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Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0094/these.pdf 
© [T.K.N. Nguyen], [2012], INSA de Lyon, tous droits réservés



Thi Kim Ngan NGUYEN: Generalizing Association Rules in N -ary Relations: Ap-
plication to Dynamic Graph Analysis, PhD Thesis, c© 2008-2012

SUPERVISOR:
Jean-François Boulicaut

SUPERVISOR:
2008-2012

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0094/these.pdf 
© [T.K.N. Nguyen], [2012], INSA de Lyon, tous droits réservés



Résumé

Le calcul de motifs dans de grandes relations binaires a été très étudié. Un succès
emblématique concerne la découverte d’ensembles fréquents et leurs post-traitements
pour en dériver des règles d’association. Il s’agit de calculer des motifs dans des re-
lations Objets × Propriétés qui enregistrent quelles sont les propriétés satisfaites
par des objets. En fait, de nombreux jeux de données se présentent naturellement
comme des relations n-aires (avec n > 2). Par exemple, avec l’ajout de dimensions
spatiales et/ou temporelles (lieux et/ou temps où les propriétés sont enregistrées),
on peut vouloir travailler sur une relation 4-aire Objets × Propriétés × Lieux ×
Temps. Nous avons généralisé le concept de règle d’association dans un tel con-
texte multi-dimensionnel, en travaillant non plus sur des matrices booléennes mais
sur des tenseurs booléens d’arité arbitraire. Contrairement aux règles usuelles qui
n’impliquent que des sous-ensembles d’un seul domaine de la relation, les prémisses
et les conclusions de nos règles peuvent impliquer des sous-ensembles arbitraires des
domaines retenus. Nous avons conçu des mesures de fréquence et de confiance pour
définir la sémantique de telles règles et c’est une contribution significative de cette
thèse. Le calcul exhaustif de toutes les règles qui ont des fréquences et confiances
sufisantes et l’élimination des règles redondantes ont été étudiés. Nous proposons
ensuite d’introduire des disjonctions dans les conclusions des règles. Ceci nécessite
de retravailler les définitions des mesures d’intérêt et les questions de redondance.
Pour ouvrir un champ d’application original, nous considérons la découverte de règles
dans des graphes relationnels dynamiques codés dans des relations n-aires (n ≥ 3).
Une application à l’analyse des usages de vélos dans le système Vélo’v (système de
Vélos en libre-service du Grand Lyon) montre quelques usages possibles des règles
que nous savons calculer avec nos prototypes logiciels.

Mots clés

Motifs, Règle descriptive, Non-redondance, Données multidimensionnelles, Fouille
sous contraintes, Tenseur booléen, Graphes dynamiques.
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Abstract

Pattern discovery in large binary relations has been extensively studied. Typi-
cally, it needs to compute patterns that hold in relations Objects×Properties that
denote whether given properties are satisfied or not by given objects. An emblem-
atic success in this area concerns frequent itemset mining and its post-processing
that derives association rules. It is however clear that many datasets correspond to
n-ary relations where n > 2. For example, adding spatial and/or temporal dimen-
sions (location and/or time when the properties are satisfied by the objects) leads
to the 4-ary relation Objects× Properties× Places× Times. Therefore, we study
the generalization of association rule mining within arbitrary n-ary relations: the
datasets are now Boolean tensors and not only Boolean matrices. Unlike standard
rules that involve subsets of only one domain of the relation, in our setting, the head
and the body of a rule can include arbitrary subsets of some selected domains. A
significant contribution of this thesis concerns the design of interestingness measures
for such generalized rules: besides a frequency measures, two different views on rule
confidence are considered. The concept of non-redundant rules and the efficient ex-
traction of the non-redundant rules satisfying the minimal frequency and minimal
confidence constraints are also studied. To increase the subjective interestingness
of rules, we then introduce disjunctions in their heads. It requires to redefine the
interestingness measures again and to revisit the redundancy issues. Finally, we
apply our new rule discovery techniques to dynamic relational graph analysis. Such
graphs can be encoded into n-ary relations (n ≥ 3). Our use case concerns bicycle
renting in the Vélo’v system (self-service bicycle renting in Lyon). It illustrates the
added-value of some rules that can be computed thanks to our software prototypes.

Keywords

Pattern, Descriptive rule, Non redundancy, Mutidimensional data, Constraint-
based mining, Boolean tensor, Dynamic graph.
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Introduction

Data mining research has been motivated by the need for new computational
methods that support Knowledge Discovery from large Datasets (KDD). At first,
early in the 90’s, methods from statistics, machine learning, and databases have been
used before being revisited (for instance with respect to scalability issues). Today,
data mining appears as a mature scientific domain with well-established series of
conferences (e.g., ACM SIGKDD, IEEE ICDM, SIAM DM, ECML/PKDD) and
quite good textbooks (see, e.g., [102]). The data mining researchers often address
the so-called unsupervized methods whose goals are to describe, to summarize, and
to suggest relevant hypothesis thanks to data analysis. Such methods enable to
explicit relationships and properties which are hidden in the data and can be used
afterhand to enhance knowledge discovery and decision support in many application
domains.
Many popular data mining tasks can be formalized according to the simple model

proposed by Mannila and Toivonen [73]. They assume that we often look for all po-
tentially interesting patterns from a pattern language L in a given database Db and
this is expressed as the computation of T H(Db,L, C) = {ρ ∈ L | C(ρ,Db) is true}
where the constraint C specifies pattern interestingness.
Once declaratively specified, one challenge concerns the correct and complete com-

putation of such collections. When it is not possible, heuristics may be used that
enable to look for good approximations of the solution (e.g., this is the case when per-
forming clustering tasks). Considering a KDD process as a sequence of queries over
the data combined with such computations that are also called inductive query eval-
uations is one promising direction of research for supporting typical interactive and
iterative real-life KDD processes. Constraints play an important role here. Not only
user-defined constraints enable to specify both objective and subjective interesting-
ness, but also the constraints can be exploited to achieve computational feasability.
Several books on inductive databases and constraint-based mining started to explore
this long-term perspective on the KDD field [74, 20, 39].
This thesis concerns pattern languages that are set patterns and descriptive rules

1
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that hold within arbitrary n-ary relations (Db denotes a relation over n dimensions).
It means that we had to design pattern languages (e.g., the languages of n-sets or
that of multidimensional rules) and primitive constraints (e.g., constraints that en-
force thresholds on interestingness measures like frequency and confidence). Before
introducing the contribution with more details, let us first discuss our context.

Context

The “Data Mining” research group in LIRIS UMR 5205 has an expertise on many
instances of such a simple though generic constraint-based data mining setting.
Among others and like many other data mining groups in the last two decades, its
members have contributed to pattern discovery from large binary relations. This is
also known as transactional or 0/1 data mining. Let us first emphasize a couple of
milestones about binary relation mining expertise in this group.

– Studying the so-called frequent itemset mining problem [2] in dense datasets
instead of sparse ones has given rise to nice results concerning various condensed
representations of frequent sets like, among others, closed and δ-free itemsets
(Ph. D. thesis A. Bykowski [28], 2002) ;

– On the same pattern language but also on the so-called standard association
rules [2], optimizing data mining algorithms when considering that C is a con-
junction of monotone and anti-monotone primitive constraints has been studied
(Ph. D. thesis B. Jeudy [60], 2002) ;

– Considering Formal Concept Analysis [41] and closed pattern mining in binary
relations, efficient though generic algorithms that compute complete collections
of formal concepts that satisfy user-defined constraints have been designed. For
instance, DMiner enables to compute formal concepts that have both a large
intent and a large extent in large relations. Fault-tolerance can be expressed by
means of primitive constraints as well (Ph. D. thesis J. Besson [14], 2005) ;

– Looking for fault-tolerant patterns by generalizing formal concepts and thus
closed sets has been studied further: heuristic methods have been considered
(for instance, clustering of formal concepts) but also exhaustive ones. Moreover,
it has been shown that co-clustering can be implemented as a post-processing
over collections of formal concepts (Ph. D. thesis R. Pensa [85], 2006).

In 2008, the group started to investigate the systematic extension of its meth-
ods towards arbitrary n-ary relation mining (n ≥ 2). L. Cerf has defended his
Ph. D thesis on closed pattern discovery from such relations in 2010 [31]. Thanks
to the Data-Peeler algorithm [32, 33] and its fault-tolerant extension Fenster

[CBNB12], given a n-ary relation, we know how to compute complete collections of
(possibly error-tolerant) closed patterns that satisfy given piecewise (anti)-monotone
constraints. This new class of constraints generalizes both monotone and anti-
monotone constraints.
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Our research topic the last few years and thus the core contribution of this thesis
has been to generalize descriptive rule mining (more precisely the popular association
rule mining methods that have been extensively studied in binary relations) within
a n-ary relation setting. While standard association rule mining took the most from
the research on closed set computation in binary relations (e.g., to tackle redundancy
issues), our idea was that a clever generalization of such rules in n-ary relations may
be based on closed pattern discovery as well. We now provide some details and we
introduce the basic terminology before discussing the contribution.

From binary relations ...

Association rule mining was first introduced in [2] for basket data analysis, i. e.,
Customers × Products binary relation mining (each couple records that a given
product has been bought by a given customer). Its goal is to explicit a priori inter-
esting co-occurrences of purchases. For example, assume that in some basket data
we have an association rule {wine, cheese} → {grape, bread} with a 2% frequency
and 80% confidence. First, it means that 2% of the customers buy wine, cheese,
grape, and bread together. Then, it tells that 80% of the customers who have been
buying wine and cheese have bought grape and bread as well. Discovering the asso-
ciation rules that satisfy a minimal frequency constraint and a minimal confidence
constraint thanks to user-defined thresholds enable to identify sets of products that
tend to be bought together. As a result, computed rules may be used to plan mar-
keting or advertising strategies, to support the design of catalogs or store layouts.
Association rules have been widely used for basket data analysis but also for mining
large binary relations that record whether some objects satisfy or not some boolean
properties: in basket data, a property expresses that a given product (also called
item) belongs or not to the transaction by a given customer (i.e., an object).
In Chapter 1, we formalize association rule mining in binary relations and we

discuss the main directions of research that have been considered since the definition
of the task in 1993 [2]. Given a binary relation B on two domains O (set of objects)
and P (set of properties), i. e., B ⊆ O × P, the goal of association rule mining is to
find out patterns of the form X → Y where X,Y are subsets of P, i.e., one of the
two domains. X is called the body of the association rule and Y is called its head.
X and Y are sets that denotes conjunctions of properties: for instance, when wine
and cheese are seen then grape and bread are seen as well.
The rule semantics are defined by means of interestingness measures like frequency

and confidence. In the standard setting, these measures tell something about the
strength of the hypothesis that objects that satisfy the properties inX tend to satisfy
the properties in Y . In other terms, we use a support domain, here the domain O,
to assess pattern objective interestingness.
The standard association rule mining task is computationally hard. Only thresh-

olds values for the interestingness measures are given, defining a priori interesting-
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ness as a conjunction of a minimal frequency and a minimal confidence. To com-
pute rules, designing complete methods is obviously hard but this has been quite
well understood thanks to about 15 years of intensive research worldwide. Beside
the computational feasibility, the major issue of interestingness has been addressed
as well: designing better interestingness measures, exploiting new user-defined con-
straints that support subjective interestingness specification, tackling redundancy
issues, etc. Some extensions of standard association rule mining have been studied,
for instance, when considering taxonomies over properties or when adding disjunc-
tions and/or negations within the rule bodies and/or heads. However, when limited
to binary relations, rules clearly express relationships between elements from one
domain only.

... to n-ary relations

Many datasets of interest correspond to relations whose number of dimensions
is greater or equal to 3. For example, let us add a time dimension to a rela-
tion Customers × Products such that it becomes a ternary relation Customers ×
Products× Seasons: each tuple records that a given customer has bought a given
product at a given season. From such a relation, we would like to discover rules
like {orange} → {winter}. An expected meaning would be that customers often
buy oranges during winter. This rule is an implication of elements in two different
domains and it cannot be extracted by means of traditional association rule mining
algorithms that process binary relations.

Several researchers have considered association rule mining in a multidimensional
model. According to the number of dimensions appearing in a rule and their mul-
tiple occurrences, the rules can be classified into three types: intra-dimensional,
inter-dimensional, and hybrid rules. A rule whose elements belong to only one di-
mension is called an intra-dimensional rule. The standard association rules in binary
relations are a special case of intra-dimensional rules. Schmitz et al. proposed in
[92] an intra-dimensional association rule mining technique in ternary relations. In-
stead of describing co-occurrences of elements of only one domain, inter-dimensional
association rules have been proposed (see, e.g., [62, 75]). An inter-dimensional as-
sociation rule is an implication between elements of a few distinct domains and no
dimension is repeated in the rule (i. e., a rule does not have two elements that belong
to the same domain). This absence of repetition is a limitation on the expressiveness
of the rules. Other researchers have been designing some more or less ad-hoc types
of rules, namely hybrid rules, in which the repetition of few dimensions is enabled
[53, 38, 104]. All these proposals are discussed in Chapter 2 where methods for
descriptive rule mining in n-ary relations and their limits are considered.

