Thèse soutenue

Comportement de fluides complexes sous écoulement : approche expérimentale par résonance magnétique nucléaire et techniques optiques et simulations numériques

FR  |  
EN
Auteur / Autrice : Claire Rigal
Direction : Michel LebouchéDaniel Canet
Type : Thèse de doctorat
Discipline(s) : Mécanique et énergétique
Date : Soutenance le 23/05/2012
Etablissement(s) : Université de Lorraine
Ecole(s) doctorale(s) : EMMA - Ecole Doctorale Energie - Mécanique - Matériaux
Partenaire(s) de recherche : Laboratoire : Laboratoire d'énergétique et de mécanique théorique et appliquée (Nancy)
Jury : Président / Présidente : Hassan Peerhossaini
Examinateurs / Examinatrices : Christophe Baravian
Rapporteurs / Rapporteuses : Albert Magnin, Jean-Michel Franconi

Résumé

FR  |  
EN

Cette thèse est une contribution à la fois expérimentale, théorique et numérique à l'étude des écoulements bidimensionnels de fluides complexes dans une conduite cylindrique présentant des singularités et dans une géométrie annulaire à cylindres excentrés. Le fluide utilisé est une solution de xanthane à différentes concentrations présentant un caractère non newtonien rhéofluidifiant. L'objectif principal de cette thèse est la caractérisation de l'influence des propriétés rhéofluidifiantes sur le comportement des zones de recirculation, en terme de morphologie, de positionnement et d'intensité, par l'utilisation et le développement de techniques de mesures non intrusives et performantes. La première méthode expérimentale utilisée une technique laser classique: la vélocimétrie par images de particules. La seconde technique mise en oeuvre est une méthode originale: la vélocimétrie par imagerie par résonance magnétique. Elle est utilisée pour la première fois au laboratoire pour la mesure de champ de vitesse d'écoulement de fluides complexes en conduite cylindrique, représentant l'intérêt majeur de cette thèse. La première partie de notre travail consiste en une description rhéologique complète de nos fluides modèles avec la détermination de leur loi de comportement et la mise en évidence de leurs propriétés viscoélastiques, par ailleurs négligeables. Par la suite les mesures de champ de vitesse des écoulements bidimensionnels étudiés et la représentation des lignes de courant montrent que les propriétés rhéofluidifiantes influencent très fortement la structure et la morphologie de ces écoulements et le comportement des zones de recirculation. Par une étude fine nous observons qu'il existe une compétition entre les effets d'inertie et les effets rhéofluidifiants induisant un champ de contrainte variable qui modifie le positionnement et la taille de la zone de recirculation. Nous montrons également que l'augmentation du caractère rhéofluidifiant affaiblit son intensité de la zone de recirculation. Enfin, des simulations numériques utilisant la loi de comportement macroscopique déterminée par rhéométrie classique ont été réalisées avec le logiciel Fluent. Une bonne concordance est observée entre les résultats de ces simulations numériques et les expérimentaux. Cette comparaison permet ainsi de valider le code de calcul et la loi de comportement, utilisée pour les simulations numériques au travers de sa modélisation suivant la loi de Cross, pour les écoulements considérés