are taken over
unaltered by the nodes of the added ZBEDs.
Now it is necessary to replace the leaves again. The leaves for the nodes nine

and eleven are replaced by the ZBDD for the expression S(A). As neither

1 
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Figure 5.12: The BDD for the blocks B, Dec, Wd and A

S(A) nor its predecessors contain the component b, the nodes nine and eleven
can be unified. This is different for the nodes seven, eight and ten, though:
as the block WD contains b, these three nodes do not represent the original
expressions S(WD) resp. D(WD), but modified ones. Node seven uses the
expression D(WD|b0bSbD), node eight is a place holder for S(WD|b0bSbD)
and node ten represents the expression S(WD|b0bSbD). These three expres-
sion look like this:

D(WD|b0bSbD) = Input(L) ∧ wd = D
S(WD|b0bSbD) = false
S(WD|b0bSbD) = wd = D

So, eight can be simply substituted with the Zero-node N0, while seven and
ten are replaced by non-trivial ZBDDs. For these ZBDDs, it is necessary
to introduce nodes for the Boolean variables a0, aS and aD although these
do not appear in the expressions. As these variables have a higher order
than the variable for the component wd, which are part of these expressions,
they have to be included in the ZBDD. If these nodes would be missing it
would mean that all three Boolean variables of a have to be false, i.e. the
component a is in state L. But in fact it is not important in which state
the component a is, as long as it is valid. So three nodes are introduced in
a similar structure like the nodes of the true-chain. The resulting BDD is
shown in Figure 5.12.

The next step is to apply the ZBED reduction rules. Node five can be
removed immediately - it is an or-node with N0 as child. So it is deleted,
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Figure 5.13: The ZBED-reduction rules applied on the BDD

and its parent, node one, is linked with the other child of node five instead.
Node six can not be removed that simple. So it is necessary to stepwise
apply the reduction rules for the ZBEDs. After the first application of the
rules, two new or-nodes 21 and 22 are introduced, while node six has been
transformed to a variable node. It is not possible to apply the rules at node
21 as one of its children is an Input-node - first the input node has to be
substituted. So for now the ZBED-reduction rules are only applied for node
22. After a further step, two new or-nodes 23 and 24 appear. One of node
23’s children is a node in the true-chain, representing the Boolean expression
true. So node 23 can be removed, and its incoming edge is linked to the node
in the true-chain instead. Node 24 can be removed, too, as one of its children
is the zero node. The resulting BDD after applying the rules is depicted in
Figure 5.13.

Now the remaining input-nodes have to be substituted. Afterwards, the
ZBED-rules have to be applied a last time on the last or-node 21. After
these steps, no input- or operator-nodes remain in the BDD, so the algo-
rithm will finally terminate. The final version of the ZBDD is shown in
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Figure 5.14: The final ZBDD

Figure 5.14.
This example reveals several interesting properties of the proposed algorithm.
It is capable to create one BDD for two different expressions. So fewer BDD-
nodes are needed for the overall system. Besides that, the algorithm only
creates sub-BDDs for local expressions if these are really needed. For the
example, two of the defined expressions, D(A) and D(Src) were never trans-
formed into a sub-BDD as these expressions are neither a part of the global
expression D nor does the global expression S contain them. Furthermore,
the algorithm demonstrates that several BDD-techniques can be easily com-
bined, in this case ZBDDs and BEDs.
The algorithm has been developed specially for IFDs. It uses several proper-
ties of the IFD-model, like restrictions regarding the variable ordering or the
fact, that each component may only be in one state at one time. Without
these properties the algorithm would not get correct results. This algorithm
can not be used for other similar problems without an adaption. It is also
impossible to use generic BDD-algorithms for solving the IFD-model without
modifying them a lot.
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5.6 Quantitative Evaluation

A basic assumption for the quantitative evaluation of ZBDDs in order to
estimate the overall reliability is that all variables used in the ZBDD are
stochastically independent. In the presented case this is not true, though.
For each component c there are three variables c0, cS and cD from which at
most one can be true, so dependencies have to be taken into account.
The solution for this problem is to use conditional dependencies. Be ct the
state of the variable at the time t. It is assumed that the unconditional
probabilities P (ct = 0), P (ct = S), P (ct = D) and P (ct = L) are known.
It holds: P (ct = 0) + P (ct = S) + P (ct = D) + P (ct = L) = 1. But these
probabilities are not used directly, instead the following probabilities are used
for the variables c0, cS, and cD:

• P (ct = 0) for c0

• P (ct = S)|ct 6= 0) = P (ct=S)
P (ct=S)+P (ct=D)+P (ct=L)

for cS

• P (ct = D|ct 6= 0 ∧ ct 6= S) = P (ct=D)
P (ct=D)+P (ct=L)

for cD

For defining these probabilities, the restrictions regarding the variable order-
ing were taken into account.
Furthermore, the calculus for ZBDDs is altered a little bit. For the probabil-

Figure 5.15: The structure of a ZBDD for one component c

ities of the high edges of c0 resp. cS not cS resp. cD are seen as next variables
in the variable ordering, instead the variable d0 of the next component d is
chosen.
The ZBDD in Figure 5.15 shows the general structure of a ZBDD for a single
component. For a correct quantified evaluation of the ZBDD, the probabil-
ities for the nodes 0, S, D and L have to be the same than the appropriate
unconditional probabilities. This has to be proved, though. It is obviously
true for the node 0. For the other nodes, some calculation has to be done.

D L 
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The probability of the node S is calculated as follows:

P (S) = P (ct = S)|ct 6= 0) · P (ct 6= 0) = P (ct=S)·(P (ct=S)+P (ct=D)+P (ct=L))
P (ct=S)+P (ct=D)+P (ct=L)

=

P (ct = S)

The same way the probability for the node D is designated:

P (D) = P (ct 6= 0) · P (ct 6= S|ct 6= 0) · P (ct = D|ct 6= 0 ∧ ct 6= S) =
P (ct=D)|ct 6=0∧ct 6=S)·P (ct 6=0)·(P (ct=D)+P (ct=L))

P (ct=S)+P (ct=D)+P (ct=L)
=

P (ct=D)·(P (ct=S)+P (ct=D)+P (ct=L))·(P (ct=D)+P (ct=L))
(P (ct=D)+P (ct=L))·(P (ct=S)+P (ct=D)+P (ct=L))

=

P (ct = D)

Finally, the probability for node L is calculated:

P (L) = P (ct 6= 0) · P (ct 6= S|ct 6= 0) · P (ct 6= D|ct 6= 0 ∧ ct 6= S) =
P (ct 6=D)|ct 6=0∧ct 6=S)·P (ct 6=0)·(P (ct=D)+P (ct=L))

P (ct=S)+P (ct=D)+P (ct=L)
=

P (ct=L)·(P (ct=S)+P (ct=D)+P (ct=L))·(P (ct=D)+P (ct=L))
(P (ct=D)+P (ct=L))·(P (ct=S)+P (ct=D)+P (ct=L))

=

P (ct = L)

For all four nodes the probabilities are correct. q.e.d.
The problem of the quantified evaluation is another reason that ZBDDs were
chosen instead of ROBDDs. The simple structure of the ZBDDs makes it
easy to define the values for probabilities of the Boolean variables with only
a minor change of the calculus. In an ROBDD, the problem of dependencies
between the different Boolean variables for one component can not be solved
that elegantly.
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Chapter 6

Implementation

This chapter deals with the details of the implementation of the proposed
algorithm. It was implemented in Java. The implementation reads files
describing the IFD and transforms it into an internal model, creates the ap-
propriate BDD and evaluates it quantitatively. This chapter explains the
structure of the implementation, chosen heuristics and other minor optimi-
sations.
The aim of this implementation is mainly a proof of concept. It probably
could be optimised much more, but obviously only a limited amount of time
could be used for developing the software.

6.1 Defined Datatypes

At first it is necessary to define important datatypes used in the implemen-
tation. In general, these datatypes are either used to describe entities of the
IFD-model or parts of the BDDs. This section will explain the datattypes
which were defined for the implementation.

6.1.1 The IFD-model

The IFD-model has a high- and a low-level model. For the high-level model,
a graph is used. In the IFD-software-package, this graph is represented by
five classes.
The class IFD describes the IFD in general. It contains the attributes blocks,
edges and components, which are lists of all blocks, edges and components
which occur in the IFD. Each block and each edge gets a unique ID generated
by the class itself. These IDs can be used to sort and access the blocks and
edges more easily.
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Important methods in the class IFD are getEdges() and getBlocks() which
return the whole lists of edges and blocks. Besides that it is possible to
add or remove single blocks or edges with the methods addBlock, addEdge,
removeBlock and removeEdge. The method getComponent(String name) re-
turns the component with the given name if such a component exists, and
the methods addComponent and removeComponent can add or remove com-
ponents to the IFD.
For modelling the blocks, three classes are used: The abstract class Abstract-
Block as super class, the class NonDecBlock for SRC- and ST-blocks and the
class DecNode for DEC-nodes.
AbstractBlock contains attributes for the name, the type, the ID and the
parent IFD. Furthermore it stores if the block is the final block. Besides
that, the class inherits the two lists for incoming and outgoing edges from
the abstract class Node. For all attributes, getters and setters are defined.
The classes DecNode and NonDecBlock inherit all attributes and methods
from AbstractBlock. Furthermore, they contain the three expressions for the
states S, D and L and the appropriate getters and setters.
The edges are represented by the class BlockEdge. This class inherits the
attributes source and target from the abstract class Edge. Furthermore, it
has the attributes id and ifd. For all these attributes getters and setters
exist.
Figure 6.1 depicts an UML-diagram[30] representing the class structure for
the high-level model of the IFDs.

6.1.2 Expressions

The next important data structures are expressions. Expressions are used in
three different variations:

• Boolean expressions

• Extended expressions for non-DEC-blocks

• Extended expressions for DEC-nodes

For all three kinds of expressions the super class Expression was created. It
has the following attributes:

• int type (discriminating between disjunction terms, conjunction terms
and atomic expressions)

• boolean bool (true if the expression is a Boolean expression, false oth-
erwise)
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Figure 6.1: The UML-diagram for the high-level model for the IFD-approach
(without getters and setters).

Besides that either two Expressions of type Expression (subExpr1 and subExpr2 )
for disjunction and conjunction terms or an atomic expression atom of type
AtomExpr are defined.
The class AtomExpr is an abstract super class for all kinds of atomic expres-
sions. Its only attribute is the type, which can be either an Input, Fault,
Boolean or Constant expression. For each type, a subclass is defined. In-
stances of the type InputExpr store the value of the input expression (S, D or
L). The class FaultExpr represents components and their four different states:
the faulty states S, D and L and the correct state 0. The class BoolExpr is
used for Boolean variables. This class includes an attribute for the name of
the variable and an attribute negated which shows if this variable is used as
complement. The class ConstExpr represents the Boolean constants, its only
attribute is the value of the constant (true or false). The UML-diagram for
the expressions is depicted in Figure 6.2.

This structure of the expressions can be used for represent all three vari-
ations which occur in the implementation. Boolean Expressions are repre-
sented by instances of the type Expression in which the atomic expressions
are either of the type BoolExpr or ConstExpr. The extended expressions
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Figure 6.2: The UML-diagram for the expressions (without getters and set-
ters).

for non-DEC-blocks are instances of the type Expression where the atomic
expressions are of the type FaultExpr, InputExpr or ConstExpr. Note that
there are further limitations regarding input expressions depending on the
type of block. For SRC-blocks, no input expressions are allowed, while for
ST- and WD-blocks their values are limited to either S and D or L.
The extended expressions for DEC-nodes are represented like regular Boolean
expressions. The name of the block and its state can be encoded in the name
of the Boolean variable. An expression like (A = S) is represented by the
Boolean variable A-S. At first, this simple solution looks a little bit too sloppy
as there is the possibility of stochastic dependencies. But such dependencies
are only a problem if these expressions are used in the calculation of the
probabilities. In this case, these variables are not used for this purpose,
though. They are just placeholders for subexpressions, in which stochastic
dependencies are taken into account correctly.

