Thèse soutenue

Propagation d’incertitudes dans les modèles éléments finis en électromagnétisme : application au contrôle non destructif par courants de Foucault

FR  |  
EN
Auteur / Autrice : Karim Beddek
Direction : Stéphane ClénetYvonnick Le MenachOlivier Moreau
Type : Thèse de doctorat
Discipline(s) : Génie électrique
Date : Soutenance le 29/06/2012
Etablissement(s) : Lille 1
Ecole(s) doctorale(s) : École doctorale Sciences pour l'ingénieur (Lille)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'électrotechnique et d'électronique de puissance (L2EP)

Résumé

FR  |  
EN

La quantification d’incertitudes est une démarche consistant à prendre en compte les incertitudes des coefficients caractéristiques (matériaux, géométries, sources ...) d’un modèle mathématique en vue d’estimer l’effet de ces méconnaissances sur les grandeurs physiques recherchées. Dans ce travail de thèse, nous nous sommes intéressés aux approches probabilistes de propagation d’incertitudes portées par les lois de comportement (perméabilités et conductivités) aux sein de modèles éléments finis de l’électromagnétisme quasi-statique de taille industrielle. Cette thèse vise à comparer les deux approches spectrales NISP et SSFEM qui sont basées sur une représentation fonctionnelle dans le chaos polynomial des grandeurs d’intérêt aléatoires. Cette étude de comparaison est effectuée en terme de précision numérique et de coût de calcul, et pour des grandeurs d’intérêt scalaires et vectorielles complexes. Les applications numériques nous ont montré que la SSFEM peut être assez compétitive par rapport à la NISP pour des problèmes probabilistes à grandes dimensions stochastiques. Il en résulte que celle-ci est la méthode de prédilection pour l’étude des systèmes électromagnétiques dont les lois de comportement des matériaux sont aléatoires. Enfin, les deux méthodes spectrales ont été appliquées sur un problème de détection de bouchage par la magnétite des plaques entretoises des générateurs de vapeur d’une centrale nucléaire. Dans cette étude probabiliste, nous nous sommes attelés à quantifier la contribution des incertitudes, subsistant dans les conductivités et perméabilités de la magnétite et de la plaque, à la variabilité des signaux et du ratio SAX.