Until now, the proposed solutions for generalizing association rule mining in n-
ary relations have been always enforcing more or less severe restrictions on the
dimensions that can appear or not in their bodies or heads. As a result, it is
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not yet possible to discover rules which include arbitrary subsets of some domains.
For example, in the 3-ary relation Customers × Products × Seasons, it is not yet
possible to discover rules like {melon, orange} → {summer, autumn} or {cherry}×
{summer} → ({apple, pear}) ∨ ({grape} × {autumn}). The expected meaning of
the first rule could be that melon and orange are bought together in both summer
and autumn seasons. The second rule may suggest that, if a customer buys cherry
in summer then he/she can also buy apple and pear, or he/she tends to buy cherry
and grape in both summer and autumn. In fact, computing such rules would help
to describe and to analyse relationships of elements in the relation Customers ×
Products× Seasons.
Therefore, our objective has been to study more expressive generalizations of

association rules in arbitrary n-relations. We had to work on declarative aspects
like defining the pattern languages and the semantics of rules thanks to primitive
constraints and thus new interestingness measures. We also had to design correct
and complete algorithms that make the computation of a priori interesting rules
feasible in practical situations.

Contributions

Generalizing association rule mining within a n-ary relation (n ≥ 2) when asso-
ciations (bodies and heads of rules) can be arbitrary subsets of some domains is
surprisingly difficult. The two main subproblems to address are (a) how to define
the semantics of rules thanks to constraints, and (b) how to efficiently compute such
rules.
Point (a) is about defining the pattern language and objective measures of pattern

interestingness. When generalized to n-ary relations, association rules may involve
subsets of some domains. In this context, what does it means for a rule to be
frequent or to have a high enough confidence? Is it possible to have measures that
correspond to the special case of standard measures when n = 2 and that are as
intuive as possible for analysts? How to generalize other relevancy concepts such as,
for example, non redundancy?
Once these declarative issues are understood, Point (b) concerns the design of

scalable methods to extract the patterns that satisfy a given conjunction of primitive
constraints. When possible, correct and complete algorithms remain preferable: such
methods list all solution rules and only them. Performance issues are important: a
good algorithm must scale in the number of dimensions, in the size (number of
values) of each of these dimensions, and in the number of tuples in the relation that
is also the number of true values in the Boolean tensor that represents the relation.
In this dissertation, we investigate two types of descriptive rules that have been

called multidimensional association rules and multidimensional disjunctive rules.
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Multidimensional association rules

A multidimensional association rule is a generalization of an association rule as
defined by Agrawal et al. [2] for binary relations. Given an arbitrary n-ary relation,
a multidimensional association rule is an implication between two associations where
each association can contain subsets of some arbitrary domains. In this context, we
propose three objective interestingness measure. Generalizing the frequency measure
is straightforward: it tells how often a rule is applicable thanks to its support domain.
Designing confidence measures is much harder. We propose two generalizations. The
natural confidence evaluates the probability to observe the head of a rule when its
body holds. The exclusive confidence evaluates whether the association in the body
of a rule “prefers” conjoining with the association in the head to conjoining with
other elements. The concept of non-redundant rule having a minimal body and a
maximal head (see, e.g., [82]) must be revisited as well.

For example, considering the relation Customers × Products × Seasons, let us
discuss about the rule {melon, orange} → {summer, autumn} when its frequency
is 0.01, its natural confidence is 0.5, and its exclusive confidence is 0.7. The values of
the measures tell that 1% among the customers (this domain is the support domain)
buy melon and orange together in both summer and autumn seasons, a half of the
customers who are buying melon and orange together during a same season do so
during both summer and autumn. Finally, the high exclusive confidence indicates
that customers rarely buy melon and orange together in other seasons.

Our implemented multidimensional association rule mining method has been de-
signed as a post-processing of the closed patterns that hold in n-ary relations. It
proceeds in three successive steps:

– (1) We prepare the multidimensional relation (i.e., a Boolean tensor) to mine ;
– (2) We compute frequent closed sets thanks to the state-of-the-art algorithm
Data-Peeler [32] ;

– (3) We process these frequent closed patterns to derive from them the non-
redundant rules whose natural and exclusive confidences exceed the user-defined
thresholds.

Multidimensional disjunctive rules

The multidimensional disjunctive rule mining task addresses the following ques-
tion: “Which cases can occur when we observe a frequent association?” A mul-
tidimensional disjunctive association rule is an implication between associations:
its body is an association and its head is a disjunction of associations. Enabling
disjunction provides more expressive rules. Again, we had to design relevant in-
terestingness measures. First, the association measures of a disjunctive rule eval-
uate the probability of the conjunction between the body and each association in
the head. Next, the disjunctive measures evaluate the probability to observe at
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least one association in the head when the body holds. Here again, we have been
looking further at the the concept of non-redundancy. For example, let us con-
sider the rule {cherry} × {summer} → ({apple, pear}) ∨ ({grape} × {autumn}),
where {apple, pear} co-occurs with {cherry} × {summer} by an association fre-
quency (denoted fa) of 0.02 and an association confidence (denoted ca) of 0.5,
{grape} × {autumn} co-occurs with {cherry} × {summer} by an association fre-
quency 0.05 and an association confidence 0.6. Finally, let us say that the disjunctive
frequency and the disjunctive confidence (resp. denoted as fd and cd) of the rule are
respectively 0.8 and 0.9. Such a rule means that that when a customer buys cherry
in summer, he/she tends to buy apple, pear or grape (fd = 0.8, cd = 0.9). If he/she
prefers the products grape then he/she tends to also buy it in autumn (fa = 0.05,
ca = 0.6).
Multidimensional disjunctive rule mining needs four successive steps:
– (1) We prepare the multidimensional relation (i.e., a Boolean tensor) to mine ;
– (2) We compute frequent closed sets using Data-Peeler ;
– (3) We derive the key association rules satisfying the user-defined minimal as-
sociation confidence constraint from the frequent closed sets ;

– (4) We compute the non-redundant disjunctive rules whose disjunctive fre-
quency and disjunctive confidence are high enough given user-defined thresh-
olds.

Applications to dynamic graph analysis

Graphs are a popular data structure to model the relationships between sets of
entities. More and more graph data are available that denote, for instance, interac-
tions between individuals in a social network. Graph data is ubiquitous and graph
mining has recently received a lot of attention. Specially, many researchers are now
interested in dynamic graphs that describe the evolution of a graph over time. How-
ever, there are only a few works concerning descriptive rule mining from dynamic
graphs, to describe, for instance, local evolution trends over time (e. g., [111, 12]).
“What patterns can co-occur during the evolution of a graph?” is an important

question that has not been really studied. For example, in a dynamic graph where
we observe some periodical behavior, at what time does a bottleneck (i.e., many
incoming edges) occur at a vertex? What vertices do outer edges tend to converge
to? We seek to address this kind of questions thanks to multidimensional association
(or disjunctive) rule mining.
Indeed, we focus on dynamic relational graphs whose vertices are all uniquely

identified. We have a straightforward way to encode such a dynamic relational graph
into a n-ary relation that is at least ternary (two dimensions are used to encode
the adjacency matrices and at least one other dimension denotes time-stamps). To
detect co-occurrences of patterns in the dynamic graph, we can express each pattern
as an association in the associated n-ary relation, co-occurrences of patterns in the
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(b) Examples of rules mined on the toy dynamic graph.

Figure 1: Mining rules in dynamic graphs

dynamic graph as co-occurrences of associations in multidimensional association (or
disjunctive) rules in the n-ary relation. For example, Figure 1a illustrates a toy
dynamic relational graph represented by a ternary relation. Figure 1b shows some
rules that we can mined thanks to our methods. The first rule means that the sub-
network at its body can be enlarged to a clique with a high enough confidence. The
second rule means that if the edges from Vertex 1 and Vertex 2 converge, they tend
to converge to Vertex 1, Vertex 3 or Vertex 4.

We report experiments on real data that concern the Vélov’v network. Vélov’v
is a bicycle rental service run by the urban community of Lyon in France, with 327
bicycle stations when the data was collected. A customer rents a bicycle at a station
and returns it to any other station. We decided to build a dynamic graph that tells
whether stations exchange a significant amount of bicycle at different time-stamps
(the data is aggregated per day and per hour in a day). The goal of rule mining is
to detect preferred time periods of departures and arrivals at stations, time periods
of the exchange of bicycles between stations, stations that are blocked (impossible
to rent or to return a bicycle) and their blocked time. We see that rule mining may
support a better understanding of the Vélov’v network usage and thus it can help
to improve the quality of service with respect to customers.
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Thesis organization

The dissertation is structured in three parts.

Part 1 concerns the state-of-the-art. In Chapter 1, we introduce many useful
concepts related to set pattern mining from binary relations. As a result, we discuss
the frequent itemset mining task but also association rule mining. Chapter 2 presents
existing approaches for mining patterns (n-sets, rules) in n-ary relations. Among
others, it introduces the Data-Peeler algorithm that computes closed n-sets under
constraints.

Part 2 concerns our conceptual contribution. Chapter 3 focuses on multidimen-
sional association rules in n-ary relations, it contains the definition of the pattern
language and the design of relevant measures. An algorithm is proposed and it is
empirically studied on real data. On this mining task, our preliminary results and
first proposals were published in [NCB10, NCPB10] before the proposal in the con-
ference paper [NCPB11] (Algorithm Pinard 1) and its enhancement in the journal
paper [NCPB11] (Algorithm Pinard++). Chapter 4 is about mining multidimen-
sional disjunctive rules and it basically follows the same organization than Chapter
3. This mining task and the Cidre 2 algorithm have been introduced in [NPB12].

Part 3 is dedicated to an application of our rule discovery methods to the analysis
of dynamic relational graphs. It is made only of Chapter 5. The case study on the
analysis of the Vélov’v network is detailed. A few computed rules are interpreted to
have some qualitative counterpart to the performance studies in Part 2. [NCPB10]
and [NCPB11] already addressed network analysis but this is detailed in the journal
paper [NCPB11] and in the conference paper [NPB12].

Finally, we summarize the dissertation and we discuss directions for future re-
search.

1. Pinard Is N-ary Association Rule Discovery.
2. Cidre Is a Disjunctive Rule Extractor.
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State of the art and theoretical

basis
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Outline

The simple abstraction of many data mining tasks proposed by Mannila and Toivo-
nen [73] can be used here to introduce some relevant material about previous work.
They assume that, in many data mining tasks, we look for all potentially interesting
patterns from a pattern language L in a given database Db and that this can be
expressed as the computation of {ρ ∈ L | C(ρ,Db) is true}. Generally speaking,
the constraint C specifies pattern interestingness in Db and it is a Boolean combi-
nation of several primitive constraints. In this thesis we only consider conjunctions
of constraints. While many of them refer to the data (and checking whether they
are satisfied needs to scan Db), it is also possible to have syntactic constraints that
only work on ρ itself. In fact, for the sake of clarity and because it is always clear
in the context, we generally omit the explicit reference to Db when defining/using
constraints or operators.

In Chapter 1, we consider pattern domains that have been defined on binary
relations, i.e., Db denotes a binary relation that will be often depicted by means
of a Boolean matrix. Three pattern languages (three different instances of L) will
be considered. First, the language of itemsets is concerned: this is basically the set
of attribute values that can be built on one of the two dimensions of the relation.
Then, we can work with couples of sets of attribute values from both dimensions.
Finally, we will consider the language of standard association rules that is built on
attribute values from one dimension only. Some primitive constraints that have been
well-studied are discussed. Among others, it includes constraints on the values of
interestingness measures given user-defined thresholds (e.g., minimal frequency for
itemsets and rules, minimal area for couples of sets, minimal confidence for rules).
For itemsets and couples of sets, it concerns also maximality constraints and more
generally constraints related to closedness.

In Chapter 2, we consider known extensions of these pattern languages when the
data is an n-ary relation, often depicted by means of a Boolean tensor when n > 2.
Once declaratively specified, one challenge concerns the correct and complete com-

putation of a priori interesting patterns. Major issues for the scalable computation
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of patterns in both binary and n-ary relations are to be discussed as well. In Chapter
1, key concepts that have given rise to efficient algorithms for exploiting large binary
relations are considered. In Chapter 2, we survey previous work in n-ary relations
especially when n > 2. Among others, it introduces the Data-Peeler algorithm
which has been both a motivation for this research and also a key component of the
multidimensional rule mining software prototypes that are presented in Part 2.
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Chapter 1

Association analysis in binary

relations

This chapter is organized as follows. Section 1.1 recalls some terminology and
basic concepts about binary relations and popular set pattern domains. Section
1.2 is dedicated to frequent itemset mining. Association rule mining is discussed in
Section 1.3.

1.1 Binary relations and set pattern domains

1.1.1 Binary relations

A binary relation describes the relationship between the elements of two arbi-
trary sets, namely its domains. Given two finite disjoint sets O = {o1, . . . , on}
and P = {p1, . . . , pm}, a binary relation on these sets, namely B, is a collec-
tion of elements of the form (oi, pj) where oi ∈ O and pj ∈ P. When (oi, pj) ∈
B, it means that the relation holds between oi and pj . In other words, a rela-
tion on the domains O and P is a subset of their Cartesian product O × P =
{(o1, p1), ..., (o1, pm), ..., (on, p1), ..., (on, pm)}.

