De l'échantillonage optimal en grande et petite dimension
FR |
EN
Auteur / Autrice : | Alexandra Carpentier |
Direction : | Rémi Munos |
Type : | Thèse de doctorat |
Discipline(s) : | Informatique |
Date : | Soutenance le 05/10/2012 |
Etablissement(s) : | Lille 1 |
Ecole(s) doctorale(s) : | École doctorale Sciences pour l'ingénieur (Lille) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire d'informatique fondamentale de Lille (2002-2014) |
Mots clés
FR
Résumé
FR |
EN
Pendant ma thèse, j’ai eu la chance d’apprendre et de travailler sous la supervision de mon directeur de thèse Rémi, et ce dans deux domaines qui me sont particulièrement chers. Je veux parler de la Théorie des Bandits et du Compressed Sensing. Je les voie comme intimement liés non par les méthodes mais par leur objectif commun: l’échantillonnage optimal de l’espace. Tous deux sont centrés sur les manières d’échantillonner l’espace efficacement : la Théorie des Bandits en petite dimension et le Compressed Sensing en grande dimension. Dans cette dissertation, je présente la plupart des travaux que mes co-auteurs et moi-même avons écrit durant les trois années qu’a duré ma thèse.