Thèse soutenue

Etude et fabrication de MOSFET de la filière III-V

FR  |  
EN
Auteur / Autrice : Jiongjiong Mo
Direction : Sylvain BollaertNicolas Wichmann
Type : Thèse de doctorat
Discipline(s) : Électronique
Date : Soutenance le 11/07/2012
Etablissement(s) : Lille 1
Ecole(s) doctorale(s) : École doctorale Sciences pour l'ingénieur (Lille)
Partenaire(s) de recherche : Laboratoire : Institut d'Electronique, de Microélectronique et de Nanotechnologie

Résumé

FR  |  
EN

Le système autonome nécessite une consommation d'énergie inférieur à 100μW pour qu’ils puissent récupérer l’énergie environnementale. Le transistor MOSFET, étant le composé principal de ce système, peut permettre cela en améliorant ces performances. Le matériaux III-V présente un intérêt à être appliqué au transistor MOSFET en considérant ses propres propriétés tel la haute vitesse thermique d’électron, la haute vitesse de saturation, la faible bande interdite. D'aussi hautes performances de transistor avec de basse consommation d'énergie peut être envisagé grâce au MOSFET III-V. Des technologies de fabrication de MOSFET In0.53Ga0.47As ont été développées avec ces mesures statiques et dynamiques. Un IdMAX=180mA/mm, gmMAX=110mS/mm, fT=150GHz, et fMAX=47GHz ont été obtenus pour un transistor de longueur de grille de 50nm. Différentes voies d’amélioration ont été étudiées y compris le procédé gate-last comparé au gate-first, l’effet PDA, et l’effet PPA. Le procédé gate-last démontre moins de dégradation de l’oxyde avec de meilleures performances que gate-first. PDA n’a pas d'effet important sur les performances du transistor. PPA a démontré un effet de passivation de certains défauts dans l’oxyde et dans l’interface. Des structures alternatives ont été étudiées comme la structure MOSHEMT de maille adapté et pseudomorphique, montrant de meilleures performances avec une IdMAX=300mA/mm, gmMAX=200mS/mm, fT=200GHz et fMAX=50GHz pour un transistor de longueur de grille de 100nm. Ces performances DC sont loin de l’état de l’art, tandis que les performances RF sont parmi les meilleures. La perspective de ce travail est d’améliorer la qualité d’oxyde en baissant le budget thermique et aussi d'utilier de prometteuses strucutres comme MOS-COMB (la structure MOS-Thin body avec couche barrière entre l’oxyde et le semiconducteur). La structure MOSFET InAs de haute performance pourrait aussi être envisagé en réduisant le budget thermique au cours de la fabrication.