Definition 1 (Binary relation). Given two finite disjoint sets O and P, a binary
relation B on these domains is a subset of O × P.

Example 1. Figure 2a presents an example of the binary relation BE inspired by a
basket data analysis setting. It concerns customers in OE = {o1, o2, o3, o4, o5} and
products in PE = {p1, p2, p3, p4}. A couple (o1, p1) ∈ BE means that the customer
o1 has been bying the product p1.

A binary relation like BE can be described by a set of couples (Figure 2a), a set
of transactions or sets (Figure 2b), or a matrix (Figure 2c).
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(o1, p1), (o1, p2),
(o2, p1), (o2, p2), (o2, p4),
(o3, p1), (o3, p2), (o3, p3), (o3, p4),
(o4, p1), (o4, p3),
(o5, p2), (o5, p3), (o5, p4).

(a) BE as a set of couples

Customers Products

o1 {p1, p2}
o2 {p1, p2, p4}
o3 {p1, p2, p3, p4}
o4 {p1, p3}
o5 {p2, p3, p4}

(b) BE as a set of transactions

p1 p2 p3 p4
o1 1 1

o2 1 1 1

o3 1 1 1 1

o4 1 1

o5 1 1 1

(c) BE as a matrix

Figure 2: A binary relation BE

Example 2. Figure 2b describes a database of transactions (customer’s purchases)
over PE. Each transaction is a pair including a customer and a set of products
he/she bought. For instance, the transaction (o1, {p1, p2}) means that o1 bought the
products p1 and p2. It is represented by the couples (o1, p1) and (o1, p2) in Figure 2a.
Figure 2c represents BE by means of a Boolean matrix. A value 1 at the intersection
of a row oi and a column pj means that (oi, pj) ∈ BE.

Let us introduce some useful functions and concepts. We call O the set of objects
and P the set of items. We write 2P (respectively 2O) to denote the set of all subsets
of P (respectively the set of all subsets of O). For P ⊆ P and O ⊆ O, we define
the two following functions: ψ(P ) associates with P all the objects that share every
item p ∈ P , i.e., it is the supporting set of P . φ(O) associates with O all the items
that are shared by every o ∈ O, i.e., it is the supporting set of O.

Definition 2 (A Galois connection [109]). Given a binary relation B ⊆ O × P,
P ∈ 2P and O ∈ 2O:

ψ(P ) : 2P → 2O, ψ(P ) = {o ∈ O | ∀p ∈ P, (o, p) ∈ B}
φ(O) : 2O → 2P , φ(O) = {p ∈ P | ∀o ∈ O, (o, p) ∈ B}

The couple of applications (ψ, φ) is a Galois connection between the partial orders
(2P ,⊆) and (2O,⊆).
Example 3. In the binary relation BE presented in Figure 2, ψ({p1, p4}) = {o2, o3},
φ({o2, o3}) = {p1, p2, p4}, ψ({p1, p2, p4}) = {o2, o3}.
Definition 3 (Galois closure operators and closed sets [109]). Given B ⊆ O × P,
P ∈ 2P and O ∈ 2O, the operators h(P ) = φ(ψ(P )) = φ ◦ ψ(P ) and h′(O) =
ψ(φ(O)) = ψ ◦ φ(O) are Galois closure operators. When Cclosed(P ) ≡ (h(P ) = P )
(resp. Cclosed(O) ≡ (h′(O) = O)) is satisfied, we say that P (resp. O) is a closed
set.

Example 4. In BE, h({p1, p4}) = {p1, p2, p4}, h({p1, p2, p4}) = {p1, p2, p4}. There-
fore, {p1, p4} is not a closed set, {p1, p2, p4} is a closed set. Notice that {o2, o3} =
ψ({p1, p2, p4}) is a closed set as well.
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1.1. BINARY RELATIONS AND SET PATTERN DOMAINS 17

1.1.2 Pattern languages on binary relations

In this chapter, the data is a binary relation B ⊆ O×P (for instance BE presented
in Figure 2). Let us now consider the different pattern languages of interest. Three
pattern languages are considered:

– The so-called language of itemsets 2P is quite popular. We may also consider the
other dimension and thus 2O instead. Later on, patterns from these languages
are to be considered as special cases of associations that involve only one of the
(two) domains of a binary relation.

– The language of bi-sets 2O × 2P = {(O,P ) | O ⊆ O and P ⊆ P} is interesting
as well. For instance, assuming P ∈ 2P , it makes sense to consider a pattern
like (ψ(P ), P ) which is basically an itemset and its supporting set of objects.
Alternatively, one may be interested in (O, φ(O)) for O ∈ 2O.

– The language 2P×2P can be used to denote standard association rules in binary
relations. Indeed, such rules are couples of itemsets (X,Y ) and, generally, we
prefer to write X → Y to emphasize its body and its head.

Example 5. Examples of itemsets in BE are ∅, {p4} or {p1, p2}. Examples of bi-sets
in BE are ({o1, o2}, {p1, p2}), ({o2, o3}, {p2, p4}) or ({o2, o3}, {p1, p2, p4}). Examples
of association rules in BE are {p1} → {p2}, {p4} → {p1, p2} or {p2, p4} → {p3}.
Definition 4 (Formal concepts and closed 2-sets [41]). Given B ⊆ O ×P, O ∈ 2O,
and P ∈ 2P , (O,P ) is a formal concept or a closed 2-sets iff (O = ψ(P )) ∧ (P =
φ(O)). By construction, O and P are closed sets.

Example 6. Examples of bi-sets that are closed 2-sets in BE are ({o2, o3, o5}, {p4}),
({o2, o3}, {p1, p2, p4}), or ({o1, o2, o3}, {p1, p2}).
The term “formal concept” is used by the Formal Concept Analysis research

community [41]. If (O,P ) is a formal concept, its set of objects O is called its extent
while its set of items P is called its intent. The term “closed 2-set” is used because
formal concepts are a special case (n = 2) of closed n-sets in n-ary relations [32]
(See Sections 1.2.2 and 2.2.1).

1.1.3 Constraint-based mining

In the so-called inductive queries that formalize data mining tasks, we use prim-
itive constraints to specify a priori interestingness. This includes objective inter-
estingness thanks to, for instance, statistical measures, but also subjective interest-
ingness that is related to the goals of the analyst. For us, the constraint C is a
conjunction of primitive constraints. Primitive constraints on the pattern languages
we have considered in O × P have been extensively studied (see, e.g., [95, 18] for
comprehensive surveys). Let us illustrate some typical ones with comments that
assume a basket data analysis setting.
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18 1. ASSOCIATION ANALYSIS IN BINARY RELATIONS

– Minimal frequency constraint: It is possible to measure the “strength” of
an itemset P ∈ 2P by considering how many objects are in its supporting set
ψ(P ): |ψ(P )| is the so-called frequency of P . Assuming that the analyst provides
a relative frequency threshold µ ∈ [0, 1], the minimal frequency constraint is
defined as follows:

Cµ−frequent(P ) ≡
|ψ(P )|
|O| ≥ µ.

A frequent itemset that satisfies Cµ−frequent is thus a set of products that are
purchased together by a large enough proportion of customers since Customers
is the support domain for the associations on Products.

– Minimal size constraint: Minimal size constraints on set patterns are often
useful. It may be used on itemsets: if α is a user-defined threshold and if
P ∈ 2P , we can define a minimal size constraint like Cα−min-size(P ) ≡ |P | ≥ α.
It can also be interesting to look at large enough bi-sets in the sense that both
of their sets satisfy some minimal size constraints, possibly with respect to
different thresholds. For instance, if a bi-set (ψ(P ), P ) is large enough in BE , it
means that we have a set of products that is large enough and such that these
products are bought together by a large enough number of customers, i.e., not
only P satisfies a minimal frequency constraint but also it implies a minimal
number of items.

– Average gross profit constraint: It is possible to have other informations
about objects and items and to characterize a priori interesting patterns by
means of various aggregates on these values. For instance, we may know the
gross profit made when any customer o ∈ O buys a product p ∈ P (assume this
is returned by the function gp : BE → R+). A constraint enforcing that average
gross profit is greater than v ∈ R+ for a bi-set (O,P ) where O ∈ 2O and P ∈ 2P

is defined as follows:

Cavg-gp((O,P )) ≡
∑

(o,p)∈O×P gp(o, p)

|O × P | ≥ v.

– Closedness: A closed set is a set that is maximal w.r.t. set inclusion and
some other criterion. Indeed, when we say that an itemset P ∈ 2P is closed,
it means that this is the maximal itemset with the supporting set of objects
ψ(P ): it is not possible to add an item to P without loosing at least one object
in the set ψ(P ). We already introduced the following primitive constraints
on an itemset P or a set of objects O ∈ 2O: Cclosed(P ) ≡ (P = φ(ψ(P ))) or
Cclosed(O) ≡ (O = ψ(φ(O))).

Combining primitive constraints enables to define a priori interestingness. For in-
stance, assuming that P ∈ 2P , the constraint Cµ−frequent(P )∧Cclosed(P ) declaratively
specifies the so-called frequent closed set mining task.
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When looking for bi-sets (O,P ) ∈ O × P that are large enough formal concepts
w.r.t. user-defined thresholds (natural numbers γ and α), we may check for the
constraint (|O| > γ)∧(|P | > α)∧Cclosed(P )∧(O = ψ(P )). Alternatively, a “minimal
area” constraint may be preferred to formalize the “large enough” property, i.e.,
using something like (|O| × |P | > α) instead of (|O| > γ) ∧ (|P | > α).

We provide examples of popular constraints on association rules in Section 1.3.

1.1.4 About constraint-based pattern mining feasability

Let us now discuss the complexity of the task of computing T H(Db,L, C), i.e.,
solving the inductive query on selection criterion C. In this section and in this
thesis, we consider correct and complete algorithms that have to compute exactly
T H(Db,L, C).
In a practical data mining setting, we expect that Db can be extremely large (up

to millions of objects, up to tens of thousands of items). Among other things, it
means that accessing the data can cost a lot and that the satisfiability test of a
constraint may be quite expensive. It also tells that the language of patterns, even
though finite, will be so large that it is impossible to try any naive enumeration of
all the sentences (i.e., checking constraint C in a post-processing way). Even though
computable, a huge solution may also be irrelevant because one cannot expect that
the analyst can interpret them and thus find the true interesting patterns among
the computed a priori interesting ones.
Obviously, the size of T H(Db,L, C) is important for computational feasability.

Since C specifies a priori interestingness of patterns, its careful definition has a major
impact on pattern relevancy. However, it can be so that this size is too large and
that the computation of T H(Db,L, C) turns to be intractable. A pragmatic behavior
in that case is to consider more selective/stringent constraints, i.e., to design C′
such that one expects |T H(Db,L, C′)| << |T H(Db,L, C)|. For instance, we see
in the next section that the idea of condensed representations of frequent patterns
consists in rewriting a minimal frequency constraint on itemsets to compute a much
smaller solution while preserving the information about every frequent itemset and
its frequency.
Once we expect that the size of the solution is not too large, clever search space

strategies are needed. Indeed, we may use the constraint properties to perform
search space safe pruning, i.e., being able to ignore part of the search space without
missing solutions. Many constraint properties have been proposed: monotonicity,
anti-monotonicity, loose anti-monotonicity[16], succinctness[78], convertibility[83],
flexibility[96], piecewise (anti)-monotonicity[32], etc. The surveys in [95, 31] pro-
vide comprehensive studies of such properties and we only recall here some of them
that are used hereafter. Notice that the fundamental paper [73] has been discussing
the complexity of computing T H(Db,L, C) in the generic setting where it exists a
specialization relation on L (e.g., ⊆ in 2P) and when constraint C is anti-monotone
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(e.g., Cµ−frequent). In that case, borders are useful concepts to discuss various aspects
of the task complexity (number of data scans, number of evaluated candidate pat-
terns, etc). Later, nice complexity results have been obtained when considering the
arbitray Boolean combination of monotone and anti-monotone primitive constraints
[86].

Definition 5 (Monotonicity). Let (L,�L) be a partial order set, a constraint C is
said monotone iff ∀X,Y ∈ L such that X �L Y then C(X)⇒ C(Y ).

Definition 6 (Anti-monotonicity). Let (L,�L) be a partial order set, a constraint
C is said anti-monotone iff ∀X,Y ∈ L such that X �L Y then C(Y )⇒ C(X).

An extension of anti-monotonicity is the loose anti-monotonicity [16]. A loose
anti-monotone constraint is such that if it is satisfied by a pattern of cardinality k
then it is satisfied by at least one of its sub-patterns of cardinality k − 1.

Definition 7 (Piecewise (anti)-monotonicity [32]). A constraint C is piecewise (anti)-
monotone iff the rewritten constraint C′, attributing a separate argument to every
occurrence of every variable in the expression of C, is (anti)-monotone w.r.t. each
of its arguments.

In [31], the author shows that the flexible constraints only are a subset of the
piecewise (anti)-monotone constraints.