6.1.3 The BDD

For representing the BDD, three classes are used. The class ZDD is for the
diagram in general. Important attributes are the nodeMap, a hash table
which maps BDD-nodes to themselves; the Vector orderedVariables which
represents an ordered list of all variables used in this BDD; the hash table
varMap which maps the names of the used variables to sets of block in which
they occur and finally the ifd which is a link to the IFD for which this BDD
is created. Furthermore, two BDD nodes are defined as roots for the BDDs
representing the failure modes S and D on a global scale.
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The nodes in the diagram are represented by instances of the type ZDDNode.
This class is a subclass of Node and adds the following attributes to the
already existing ones (outgoing and incoming edges):

• ZDD main

• int type

• Expression[] listS, listD, listL

• AbstractBlock currentBlock

• int variableCount

• Expression currentExpr

The attribute main is a pointer to the central BDD with the global data
needed for the construction. The type represents the possible types of nodes:
Variable nodes like in standard ZBDDs, And- or Or-nodes like in BEDs or
leaves for the Boolean constants true and false. listS, listD and listL are the
pointer arrays of the nodes described in Chapter 5.3. Each failure mode gets
its own array with pointers to the expressions which will be used for the next
blocks. currentBlock is a pointer to the block in which the decomposition
takes place for this node. currentExpr is an eventually reduced local expres-
sion of currentBlock. The attribute variableCount is an integer representing
the variable of the block, orderedVariables[variableCount].
Together the three lists, currentBlock, currentExpr and the current variable
define if two different nodes are equivalent. If all these attributes are identi-
cal, the decomposition will lead to equivalent children nodes. So both nodes
can be merged due to the reduction rules of ZBDDs. In order to check
the equivalence efficiently, the hash code of each node is based on these at-
tributes. Then the hash table nodeMap can be used to check in linear time
[60] if there is an equivalent node to a newly created one. If this is the case,
the existing node is used instead of the new one. With this technique it is
possible to avoid the creation of many unnecessary nodes.
The edges in the BDD are instances of the class ZDDEdge. This class inherits
its attributes source and target from its super class Edge. Besides that, an
Boolean attribute high defines if the target of the edge is the one- or zero-
child of the source. Figure 6.3 shows an UML-diagram for the classes used
for representing the BDD.
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Figure 6.3: The UML-diagram for the BDD (without getters and setters).

6.2 Reading and Preparation of Models

This section explains how IFDs can be stored in files, and how these files are
transformed into a computer readable model. This model is the base for the
creation of the BDD and the following evaluation.

6.2.1 The File Format

IFD-models are stored in IFD-files, a file format developed especially for this
thesis. One example for the Remote Redundancy Architecture (See Chapter
7.1) is shown in the Appendix D. IFD-files consist of four different sections:
The file header, the component section, the block section and the edge sec-
tion.
The header consists only of two lines. The first line denotes the version of
the file format, which allows for changing the format in the future and still
be able to load older examples. The second line defines the mission time of
the system.
The component section begins with the line %Components. Afterwards, each
line describes one component by giving its name, followed by an integer for
its type and three float point values for the failure rates for the modes S, D
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and L. A component line looks like this:

r1 0 1E-09 1E-09 0

This line defines a component r1 with the failure rates 1E − 09 for the
modes S and D and the failure rate 0 for the mode L. Note that the type is
a remnant from the original model where several component types (bitflip,
transient, fault test) were possible. Now only one general component type is
allowed, defined by 0.
The line %Blocks ends the component section and starts the block section.
Each block is described in eight lines, for example:

(1) COM2R
(2) 5
(3) 0
(4) false
(5) input(S);d(bus1,S)#d(bus2,S);d(ecu2,S)
(6) input(D)#d(ecu2,0)#d(bus1,0);input(D)#d(ecu2,0)#d(bus2,0)
(7)
(8)———

The first line (COM2R) defines the name of the block. The second line
(5) gives its ID. The third line (0) describes its type (ST: 0, WD: 1, DEC:
2, SRC: 3). The Boolean value in the fourth line defines if this block is
the final block. The lines five to seven define the expressions S, D and
L. For non-DEC-nodes, still the old format described in Chapter 3.2 is
used. input(S);d(bus1,S)#d(bus2,S);d(ecu2,S) is equal to input(S)∧((bus1 =
S) ∨ (bus2 = S)) ∧ (ecu2 = S), an empty line is equal to false. The last line
is only used to mark that the definition of this block is finished.
For DEC-nodes, the block’s definition looks a little bit different:

(1) Sen2
(2) 7
(3) 2
(4) false
(5) (&P2& = #S OR &R2& = #S) OR &P2& = #D
(6) (&P2& = #D AND &R2& = #D)
(7) false
(8) ———-

For these nodes, the expressions in the lines five to seven are defined in
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a different way. The names of the predecessor blocks used in the expressions
are written between two ampersands, their state is defined by #S, #D or
#L. Unlike for non-DEC-nodes the expression do not have to be in DNF,
brackets and Boolean operators can be used freely.
The last section of the file begins with the line %Edges. In this section, the
edges in the IFD are defined the following way:

(1) 3
(2) 1
(3) 4
(4) ———-

The first line is the id of the edge, the second line defines the id of the
source-block and the third line gives the id of the target block. The fourth
line is used to show that the definition of the edge is finished.

6.2.2 Creation of the Initial IFD-Model

Out of the IFD-file the IFD-model is created using the presented datastruc-
tures. This model is used as base for the evaluation. The reading process is
implemented in the class IFDReader.
This class generates the IFD-model with the method generateIFD. It cre-
ates an empty IFD and adds components, blocks and edges like specified in
the given file. Components and edges can be created directly by just read-
ing the lines and creating appropriate Object of the type Component resp.
ZDDEdge. For Blocks, this is more complicated as their descriptions contain
expressions.
Non-DEC-blocks are not such a large problem as their expressions are al-
ways given in DNF. This allows for directly reading the lines describing the
expression and creating the matching object of the type Expression. DEC-
nodes are more complicated, though. Their expressions are not restricted.
They can contain brackets and the structure of the expression is not known
in advance.
Such expressions can be described with a context-free grammar [22][54]. To
check if an expression can be generated by a given context-free grammar is
done by using a Parser. Furthermore, it is necessary to do a lexical analysis
in order to recognise different symbols used in the expression. For this lexical
analysis a regular expression has to be defined, which can be recognised by
the so called Scanner [10]. Together the scanner and the parser are called
compiler. Programming compilers directly is quite error prone, though. So
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today generators are used to create the code for these programs. For the
generation it is necessary to specify the language formally and then run the
generator.
In this thesis, the Compiler Construction Kit (CCK, [1]) was used which cre-
ates compilers in Java. For creating the parser, a cup-file has to be created
which contains both the specification of the expressions and instructions how
to create the respective expressions in the software. The formal specification
of the expression is based on the BNF-notation from Chapter 4.2. In order
to describe the expressions, terminal and non-terminal symbols are defined.
Terminals are returned by the scanner and contain the symbols for brackets,
identifiers and Boolean operators. They are specified formally in a flex-file.
The only non-terminal symbol used is the expression which we want to ex-
tract. For this purpose it is described in a formal notation similar to BNF.
An extract is shown here:

expr ::= BO expr:e BC

{: RESULT = e; :}
| expr:e1 AND expr:e2

{: RESULT = new Expression(e1,e2,Expression.CONJUNCT,false); :}
| expr:e1 OR expr:e2

{: RESULT = new Expression(e1,e2,Expression.DISJUNCT,false); :}
| IDENTIFIER:id EQ S

{: RESULT = new Expression(new BoolExpr(id+" S", false,0)); :}
| IDENTIFIER:id EQ D

{: RESULT = new Expression(new BoolExpr(id+" D", false,0)); :}
| IDENTIFIER:id EQ L

{: RESULT = new Expression(new BoolExpr(id+" L", false,0)); :}
| TRUE

{: RESULT = new Expression(Expression.trueExpression); :}
| FALSE

{: RESULT = new Expression(Expression.falseExpression); :}
;

There are eight different possibilities defined for the expressions. Each one is
followed by the instruction in braces for creating an instance of Expression
equivalent to the formal specification.
These formal specifications used for generating the classes Lexer, Parser and
Sym. With these classes, the complex expressions can be transformed into
the needed format. Using a generator allows for an easy and fast implemen-
tation of this transformation process.
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6.3 BDD-Creation Process

After transforming the input files into an internal model, this model is used
as base for the BDD-creation algorithm.
Before starting the construction of the BDD, the variable ordering has to be
defined. This ordering is important as it influences the structure and the size
of the BDD. For gaining an efficient variable ordering, the following steps are
taken:
The blocks of the IFD are ordered based on a breadth-first search (BFS),

Figure 6.4: The BFS-order of an IFD

beginning with the final block. An example for a possible order is depicted
in Figure 6.4. Then the variables will be extracted out of the expressions of
the non-DEC-blocks. The extraction order of the blocks is defined by the
BFS-order, it starts at the non-DEC-block with the lowest number (In the
example the block V2). If a variable is extracted from the expressions S, D or
L of a block and not included in orderedVariables, it is added at the end. Fi-
nally orderedVariables will contain all variables occurring in the IFD, sorted
by a BFS-order. By using this BFS-order we make sure that the variable
order fits to the structure of the IFD which leads to a more compact BDD.
Furthermore, the triples of variables c0, cS and cD for one component c will
always follow each other directly. This allows several exploits which increase
the efficiency.
To implement the algorithm discussed in the previous chapter, mainly one
method was used. The method expand in the class ZDDNode takes a still
childless ZDDNode and links it to the appropriate children based on the at-
tributes of this node by substituting the variable like described in Chapter
5. If new nodes are created this way, the expand-method is applied on them,
too. The global BDD is constructed by creating two nodes for both roots
of the BDD and applying the expand-method on them. This way the whole
BDD is created recursively.
Central elements for this construction process important for all nodes like the
hash tables are stored in the main ZDD-object. Attributes only important
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for the nodes itself like the current expressions are stored in the nodes itself.
In order to reduce the memory requirements and decrease the computation
time, all data which is not needed anymore is removed. For example a node
with local expressions of a block B is taken. Pointers in the pointer array
are needed only for the predecessor block’s expressions. The expressions of
the B and the successors do not affect the BDD anymore at this point. And
if the expression of a component is equal to true then all pointers to other
block’s expressions are unnecessary. So unneeded pointers are replaced with
the null-pointer.
This measure has several positive outcomes. At first, many of these ex-
pressions can be removed from the memory by the garbage collector if all
pointers to them are set to null. Furthermore, it enhances equality tests
of nodes. For these, the local expression, the variable and the pointer ar-
ray have to be equal. If many of the pointers in the pointer array are just
null pointers, it is much easier to do an equality test. Besides that it can
happen that more node-equivalences are detected immediately. We assume
that there are two nodes with equal expressions and the same variable. The
pointer array differ for the pointers belonging to successor blocks of B, but
are the same for the predecessors. If an equality test would take into account
the whole pointer array, it would return the result that they are not equal.
But if both nodes are expanded, they would have equal children. So from a
BDD-point of view, these two nodes are equal and an equality test should
take into account only predecessor blocks. The easiest way to ensure this is
simply to replace all pointers to successor blocks with null.
In the implementation, known characteristics of the IFD-model and the re-
sulting BDD can be taken into account for further optimisations and correct
results. One problem in the BDD is that there are dependencies between the
variables of the component triples. For a component c the three variables c0,
cS and cD are created, from which at most one can be true. Assume that
the current variable of a node is c0, but neither the local expression nor one
expression in the pointer array contains this variable. In a standard ZBDD
this would lead to a situation in which both outgoing edges are leading to the
same child node. In this child node, the next variable is substituted, in this
case cS. But we can be sure that neither cS nor cD will appear if c0 is missing,
which would lead to a chain of three nodes, where both outgoing edges are
going to the same child. Such a chain would allow an invalid combination
like all three variables are true, too. So it has to be intervened in order to
create a correct model. If the variable c0 is not a part of the expression, the
following structure depicted in Figure 6.5 is included instead.
So two unnecessary substitution steps are avoided, and the resulting ZBDD

is a correct description of the system’s behaviour.
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Figure 6.5: Structure of a ZBDD with an unused component c in the expres-
sion

Figure 6.6: A Markov Chain modelling the component failures

The property that only one of these three variables is allowed to be true can
be used also in another way. If an expression contains these variables and c0
is set to true, cS and cD are automatically set to false. If cS is set to true,
cD is automatically set to false. Without this measure still a correct ZBDD
would be created, but for this purpose extra nodes would have been created
which are reduced away directly afterwards.

6.4 Quantified Solving Process

The quantified evaluation of the BDD can be easily done like described in
Chapter 5.6. But to do so, the probabilities of the different failure modes
of each component must be known. To estimate these, Markov chains are
used. For the implementation, the simplest possible model was chosen. We
assume that there is no repair and that the state of a component will not
change once it has failed. So only three different failure rates λS, λD and λL
are needed. The Markov chain is shown in Figure 6.6.