Example 7. Let us assume (2P ,⊆) as a partial order. The constraint Cµ−frequent is
anti-monotone, constraint Cα−-min-size is monotone, and constraint Cavg-gp is piece-
wise (anti)-monotone. Indeed, by attributing a separate argument to every occur-
rence of O and P , Cavg-gp((O,P )) can be rewritten as follows:

C′avg-gp≥1((O1, O2, P1, P2)) ≡
∑

(o,p)∈O1×P1
gp(o, p)

|O2 × P2|
≥ 1.

C′avg-gp≥1 is monotone on O1 and P1. It is anti-monotone on O2 and P2. As a
consequence, Cavg-gp≥1 is, by definition, piecewise (anti)-monotone.

Notice that a conjunction of monotone (resp. anti-monotone) constraints is mono-
tone (resp. anti-monotone).

1.2 Frequent Itemset Mining

The goal of frequent itemset mining (FIM) has been first to find interesting as-
sociations of items that often occur together in a collection of transactions [2]. The
frequent itemset mining has become one sub-problem of association rule mining,
correlation analysis, associative classification, categorical data clustering, etc. The
application of FIM goes far beyond basket data analysis and we have now about 20
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1.2. FREQUENT ITEMSET MINING 21

years of research on solving efficiently this popular task. Interestingly, when solving
FIM, we have to face with most of the fundamental issues of pattern discovery. It
obviously motivates that researchers continue to consider FIM as a nice setting for
studying many data mining open problems.

1.2.1 The original setting

Originally, the task of frequent itemset mining was introduced by IBM researchers
in 1993 for basket data analysis [2]. It aims at finding all the subsets of items that
frequently occur in a collection of transactions and we already illustrated that such a
dataset corresponds to a large binary relation O×P where O (resp. P) correspond
to transactions (resp. to items). Given our notations, FIM can be formalized as
follows:

Definition 8 (Frequent itemset mining). Given B ⊆ O × P and a minimum fre-
quency threshold µ ∈ [0, 1], the Frequent Mining Itemset task concerns the computa-
tion of T H(B, 2P , Cµ−frequent) = Sfreq = {ρ ∈ 2P | Cµ−frequent(ρ) is true}.

A key issue is that the search space for FIM, i.e., the pattern language, is struc-
tured as a lattice and that set inclusion is a specialization relation w.r.t. the minimal
frequency constraint.

Example 8. Figure 3b shows the complete itemset lattice of the example relation
BE. It contains 16 itemsets and its height is 4. Assuming µ = 0.4, we have 13
frequent itemsets in BE (see Figure 3).

Theorem 1 (Minimal frequency anti-monotonicity). ∀X,Y ⊆ P, if X ⊆ Y then
Cµ−frequent(Y )⇒ Cµ−frequent(X) and thus ¬ Cµ−frequent(X)⇒ ¬ Cµ−frequent(Y ).

The minimal frequency anti-monotonicity has inspired many algorithms that ef-
ficiently prune the search space of itemsets (see Section 1.2.3) and achieve FIM
tractability in sparse datasets like basket data ones. However, the size of Sfreq can
be huge, especially in dense and highly-correlated Boolean data. The so-called con-
densed representations of frequent itemsets have been studied for that purpose. The
idea is to compute much smaller collections from which Sfreq can be derived with-
out having to access the data anymore. [21, 30] are survey papers on some of the
condensed representations that can be used to solve FIM. We introduce some of
them, namely the maximal frequent itemsets, the frequent closed itemsets, and the
frequent free itemsets.

1.2.2 Constraint-based definition of condensed representations

It is useful to identify a small representative set of frequent itemsets from which
all other frequent itemsets can be derived.
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p1 p2 p3 p4
o1 1 1

o2 1 1 1

o3 1 1 1 1

o4 1 1

o5 1 1 1

(a) Binary relation BE

∅

p1 p2 p3 p4

p1p2 p1p3 p1p4 p2p3 p2p4 p3p4

p1p2p3 p1p2p4 p1p3p4 p2p3p4

p1p2p3p4

a frequent itemset
(µ=0.4)

(b) Complete itemset lattice of BE .

Figure 3: Frequent itemsets in BE

The first idea could be to use here the concept of positive border of frequent
itemsets [73] and thus to look at Bd+(Sfreq), i.e., the collection of all the maximal
frequent itemsets. Indeed, Theorem 1 says that if an itemset is frequent then all
its subsets are frequent. If we know the frequent itemsets that are maximal (i.e.,
such that none of their supersets is frequent), then it is trivial to build the whole
collection of the frequent itemsets.

Let us first recall the concept of border. Considering a set S of patterns from
L such that S is closed downwards under a generalization relation � i. e., if ρ ∈ S
and θ � ρ, then θ ∈ S. For frequent itemsets, ⊆ is such a relation. The border
Bd(S) of S consists of those patterns ρ such that all generalizations of ρ are in S
and none of the specializations of ρ is in S. Those patterns ρ in Bd(S) that are in
S are called the positive border Bd+(S), and those patterns ρ in Bd(S) that are not
in S are the negative border Bd−(S). In other words, the positive border consists
of the most specific patterns in S (i.e., considering Sfreq, it means that we look for
the maximal frequent itemsets) and the negative border consists of the most general
patterns that are not in S (i.e., considering Sfreq, it means that we look for the
minimal non-frequent sets, i.e., sets that are not frequent but whose all subsets are
frequent).

Example 9. Let SE = T H(BE , 2PE , C0.4−frequent) = {∅, {p1}, {p2}, {p3}, {p4}, {p1, p2},
{p1, p3}, {p1, p4}, {p2, p3}, {p2, p4}, {p3, p4}, {p1, p2, p4}, {p2, p3, p4}}.
Bd+(SE)={{p1, p3}, {p1, p2, p4}, {p2, p3, p4}}. Bd−(SE)={{p1, p2, p3}, {p1, p3, p4}}.

A positive border (or the negative one) can be used to characterize the solution of
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p1p2p3p4

a maximal frequent itemset
(µ=0.4)

equivalence class

Border of
frequent itemsets

Figure 4: Positive border and equivalence classes of frequent itemsets in BE .

T H(B, 2P , C) when C is anti-monotone, thus generalizing the case of just the minin-
mal frequency constraint. Dually, one can consider that when we have a monotone
constraint, the solution is also characterized by a positive border. In fact, when
we have to consider conjunctions of a monotone and an anti-monotone part, the
collection of patterns is characterized by a so-called Version Space which is a couple
of borders [86].

Maximal frequent itemsets

Definition 9 (Maximal frequent itemset). Given a minimum frequency threshold
µ ∈ [0, 1], X ∈ 2P is a maximal frequent itemset iff Cµ−frequent(X) ∧ Cmaxi(X) where
Cmaxi(X) ≡ (∀p ∈ P \X,¬ Cµ−frequent(X ∪ {p}).

The set of maximal frequent itemsets corresponds to T H(B, 2P , Cµ−frequent∧Cmaxi) =
Sfreq-maxi. It is the positive border of T H(B, 2P , Cµ−frequent), i. e., Bd+(Sfreq).
The maximal frequent itemsets form the smallest set of itemsets from which all

frequent itemsets can be derived. Despite providing a condensed representation,
maximal frequent itemsets do not contain information about the supporting set
(and thus the frequency) of their subsets. An expensive additional scan over the
data is therefore needed to compute this information which is generally needed for
the many applications of FIM, e.g., when deriving association rules (see Section 1.3).
Therefore, it is relevant to look for condensed representations that preserve the
information on supporting sets and thus frequencies of frequent itemsets.
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Frequent closed itemsets

Computing Sfreq-closed = T H(B, 2P , Cµ−frequent ∧ Cclosed) provides the frequent
closed itemsets. The nice formalization from [10] explains why this is a condensed
representation of frequent itemsets. We can exploit equivalence classes of itemsets
w.r.t. the relation same-support: given X,Y ∈ 2P , X same-support Y holds when
ψ(Y ) = ψ(X). Each equivalence class of same-support is a group of itemsets with
the same frequency. Each equivalence class has one maximal itemset which is a
closed set. Therefore, mining frequent closed itemsets needs for computing the max-
imal itemsets of each equivalence class whose supporting sets of objects are large
enough.

Definition 10 (Equivalence classes of same-support). Given X ∈ 2P , the equiva-
lence class of X is [X] = {Y ∈ 2P | ψ(Y ) = ψ(X)}.

Example 10. The equivalence classes of itemsets in BE are show with dashed curves
in Figure 4. Given µ = 0.4, {p1}, {p1, p2, p4} and {p2, p3, p4} are frequent closed
itemsets in BE. Notice that {p1} is closed because it does not exist one superset
with the same supporting set of objects. In contrast, {p4} is not closed because the
supporting set of its superset {p2, p4} is the same.

Theorem 2. For X ∈ 2P , ψ(X) = ψ(h(X)) (see, e.g., [115]).

Thanks to this theorem, we can use the frequent closed itemsets to determine
the frequency of the frequent itemsets that are not closed without accessing the
data. If an itemset is not closed, its support must be identical to one closed itemset
that is its superset, more precisely, the superset that is closed and has the largest
supporting set of objects (i.e., the smaller one in terms of set cardinality). In the
case of dense or correlated data, there are much fewer frequent closed itemsets than
frequent itemsets and the whole information about the frequencies is preserved.

We have seen that formal concepts are built on closed sets: if P ⊆ P, O ⊆ O,
(O,P ) is a formal concept iff (ψ(P ) = O) ∧ (φ(O) = P ) and this turns to be
equivalent to (Cclosed(P ) ∧ (ψ(P ) = O)) or (Cclosed(O) ∧ (φ(O) = P )). Notice that
formal concepts that correspond to frequent closed itemsets tends to have a large
enough O and thus a rather small P . Another view on formal concepts that will be
generalized later on (See Section 2.2.1) is now given. Formal concepts in a binary
relation B ⊆ O×P are bi-sets (O,P ) ∈ O×P such that the conjunction of the two
following constraints is satisfied:

– Cconnected(O,P ) ≡ O × P ⊆ B,
– Cmax(O,P ) ≡ (∀o ∈ O\O,¬ Cconnected({o}, P ))∧(∀p ∈ P\P,¬ Cconnected(O, {p}).
The first constraint says that all the couples mades from one element of O and

one element of P belong to the binary relation B. In other terms, if bi-sets are
considered as combinatorial rectangles (i.e., modulo arbitrary permutations of rows
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and columns) in the Boolean matrices that represent the data, Cconnected(O,P ) says
that (O,P ) is a rectangle of true values. The second constraint Cmax says that
(O,P ) cannot be extended by an element from any dimension without a violation
of Cconnected and thus without introducing false values.

Example 11. In BE, we see that ({o2, o3, o4}, {p1, p4}) is not a closed 2-set because
(o4, p4) 6∈ BE (it does not satisfy Cconnected). ({o2, o3}, {p1, p4}) is not a closed 2-set
because it does not satisfy Cmax. Indeed, it can be extended into ({o2, o3}, {p1, p2, p4})
that satisfies Cconnected. Bi-set ({o2, o3}, {p1, p2, p4}) is a closed 2-set.

Free itemsets

To mine the frequent itemsets in B, the approach of frequent closed itemset mining
is based on maximal (w.r.t. set cardinality) itemsets of equivalence classes. On the
contrary, frequent free itemset mining is based on their minimal itemsets. An itemset
is a free itemset if it has no subset with the same supporting set of objects.

Definition 11 (Free Itemset). X ∈ 2P is a free itemset iff X satisfies the freeness
constraint Cfree(X) ≡ (ψ(X) ⊂ ψ(Y ), ∀Y ⊂ X).

The terminology of free itemset has been introduced in [23] where this is a special
case of the so-called δ-free itemsets (when δ = 0). Free itemsets correspond to the
minimal generators in [81] but also the key patterns in [10].

Property 1 (Freeness anti-monotonicity [24]). Let X ∈ 2P , ∀Y ⊆ X, Cfree(X) ⇒
Cfree(Y ).

Definition 12 (Frequent free itemset). Given a minimum frequency threshold µ ∈
[0, 1], X ∈ 2P is a frequent free itemset iff Cµ−frequent(X) ∧ Cfree(X) is true.

Example 12. Given µ = 0.4, in BE, {p1}, {p4} and {p1, p4} are frequent free item-
sets. {p2, p4} is not a frequent free itemset, because {p4} ⊂ {p2, p4} and ψ({p4}) =
ψ({p2, p4}).

The collection of frequent free itemsets is T H(B, 2P , Cµ−frequent∧Cfree) = Sfreq-free.

Property 2 (Free and closed itemsets). The closure of a free itemset gives a closed
itemset and all the closed itemsets can be obtained by computing the closures of all
free itemsets.

The above property gives a generation process to get the frequency of all itemsets
from free itemsets. Indeed, if an itemset is not free then it must exist a free itemset
with the same supporting set. The support of every non-free itemsetX is the support
of the largest free itemset included in X. Therefore, it is possible to find the exact
support of any frequent itemset in database. Even though T H(B, 2P , Cµ−frequent ∧
Cfree) = Sfreq-free enables to compute exactly the frequency of all frequent non-free

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0094/these.pdf 
© [T.K.N. Nguyen], [2012], INSA de Lyon, tous droits réservés



26 1. ASSOCIATION ANALYSIS IN BINARY RELATIONS

sets, this is not enough to decide whether an itemset is frequent or not. For this
purpose, we have to add the collection of infrequent free itemsets [22]. Now, given
any itemset Y , if there exists Z ⊆ Y such that Z is an infrequent free itemset, then
we know that Y is not frequent. In the other case, the support of Y can be derived.

An equivalence class has only one maximal itemset (closed itemset) but it can
have several minimal itemsets (free itemsets). It means that we have |Sfreq-closed| ≤
|Sfreq-free|. However, freeness is anti-monotonic and this can be exploited efficiently
for pruning. If a bounded number of errors on the frequency of itemsets is acceptable,
the condensed representation of δ-free itemsets is more concise and can even be mined
more efficiently [23, 22, 51]

Definition 13 (δ-free itemset). Given δ ∈ [0, |O|], X ∈ 2P is a δ-free itemset iff it
satisfies the δ-freeness constraint Cδ−free(X) ≡ (ψ(X) + δ < ψ(Y ), ∀Y ⊂ X).

Theorem 3 (δ-freeness anti-monotonicity [22]). Let X ∈ 2P , ∀Y ⊆ X, Cδ−free(X)⇒
Cδ−free(Y ).

Definition 14 (Frequent δ-free itemset). Given a minimum frequency threshold
µ ∈ [0, 1], δ ∈ [0, |O|], ∀X ∈ P, X is a frequent δ-free itemset iff it satisfies
Cµ−frequent(X) ∧ Cδ−free(X).

If δ = 0 then a δ-free itemset is a free itemset.

Example 13. Given δ = 1 and µ = 0.4, the frequent 1-free itemsets in BE are {p3}
et {p4}. We see that the number of frequent 1-free itemsets is 2 that is less than the
number of closed itemsets (8) or the number of free itemsets (9).

T H(B, 2P , Cµ−frequent ∧ Cδ−free) = Sfreq−δ−free denotes the frequent δ-free item-
sets. Using the collection of frequent δ-free itemsets and the set of infrequent δ-free
itemsets, the frequency of any itemset X can be approximated. If X has a subset
Y which is δ-free but not frequent then X is infrequent and the support of X is
considered to be 0. Otherwise the frequency of X is approximated by the smallest
supporting set among the supporting sets of the frequent δ-free itemsets that are its
subsets. On dense data, δ-free itemset mining remains tractable once other methods
fail [22].

The inclusion of frequent itemsets (Sfreq), maximal frequent itemsets (Sfreq-max),
frequent closed itemsets (Sfreq-closed), and frequent free itemsets (Sfreq-free) are men-
tioned in Figure5. In the survey paper [30], other condensed representations have
been discussed and their multiple uses have been introduced. Indeed, condensed
representations have been designed not only to enhance FIM tractability in dense
and correlated Boolean data but also because of their interesting semantics. For
instance, properties like closedness, freeness or δ-freeness have been used in various
context like non redundant association rule mining (see Section 1.3.2) or application-
independant feature construction and associative classification (see, e.g., [42, 43]).
Furthermore, it is clear that the maximality property on closed itemsets and closed
2-sets is extremely interesting within many pattern discovery processes.
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Figure 5: Classes of itemsets w.r.t Cµ−frequent, Cmaxi, Cclosed, Cfree.

1.2.3 Algorithmic issues

Computing frequent itemsets

Just after the problem setting and a first algorithm dedicated to FIM [2], the most
influential ideas of the first efficient FIM algorithm have been published by Agrawal
et al. [4, 3] and it has given the famous Apriori algorithm (around 13,000 citations
recorded in the Google Scholar system). Actually Apriori solves both FIM and
the association rule mining problem (see Section 1.3). It is a breadth-first (level-
wise) complete search algorithm over the lattice associated to (2P ,⊆). Starting
from singletons, it exploits Theorem 1 for safe pruning: it states that “When an
itemset is infrequent, none of its superset can be frequent”. Let us call a k-itemset.
any itemset X whose cardinality |X| is k. First, Apriori scans the data to find
the frequent 1-itemsets (singletons that satisfy Cµ−frequent). Then it uses them to
generate candidate 2-itemsets, and look at the data to obtain the frequent 2-itemsets.
This process iterates until no more candidate k-itemsets can be generated for some
k. When it stops, the maximal frequent itemsets have been found and, before them,
all the frequent itemsets.
We use Ck (resp. Fk) to denote the set of k-itemsets that are candidate (resp.

frequent) itemsets w.r.t. the frequency threshold µ. A high-level pseudo-code for
the FIM part of Apriori is given as Algorithm 1.

It iterates on the two following steps:

– It checks whether Cµ−frequent is satisfied for the candidates in Ck. For this, the
data is scanned, one transaction at a time, and the frequency of every candidate
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k-itemset that is supported by that transaction is incremented. All k-itemsets
that satisfy the minimal frequency constraint are inserted into Fk (Line 1).

– It generates Ck+1 by exploiting the frequent itemsets of size k (Line 2). This is
performed in two sub-steps. First, in the so-called join step, the union X ∪ Y
of sets X,Y ∈ Fk is generated if they have the same k − 1 prefix (we assume
that items in P are sorted in lexicographic order). Notice that this generation
trick already performs some pruning “on the fly” (some candidates that would
have to be pruned are even not generated). Second, in the pruning step, X ∪Y
is inserted into Ck+1 only if all its k-subsets are frequent and thus belong to Fk.

Input: B ⊆ P ×O, µ ∈ [0, 1]
Output: T H(B, 2P , Cµ−frequent)

C1 ← {{p} | p ∈ P}
k ← 1
while Ck 6= ∅ do

/* Find frequent k-itemsets from the set of candidates Ck */
Fk ← {X ∈ Ck | Cµ−frequent(X) is true}1

/* Generate candidates for level k + 1 */
Ck+1 ← Generate(Fk)2

k ← k + 1
Output ∪Fk

Algorithm 1: Frequent Itemset Mining with Apriori

Apriori is an efficient algorithm on typical basket analysis data where the largest
frequent itemsets are not too large for the considered thresholds. It has however
two fundamental limitations: (1) It requires multiple database scans and it has to
check for a large set of candidates by computing many subset occurrences, (2) It
requires a large amount of memory to handle the candidate itemsets. These can
cause an immense amount of time spent and a memory overload when the collection
of candidate itemsets is large. Let us observe that Apriori counts for the frequency
of all the frequent itemsets plus those of the negative border of the frequent itemsets
and this may be far too much in some datasets.

Many researchers have been studied these problems. First, the design of the
condensed representations for frequent itemsets is clearly an answer. For instance,
a straightforward modification of Apriori can be used to perform the level-wise
search to compute frequent free itemsets and generate all the frequent sets and their
frequencies thanks to them [10]. Other directions of work have been about data
structures to support candidate pruning or candidate evaluation. Important propos-
als have concerned the use of a horizontal data format when keeping a breadth-first
search, the use of a depth-first strategy with a vertical data format, building prefix-
trees from the data and extracting frequent itemsets from such trees, or transforming
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the original into transaction vectors used to immediately find frequent itemsets.
In Apriori-like algorithms, generating a set of candidates and then evaluating

each candidate to check for minimal frequency, it is possible to improve frequency
counting (see, e.g., [25, 79]). If Apriori and Apriori-like algorithms use a horizon-
tal data format during a breadth-first search, the Eclat algorithm proposed by Zaki
et al. [112] generates candidates in a depth-first strategy while the data are stored
using a vertical format: object identifiers (OIDs) are associated with each itemset.
With this format, mining can be performed by computing intersections of OIDs and
the frequency count is simply the length of the OIDs for the itemset. There is no
need to scan the data because the set of OIDs contains the needed information.
To save memory, [114] proposes to avoid storing the sets of objects that support a
k-itemset X and it only stores the difference between the supporting set of X and
the supporting sets of its k − 1-prefixes.
A rather different solution to FIM is the FP-Growth algorithm by Han et al.

[50]. Instead of generating and testing candidates, FP-Growth encodes the data set
using a compact data structure called an FP-tree and it extracts frequent itemsets
directly from this structure. It scans the database only twice. In the first scan,
all the frequent items and their frequencies are derived and they are sorted in the
order of decreasing frequency in each transaction. In the second scan, items in each
transaction are merged into a prefix-tree and items (nodes) that appear in common
in different transactions are counted. FP-Growth works on FP-trees by choosing
an item in the order of increasing frequency and extracting frequent itemsets that
contain the chosen item by recursively calling itself on the conditional FP-tree. The
main advantage of this technique is that it can exploit the so-called single prefix
path case. That is, when it seems that all transactions in the currently observed
conditional database share the same prefix, the prefix can be removed, and all subsets
of that prefix can afterwards be added to all frequent itemsets that can still be found.
This provides a significant performance improvement. Alternative data structures
have been designed like the CP-tree in [103] that enables to have one database scan
only.
Instead of using prefix-trees, [110] has introduced the transformation of each trans-

action into a 2|P|-bit vector that corresponds to itemsets, called transaction vectors,
one accumulates the frequency of occurrence of the itemsets such that. After scan-
ning all the transaction vectors, one can immediately provide the frequent itemsets.

The above approaches suffer from massive memory requirements for any data that
may contain too many frequent itemsets for the chosen threshold. Savasere et al.
proposed the Partition algorithm [91] where the entire database is divided into n
disjoint partitions such that each partition fits into main memory and can be mined
separately. Since any itemset that is possibly frequent w.r.t. the entire data must
occur as a frequent itemset in at least one of the partitions, all the found frequent
itemsets become candidates which can be checked by accessing the entire dataset

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0094/these.pdf 
© [T.K.N. Nguyen], [2012], INSA de Lyon, tous droits réservés



30 1. ASSOCIATION ANALYSIS IN BINARY RELATIONS

only once. Another approach has been proposed by Toivonen [105]. The Sampling

algorithm picks a random sample from the data and it looks for the frequent itemsets
in that sample before checking the result within the whole database. In the cases
where the sampling method does not produce all frequent itemsets, the missing sets
can be found by generating all remaining potentially frequent itemsets and verifying
their frequencies during a second scan over the data. The probability of such a
failure can be kept small by decreasing the minimal support threshold during sample
processing. However, for a reasonably small probability of failure, the threshold must
be drastically decreased, which can cause a combinatorial explosion of the number
of candidates. Nevertheless, in practice, finding all frequent patterns within a small
sample of the database can be done very fast using any efficient frequent itemset
mining algorithm. It has been shown that Sampling usually needs only one more
scan resulting in a significant performance improvement [105].

An other approach is to design parallel mining algorithms for solving the prob-
lem of immense amount of time spent and memory overload when the collection of
candidate itemsets is large. Such a algorithm can be executed a piece at a time on
many different processing devices, and then put back together again at the end to
get the correct result. The distributed dichotomous algorithm (Dda) proposed by
Jen et al. [59] is an example. Its essential idea of is to partition the sets of candidate
itemsets. First, the set of all 1-itemsets (C1 = {p1, ..., pm}) is partitioned into two
or three subsets (according to the parity of the cardinality of C1). Those subsets
are then used to partition the set of all k-itemsets (for a given k > 1) accordingly.
To balance the workload of the machines involved in the computation, assuming
that we have two machines M1 and M2 for computing the large itemsets, the sets
of k-itemsets defined earlier are assigned to each machine M1 and M2 so as they
both have the same number of candidates to process. The advantage of Dda is to
work without data replication and redundant calculations, and moreover, the re-
quired degree of synchronization is low. Additionally, the flexibility of DDA allows
to partition recursively the tasks and the data set until they fit the limited resources
of computers.

Several efficient mechanisms have been designed to process other user-defined con-
straints. How to push different types of constraints together at mining time in order
to reduce the computation as much as possible has been extensively studied. For
example, Boulicaut et al. [24] studied the combining anti-monotone constraints and
monotone constraints in order to get effective levelwise algorithms for mining fre-
quent closed itemsets. Let us also recall that the relationship to Version Spaces has
been studied in this context [86]. Bonchi et al. [17] showed how to combine anti-
monotone constraints and monotone constraints for mining frequent closed itemsets
in a depth-first computation. Bonchi et al. [16] introduced a class of tough con-
straints, namely loose anti-monotone constraints. Then they show how such con-
straints and anti-monotone constraints can be exploited in a level-wise Apriori-like
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computation of frequent patterns by means of a data-reduction technique. The pre-
sentation in [18] reviewed and extended the state-of-the-art of the constraints that
can be pushed in a frequent pattern computation. Many different kinds of con-
straints are pushed within a general level-wise Apriori-like computation by means
of data reduction techniques. For a comprehensive study on constraint-based mining
for itemsets, we refer to [95].