To calculate the probabilities P (ct = s) = qs(t) with s ∈ {0, S,D, L}, a
differential equation system is created like it was explained in Chapter 2.1.4.
The differential equation system (DES) looks like this:

o 

L \ D 
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d

dt
q0(t) = −λSq0(t)− λDq0(t)− λLq0(t)

d

dt
qS(t) = q0(t)λS

d

dt
qD(t) = q0(t)λD

d

dt
qL(t) = q0(t)λL

As the Markov chain structure is used for every component, it is not necessary
to create the MCs for all the components. It is sufficient to know the three
failure rates and to insert them into the DES. To solve the DES, an already
implemented package has been used [2]. Instead of this very simple model,
more complicated Markov chains could be used, for example a complete
Markov chain with four states (i.e. a Markov chain with transitions in both
direction between each pair of states, like in a complete graph) or a Markov
chain with macro states. It is even possible to use non-Markovian models, for
example models with transition rates based on the Weibull-distribution. The
only important thing is that there must be a method to gain the probabilities
for the four different states 0, S, D and L.
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Chapter 7

Case Studies

This chapter describes several case studies for which the IFD-model was used.
It will demonstrate the strength and the limits of IFDs. Section 7.1 explains a
novel approach to use existing redundancy in a system, leading to simpler and
cheaper system design while still having a high grade of redundancy. Section
7.2 describes the safety functions of a control system for a chemical reactor.
Both systems include components with multiple failure modes and complex
control loops making them perfect examples for explaining and presenting
the IFD-model.
In this chapter, we will not note down the expressions for all the blocks and
nodes of the presented IFDs. Instead, the complete models including all
expressions and definition of failure states can be found in the appendix.

7.1 Remote Redundancy

This section deals with the principle of remote redundancy presented in [27]
and its analysis using the IFD-model. This novel approach will be applied
to a steer-by-wire system. Both a conservative architecture and an architec-
ture using the remote redundancy approach will be presented and analysed,
followed by a comparison of the different results.

7.1.1 The Basic System Architecture

For a steer-by wire system, the following components are necessary:

• An electronic control unit ECU

• A bus B

• An electrical motor M

99
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Figure 7.1: The basic steer-by-wire-system

• A position sensor P

This control loop works as follows: The reference value vr is communicated
to the ECU via the bus B. The actual value va is read from the sensor P .
ECU calculates the difference vr va and sends the correction value c to the
motor M which is controlled by an electrical bridge (not shown). Figure 7.1
shows such a system. In this configuration, it is not fault tolerant, though.
Each component can fail in different ways, and a failure of one component
would lead to an overall system failure.

7.1.2 The Conservative Fault-Tolerant Architecture

In order to make this control loop fault-tolerant, its components have to be
replicated. The motor and the bus are duplicated, the ECU and the position
sensor triplicated. Additional electric links are added, besides two new ro-
tation sensors and four output stages are added. Furthermore, a differential
gear is needed so that both motors can control the steering mechanism. The
whole architecture is depicted in Figure 7.2.
All components but the differential gear are redundant and thus all single

component failures can be tolerated. The target value is sent via a double
bus to ECU1, ECU2 and ECU3, all of which calculate c. A triplication of the
ECUs is necessary in order to be able to decide which ECU is faulty in case
that their outputs are different. The actuator is duplicated only (M1 and
M2), because it can be assumed that a faulty actuator is detected using the
rotation sensors R1 and R2, and that there is sufficient time for passivation
due to inertia. M1 is controlled by ECU1, and M2 by ECU2. Moreover, M1

is passivated when ECU2 and ECU3 simultaneously stop the energy supply
via their output stages O21 and O31, respectively. Symmetrically, M2 is pas-
sivated when ECU3 and ECU1 simultaneously stop the energy supply via
O12 and O32. If one of the ECUs fails and unjustifiably decides for passiva-
tion, the respective other ECU still preserves the provision of energy. The
two actuators are coupled by a differential gear in order to tolerate blocking

ECU 

B-=L __ _ 
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Figure 7.2: The conservative fault-tolerant steer-by-wire-system

motors. In theory, the differential gear or any other means to combine the
output of both actuators represents a single point of failure. In practice this
problem can be alleviated by using a very reliable differential gear. In many
applications, the system under control itself is used to merge the output of
the actors. For example, the actuators of an aeroplane might be two inde-
pendent flaps which together have an influence on the plane’s heading. As
the implementation of the gear is highly application specific, it is outside
the scope of this case study and it is assumed that no failures can occur in
this component. Finally, the current position caused by the movement of the
actuators is measured by an individual position sensor Pi for each ECU in
order to close the control loop.

7.1.3 The Remote Redundancy Architecture

ECU3 does not really give control instructions to the motors, its only duty
is to monitor both and to passivate them if necessary. This task could be
done by any ECU in the system, so it is possible to replace ECU3 with an
already existing ECU in the global system, not necessarily physical close to
the steer-by-wire control system. Besides, electronic signatures will be used
for the communication between all the components. This signature does not
have to be very strong to resist an attack, it is only used to detect distorted
messages. Using these measures, the architecture can be simplified a lot as
can be seen in Figure 7.3. Similar to the system using the traditional ap-
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Figure 7.3: The steer-by-wire-system using remote redundancy

proach, it comprises three ECUs interconnected by a double bus system. Two
of the nodes feature an actuator M , an output stage O for passivating this
actuator, a rotational sensor R (for diagnosis) and a position sensor P (to
close the control loop) which is attached to the outgoing shaft of a differential
(that couples the rotation of both actuators). The third node, however, is
not connected to any peripherals and only connected with the other ECUs
via the network, thus representing remote redundancy as it can be placed
anywhere in the network as long as communication latency requirements are
met. The corresponding control software can share resources with other ap-
plications. The signals of both position sensors are cross-checked by each
node with both rotational sensors, so that any wrong result of a single faulty
sensor (rotational or positional) can be masked out. Consequently, a third
position sensor is superfluous.
ECU1 relays the information of the attached rotational sensor R1 to ECU2

and ECU3 via the bus. It also forwards passivation signals from both ECU2

and ECU3 to the attached output stage O1. Thus, in the case of an er-
ror, ECU2 and ECU3 jointly passivate actuator M1 while ECU1 and ECU3

jointly passivate actuator M2. Please be reminded that the forwarding of
sensor values and passivation signals through ”foreign” ECUs is only pos-
sible because signatures are being used, which would indicate a potential
corruption of the relayed information.
Overall, this system has fewer components and no cross-wiring issues. But

EClIa 

EClI:2 
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even after such a large reduction of the complexity, there are no single point
of failures as shown in [27]. Still an important question remains: How does
this reduction of redundancy influences the system safety? To answer this
question, we made a qualitative and quantified analysis of both architectures.

7.1.4 The IFD-Models for the Two Architectures

Before analysing the architectures, it is necessary to define the possible com-
ponent failures. We assume the following failure modes:

Component Failure Mode S Failure Mode D
Sensors No result Wrong result
ECUs Crash Failure Byzantine Failure

Output Stages Spurious passivation No passivation
Motors Blocking or insufficient rotation none

Communication Loss or altering of signals none

Note that there is no dangerous failure mode for the communication sys-
tem as alternations of messages can be detected by signatures, so that these
are handled the same way as lost messages.
With these assumptions, IFDs for both models can be created. We begin
with the IFD for the traditional architecture.

The traditional architecture
At first, basic components have to be defined. The following components -

named in small letters to distinguish them from the blocks - are included in
the system and represented in the IFD: The motors m1 and m2, the output
stages o12, o21, o31 and o32, the ECUs ecu1, ecu2 and ecu3, the buses bus1
and bus2 and the sensors p1, p2, p3, r1 and r2.
In this system, ecu1 and ecu2 fulfil two different tasks: They are responsible
for controlling m1 resp. m2 if there are no faults in the system. Besides
this task they have to, together with ecu3, monitor the system and detect
failures. In case of an failure the ECUs have to shut down the faulty motor.
For modelling purposes, it is better to distinguish between these two tasks.
First, a model only for the controlling duty is presented, afterwards we will
add the monitoring task.
Each ECU needs the reference value vr which will be delivered via one of the
buses and the actual value va which can received from the own positioning
sensor. So the blocks Bus representing the two buses and Pi representing the
position sensor i will be connected to the block ECUi representing the ECU
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Figure 7.4: The IFD for the control system only in the traditional steer-by-
wire-system

i via the decision node ini. The control signal of the ECUs is forwarded to
the respective motors, included as blocks M1 and M2. If none of the motors
is turning in the wrong direction, and at least one of them is turning in the
right direction, the steer-by-wire-system is working properly. Otherwise, a
dangerous failure will occur. So we connect the two blocks M1 and M2 with
the final decision node Safe which defines the state of the whole system.
The IFD for this simplified system is shown in Figure 7.4. Now it is neces-
sary to add the monitoring and fault handling duties to the model. These
tasks are added as own functional blocks to the model: ECU1S, ECU2S and
ECU3S. For their monitoring task the ECUs need not only vr from one of the
buses and va from their positioning sensor, but also the measurements of the
appropriate rotation sensors. So, Bus, P1 and R2 are linked to the decision
node in1S leading to ECU1S; Bus, P2 and R1 are connected with the decision
node in2S leading to ECU2S and Bus, P3, R1 and R2 are linked with the
decision node in3S leading to ECU3S. The outgoing edges from the blocks
ECUiS are connected with the appropriate blocks for the output stages. The
final step is to connect the output stages with the motors they can switch off.
So the decision nodes inM1 and inM2 are introduced, which are put between
the ECUi- and Mi blocks. The IFD for the whole steer-by-wire-system using
the traditional approach is shown in Figure 7.5.
After defining the high level model, the local expressions have to be chosen.

In this example, they are quite simple. The block ECU1 is chosen as exam-
ple:
S : (input(S) ∧ (ecu1 = 0)) ∨ (ecu1 = S)
D : (input(D) ∧ (ecu1 = 0)) ∨ (ecu1 = D)
Decision nodes are also defined in an uncomplicated way. The final node
Safe looks like this:
D : (M1 = D) ∨ (M2 = D) ∨ ((M1 = S) ∧ (M2 = S))
The global steer-by-wire system will fail if either one of the motors turn in

Safe 

1 P2 k'2-1 ECU21----1 M2 
In2· . 
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Figure 7.5: The complete IFD for the traditional steer-by-wire-system

the wrong direction, or if both motors do not turn at all. The expressions of
the other blocks can be found in the appendix.