Extracting maximal frequent itemsets

The implementation strategies for mining maximal frequent itemsets are based on
the improvements and extensions of classical FIM algorithms like Apriori, Eclat,
or FP-Growth. The main additions are the use of several lookahead techniques
and efficient subset checking methods to efficiently prune the search space and be
more efficient than during a classical FIM task. Notice that here, we are not looking
for the frequency of every frequent itemset.
The Pincer-Search algorithm [68] uses horizontal data format. It not only

builds candidates in a bottom-up manner like Apriori, but it also starts a top-
down search at the same time, maintaining a candidate set of maximal itemsets.
This can help in reducing the number of database scans, by removing earlier non-
maximal itemsets. The maximal candidate set is a superset of the maximal itemsets,
and in general, the overhead of maintaining it can be very high.
MaxMiner [89] employs a breadth-first traversal of the search space which is

similar that of Apriori. However, it uses efficient pruning techniques to quickly
shrink the search. Max-Miner uses pruning based on subset infrequency, as does
Apriori, but it also uses pruning based on superset frequency. To support pruning,
Max-Miner represents each node in the set enumeration tree by a two itemsets: the
itemset enumerated by the node (called the head), and an ordered set of all items not
in the head that can potentially appear in any sub-node (called the tail). If at a given
node, the union of its head and its tail is frequent, then any itemset enumerated by
a sub-node will also be frequent but not maximal. Superset-frequency pruning can
therefore be implemented by stopping sub-node expansion at any node for which
the union of its head and its tail is frequent. Next, considering the itemset made of
the head and an item p in the tail, if this itemset is infrequent then any head of a
sub-node that contains item p will also be infrequent. Subset infrequency pruning
can therefore be implemented by simply removing any such tail item from a node
before expanding its sub-nodes.
The DepthProject algorithm was proposed by Agrawal et al. [1]. It represents

the data as a bitmap. Each row in the bitmap is a bitvector corresponding to a
transaction (an object), each column corresponds to an item. The number of rows
is equal to the number of transactions, and the number of columns is equal to the
number of items. A row has a 1 in the ith position if the corresponding transaction
contains the item pi, and a 0 otherwise. This algorithm searches the itemset lattice in
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a depth-first manner to find maximal frequent itemsets and it uses a counting method
based on transaction projections along its branches. This projection is equivalent
to a horizontal version of the TID-sets at a given node in the search tree. To
reduce search space, DepthProject uses the look-ahead pruning method with item
reordering. It returns a superset of the maximal frequent itemsets and it requires
post-pruning to eliminate non-maximal itemsets. In [27], Burdick, Calimlim, and
Gehrke extend the idea and propose the algorithm Mafia. It uses vertical bit-vector
data format, and compressions and projections of bitmaps to improve performance.
Mafia is a depth-first algorithm that uses three pruning strategies to remove non-
maximal itemsets. The first is the look-ahead pruning first used in MaxMiner.
The second is to check if a new itemset is subsumed by an existing maximal set.
The last technique checks if ψ(X) ⊆ ψ(Y ). If so X is considered together with Y for
extension. Mafia mines a superset of the maximal frequent itemsets and it requires
a post-pruning step to eliminate non-maximal itemsets.

Gouda and Zaki have proposed the algorithm Genmax [47]. They use a novel
technique called progressive focusing for maximality testing. Instead of comparing
a newly found frequent itemsets with all maximal frequent itemsets found so far, it
maintains a set of local maximal frequent itemsets. The newly found frequent itemset
is firstly compared with itemsets in local maximal frequent itemset. Most non-
maximal frequent itemsets can be detected by this step, thus reducing the number
of subset tests. Genmax also uses a vertical representation of the data. However,
for each itemset, Genmax stores a transaction identifier set, or TIS, rather than
a bitvector. The cardinality of an itemset’s TIS equals its frequency. The TIS of
itemset X ∪ Y can be computed from the intersection of the TIS’s of X and Y .

Finally, Fpmax [48] is an extension of the FP-Growth algorithm that exploits
yet another Maximal Frequent Itemset tree structure to keep track of all maximal
frequent itemsets.

Extracting frequent free itemsets and frequent closed itemsets

Several methods for extracting both frequent closed itemsets and frequent free
itemsets (frequent generators) have been published, e.g. A-Close [80] or Titanic

[99]. A-Close has two main steps. First, like Apriori-like algorithms, it browses
level-wise the itemset lattice to mine the generators of all the closed itemsets (i.e.,
the free sets that are the minimal itemsets of all equivalence classes). These minimal
elements can be discovered with intensive subset checking. After finding the frequent
sets at level k, A-Close compares the support of each set with its subsets at the
previous level. If the support of an itemset matches the support of any of its subsets,
the itemset cannot be a free set and is thus pruned. Second, A-Close computes
the closures of all the free sets found in the first step, which is done via intersection
of all transactions where it occurs as a subset. This can be done in one pass over
the data, provided all free sets fit in memory. Nevertheless computing closures this
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way is an expensive operation. Moreover, since a single equivalence class may have
more than one minimal itemsets, redundant closures may be computed. Titanic

is a descendent of A-Close and its improved version Pascal [10]. It relies on
advanced features to avoid redundant computation, e.g., cardinality reasoning for
closure computation and minimality checks for the filtering of non-free sets. Notice
that the Formal Concept Analysis has also designed various algorithms for closed
set mining without being interested in the use of other user-defined constraints but
generally looking for the Galois lattice explicit building [41].

Charm [115] and Closet [84], Closet+ [108] mine frequent closed itemsets
without a candidate generation phase. Zaki et al. introduced the Charm algorithm.
It performs a bottom-up depth-first to generate frequent closed itemsets in a tree
organized by inclusion. Charm simultaneously explores both the itemset space and
object space. It prunes candidates based on subset infrequency (i.e., no extensions
of an infrequent are tested), and it also prunes candidates based on non-closure
property, i.e., any non-closed itemset is pruned. To speed-up closure computation,
it uses diffsets, the set difference on the TID-list of a given node (set of objects
which support for the itemset of this node) and of its unique parent node in the
tree. When a frequent itemset is generated, its TID-list is compared with those
of the other itemsets having the same parent. The nodes whose TID-lists are the
same, i. e., the itemsets of the nodes belong to the same equivalence, are merged.
Charm stores in the main memory the closed itemsets indexed by single level hash.
It makes fewer database scans than the longest closed frequent set found. It scales
linearly in the number of transactions and it is also linear in the number of found
closed itemsets.
The Closet and Closet+ algorithms inherit from FP-Growth the compact FP-

Tree data structure and the exploration technique based on recursive conditional
projections of the FP-Tree. With a depth first browsing of the FP-Tree and recursive
conditional FP-Tree projections, Closet mines closed itemsets by closure climbing,
and by incrementally growing up frequent closed itemsets with items having the same
support in the conditional data set. Duplicates are detected with subset checking
by exploiting the property: given X ⊂ P and p ∈ P, if ψ(X) ⊆ ψ(p) then p ∈ h(X).
Thus, all closed sets previously discovered are kept in a two level hash table stored
in main memory. Closet+ is an extension of Closet which is optimized for the
case of sparse data sets whose transactions are quite short. In the case of dense data
set, where the transactions are usually longer, closed itemsets equivalence classes are
large and the number of duplicates is high, such a technique cannot be used because
of its inefficiency [70].
The Dci-Closed algorithm [70] tackles the above problem. It tries to extract the

set of the frequent closed itemsets without duplicate generation (hence in a linear
time) and without maintaining it in main memory, using astute duplicate detection
strategies.
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While there are many works studying the frequent itemset (sets of columns) ex-
traction technique enables to process cases large data that has millions of objects
(respectively lines of binary matrix), hundreds of items (respectively columns of bi-
nary matrix) and the data is dense. Rioult et al. in [87] address extracting frequent
itemsets in the case that data is dense and has few lines with regard to the number
of columns. In this case, previous algorithms can fail. Thanks to the properties of
Galois connections, if we compute the closed sets from the item space, the Galois
connection allows to infer the closed sets of objects. Reciprocally, the extraction on
the transposed matrix provides the closed sets on the objects and we can infer the
closed sets of items. Thus, the same collection of closed sets can be extracted from
a matrix or its transposed. So, in the case the matrix has few lines with regard to
the number of columns, their idea is to use a transposed matrix to compute frequent
closed itemsets for a original matrix. First, they extract free sets of objects which
satisfy the frequency constraint. Second, they can compute the closures of these free
sets. Then, they infer the frequent closed sets of items.

In [15], Besson et al. consided formal concept mining in difficult case, when the
data is dense and when none of the dimensions is quite small.The proposed algo-
rithm, namely DMiner, works top-down. It starts from the bi-set with all objects
and all items. It performs a depth-first search of formal concepts by recursively
splitting into bi-sets that do not contain false values. This algorithm is designed to
exploit a large class of user-defined monotonic and anti-monotonic constraints.

In the case data is dense where the extraction of a complete and exact collec-
tion of frequent itemset becomes intractable, Boulicaut et al. [23, 22] proposed
to compute δ-free itemsets. Because the δ-freeness is an anti-monotonic constraint
(see Theorem 3) and the higher δ, the more we have pruning possibilities. So, the
condensed representation of δ-free itemsets is more concise and can be mined more
efficiently. The MinEx algorithm can be seen as an instance of the levelwise search
algorithm. It explores the itemset lattice (w.r.t. set inclusion) levelwise, starting
from the empty set and stopping at the level of the largest frequent free-sets. More
precisely, the collection of candidates is initialized with the empty set as single mem-
ber (the only set of size 0) and then the algorithm iterates on candidate evaluation
and larger candidate generation. At each iteration of this loop, it scans the database
to find out which candidates of size k are frequent free-itemsets. Then, it generates
candidates for the next iteration, taking every itemset of size k + 1 such that all
proper subsets are frequent free-itemsets. The algorithm finishes when there is no
more candidate. The search space is pruned by both the frequency constraint and
the δ-free itemset constraint.

For mining δ-free itemsets, if MinEx performs a breadth-first search then FT-

miner proposed by Hébert et al. [51] is a depth-first search. From the observation
that, with large data, there are only few objects which support for a set of items. The
idea of FTminer is to check the δ-freeness constraint by using the corresponding

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0094/these.pdf 
© [T.K.N. Nguyen], [2012], INSA de Lyon, tous droits réservés



1.3. ASSOCIATION RULE MINING 35

sets of objects. The key of the algorithm is to exploit a pruning criterion stemmed
from the conjunction of the µ-frequency and δ-freeness. This criterion is checked
by using the extensions of itemsets (extension of an itemset is the set of objects
supporting it).

1.3 Association rule mining

1.3.1 Standard association rules

Pattern language and basic interestingness measures

Association rule mining was first introduced in [2] to support basket data analysis
but has been now used in the many application domains where large binary relations
that record Boolean properties of objects are available. We now survey some of the
important aspects of this popular data mining task.
Given a binary relation B ⊆ O×P , standard association rules are built on itemsets

(i.e., 2P) and their objective interestingness are measured thanks to their supporting
sets of objects (i.e., elements from 2O).

Definition 15 (Association rule). Given a binary relation B ⊆ O×P, an association
rule is an implication of the form X → Y where X,Y ⊆ P and X ∩ Y = ∅. The
itemsets X and Y are respectively called the body and the head of the rule.

The condition that bodies and heads should be disjoint itemsets is motivated by
the semantics of the rules once objective interestingness measures are used.

Definition 16 (Association rule frequency and confidence measures). Let X → Y
be an association rule in B ⊆ O ×P. Its frequency is f(X → Y ) and its confidence
is c(X → Y ) with:

f(X → Y ) =
|ψ(X ∪ Y )|
|O| and c(X → Y ) =

|ψ(X ∪ Y )|
|ψ(X)| .

Let us recall the toy example data BE ⊆ OE × PE from Figure 2c:

p1 p2 p3 p4
o1 1 1

o2 1 1 1

o3 1 1 1 1

o4 1 1

o5 1 1 1
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Example 14. In BE, consider {p1} → {p2} and {p4} → {p1, p2}:

f({p1} → {p2}) = |ψ({p1,p2})|
|OE | = |{o1,o2,o3}|

|{o1,o2,o3,o4,o5}|
= 3

5

c({p1} → {p2}) = |ψ({p1,p2})|
|ψ({p1})|

= |{o1,o2,o3}|
|{o1,o2,o3,o4}|

= 3
4 .

f({p4} → {p1, p2}) = |ψ({p1,p2,p4})|
|OE | = |{o2,o3}|

|{o1,o2,o3,o4,o5}|
= 2

5

c({p4} → {p1, p2}) = |ψ({p1,p2,p4})|
|ψ({p4})|

= |{o2,o3}|
|{o2,o3,o5}|

= 2
3

Definition 17 (Association rule mining task). Given µ ∈ [0, 1] and β ∈ [0, 1]
the user-defined thresholds for frequency and confidence, an association rule is said
frequent and valid if its frequency and its confidence are respectively greater than or
equal to µ and β. In other words, an association rule X → Y is frequent and valid iff
it satisfies the minimal frequency constraint Cµ−frequent(X → Y ) ≡ (f(X → Y ) ≥ µ)
and the minimal confidence constraint Cβ−valid(X → Y ) ≡ (c(X → Y ) ≥ β).

Assume the collection of all possible association rules in B is denoted LB, i. e.,
LB = {X → Y | X,Y ⊆ P}, µ and β are the minimal frequency and the minimal
confidence respectively. Association rule mining computes T H(B,LB, Cµ−frequent ∧
Cβ−valid).

Computing association rules

If a rule X → Y satisfies the constraint Cµ−frequent, it means that (X ∪ Y ) is a
frequent itemset w.r.t. µ. Therefore, association rule mining can be decomposed
into two subtasks: FIM and then valid rule generation from each frequent itemset.
FIM was presented in Section 1.2.