The remote redundancy architecture
Analogously, a model for the remote redundancy system has to be cre-

ated. In this example, the ECUs do have a third task: They also have to
forward measured values from the sensors to the other ECUs and activation
or passivation signals from other ECUs to the output stage, e.i. that they
are part of the communication channel. It is necessary to keep this in mind
for modelling the system.
The components are defined analogously like in the conservative approach:
The motors m1 and m2, the output stages o1 and o2, the ECUs ecu1, ecu2
and ecu3, the buses bus1 and bus2 and the sensors p1, p2, r1 and r2.
In the remote architecture, the ECUs get the reference value vr from both
buses. Besides, all sensor values are sent to the three ECUs, either directly
or via the buses. To represent this in the IFD, we create blocks for each Sen-
sor and each ECU. Also, two blocks COM1R and COM2R are introduced.
They represent the communication channel from the sensors ri and pi to the
”foreign” ECUs, containing the buses and ecui. The blocks Pi and Ri for
the according sensors are linked to the decision node Seni which is connected
to COMiR. Both COM1R and COM2R are linked to the decision nodes In
which is connected to the three ECU-blocks. In decides if the ECUs will get
valid informations or not.
The control information for the motors is generated in ecu1 and ecu2 is for-
warded to the motors. Before it can reach them, it is necessary to check if
they have been passivated, though. So the other two ECU-blocks send their
activation or passivation signal through the communication channel repre-
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Figure 7.6: The IFD for the remote redundancy architecture

sented by the blocks COM1O and COM2O to the according output stages.
The decision nodes To1 and To2 decide if both ECUs have made the same
choice. The decision nodes Out1 and Out2 check if the output stages have
to shut down the motors, taking in account the states of the signals from
ECUi and COMiO. This result is forwarded to O1 and O2. The blocks
O1 and O2 check, if the passivation or activation will work properly. The
state of the outgoing state of the output stage blocks is further forwarded
to the appropriate motor blocks. Afterwards, the final decision block Safe
estimates the global system state. The IFD for the whole model is shown in
C.2.
At first, this structure seems to be slightly wrong. In the model, the sensors

have always to go over the buses and one ECU while in reality this is not
always necessary. Besides, the reference value gained via the buses seems to
be omitted. But in fact these are no real problems, by defining the com-
munication blocks the right way both can be handled. The failure of both
buses will cause a failure for both communication blocks, finally leading to a
dangerous failure of the whole system. In case of the failure of ecu1 or ecu2,
it does not really matter what kind of input the block ECU1 resp. ECU2

will get. It will fail anyway. So it is possible to assume that ecu1 resp. ecu2
will never get the information of the sensors, just like the other ECUs. It will
not change the resulting BDD. Sometimes it is possible to reduced the size
of the IFD significantly by using knowledge about the modelling process.
Most of the local expressions are quite similar to the ones in the IFD for
the traditional approach. One exception are the communication blocks. For
example the expressions for COM1R are defined like this:

S: (input(S) ∨ (ecu1 = S) ∨ ((bus1 = S) ∧ (bus2 = S))
D: (input(D)∧(bus1 = 0)∧(ecu1 = 0))∨(input(D)∧(bus2 = 0)∧(ecu1 = 0))

ECU2 
0ut2 
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The block is in state S if communication is not possible any more. This
can happen if either there is no incoming signal (input(S)), both buses fail
((bus1 = S) ∧ (bus2 = S)) or if the ECU fails and stops any messages for-
warded through it (ecu1 = S). The block switches to the state D if wrong
messages are transported undetected through the communication channel.
This can only happen if a faulty message like a wrong value from a sensor
is sent through the communication channel. Alterings of messages in the
ECU or in the bus are not included, as the messages are protected against
this kind of failure with cyclic redundancy check (CRC, [64]) and signatures.
Such an altering can be handled the same way like a loss of a message.
The expressions of the other blocks are given in the appendix.

7.1.5 Evaluation of the Models

After creating the models, they have to be evaluated. Two different kind of
analyses were made: A qualitative and a quantitative evaluation.

The qualitative evaluation
To evaluate the models qualitatively, the possible paths through the BDDs

have to be evaluated. Each path to the one-node represents a possible failure
scenario. In such a path, some components can be in a faulty state. This
means, that a failure of these components will lead to a failure of the over-
all system. By such a analysis, it is possible to show that in both models
no single points of failure exist. But there are differences regarding dan-
gerous two-component failures. For the traditional approach, there are five
dangerous two-component failures:

• ecu1 and ecu2

• ecu1 and ecu3

• ecu2 and ecu3

• bus1 and bus2

• m1 and m2

As it is uses less redundancy, the remote architecture has more such dan-
gerous combinations. Besides the five combinations valid for the traditional
approach, the following pairs of components may not fail both:

• o2 and m1

• ecu1 and m2
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• ecu2 and m1

• o1 and m2

• ecu1 and o2

• ecu2 and o1

• o1 and o2

Mainly the output stages lead to new dangerous combinations, as only two of
them are used instead of four in the traditional approach. But to estimate the
real impact of these new combinations, a quantified evaluation is necessary.

The quantified evaluation
For the quantified evaluation it was assumed that all component failures

can be modelled with an exponential distribution. The failure rates were
taken from the Military Handbook HDBK-217F [3]:

• Motors: 1,30E-05 h−1

• Sensors: 2,00E-09 h−1

• Buses: 2,00E-09 h−1

• Output stage: 5,00E-08 h−1

• ECUs: 5,00E-07 h−1

Using these values and our models, the following unreliabilities could be cal-
culated:

t/h 50000 100000 150000 200000
UTraditional 8,30E-03 1,07E-01 3,18E-01 6,22E-01
URemote 1,39E-02 1,33E-01 3,59E-01 6,58E-01

The values of the novel approach are slightly higher, as expected. But most
times they are in the same magnitude. The reason for this behaviour is
that the failure of both motors has the most impact on the failure rate for
both architectures, as the failure rate of the single motors is much higher
than the failure rates of the other components. The additional dangerous
combinations for the remote architecture are all combinations which are very
unlikely. The main weak point of the traditional architecture remains unal-
tered. Only redundant components which could prevent accidents very rarely
were removed.

1 1 1 1 1 1 
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Figure 7.7: The architecture of the chemical reactor

7.2 Chemical Reactor

The next case study is an emergency stop system of a chemical reactor, based
on the system already handled and modelled in [35] and presented in [46].This
system should stop the reaction if the temperature in the reactor is getting
too high by stopping the inflow of the chemicals. A new IFD-model including
the modifications presented in this work is shown. This model is compared
to the original model from [35] to demonstrate the differences between the
original IFD-model and the modified version.

7.2.1 The System Architecture

The sensors S1 and S2 measure the current temperature of the chemicals in
the reactor and communicate their results to the controller. The controller
reads this result via his inputs In1 and In2 and will store these values for
synchronization in different parts of its memory. (St1, St2). To avoid a loss of
information, the watchdogs Wd1 and Wd2 supervise the inputs. If an input
is lost or arrives too late, the watchdog will pass a default value to the voter.
Afterwards, the voter decides, if there is a dangerous situation. A shutdown
will be ordered if at least one sensor is reporting a temperature exceeding
the limit. If after the voting process the control unit CU decides to shut
down the system, this information is forwarded to the output modules Out1
and Out2 and passed to the motors M1 and M2 which get the order to close
the valves V 1 and V 2. If at least one of these valves is closed, the shutdown
was successful. We assume that the communication and the memory in this
system is protected by CRC, so faulty alterings can be detected.
To increase the overall safety of the system, the valve V 2 is tested regularly
in order to detect if the valve can close by a sensor S3. If such a test detects
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Figure 7.8: The old version of the IFD of the chemical reactor

a blockade of the valve V 2 this result is forwarded to a part of the control
unit (ST ) which orders to close V 1 immediately.
For the whole system, there are two possible kinds of failures in general.
Either the emergency system is not available (dangerous failure), i.e. no valve
will be closed if necessary, or it shuts down the system in a safe state leading
to a unnecessary unavailability of the whole reactor (spurious shutdown), i.e.
one of the valves is closed in a safe situation.
A failure of the whole emergency system can be caused by several different
failures of its components. The sensors S1 and S2 can either measure a value
which is too high (S), too low (D), or return no value at all (L). The Sensor
S3 can detect a non existing blockade of V 2 (S) or not detect an existing
blockade (D). The input modules can either lose the data of the sensors (L)
or change it to another value (S, D). In the memory the stored data can be
distorted by a bitflip, leading to a detectable fault (S). It can happen that
the watchdogs do not detect a missing input (D), or that they report such
a missing input although there was one (L). The control unit can decide to
start a shutdown in a safe state (S) or to not start a shutdown in a dangerous
state (D). The motors can fail to start (D). Finally, the valves can be stuck
in an open (D) or closed (S) position.

7.2.2 The IFD-Models

In this subsection, two IFD-models are presented. At first, the original IFD-
model presented in [35] is used. Afterwards, the modifications of Chapter 4
are applied.
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Figure 7.9: The modified version of the IFD of the chemical reactor

The original model:
The original IFD using the old version of the model is depicted in Figure

7.8. Basically, there are four different parts of the model. The parts one
and two represent the sensors S1 and S2 and the way of their values using
the input modules In1 resp. In2 and the memory represented by the blocks
Store1 and Store2 to the voter. Also the watchdogs are included as their own
blocks. The IP-blocks Lost1 and Lost2 describe watchdogs send their results
to the voter if necessary. The voter represented by an IP-block unifies these
two sensor values and transforms them to an order for steering the valves.
Part three of the model represents the forwarding of these orders from the
voter over the motors M1 and M2 to the valves represented by the blocks
V1 and V2. The fourth part of the model is the self-test functionality. It
describes the self-tests and the closing of valve V 1 using the motor M1 if
necessary. The block ST describes the selftest itself, the block ST-M1 the
motor and the block ST-V1 the valve to close. The IP-block Self unifies
the information flow for closing Valve 1 by the selftest-unit and the regular
control unit.
For each block, an automaton is defined. These automata describe lists like
in section 3.2. For example the automaton of block In1 defines the following
list:

La(i) = Init(True).d(x5, 0).a.F in(True); Init(False).d(x5, S).F in(True)
Lb(i) = Init(True).bf(e2).F in(False); Init(False).d(x5, 0).b.F in(False)
Lc(i) = Init(True).d(x5, I); Init(False).d(x5, I)

x5 represents the input module In1, e2 represents the bus. The whole low
level model of this example can be found in the appendix of [35].

The modified model: The modifications are applied in two steps. First,
the high level model is altered so that it fits to the new methodology. Af-
terwards the lists for the low level model are changed to the appropriate
expressions.

51 

cu 
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Large parts of the high level model can be created by simply changing the
type of blocks. TF-, SB- and ST-blocks are changed to standard blocks,
SRC1- and SRC2-blocks are replaced by source blocks and IP-blocks are
substituted by DEC-nodes. Still, at some points the topology of the model
has to be changed.
In the formalised version of the model, DEC-nodes can not describe any
failures unlike IP-blocks. The DEC-node CD replacing the IP-block in the
original model only defines which control decision should be taken by the
voter, but does not include any possible hardware failures of the Voter or
the control unit. So it is necessary to add the standard blocks Voter and
CU. Also a new final DEC-node Safe is added for defining the global system
state. Furthermore, the selftest unit was simplified. The block ST, which
takes it decision based on the result of the sensor represented in the block
S3. It forwards its results to the new DEC-node Self, which takes both the
decision of the voter and the result of the selftest into account for deciding
if the valves have to be closed or not.
The low level model can be changed in a similar way. Each event in the
original model can be translated to an expression in the altered model. For
example the lists of the block In1 presented in the previous paragraph is
changed the following way:
At first, all other - and final -events are removed as they do not carry any
information. Afterwards, initial events are replaced with Input-expressions,
bitflips and transient failures are transformed to general failure expressions.
In the case of bitflips only the failure mode S will occur, the probability for
the other failure modes is 0. Furthermore, the components are renamed to
increase intuitivity. x5 is called in1 and e2 is called bus.This leads to the
following three expressions:

S : (Input(S) ∧ (in1 = 0)) ∨ (Input(D) ∧ (in1 = S))
D : (Input(D) ∧ (bus = S)) ∨ (Input(S) ∧ (in1 = D))
L : (Input(S) ∧ (in1 = L)) ∨ (Input(D) ∧ (in1 = L))

Note that these expressions can be simplified even further. For the expres-
sion L it is not really important in which state the signal is before entering
the block. If in1 is in state L, the block will be in state L. So the expression
for L can be simplified to:

L : (in1 = L)

For DEC-nodes, more work is necessary. As these are total different from
IP-blocks, their expressions have to be defined taking into account the logic
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of the architecture. For example, the expressions for the final node Safe look
like this:

S : (V 1 = S) ∨ (V 2 = S)
D : (V 1 = D) ∧ (V 2 = D)
L : false

The system will fail dangerously if both valves can not be closed. A spu-
rious trip will occur if at least one of the valves will close without demand.
The failure mode L is not defined for the global system.
The rest of the expressions of the new model can be found in the appendix.

7.2.3 Comparison of the Two Models

Both models describe the architecture of the reactor regarding its safety
functions in a very detailed way. But there is a huge difference between the
two models: The original model contains much more types of events and
blocks than the modified one. Still both models are equally powerful, the
modified model includes all failure modes and functionalities like the original
model.
While for the original model a huge Markov Chain has to be created which
can only be evaluated with a lot of computing power, the modified model is
easy enough to be transformed in an easy solvable BDD.
Besides the faster computation, the BDD has also another advantage: It is
possible to extract the most probable failure scenarios including all single
points of failure for both failure modes easily without creating all possible
failure scenarios explicitly by extracting the most probable paths through the
BDD. For the failure mode S, a spurious trip of the following components
will lead to an overall spurious trip: V 1, V 2, CU , S1, S2, S3, ST and V oter.
The dangerous failure of CU or V oter will cause a dangerous failure of the
whole system. Such lists of the most probable failure scenarios are much more
useful than very immense lists with all possible, but a lot of very improbable
failure scenarios if a system should be evaluated qualitatively.
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Chapter 8

Evaluation

The algorithms presented in this dissertation are evaluated in two differ-
ent ways. At first, a theoretical complexity analysis is made. Afterwards,
the performance of the algorithms is tested with measurements taken from
the implemented software. Both approaches demonstrate the strengths and
weaknesses of the developed methods.

8.1 Complexity Analysis

Here the theoretical complexity analysis is discussed. It consists of three
parts. At first, the analysis is made for simple serial systems like in Chapter
5.2. Afterwards the analysis is extended for general serial systems (Chapter
5.3) and IFDs with DEC-nodes (Chapter 5.4).

8.1.1 Simple Serial Systems

In many cases, BDDs are very efficient for representing Boolean expressions.
Still it is possible to find worst case examples with n Boolean variables with a
space complexity of O(2n) for any variable ordering[20][42]. So basically the
overall space complexity of the algorithms should be O(23n) for an IFD with
n components, as each component is represented by three Boolean variables.
A more precise estimation is possible though. At first, three variables based
on one component always occur together in a fixed structure consisting out
of at most three, not eight nodes. This means that the complexity is reduced
to O(2n). Furthermore, for systems in which no component occurs in the
expressions of two different blocks, the complexity can be estimated even
more precisely. In Chapter 5.2 the algorithm creates a BDD for one block
first. This BDD has at most three non-trivial leaves (Input(S), Input(D) and
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Input(S) ∧ Input(D)), which are replaced by the BDDs of the predecessor
block. These three BDDs share equivalent nodes and have themselves at
most three non-trivial leaves. So, while the BDDs for the blocks can grow
exponentially, they will always shrink back to three nodes at the end of the
block. Be m the number of blocks and k the maximum number of components
in one block. Then the overall complexity of the BDD is O(m · 2k). If k is
quite small, which is a reasonable assumption - normally modellers try to
minimise the size of low level models - the actual complexity is much better
than the originally expected one.

8.1.2 General Serial Systems

If components can occur in several blocks, the analysis is more complicated.
One major difference to the simple case is that a BDD describing the ex-
pression of one block can have more than three non-trivial leaves. Each leaf
contains additional information regarding the variables occurring in other
blocks, and this information is used in the equivalence check. Each compo-
nent already set in the expressions used in the pointer arrays quadruples the
amount of possible leaves.
As illustrative example we take a serial IFD with four blocks A, B, C and
D. A component c1 occurs in B and D, a component c2 occurs in B and C.
Furthermore there are other components, but these are not interesting for
now.
If the BDD for the final block D is created, it can contain up to 12 non-trivial
leafs. The three possible input values can be combined with the four possible
settings for c1, which have to be forwarded to the local BDD for block B. So,
up to twelve local BDDs for block C can be created. Three groups of four
local BDDs are practically identical, they differ only in the value for c1 which
is needed for block B. Besides that, the BDDs also have to forward the value
of c2 to B which increases the number of possible non-trivial leaves to 48.
In the local BDDs for block B, all the different settings of c1 and c2 influence
the local expression which is already simplified a bit. These settings do not
influence the block A though, as it does neither contain c1 nor c2. So the
block B has only at most three non-trivial leafs like in the standard case.
With these considerations the complexity of the BDD-creation can be esti-
mated. Be l the number of components occurring in more than one block.
Then the complexity of the BDD-creation for a generalised serial IFD is
O(4l ·m · 2k) which is much worse than the simple case if l is large.
Unluckily, multiple occurrences of components in one model happen quite
often. For example the components bus1 and bus2 in the IFD-model for
remote redundancy occur in four different, the components ecu1 and ecu2
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in three different blocks. Still the effect is normally not so drastic as the
theoretical complexity implies. Most of the possible non-trivial leafs never
occur in practical systems, so even the IFD-model for the remote redundancy
architecture with four components in multiple blocks can be solved very fast.

8.1.3 Non-Serial Systems

For non-serial models, i.e. models which contain DEC-nodes, BEDs have
to be analysed. BEDs are based on the apply algorithm. apply(op,G,H)
for a Boolean operator op and two BDDs G and H has the complexity
O(|G| · |H|)[20]. The creation of BEDs has the same complexity as the
apply algorithm [11].
In [11] the authors show that the worst case complexity of BEDs has to be
exponential as only polynomial sized BEDs for n variables can not be used
to describe an exponential number of Boolean expressions with n variables.
Luckily almost all practical examples can be expressed with polynomial sized
diagrams. In fact it is extremely difficult to find an example for an expo-
nential sized BED. So, while the theoretical complexity is exponential, prac-
tically the usage of the BED-technique should lead to fairly compact and
handy results.

8.2 Measurements

For evaluating the presented algorithms, several things can be measured. It
is possible to measure the solution time and memory usage or just to count
the number of nodes in the BDD.
The solution time and the memory usage depends on multiple factors, for
example: The architecture of the platform on which the test were made, the
optimisation of the implementation (especially regarding the architecture),
the chosen programming language or the operating system. On the other
hand, the number of nodes only depends on the original algorithm itself and
chosen heuristics. The architecture on which the tests are executed does not
influence the size of the BDD.
As in this work the proposed algorithm itself should be evaluated, not its
implementation, the number of BDD-nodes is chosen as measure.
This section is divided in two parts. First, the practical examples from Chap-
ter 7.1 and Chapter 7.2 are analysed. These examples show that the proposed
method can deal with complex systems and several failure modes efficiently.
Afterwards, some artificial, easily scalable examples are evaluated. These
examples are used to compare our method with standard BDD-approaches.
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8.2.1 Case Studies

Three different models were presented for the case studies: an IFD for a
chemical reactor (16 components, 21 blocks and nodes), an IFD for a classical
steer-by-wire system (16 components, 25 blocks and nodes) and the model for
the remote redundancy architecture (13 components, 23 blocks and nodes).
The number of nodes in the respective BDDs are given in the following table:

Example Chemical Reactor Classical Red. Remote Red.
BDD-Nodes 146 19261 3582

Although all these models have approximately the same number of compo-
nents and blocks, there are large differences between the sizes of the BDDs.
To find an explanation for this, the models itself have to be investigated more
closely.
In the model for the chemical reactor, no component occurs in more than
one block, and the expressions for the blocks are very small. This will lead
to a very efficient representation of the serial parts of the IFD as already
demonstrated in the present chapter. Furthermore, the IFD contains only
five DEC-nodes, each of them with only two inputs. As BEDs can lead to a
complexity worse than for simple serial diagrams it is good that only a few of
them are in the model. Besides that, the expressions of the DEC-nodes are
fairly simple, so that the resulting original BEDs contain only one operator
node each. As each operator node represents one apply-operation with the
complexity O(|G| · |H|), keeping the number of these down leads to smaller
BDDs. Taking into account these facts it is not so surprising that the whole
BDD is quite small, even if the explicit representation in [35] is very large.
The model for the classical redundant architecture contains the same amount
of components and only four blocks more than the IFD for the chemical re-
actor. Still its BDD is much larger. The reason for this is the topology of
its IFD. It contains more DEC-nodes, from which four have three incoming
edges. The DEC-node In3s (see 7.5) has even four. This leads to more oper-
ator nodes in the BDD-creation process. Furthermore, it is a very ”broad”
IFD. While it has more blocks and nodes than both the IFDs for the chemical
reactor or the remote redundancy architecture, a path from any source block
to the final node can contain at most seven blocks and nodes. For the other
examples, up to eleven blocks and nodes are possible for such a path. For
”broad” IFDs, the proposed algorithms do not work as well as for IFDs with
longer serial sub-diagrams.
The BDD of the model for the remote redundancy architecture is smaller
than the BDD for the classical redundancy, but larger than the BDD for the
chemical reactor. It has fewer components than the other examples, so a
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smaller size can be expected. Its major difference is that it is the only model
in which several components occur in multiple blocks. Furthermore, it con-
tains more DEC-nodes than the IFD of the chemical reactor. So it contains
several factors which explain the larger size of its BDD compared to the BDD
of the chemical reactor. Still, the IFD is not so broad like the IFD of the
classical architecture, and its DEC-node-expressions are much simpler. So
the size of the BDD is significantly smaller than for the BDD of the classical
architecture.
Using these examples, the following points have to be respected if an IFD
for a large system should be solvable:

• Avoid too many DEC-nodes.

• Avoid DEC-nodes with many incoming edges.

• Prefer a ”slim” topology, avoid ”broad” topologies.

• Avoid components occurring in multiple blocks.

Of course, in many cases it is not possible to follow all these points exactly.
Still normally a certain degree of freedom exists for modelling systems. If it
is used wisely, the IFDs can be modelled in a way to avoid too large BDDs
which can not be handled anymore.

8.2.2 Scalable Models

IFDs can not only be used for modelling systems with several failure modes.
Theoretically it is possible to model classical models which can be repre-
sented by Fault Trees or RBDs. It is not really optimal to do so as many of
the features of the IFDs are not needed. The resulting model would only be
unnecessary complicated. But by creating such models it is at least possible
to compare the algorithms presented in this dissertation with classical BDD-
approaches. For simple examples the algorithms should not have a worse
complexity than standard BDD-solutions.
Two examples were chosen. One example called SerPar(n,m) is serial sys-
tem of n subsystems, in which each subsystem consists out of m parallel
components ci,j. The other example called ParSer(n,m) is a parallel system
of n serial subsystems. Each subsystem consists out of m serial components
ci,j. Figure 8.1 shows the RBDs for both systems.
Now it is necessary to create equivalent IFDs for these systems. In general,

there are two possible designs. One possibility (Variant A) is to create a se-
rial IFD with n blocks. For SerPar, each block i gets the following expression:
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Figure 8.1: RBDs for SerPar(n,m) (left) and ParSer(n,m) (right)

Input(S) ∨ (ci,1 = S ∧ · · · ∧ ci,m = S)

For ParSer, the expressions look like this:

(Input(S) ∧ ci,1 = S) ∨ · · · ∨ (Input(S) ∧ ci,m = S)

Note that we only need one failure mode, we could use the failure mode
D instead with basically the same result.
The other possibility (Variant B) to describe such serial-parallel systems with
an IFD is more complex. It is based on the high level model depicted in Fig-
ure 8.2.
The IFD consists of n DEC-nodes Di and n ·m non-DEC-blocks Bi,j. The

Figure 8.2: The IFD-high-level-model for SerPar and ParSer (Variant B)

expressions for the DEC-nodes are defined as follows:

Bi,1 = S ∧ · · · ∧Bi,m = S for SerPar
Bi,1 = S ∨ · · · ∨Bi,m = S for ParSer

The expressions for the blocks Bi,j look like this:

Input(S) ∨ ci,j = S for SerPar
Input(S) ∧ ci,j = S for ParSer
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The two presented variants can be created automatically. In this work both
variants are used, as we want to test both serial and non-serial IFDs. The
following table shows the number of BDD-nodes needed for the example Ser-
ParA for 1 ≤ n ≤ 5 and 1 ≤ m ≤ 5:

n
SerParA(m,n) 1 2 3 4 5

1 1 2 3 4 5
2 7 9 11 15 19

m 3 13 16 19 22 25
4 19 23 27 31 35
5 25 30 35 40 45

For this example, the number of BDD-nodes grows linearly regarding both
n and m, leading to an overall complexity of O(n ·m). A better complexity
is not possible as at least each of the n ·m variables in the original RBD has
to be included in any representation. The next example is ParSerA:

n
ParSerA(m,n) 1 2 3 4 5

1 1 7 13 19 25
2 2 17 31 45 59

m 3 3 26 48 70 92
4 4 35 65 95 125
5 5 44 82 120 158

For this example the BDD grows also linearly with m and n, but more nodes
are needed than for the example SerParA. The reason for this is that in
SerParA the reduction rules of ZBDDs can be applied more often than in
ParSerA. Still the result is as expected. As both examples are serial IFDs
without components occurring in multiple blocks, the complexity may only
be linear regarding the number of blocks. And the local ZBDDs for the
blocks can also grow only linear as the local expressions have a very simple
structure which is favored by BDD-techniques.
For non-linear IFDs, the results are different. The next table shows the num-
ber of nodes of the example SerParB(m,n):

Il 1 1 1 1 1 

Il 1 1 1 1 1 
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n
SerParB(m,n) 1 2 3 4 5