When considering the rules that can be built from a given (frequent) itemset, we
can use a pruning criterion to avoid testing rules whose confidence are for sure lower
than the threshold β.

Theorem 4 (Confidence-based pruning w.r.t ⊆). Given X, X ′, and Y in 2P , let
X ⊆ X ′ ⊆ Y , we have c(X → Y \X) ≤ c(X ′ → Y \X ′).

Once frequent itemsets are available, rules can be extracted from them. The
objective is to create, for every frequent itemset Y and its subsets X, a rule Y \X →
X such that Cβ−valid(Y \X → X) is true. Theorem 4 shows that if X ⊂ Z ⊂ Y , we
have c(Y \Z → Z) ≤ c(Y \X → X). Therefore, the largest confidence value will be
obtained for body Y \X being as large as possible (or head X as small as possible).
To generate association rules from a frequent itemset, the Apriori algorithm [4, 3]
still uses a level-wise approach. It starts, at 1-level, with all rules including a single
item in the head. Then, at 2-level, the candidate rule which have two items in the
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head is generated by merging the heads of two rules from the 1-level. The process
is performed until the kth-level until no more rule can be generated. Thanks to
Theorem 4, if a rule does not satisfy Cβ−valid then we do not need to evaluate a rule
with a larger head.

A pseudocode for the rule generation step in the Apriori algorithm is described
in Algorithm 2. Mining association rules from a binary relation can be summarised
in Algorithm 3.

Input: Y ⊆ P , β ∈ [0, 1]
Output: Every rule Y \X → X satisfying the minimum confidence

constraint
C1 ← {{p} | p ∈ Y }
k ← 1
while Ck 6= ∅ do

/* Find frequent k-itemsets for the heads of rules */
Fk ← ∅
forall X ∈ Ck such that Cβ−valid(Y \X → X) is true do

Fk ← Fk ∪X
Output Y \X → X

/* Generate candidates for level k + 1 */
Ck+1 ← Generate(Fk)
k ← k + 1

Algorithm 2: Apriori rule generation

Input: B ⊆ O × P , µ ∈ [0, 1], β ∈ [0, 1]
Output: Every rule satisfying the minimal frequency and minimal

confidence constraints
Sfreq ← Frequent Itemset Mining with Apriori(B, µ);
forall Y ∈ Sfreq do

Apriori rule generation(Y, β);

Algorithm 3: Mining association rules in a binary relation.

Among the well-known problems w.r.t. this standard version of association rule
mining, the redundancy of computed rules has been identified and studied.

Example 15. Given BE, µ = 0.4, and β = 0.5. Let us consider the three following
rules:
– r1: {p4} → {p1, p2} (f = 2

5 , c =
2
3),

– r2: {p4} → {p1} (f = 2
5 , c =

2
3),

– r3: {p4, p2} → {p1} (f = 2
5 , c =

2
3).
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The frequencies and the confidences of these rules exceed the given thresholds. The
bodies of r1 and r2 are the same, but the head of r2 is less informative than the head
of r1. When looking at the co-occurrences with item p1, r3 assume more information
(the co-occurrence of p2 with p4) than r1 and r2. In other terms, we would like to
consider r2 and r3 as more specific rules than r1 and redundant ones in the sense
that their frequency and confidence values are the same than those of r1.

Another problem that is well-identified concerns the properties of the two objective
measures that we have used so far.

Example 16. In BE, with µ = 0.4 and β = 0.5, let us consider the rule:
– r4: {p1} → {p3} (f = 2

5 , c =
2
4).

At first glance, we might argue that if a customer buys p1 also tends to buy p3.
Because the frequency and confidence of r4 exceed the minimum thresholds. But, the
fact that, the fraction of customers who buy p3, regardless of whether they buy p1,
is 3

5 = 0.6, while the faction of customers buying p1 tend to buy p3 is only 2
4 = 0.5.

Thus, a customer buying p1 actually decreases her/his probability of buying p3 from
0.6 to 0.5. The rule {p1} → {p3} is therefore misleading despite its high enough
frequency and confidence.

Looking for solutions to these problems, let us now discuss some of the proposed
solutions to improve the quality of association rules: the discovery of non-redundant
rules, user-defined templates, the generalization to multilevel association rules, the
design of alternative measures of interestingness.

1.3.2 Looking for relevant association rules

Non Redundancy

A problem in mining association rules is the number of extracted rules that is often
very large. It can be even dramatic if the support and confidence thresholds are small
and when data are dense or correlated. Indeed, in such cases, the number of frequent
itemsets increases and the number of rules presented to the user typically increases
exponentially. There are many approaches to define a condensed representation for
association rules [63, 8]. We focus on the approach of the definition of “redundancy“
for association rules, a rule is redundant if it can be inferred from other rules.
As consequently, the condensed representation of rules retains only non-redundant
rules. In this approach, the number of extracted rules can be reduced without losing
any information. There are some different approaches for defining a non-redundant
association rule: minimal body and minimal head [113], maximal body and maximal
head [80, 98], minimal body and maximal head [82].

The non-redundant association rules proposed by Zaki [113] are based on free
itemsets. A rule is non-redundant if and only if it does exist another rule whose
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body and head are smaller but whose support and confidence are the same Such a
rule is called the simplest association rule.

Definition 18 (Non redundant rule with minimal body and head). ∀X,Y ⊂ P and
X ∩ Y = ∅, the rule X → Y is non redundant iff it does not exist another rule
X ′ → Y ′ which is different from X → Y such that X ′ ⊆ X, Y ′ ⊆ Y , f(X → Y ) =
f(X ′ → Y ′) and c(X → Y ) = c(X ′ → Y ′).

The set of all simplest association rules corresponds to the union of two subsets:
the exact smallest association rules (SimplestExact) and the approximate smallest
association rules (SimplestApprox):

SimplestExact = {X → Y | Cfree(X) ∧ Cfree(X ∪ Y ) ∧ h(X) = h(X ∪ Y )},
SimplestApprox = {X → Y | Cfree(X) ∧ Cfree(X ∪ Y ) ∧ h(X) ⊂ h(X ∪ Y )}.

In [80, 98], the non redundancy of association rules is based on the idea of the
largest rules which are characterized by closed itemsets. A rule is non-redundant
if and only if it does exist another rule whose body and head are larger but whose
support and confidence are the same.

Definition 19 (Non redundant rule with maximal body and head). ∀X,Y ⊂ P
and X ∩ Y = ∅, the rule X → Y is non redundant iff it does not exist another rule
X ′ → Y ′ which is different from X → Y such that X ′ ⊇ X, Y ′ ⊇ Y , f(X → Y ) =
f(X ′ → Y ′) and c(X → Y ) = c(X ′ → Y ′).

The set of the largest rules corresponds to the union of two subsets: the set of
exact largest association rules (LargestExact) and the set of approximate largest
association rules (LargestApprox):

LargestExact = {X → Y | Cpseudo-closed(X) ∧ Cclosed(X ∪ Y ) ∧ h(X) = X ∪ Y },
LargestApprox = {X → Y | Cclosed(X) ∧ Cclosed(X ∪ Y ) ∧X ⊂ (X ∪ Y )},

with Cpseudo-closed(X) ≡ (X 6= h(X)) ∧ (∀X ′ ⊂ X s.t. Cpseudo-closed(X ′), h(X ′) ⊆ X).

The non-redundant association rules studied by Pasquier et al. [82] are charac-
terized by both closed itemsets and free itemsets. An association rule is considered
redundant if it brings the same information or less information than is brought by
another rules of the same support and confidence. Thus, such a non-redundant rule
has minimal head and maximal body, called min-max association rule.

Definition 20 (Non redundant rule with minimal body and maximal head). ∀X,Y ⊂
P and X ∩ Y = ∅, the rule X → Y is non redundant iff it does not exist an-
other rule X ′ → Y ′ which is different from X → Y such that X ′ ⊆ X, Y ′ ⊇ Y ,
f(X → Y ) = f(X ′ → Y ′) and c(X → Y ) = c(X ′ → Y ′).
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The set of the min-max association rules corresponds to the union of two sub-
sets: exact min-max association rules (MinMaxExact) and approximate min-max
association rules (MinMaxApprox):

MinMaxExact = {X → Y | Cclosed(X ∪ Y ) ∧ Cfree(X) ∧ h(X) = X ∪ Y ∧X 6= Y },
MinMaxApprox = {X → Y | Cclosed(X ∪ Y ) ∧ Cfree(X) ∧ h(X) ⊂ X ∪ Y }.

In addition, the above approaches can use the result of the following lemma to
condense further the set of extracted rules.

Lemma 1 (Transitivity of confidence [71]). ∀X ⊆ Y ⊆ Z ⊆ P, c(X → Y ).c(Y →
Z) = c(X → Z).

From this lemma and the observation that ∀X ⊆ Y ⊆ Z ⊆ P , f(X → Z) =
f(Y → Z), we conclude that the frequency and the confidence of the rule X → Z
can be inferred by those of the rules X → Y and Y → Z. Such a rule X → Z
is called a transitive rule. We can avoid to mine transitive rules. For example,
Pasquier et al. [82] proposed a method for extracting association rules, namely non-
transitive min-max association rules, which are both min-max association rules and
non-transitive association rules.

User-defined templates

Syntactic constraints that enforce that some items appear or not, in bodies and/or
heads of rules are quite often used. We can exploit further this idea by considering
rule templates (see also the linguistic biases in different machine learning techniques).
A rule template specifies what forms of rules are expected to be found from the
data. Generally, such a rule template is used as a constraint during the data mining
process. It can be represented as a structure language [9] or a meta-rule [40]. It
provides a predefined format for the specification of rule extraction criteria that can
even use variables that are instantiated during the rule extraction process.

Multilevel association rules

In many cases, most of the items have a low frequency. In such a case, if we
mine association rules with a large enough frequency threshold then we can not
find any interesting rule. But if we mine association rules with a low frequency
threshold, extracted rules may be not interesting, and the number of computed
rules explodes. To solve this problem, when a taxonomy on the items is available
or can be designed, the user can be interested in finding association rules that span
levels of the taxonomy instead of extracting rules on the set of items.

Example 17. Figure 6 is a taxonomy saying that Jacket is-a Outerwear, Ski Pants
is-a Outerwear, Outerwear is-a Clothes, etc. Rules which are found at the primitive
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Clothes

Outerwear

Jackets Ski Pants

Shirts

Footwear

Shoes Hiking Boots

Figure 6: An example of a taxonomy [97].

concept level may be uninteresting. For instance, if we have only few customers
buying Jackets, the frequency of the rule “customers who buy Jackets tend to buy
Shoes” can be very low. But, we can be interested a rule like “customers who buy
Outerwear tend to buy Shoes”.

There are some possible directions to mine multiple-level association rules. In [97],
Srikant et al. study association rules which can span different levels of the taxonomy.
Such a rule can include items which belong to different levels. An obvious solution
to the problem is to replace the dataset B by an extended dataset. Indeed, we
can replace the set of items of an object o of B by another set which contains all
the items in o but also all the ancestors of each item in o. Then, they can run
any of the algorithms for association rule mining on the extended dataset. Notice
that, obviously, the data now contain many built-in dependencies and some ad-hoc
algorithms can be used.
While Srikant et al. [97] use the same minimum frequency and minimum confidence

thresholds for all the levels to discover multiple-level association rules, Han et al.
[49] adopt different minimum support thresholds for different levels. However, in
this study, each multiple-level association rule consist of only items of a same level.
For each level of the taxonomy, they scan the data to find frequent itemsets on this
level. They then generate association rules satisfying the minimum confidence from
each extracted frequent itemset.

Measures of interestingness

Interestingness measures play an important role in data mining, regardless of the
kind of patterns being mined. These measures are intended for selecting and ranking
patterns according to their potential interest to the user. Some of them are called
objective because they rely on statistical observations while some others are called
subjective because they take into account the analyst goal.

Objective measures Objective measures are numerical measures, they use concepts
from probability, statistics, or information theory to estimate whether a pattern is
interesting. The objective measures depend only on the data. Computing or using
them do not require domain knowledge.
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Y Ȳ

X n(XY ) n(XȲ ) n(X)

X̄ n(X̄Y ) n(X̄Ȳ ) n(X̄)

n(Y ) n(Ȳ ) |O|

Figure 7: Contingency table for rule X → Y

Probability-based objective measures that evaluate the generality and the reliabil-
ity of association rules have been thoroughly studied by many researchers (see [44]
for a survey). To estimate the quality of rule X → Y in B, these measures usually
exploit the functions of a 2× 2 contingency table (see Figure 7) where we have:

– n(XY ): number of objects supporting both X and Y ,
– n(XȲ ): number of objects supporting X but not Y ,
– n(X): number of objects supporting X,
– n(X̄Y ): number of objects supporting Y but not X,
– n(X̄Ȳ ): number of objects that are neither supporting X nor Y ,
– n(X̄): number of objects which do not support X,
– n(Y ): number of objects supporting Y ,
– n(Ȳ ): number of objects which do not support Y ,
– |O|: total number of objects in B.
Furthermore, let P (X) = n(X)

|O| denote the probability of X and P (Y |X) = P (XY )
P (X) .