1 1 7 13 19 28
2 2 19 57 142 307

m 3 3 31 105 290 716
4 4 43 153 436 1267
5 5 55 201 584 1976

In this example, the BDD-size grows linearly with m, but super-linearly with
n. For the last variant, it is even worse:

n
ParSerB(m,n) 1 2 3 4 5

1 1 2 3 6 7
2 7 21 49 114 348

m 3 13 45 125 340 1846
4 19 69 196 1225 2409
5 25 93 271 4436 10398

The size of the BDDs grows superlinearly for both n and m. The reason that
the variants B are worse than the variants A is simple. The structure of the
IFD for the variants A forced the BDD to adapt the variable order to the
structure of the underlying RBD. In SerParA the parallel subsystems had to
be analysed before the serial system was evaluated. In ParSerA, the serial
subsystems were handled before the parallel global system. In both cases
this leads to an optimal variable order.
For the variants B, the variable order is determined by a BFS-ordering of the
blocks. For SerParB, the ordering is still optimal. But this is not enough for
a linear growth of the BDD-size regarding n. The cause for the superlinearity
is that for each block a local ZBDD is created. For a block Bi,j it contains the
variables for the components ci,1, ci,2, ...ci,n. As we are using ZBDDs, each
variable has to really appear as node unless it must be false. So the size of
each local ZBDD is linear to n. As there are n ·m different local ZBDDs, this
leads to a complexity of O(m · n2). In this case, ZBDDs are a disadvantage.
ParSerB is even worse than SerParB. The reason for this behaviour is that
the variable order based on our chosen heuristic is really bad. For an opti-
mal sized BDD the variables of each serial subsystem should be decomposed
directly afterwards. In this case the next variable is always from the next
serial subsystem. This leads to the extreme explosion of the BDD-size.
These measurements showed that the BDDs of serial IFDs grow linearly not
only in theory. Non-serial IFDs are worse. How large this effect is depends

Il 1 1 1 1 1 

Il 1 1 1 1 
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mainly on the structure of the IFD. In some cases, at least polynomial com-
plexity is possible which is acceptable. In the worst case, exponential com-
plexity can still happen. This is expected, though. It is impossible to create
a BDD which only needs a polynomial amount of nodes for describing any
possible Boolean expression, as there is an exponential number of possible
permutations regarding the number of Boolean variables.
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Part III

Conclusions
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Chapter 9

Summary

Now it is time to summarise the work which has been presented in this
dissertation. We distinguish four main parts of the work: The modifications
of the IFD-model, the developed algorithms, the implementation and the
case studies. The next sections will deal with them in more detail.

9.1 Modifications

The modifications were made with several targets in mind. At first, the IFD
approach should be formalised so that it is easier to handle, especially for
the BDD-creation. Furthermore, the intuitivity should be increased.
To formalise the model, the original low level model was changed a lot. In-
stead of automata defining characteristic lists for different failure modes ex-
pressions were introduced. Furthermore the six possible list elements in the
original model were reduced to two different kinds of expressions in the new
model. Also the high level model has been altered. Several types of blocks
were unified, and IP-blocks were changed to DEC-nodes with completely dif-
ferent characteristics.
To increase intuitivity, several naming conventions were changed and stan-
dardised. For example, the failure modes S,D and L occur now in every layer
of the model. Furthermore, the reduction of blocks and list elements in the
original model makes it easier to understand, as less elements have to be
handled.
Although the model has been altered a lot, it has not lost any of its impor-
tant properties. It still can describe the behaviour of safety critical systems
in a very compact and unique way. All old models can be easily transformed
into the new format without losing any of its expression power. Overall, the
formalisation was the first important step for the efficient evaluation of the
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IFD-model.

9.2 Algorithms

The evaluation is done in multiple steps. First, the expressions of the blocks
are transformed to Boolean expressions. This is necessary in order to use
Binary decision diagrams. Afterwards, the gained local Boolean expressions
are decomposed, beginning with the final block of the IFD. This way a BDD
is created. Once a block is finished, the decomposition is continued with the
expressions of the predecessor block. With this recursive creation process the
properties of the IFD are used in an optimal way.
The algorithms support also components which occur in multiple blocks of
the IFD, furthermore the constructed BDD can be used for a quantitative
analysis, if the failure probabilities of the components are known. It can take
into account the inherent dependencies in the model, i.e. that components
are always in exactly one state.
This algorithm was evaluated theoretically and by measurements. In both
ways it proved that it can be very efficient, although in some cases a combi-
natorial explosion still can occur. But for most ”natural” examples, it works
very well.

9.3 Implementation

The presented algorithm was implemented in Java to give a proof of concept.
The implementation reads a file in a defined format, creates an internal rep-
resentation of an IFD and transforms it into a BDD. This BDD is evaluated
and returns the probabilities for the failure modes S and D of the modelled
system.
The implementation could handle small, artificial examples as well as real
life applications. It has no GUI yet, but it can be extended easily. Overall
the implementation proved that the presented ideas can work in reality, too.

9.4 Case Studies

Finally two case studies were made. The first case study was a compari-
son between a classical redundancy structure of a steer-by-wire-system and
a novel architecture called remote redundancy. With IFDs it was possible to
show that the novel approach, in which much less redundancy was needed,
still was almost as good as the classical system.



9.4. CASE STUDIES 129

The second example was a chemical reactor, which demonstrated the differ-
ences between the original and the modified IFD-model. It proved that the
new formalisms can express the same systems than the original approach.
These case studies also demonstrated how IFD-models can be created, and
that they are a practical alternative to other modelling tools. The models
for both quite complex systems were very compact and could be evaluated
in a few seconds on a standard computer.
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Chapter 10

Outlook

The work done in this thesis can be continued in many different ways. In this
chapter we show a few possibilities how to extend the achievements presented
in this dissertation.

10.1 Performance Improvement

The current implementation is mainly a proof of concept. But as the used
algorithms are quite close to original BDD-algorithms, it should be possible
to use techniques to minimize memory usage for the implementation. This
would enable the evaluation of larger models.

10.2 The Bertholon Model

Currently a student project is going on with the target to use the Bertholon
Model instead of the exponential distribution for modelling the behaviour of
the components. The Bertholon Model [21] is a combination of the exponen-
tial and the Weibull distribution. It can be approximated by dividing the
mission time in several time slices and define a fitting exponential distribu-
tion for each. This is no exact solution, but upper and lower bounds can be
determined. Furthermore, this approach allows for an analytical solution.

10.3 Further Generalisation

It is possible to generalise the IFD-model even further. Instead of three
special failure modes an arbitrary number of failure modes can be allowed.
Besides that, also ST-, SRC- and WD-blocks could be merged to one standard
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block. It is not so hard to define such a generalised model theoretical, also
the algorithm can be adapted fairly easy. It is harder to implement and test
such an algorithm, though.

10.4 Graphical User Interface

At the moment, the models have to be entered by writing a text-file. This
is very difficult and error prone. Adding a GUI would make the modelling
process much easier. Adding it should not be a large problem: A graphical
model of the IFD can be easily created and transformed to the internal
representation which is already used for the evaluation.

10.5 Dependencies

At the moment we assume that there are no dependencies between the com-
ponents. But there are systems for this is not a valid assumption as there
are effects like common cause failures or failure propagation. The IFD-model
could be extended that such effects are included.
In order to evaluate such a model, a state based model for dependent compo-
nents has to be created. The results of these models have to be combined in
a valid way. In [47] we presented a method how to evaluate OpenSESAME-
models with BDD-techniques. Instead of creating BDD-nodes for single com-
ponents, nodes for sets of n interdependent components were created with 2n

outgoing edges, one for each possible permutation. The probability of each
permutation can be calculated with a state based model.
This approach could be adapted for IFDs, too. So they could model even
more systems in a very detailed way.

10.6 LARES

In [32] the authors present LARES, an interface for connecting different high
level models with different state based models. These high level models may
support dependencies, different repair behaviours, multiple failure modes or
other stochastic dependencies. Instead of transforming a high level model di-
rectly into a state based model, it is transformed into the LARES-formalism.
This formalism can be used to create different equivalent low level models
like SPNs or Markov Chains. So for n supported high level models and m
supported low level models LARES would need only n+m transformations
compared to n ·m for direct transformations.
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It would be possible to transform the IFD-model into LARES, which would
immediately allow for using much more state based models for calculating
the probabilities of component failures. Besides that, the IFD-model could
be extended with dependencies fairly easily, as LARES will take care of the
correct calculus.
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Appendix A

Abbreviations

A Steady State Availability
A(t) Availability
BDD Binary Decision Diagram
BDT Binary Decision Tree
BED Binary Expression Diagram
BFS Breadth First Search
BNF Backus Naur Form
CNF Conjunctive Normal Form
CTMC Continuous Time Markov Chain
D Dangerous Failure Mode
DAG Directed Acyclic Graph
DEC Decision Nodes
DES Differential Equation System
DNF Disjunctive Normal Form
FT Fault Tree
IFD Information Flow Diagram
L Loss of Information Failure Mode
MC Marcov Chain
MTTF Mean Time to Failure
MTTR Mean Time to Repair
PFS(t) Probability of a Spurious Trip
PFD(t) Probability of Failure on Demand
R(t) Reliability
RBD Reliability Block Diagram
ROBDD Reduced Ordered Binary Decision Diagram
S Safe Failure Mode
S(t) Safety
SPN Stochastic Petri Net
SRC Source Blocks
ST Standard Blocks
U(t) Unreliability
WD Watch Dog Blocks
ZBDD Zero Suppressed Binary Decision Diagram
ZBED Zero Suppressed Boolean Expression Diagram



Appendix B

Glossary

Apply Algorithm: Algorithm to create BDDs efficiently by applying re-
duction rules immediately.

Availability A(t): The probability that a component or system is working
correctly at the time t.

Binary Decision Diagram (BDD): An efficient way to represent Boolean
expressions by using the Shannon Decomposition and a binary DAG. Sev-
eral kinds of BDDs exist like Binary Expression Diagrams (BED), Reduced
Ordered BDDs (ROBDD) and Zero Suppressed BDDs (ZBDD).

Binary Decision Tree (BDT): A tree representing a Boolean expres-
sion by showing all possible decomposition paths. It grows exponentially
with the number Boolean variables in the expression, but it can be reduced
dramatically by using BDD-techniques.

Binary Expression Diagram (BED): An ROBDD extended with nodes
for Boolean operators. A BED can be reduced to a standard ROBDD by
applying special reduction rules.

Block: A functional entity in an IFD. It is described in more detail by either
a finite automaton (in the original formalism) or by three local expressions
S, D, and L (in the modified formalism). By convention blocks are named
in capital letters. There are several types of blocks in the original (SRC1,
SRC2, FT, TF, CT, ST, SB, IP) and in the modified formalism (SRC, ST,
WD).
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Boolean Formalisms: See Combinatorial Formalisms

Byzantine Failure: Occurs if a component or system gives faulty orders
or results.

Combinatorial Formalisms: Modelling formalisms which can model com-
plex systems. Afterwards, a Boolean expression representing the modelled
system can be extracted and evaluated. The two most important combina-
torial formalisms are Fault Trees and Reliability Block diagrams.

Conjunctive Normal Form (CNF): A Boolean expression x with the
variables xij, 1 ≤ i ≤ n, 1 ≤ j ≤ m in the following form:

∧ni=1(∨mj=1xij)

is in CNF. This means that a Boolean expression in CNF is a conjunction of
disjunctive terms.

Crash Failure: Occurs if a component of system shuts down in an unspec-
ified way.

Dangerous Failure: A failure which leads to a violation of the specified
safety requirements of a component or system. This can lead to incidents
endangering humans or the environment.

Disjunctive Normal Form (DNF): A Boolean expression x with the
variables xij, 1 ≤ i ≤ n, 1 ≤ j ≤ m in the following form:

∨ni=1(∧mj=1xij)

is in DNF. This means that a Boolean expression in DNF is a disjunction of
conjunctive terms.

Exponential Distribution: A probability distribution with only one pa-
rameter, the failure rate λ > 0. Its probability density function is defined as
follows:

f(t) = λe−λt

Failure: A behaviour of a system which violates its specification.
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Fault: A state of a system which violates its specification. Can lead to a
failure if not tolerated.

Fault Tree: A Combinatorial Formalism to model the failure behaviour of
systems as a tree with AND-gates, OR-gates and basic events.

Global Lists: Lists for the global system of an IFD which describe the
possible scenarios so that a system will generate a spurious trip (list S) or a
dangerous failure (list D).

Hardware Resources: The basic components in the IFD-model with four
possible states (S, D, L, and 0). By convention they are named in small
letters.

Information Flow Diagram (IFD): Diagram to model a system’s failure
behaviour by its logical information flow to estimate the PFD and PFS.

Local List: Describes how hardware resources of a functional entity have
to behave so that the according block will switch to a certain state. For each
block there are three local lists: S, D, and L.

Markov Chain: A State Based Formalism to model complex systems. The
different system states are represented by random variables with the Markov
property, i.e. that the possible state transitions only depend on the current
state.

Mean Time to Failure (MTTF): The expected value of the lifetime of
a component or system. It can be calculated by the following formula:

MTTF =
∫∞
0
R(t)dt

Mean Time to Failure (MTTR): The expected repair time for a failed
repairable component or system.

Timing Failure: Occurs if a component or system gives its results or orders
too late, leading to a violation of the specification.

Omission Failure: A failure in which a component or system does not
forward its results or orders as specified.
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One-Edge: The outgoing edge of a BDD-node n with a variable x lead-
ing to the sub-BDD representing the expression of n in which x has been
substituted with true.

One-Node: The node in a BDD representing the Boolean constant true.

Probability of Failure on Demand PFD(t): The Probability that a
failure on demand will occur in the time interval [0, t].

Probability of a Spurious Trip PFS(t): The Probability that a spurious
trip will occur in the time interval [0, t].

Reduce Operator: An operator in the original IFD-approach by Karim
Hamidi. It eliminates duplicate and impossible sequences from the aggre-
gated lists. In the modified IFD-model, this reduction is done by applying
BDD-techniques.

Reliability Block Diagram: A Combinatorial Formalism to model the
failure behaviour of systems based on its redundancy structure.

Reliability R(t): The probability that a component or system will work
satisfying for a specified time t. Be T the random variable representing the
lifetime of the system, u(t) its probability density function and U(t) its cu-
mulative density function. Then the reliability, denoted as R(t), is defined
as follows:

R(t) = Pr(T > t) = 1− U(t) =
∫∞
t
f(x)dx

Reduced Ordered Binary Decision Diagram (ROBDD): A BDD in
which equivalent nodes are merged and nodes with two outgoing edges to the
same node are eliminated. Normally created by using the Apply Algorithm.

Safety S(t): The probability that a system or component is working cor-
rectly or is shut down in the time interval [0, t]. It holds: S(t) ≥ R(t).

Shannon Decomposition: A method to transform Boolean expressions.
Be ΦXi resp. ΦXi

the expression which results from substituting the variable
Xi in the Boolean expression Φ with true resp. false. For a Boolean function
Φ : Bn → B it holds:
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Φ = (Xi ∧ ΦXi) ∨ (Xi ∧ ΦXi
)

where Xi is a variable of Φ.

Spurious Trip: Unwanted and unspecified activation of safety mechanisms
(like an alarm or a safety shutdown) of a system in a non-dangerous state.

State (for IFDs): There are four possible states for hardware resources,
blocks and the global system in IFDs:

• S: Safe failure or spurious trip

• D: Dangerous failure

• L: Loss of information (Omission failure)

• 0: Working correctly

State Bases Formalisms: Modelling formalisms which use different sys-
tem states and state transitions to represent the modelled systems. Examples
are Markov Chains and Stochastic Petri Nets.

Stochastic Petri Net (SPN): A State Based Formalism to model com-
plex systems. A SPN is a graph with two different kinds of nodes (places
and transitions), edges (called arcs) which link either places to transitions or
transitions to places. Places contain marks which can be moved by firing the
transitions in order to model the system behaviour and state changes.

Unreliability U(t): The probability that a component or system will fail
in a specified time interval [0, t]. It holds:

U(t) = 1−R(t)

Weibull Distribution: A probability distribution with a shape parameter
β > 0 and a scale parameter η > 0. Its probability density function is defined
as follows:

f(t) = βtβ−1

ηβ
e−(t/η)

β



144 APPENDIX B. GLOSSARY

Zero-Edge: The outgoing edge of a BDD-node n with a variable x lead-
ing to the sub-BDD representing the expression of n in which x has been
substituted with false.

Zero-Node: The node in a BDD representing the Boolean constant false.

Zero Suppressed Binary Decision Diagram (ZBDD): A BDD in
which equivalent nodes are merged and nodes with an one-edge leading to the
Zero-node are eliminated. Normally created by using the Apply Algorithm.



Appendix C

Examples

C.1 Conservative Redundancy

1. Components:
p1, p2, p3: position sensors
r1, r2: rotation sensors
bus1, bus2: data busses
ecu1, ecu2, ecu3: ECUs
o12, o21, o31, o32: output stages
m1, m2: motors

2. Sub-models for SRC-, ST- and WD-blocks:
S(P1) = (p1=S)
D(P1) = (p1=D)
S(P2) = (p2=S)
D(P2) = (p2=D)
S(P3) = (p3=S)
D(P3) = (p3=D)
S(R1) = (r1=S)
D(R1) = (r1=D)
S(R2) = (r2=S)
D(R2) = (r2=D)
S(BUS) = (bus1=S) ∧ (bus2=S)
S(ECU1) = (Input(S) ∧ (ecu1=0)) ∨ (ecu1=S)
D(ECU1) = (Input(D) ∧ (ecu1=0)) ∨ (ecu1=D)
S(ECU1s) = (Input(S) ∧ (ecu1=0)) ∨ (ecu1=S)
D(ECU1s) = (Input(D) ∧ (ecu1=0)) ∨ (ecu1=D)
S(ECU2) = (Input(S) ∧ (ecu2=0)) ∨ (ecu2=S)
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Figure C.1: IFD for the conservative steer-by-wire-system

D(ECU2) = (Input(D) ∧ (ecu2=0)) ∨ (ecu2=D)
S(ECU2s) = (Input(S) ∧ (ecu2=0)) ∨ (ecu2=S)
D(ECU2s) = (Input(D) ∧ (ecu2=0)) ∨ (ecu2=D)
S(ECU3s) = (Input(S) ∧ (ecu3=0)) ∨ (ecu3=S)
D(ECU3s) = (Input(D) ∧ (ecu3=0)) ∨ (ecu3=D)
S(O12) = (Input(S) ∧ (o12=0)) ∨ (o12=S)
D(O12) = (Input(D) ∧ (o12=0)) ∨ (o12=D)
S(O21) = (Input(S) ∧ (o21=0)) ∨ (o21=S)
D(O21) = (Input(D) ∧ (o21=0)) ∨ (o21=D)
S(O31) = (Input(S) ∧ (o31=0)) ∨ (o31=S)
D(O31) = (Input(D) ∧ (o31=0)) ∨ (o31=D)
S(O32) = (Input(S) ∧ (o32=0)) ∨ (o32=S)
D(O32) = (Input(D) ∧ (o32=0)) ∨ (o32=D)
S(M1) = Input(S) ∨ (m1=s)
D(M1) = Input(D) ∧ (m1=0)
All missing expressions are false.

3. Sub-models for DEC-nodes:
S(In1) = (BUS = S) ∨ (P1 = S)
D(In1) = (P1 = D)
S(In1) = (BUS = S) ∨ (P2 = S)
D(In1) = (P2 = D)
S(In1s) = (BUS = S) ∨ ((P1 = S) ∧ (R2 = S))
D(In1s) = (P1 = D) ∧ (R2 = D)
S(In2s) = (BUS = S) ∨ ((P2 = S) ∧ (R1 = S))
D(In2s) = (P2 = D) ∧ (R1 = D)
S(In3s) = (BUS = S) ∨ ((P3 = S) ∧ (R2 = S) ∧ (R1 = S))

P1 

R2 

P3 

R1 

P2 
In2 

f-------'--Q- ECU2 
L-_---' 

1 BUS rte In1, In2, In10, In20, In30 

InM1 

012 

Safe 
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D(In3s) = (P3 = D) ∧ (R2 = D) ∧ (R1 = D)
S(InM1) = (O21 = S) ∨ (O31 = S)
D(InM1) = (ECU1 = D) ∧ (O21 = D) ∧ (O31 = D)
S(InM2) = (O12 = S) ∨ (O32 = S)
D(InM2) = (ECU2 = D) ∧ (O12 = D) ∧ (O32 = D)
D(Safe) = (M1 = D) ∨ (M2 = D) ∨ ((M1 = S) ∧ (M2 = S))
All missing expressions are false.
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C.2 Remote Redundancy

Figure C.2: The IFD for the remote redundancy architecture

1. Components:
p1, p2: position sensors
r1, r2: rotation sensors
bus1, bus2: data busses
ecu1, ecu2, ecu3: ECUs
o1, o2: output stages
m1, m2: motors

2. Sub-models for SRC-, ST- and WD-blocks:
S(P1) = (p1=S)
D(P1) = (p1=D)
S(P2) = (p2=S)
D(P2) = (p2=D)
S(R1) = (r1=S)
D(R1) = (r1=D)
S(R2) = (r2=S)
D(R2) = (r2=D)
S(ECU1) = (Input(S) ∧ (ecu1=0)) ∨ (ecu1=S)
D(ECU1) = (Input(D) ∧ (ecu1=0)) ∨ (ecu1=D)
S(ECU2) = (Input(S) ∧ (ecu2=0)) ∨ (ecu2=S)
D(ECU2) = (Input(D) ∧ (ecu2=0)) ∨ (ecu2=D)
S(ECU3) = (Input(S) ∧ (ecu3=0)) ∨ (ecu3=S)
D(ECU3) = (Input(D) ∧ (ecu3=0)) ∨ (ecu3=D)
S(COM1R) = Input(S) ∨ ((bus1=S) ∧ (bus2=S)) ∨ (ecu1=S)
D(COM1R) = (Input(D) ∧ (bus1=0) ∧ (ecu1=0)) ∨ (Input(D) ∧ (bus2=0)
∧ (ecu1=0))
S(COM2R) = Input(S) ∨ ((bus1=S) ∧ (bus2=S)) ∨ (ecu2=S)

ln Sale 

ECU2 1-'---- ' 
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D(COM2R) = (Input(D) ∧ (bus1=0) ∧ (ecu2=0)) ∨ (Input(D) ∧ (bus2=0)
∧ (ecu2=0))
S(COM1O) = Input(S) ∨ ((bus1=S) ∧ (bus2=S)) ∨ (ecu1=S)
D(COM1O) = (Input(D) ∧ (bus1=0) ∧ (ecu1=0)) ∨ (Input(D) ∧ (bus2=0)
∧ (ecu1=0))
S(COM2O) = Input(S) ∨ ((bus1=S) ∧ (bus2=S)) ∨ (ecu2=S)
D(COM2O) = (Input(D) ∧ (bus1=0) ∧ (ecu2=0)) ∨ (Input(D) ∧ (bus2=0)
∧ (ecu2=0))
S(O1) = (Input(S) ∧ (o1=0)) ∨ (o1=S)
D(O1) = (Input(D) ∧ (o1=0)) ∨ (o1=D)
S(O2) = (Input(S) ∧ (o2=0)) ∨ (o2=S)
D(O2) = (Input(D) ∧ (o2=0)) ∨ (o2=D)
S(M1) = Input(S) ∨ (m1=s)
D(M1) = Input(D) ∧ (m1=0)
All missing expressions are false.

3. Sub-models for DEC-nodes:
S(Sen1) = (R1 = S) ∨ (P1 = S) ∨ (P1 = D)
D(Sen1) = (P1 = D) wedge (R1 = D)
S(Sen2) = (R2 = S) ∨ (P2 = S) ∨ (P2 = D)
D(Sen2) = (P2 = D) wedge (R2 = D)
S(In) = (COM1R = S) ∨ (COM2R = S)
D(In) = ((COM1R = S) ∨ (COM2R = D)) ∧ ((COM1R = D) ∨ (COM2R
= S)) ∧ ((COM1R = D) ∨ (COM2R = D))
S(To1) = (ECU2 = S) ∧ (ECU3 = S)
D(To1) = (ECU2 = D) ∨ (ECU3 = D)
S(To2) = (ECU1 = S) ∧ (ECU3 = S)
D(To2) = (ECU1 = D) ∨ (ECU3 = D)
S(Out1) = (ECU1 = S) ∨ (COM1O = S)
D(Out1) = (ECU1 = D) ∧ (COM1O = D)
S(Out2) = (ECU2 = S) ∨ (COM2O = S)
D(Out2) = (ECU2 = D) ∧ (COM2O = D)
D(Safe) = (M1 = D) ∨ (M2 = D) ∨ ((M1 = S) ∧ (M2 = S))
All missing expressions are false.
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Figure C.3: IFD of the chemical reactor

C.3 Chemical Reactor

1. Components:
s1, s2: zemperature sensors
s3: fault detector
in1, in2: input modules
mem1, mem2: memory
wd1, wd2: watchdogs
vot: voter
st: control module for fault detection
cu: central control unit
m1, m2: motors
v1, v2: valves

2. Sub-models for SRC-, ST- and WD-blocks:
D(S1) = (s1=D)
S(S1) = (s1=S)
D(S2) = (s2=D)
S(S2) = (s2=S)
D(S3) = (s3=D)
S(S3) = (s3=S)
D(In1) = Input(D) ∧ (in1=0)
S(In1) = Input(S) ∧ (in1=0)
L(In1) = (in1=L)
D(In2) = Input(D) ∧ (in2=0)
S(In2) = Input(S) ∧ (in2=0)
L(In2) = (in2=L)
D(WD1) = Input(L) ∧ (wd1=D)
S(WD1) = Input(L) ∧ (wd1=S)
D(WD2) = Input(L) ∧ (wd2=D)
S(WD2) = Input(L) ∧ (wd2=S)
D(Store1) = Input(D) ∧ (mem1=0)
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S(Store1) = (Input(S) ∧ (mem1=0)) ∨ (mem1=S)
D(Store2) = Input(D) ∧ (mem2=0)
S(Store2) = (Input(S) ∧ (mem2=0)) ∨ (mem2=S)
D(Voter) = (Input(D) ∧ (vot=0)) ∨ (vot=D)
S(Voter) = (Input(S) ∧ (vot=0)) ∨ (vot=S)
D(ST) = (Input(D) ∧ (st=0)) ∨ (st=D)
S(ST) = (Input(S) ∧ (st=0)) ∨ (st=S)
D(CU) = (Input(D) ∧ (cu=0)) ∨ (cu=D)
S(CU) = (Input(S) ∧ (cu=0)) ∨ (cu=S)
D(M1) = Input(D) ∧ (m1=0)
S(M1) = (Input(S) ∧ (m1=0)) ∨ (m1=S)
D(M2) = Input(D) ∧ (m2=0)
S(M2) = (Input(S) ∧ (m2=0)) ∨ (m2=S)
D(V1) = (Input(D) ∧ (v1=0)) ∨ (v1=D)
S(V1) = (Input(S) ∧ (v1=0)) ∨ (v1=S)
D(V2) = (Input(D) ∧ (v2=0)) ∨ (v2=D)
S(V2) = (Input(S) ∧ (v2=0)) ∨ (v2=S)
All missing expressions are false.

3. Sub-models for Dec-nodes:
S(Lost1) = (WD1 = S) ∨ (Store1 = S)
D(Lost1) = (WD1 = D) ∨ (Store1 = D)
S(Lost2) = (WD2 = S) ∨ (Store2 = S)
D(Lost2) = (WD2 = D) ∨ (Store2 = D)
S(CD) = (Lost1 = S) ∨ (Lost2 = S)
D(CD) = (Lost1 = D) ∧ (Lost2 = D)
S(Self) = (Voter = S) ∨ (ST = S)
D(Self) = (Voter = D) ∧ (ST = D)
S(Safe) = (V1 = S) ∨ (V1 = S)
D(Safe) = (V1 = D) ∧ (V2 = D)
All missing expressions are false.
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Appendix D

IFD-File Example

Version 0.3
1000
%Components
m1 0 1.3E-05 0 0
m2 0 1.3E-05 0 0
r1 0 1E-09 1E-09 0
r2 0 1E-09 1E-09 0
p1 0 1E-09 1E-09 0
p2 0 1E-09 1E-09 0
bus1 0 2E-09 0 0
bus2 0 2E-09 0 0
ecu1 0 2.5E-07 2.5E-07 0
ecu2 0 2.5E-07 2.5E-07 0
ecu3 0 2.5E-07 2.5E-07 0
o1 0 2.5E-08 2.5E-08 0
o2 0 2.5E-08 2.5E-08 0
%Blocks
P1
0
3
false
d(p1,S)
d(p1,D)

——————–
P2
1
3
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false
d(p2,S)
d(p2,D)

—————–
R1
2
3
false
d(r1,S)
d(r1,D)

—————-
R2
3
3
false
d(r2,S)
d(r2,D)

——————
COM1R
4
0
false
input(S);d(bus1,S)#d(bus2,S);d(ecu1,S)
input(D)#d(ecu1,0)#d(bus1,0);input(D)#d(ecu1,0)#d(bus2,0)

——————
COM2R
5
0
false
input(S);d(bus1,S)#d(bus2,S);d(ecu2,S)
input(D)#d(ecu2,0)#d(bus1,0);input(D)#d(ecu2,0)#d(bus2,0)

——————
Sen1
6
2
false
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(&P1&=#S OR &R1&=#S) OR &P1&=#D
(&P1&=#D AND &R1&=#D)
false
——————-
Sen2
7
2
false
(&P2&=#S OR &R2&=#S) OR &P2&=#D
(&P2&=#D AND &R2&=#D)
false
——————-
In
8
2
false
&COM1R&=#S AND &COM2R&=#S
(&COM1R&=#D AND &COM2R&=#D) OR (&COM1R&=#S AND &COM2R&=#D)
OR (&COM1R&=#D AND &COM2R&=#S)
false
——————-
ECU2
9
0
false
input(S)#d(ecu2,0);d(ecu2,S)
input(D)#d(ecu2,0);d(ecu2,D)

——————
ECU3
10
0
false
input(S)#d(ecu3,0);d(ecu3,S)
input(D)#d(ecu3,0);d(ecu3,D)

——————
ECU1
11
0
false
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input(S)#d(ecu1,0);d(ecu1,S)
input(D)#d(ecu1,0);d(ecu1,D)

——————
To1
12
2
false
&ECU2&=#S AND &ECU3&=#S
&ECU2&=#D OR &ECU3&=#D
false
——————
To2
13
2
false
&ECU1&=#S AND &ECU3&=#S
&ECU1&=#D OR &ECU3&=#D
false
——————-
Out1
14
2
false
&ECU1&=#S OR &COM1O&=#S
&ECU1&=#D AND &COM1O&=#D
false
——————-
Out2
15
2
false
&ECU2&=#S OR &COM2O&=#S
&ECU2&=#D AND &COM2O&=#D
false
——————-
COM1O
16
0
false
input(S);d(bus1,S)#d(bus2,S);d(ecu1,S)
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input(D)#d(ecu1,0)#d(bus1,0);input(D)#d(ecu1,0)#d(bus2,0)

——————
COM2O
17
0
false
input(S);d(bus1,S)#d(bus2,S);d(ecu2,S)
input(D)#d(ecu2,0)#d(bus1,0);input(D)#d(ecu2,0)#d(bus2,0)

——————
O1
18
0
false
input(S)#d(o1,0);d(o1,S)
input(D)#d(o1,0);d(o1,D)

——————
M1
19
0
false
d(m1,S);input(S)
input(D)#d(m1,0)

——————
O2
20
0
false
input(S)#d(o2,0);d(o2,S)
input(D)#d(o2,0);d(o2,D)

——————
M2
21
0
false
d(m2,S);input(S)
input(D)#d(m2,0)
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——————
Safe
22
2
true
false
&M1&=#D OR (&M1&=#S AND &M2&=#S) OR &M2&=D
false
——————-
%Edges
0
0
6
——————
1
2
6
—————–
2
6
4
—————–
3
3
7
—————–
4
1
7
—————–
5
7
5
—————–
6
4
8
—————–
7
5
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8
—————–
8
8
10
—————–
9
8
11
—————–
10
8
9
—————–
11
9
12
—————–
12
9
15
—————–
13
10
12
—————–
14
10
13
—————–
15
11
13
—————–
16
11
14
—————–
17
13
17
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—————–
18
12
16
—————–
19
16
14
—————–
20
17
15
—————–
21
14
18
—————–
22
18
19
—————–
23
19
22
—————–
24
15
20
—————–
25
20
21
—————–
26
21
22
—————–
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international pluridisciplinaire en Qualité et Sûreté de Fonctionnement
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M. Walter. Reliability Analysis of a Control Systems Built Using Re-
mote Redundancy. In Advances in Risk and Reliability Technology Sym-
posium, pages 335–346, 2009.

[28] M. Jallouli et al. Dependability Consequences of Fault-Tolerant Tech-
nique Integrated in Stack Processor Emulator using Information Flow
Approach. In 2008 International Conference on Design and Technology
of Integrated Systems in Nanoscale Era, pages 1–6, 2008.

[29] M. Jallouli et al. Evaluation of Important Reliability Parameters using
VHDL-RTL modelling and Information Flow Approach. In Proceedings
of the European Safety and Reliability Conference (ESREL 2008), pages
2549–2557, 2008.

[30] M. Fowler. UML Distilled: A Brief Guide to the Standard Object Mod-
eling Language 3rd Edition. Addison-Wesley, 2003.

[31] N. Gaitanis. The design of totally self-checking TMR fault-tolerant
systems. IEEE Transactions on Computers, 37:1450–1454, 1988.

[32] A. Goubermann, M. Riedl, J. Schuster, M. Siegle, and M. Walter.
LARES - A Novel Approach for Describing System Reconfigurability



164 BIBLIOGRAPHY

in Dependability Models of Fault-Tolerant Systems. In Proc. of the Eu-
ropean Safety and Reliability Conference (ESREL 2009), pages 153–160.
Taylor and Francis, 2009.

[33] A. Griffault, S. Lajeunesse, G. Point, A. Rauzy, J.-P. Signoret, and
P. Thomas. The AltaRica Language. In Proceedings European Safety
and Reliability Associates Conference (ESREL 98), 1998.

[34] C. Grinstead and J.L. Snell. Introduction to Probability. American
Mathematical Society, 1997.
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Keywords: Binary Decision Diagrams, Safety Critical Systems, System Modelling, Hierarchical 
Models

This thesis presents a novel approach for modelling safety critical systems which takes into account 
several failure modes both for components and the global system. The so called Information Flow 
Diagrams (IFDs) were originally developed in a previous PhD-thesis.  In this work, the evaluation if 
the IFD-approach should be made more efficient by using Binary Decision Diagrams (BDDs).
This  thesis  will  explain  why such  a  model  is  necessary  and  practical,  followed  by a  detailed 
explanation of the IFD-model. This includes its hierarchical structure and how this model can be 
applied. 
The next step is to formalise the original IFD-model in order to enable more efficient evaluation 
techniques. It will be explained why these formalisation steps were taken and what was gained by 
using them. 
Afterwards a detailed explanation of the developed algorithms is presented. These algorithms are 
based  on  a  combination  of  different  BDD-techniques.  Zero  Suppressed  BDDs  (ZBDDs)  are 
combined with Boolean Expression Diagrams (BEDs). Furthermore, the structure of the IFDs is 
used in order to construct a large BDD out of several smaller BDDs. This increases the efficiency of 
the evaluation process.
The presented techniques are evaluated by analysing several use cases which are explained in this 
work.

Mots clés :  Binary Decision Diagrams, Systèmes de sécurité fonctionnelle, Modélisation des 
systèmes, Models hiérarchiques

Cette thèse présente une nouvelle approche pour la modélisation des systèmes de sécurité 
fonctionnelle qui prend en compte plusieurs modes de défaillance pour les composants et le système 
global. Les diagrammes de flux d'information (IFDs) ont été initialement développé dans un thèse 
précédent. Dans ce travail, l'évaluation si l'approche flux d'information être rendue plus efficace par 
utiliser les diagrammes de décision binaires (BDD).
Cette thèse sera d'expliquer pourquoi ce modèle est nécessaire et pratique, suivie d'une explication 
détaillée des IFDs. Cela inclut sa structure hiérarchique et comment ce modèle peut être appliqué.
La prochaine étape est la formalisation du modèle IFD original pour permettre l'utilisation des 
techniques d'évaluation plus efficaces. Il sera expliqué pourquoi ces étapes de formalisation ont été 
prises et les avantages de leur utilisation.
Ensuite une explication détaillée des algorithmes développés est présenté. Ces algorithmes sont 
basés sur une combinaison de différentes techniques de BDD. Zero Suppressed BDDs (ZBDDs) 
sont combinées avec des Boolean Expression Diagrams (BEDs). En outre, la structure des IFD est 
utilisé pour construire un BDD global sur plusieurs petits BDDs. Cela augmente l'efficacité du 
processus d'évaluation.
Les techniques présentées sont évaluées par l'analyse de plusieurs cas d'utilisation qui sont 
expliqués dans cet travail.
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