Figure 8 lists some of the probability-based objective measures. Here, we analyze
only some of them (see [101, 44, 66] for detailed analysis).

Interest factor. In Example 16, the rule {p1} → {p3} is misleading because its
confidence measure ignores the frequency of the itemset appearing in the head of the
rule. One way to solve this problem is to compute the ratio between the confidence
of the rule and the frequency of its head. This measure has been called Lift:

Lift =
P (Y |X)

P (Y )
.

It is equivalent to another objective measure that has been called interest factor:
it compares the frequency of itemset X ∪ Y and the frequencies of X and Y . It was
designed to estimate whether the probabilities of X and Y are independent.

I(X,Y ) =
P (XY )

P (X)P (Y )

We can interpret the measure as follows:

I(X,Y ) =







= 1 if X and Y are independent,
> 1 if X and Y are positively correlated,
< 1 if X and Y are negatively correlated.
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1 Support P (XY )

2 Confidence P (Y |X)

3 Lift/Interest P (Y |X)
P (Y ) or P (XY )

P (X)P (Y )

4 Jaccard P (XY )
P (X)+P (Y )−P (XY )

5 Certainty Factor P (Y |X)−P (Y )
1−P (Y )

6 Odds Ratio P (XY )P (X̄Ȳ )
P (XȲ )P (X̄Y )

7 Yule’s Q P (XY )P (X̄Ȳ )−P (XȲ )P (X̄Y )
P (XY )P (X̄Ȳ )+P (XȲ )P (X̄Y )

8 Yule’s Y

√
P (XY )P (X̄Ȳ )−

√
P (XȲ )P (X̄Y )√

P (XY )P (X̄Ȳ )+
√
P (XȲ )P (X̄Y )

9 Klosgen
√

P (XY )max(P (Y |X)− P (Y ), P (X|Y )− P (X))

10 Conviction P (X)P (Ȳ )
P (XȲ )

11 Collective Strength P (XY )+P (Ȳ |X̄)
P (X)P (Y )+P (X̄)P (Ȳ )

× 1−P (X)P (Y )−P (X̄)P (Ȳ )
1−P (XY )−P (Ȳ |X̄)

12 Gini Index P (X)(P (Y |X)2 + P (Ȳ |X)2) + P (X̄)(P (Y |X̄)2 + P (Ȳ |X̄)2)− P (X)2 − P (X̄)2

13 Goodman and Kruskal
∑

imaxjP (XiYj)+
∑

j maxiP (XiYj)−maxiP (Xi)−maxjP (Yj)

2−maxiP (Xi)−maxjP (Yj)

14 J-Measure P (XY )log(P (Y |X)
P (Y ) ) + P (XȲ )log(P (Ȳ |X)

P (Ȳ )
)

15 φ-Coefficient P (XY )−P (X)P (Y )√
P (X)P (Y )P (X̄)P (Ȳ )

16 Piatetsky-Shapiro P (XY )− P (X)P (Y )

17 Cosine(IS) P (XY )√
P (X)P (Y )

18 Sebag-Schoenauer P (XY )
P (XȲ )

19 Least Contradiction P (XY )−P (XȲ )
P (Y )

20 Odd Multiplier P (XY )P (Ȳ )
P (Y )P (XȲ )

Figure 8: A sample of objective interestingness measures for rule X → Y
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Y Ȳ

X 83 7 90

X̄ 7 3 10

90 10 100

W W̄

Z 3 7 10

Z̄ 7 83 90

10 90 100

Figure 9: Example of contingency tables of pairs of itemsets.

Example 18. Consider {p1} → {p3} in BE, I({p1}, {p3}) = P ({p1,p3})
P ({p1})P ({p3})

= 5
6 < 1.

Therefore, the correlation between p1 and p3 is negative and it explains why the
previous interpretation based on the confidence measure was misleading.

Is Interest factor sufficient to evaluate the correlation between two itemsets? We
illustrate its limitation with the following example.

Example 19. Figure 9 provides contingency tables for two pairs of itemsets (X,Y )
and (Z,W ) where we assume that the dataset has 100 objects. We have I(X,Y ) =
1.02 and I(Z,W ) = 3. Because I(Z,W ) > I(X,Y ), the correlation of Z and W
seems much stronger than that of X and Y . But, P (Z|W ) = 0.3 and P (W |Z) = 0.3:
this means that Z and W seldom appear together in the data. I(X,Y ) = 1, 04 is
close to 1 and thus it says that X and Y are independent. However, X and Y appear
together in 83% of the objects and the rule X → Y turns to be interesting. From the
examples in Figure 9, we see that the Interest factor is somewhat misleading.

Correlation analysis. Correlation analysis uses a statistical-based technique to
analyse the relationship between a pair of itemsets. The correlation of two itemsets
is measured using the φ-coefficient, which is defined as

φ(X,Y ) =
P (XY )− P (X)P (Y )

√

P (X)P (Y )P (X̄)P (Ȳ )
.

The value of correlation ranges from −1 (perfect negative correlation) to +1 (per-
fect positive correlation). If φ = 0, then X and Y is independent.

Example 20. In BE, the φ-coefficient between {p1} and {p3} is −0.41. Therefore
the correlation between {p1} and {p3} is negative. Moreover, in Figure 9, we have
φ(X,Y ) = φ(Z,W ) = 0.22.

The φ-coefficient measure has limitations. Consider two pairs of itemsets in
Figure 9, although X and Y appear together more often than Z and W , the φ-
coefficients are identical. This is because the φ-coefficient gives equal importance to
both co-presence and co-absence of items in the data. It is therefore more suitable
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for analysing symmetric binary variables (e. g., symmetric itemsets in a binary rela-
tion). Another limitation of this measure is that it does not remain invariant when
there are proportional changes to the sample size.

IS measure. IS for a pair of itemsets (X,Y ) is an alternative measure which
includes both the Interest factor and the frequency of X∪Y . This meausre is defined
as follows:

IS(X,Y ) =
√

I(X,Y )f(X,Y ) =
P (XY )

√

P (X)P (Y )
,

where f(X,Y ) = |ψ(X∪Y )|
|O| . It is possible to show that IS is mathematically equiva-

lent to the cosine measure for two bit vectors [102].

Example 21. Once again, consider the pairs of itemsets in Figure 9, we have
IS(X,Y ) = 0.92, IS(Z,W ) = 0.3. Contrary to the results given by Interest factor
and φ-coefficient, the IS measure suggests that the association between X and Y is
stronger than the association between Z and W . It is consistent with that we expect
from the given data.

Assume two itemsets X and Y are independent, i. e., P (AB) = P (X)P (Y ), then
IS(X,Y ) =

√

P (X)P (Y ). In this case, the value IS(X,Y ) can be quite large, even
for uncorrelated and negatively correlated itemsets.

Selecting appropriate measures. When looking at the quality of rules, we
have to choose among an overwhelming number of interestingness measures (e. g.,
see the sample in Figure 8). However, not all measures are equally good and there is
no measure that is consistently better than others in all application domains. This
is because each measure has its own selection bias that justifies the rationale for
fitting better to a dataset over another. Therefore, selecting appropriate measures
for a given application is an important issue. Based on the properties of measures
and empirical evaluations on datasets, ranking ans clustering methods have been
proposed for comparing and analysing measures.
For example, Tan et al. [101] proposed a method to rank measures based on a

specific dataset. First, the user selects a small set of datasets to mine patterns.
Then, the user ranks a set of mined patterns, and the measure that has the most
similar ranking results for these patterns is selected for further use. The selected
patterns to rank have the greatest standard deviations in their rankings by the
measures. Since these patterns cause the greatest “conflict” among the measures,
they should be presented to the user for ranking.
Lenca et al. [66] presented another method to select the appropriate measures.

It is based on the multiple criteria decision aid. In this approach, the user is not
required to rank the mined patterns. But he/she must identify the desired proper-
ties and specify their significance for a particular application. Then, he/she assigns
marks and weights to each property. Next, he/she sets up a table with each row
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representing a measure, each column representing a property, and each cell (corre-
sponding to the intersection of a row and a column) representing a weight. This
table is called a decision matrix. Finally, by applying the multiple criteria decision
process on this table, he/she can obtain a ranking of results.

An additional method for analyzing measures is to cluster the interestingness
measures into groups [107]. This clustering method can be based on either the
properties of the measures or the rule sets generated by experiments on datasets.
Property-based clustering groups measures based on the similarity of their properties.
Experiment-based clustering calculates the similarity between measures thanks to the
rankings of their measures on a ruleset.

Subjective interestingness measures Patterns satisfying objective measures may
not be interesting for the analyst. In such cases, the user’s background knowl-
edge and his/her objectives can help to select the appropriate patterns. Subjective
interestingness aspects can be partly taken into account thanks to user-defined con-
straints. Also, subjective measures have been proposed: such a measure evaluates
the interestingness of a pattern from the user point of view. Unlike the objective
measures depending only on the data, a subjective interestingness measure takes
into account both the data and the user’s knowledge or goals. Because the user’s
knowledge may be represented in various forms, the subjective measures may not be
representable by simple mathematical formulas. Therefore, the subjective measures
are usually incorporated into the mining process. Let us mention three types of
subjective measures of interestingness that are unexpectedness, novelty, and action-
ability.

– Unexpectedness. A pattern is unexpectedness if it is ”surprising” to the
user. It means that it contradicts a person’s existing knowledge or expectations
[93, 94] or it is an exception to a more general pattern which has already been
discovered [11]. Such patterns are interesting because they identify failings in
previous knowledge and may suggest an aspect of the data that needs further
study.

– Novelty. A pattern is novel to a person if he or she did not know it before and
is not able to infer it from other known patterns. Novelty is detected by having
the user either explicitly identify a pattern as novel [90] or notice that a pattern
cannot be deduced from and does not contradict previously discovered patterns.
In the latter case, the discovered patterns are being used as an approximation
to the user’s knowledge.
The difference between surprisingness and novelty is that a novel pattern is
new and not contradicted by any pattern already known to the user, while a
surprising pattern contradicts the user’s previous knowledge or expectations.

– Actionability. A pattern is actionable if the user can do something with it to
his or her advantage [93, 69]. Actionability is an important subjective measure
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of interestingness because users always interested in patterns permitting them
to improve their performance and establishing better work.

1.3.3 Disjunctive association rules

We present generalized disjunctive association rules such as “customers who buy
shoes also buy jackets or shirts”, “customers who buy either raincoats or umbrellas
also buy flashlights”, and “customers who buy jackets also buy bow ties or neckties
and tiepins”. Such rules can include disjunctions of itemsets.
A very few items are included in a large number of objects and most of the items

are included in very few objects. Such a distribution is called heavy-tailed [77].
Since association rules in Definition 15 (conjunctive association rule) are based on
the simultaneous occurrence of items in an object, they are ineffective in finding
relationships when the items are included only in a few objects. One approach for
this problem is to take a taxonomy on the items to mine multilevel association rules
(as presented above). But, extracted multilevel association rules depend upon a pre-
defined taxonomy and suffer from the problem of over-generalization. For example,
it can not extract a rule as “customers who buy shoes also by jackets or shirts”. To
mine a rule in which an itemset with large frequency implies itemsets with small
frequencies, Nanavati et al.[77] introduce generalized disjunctive association rules.

Definition 21 (Generalized disjunctive association rule). Let X , Y be two sets of
itemsets on P. Let us denote by ∨X (respectively ∨Y) a disjunction of the itemsets
in X (respectively Y). The implication ∨X → ∨Y is called a generalised disjunctive
association rule.

Definition 22 (Frequency of a disjunctive association rule). Let ∨X → ∨Y be a
generalized disjunctive association rule. Its frequency is:

f(∨X → ∨Y) = |(∪X∈Xψ(X)) ∩ (∪Y ∈Yψ(Y ))|
|O| .

Definition 23 (Confidence of a disjunctive association rule). Let ∨X → ∨Y be a
generalized disjunctive association rule. Its confidence is:

c(∨X → ∨Y) = |(∪X∈Xψ(X)) ∩ (∪Y ∈Yψ(Y ))|
| ∪X∈X ψ(X)| .

Example 22. In BE, {p2} → {p1}∨{p3, p4} is a generalized disjunctive association
rule whose frequency and confidence are:

f({p2} → {p1} ∨ {p3, p4}) = |ψ({p2})∩(ψ({p1})∪ψ({p3,p4}))|
|OE |

= |{o1,o2,o3,o5}∩{o1,o2,o3,o4,o5}|
|{o1,o2,o3,o4,o5}|

= 4
5 ,

c({p2} → {p1} ∨ {p3, p4}) = |ψ({p2})∩(ψ({p1})∪ψ({p3,p4}))|
|ψ({p2})|

= |{o1,o2,o3,o5}∩{o1,o2,o3,o4,o5}|
|{o1,o2,o3,o5}|

= 4
4 .
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1.4 Conclusion

Mining association rules in binary relations has a lot of applications and it has
been extensively studied. However, most algorithms and techniques discussed above
only concern patterns within a single domain (the domain of items). In the following
chapter, we consider pattern mining methods in a multidimensional setting where
patterns can involve elements of several domains.
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Chapter 2

Association analysis in n-ary

relations

Although, mining binary relations has a lot of applications, it is clear that many
datasets of interest correspond to relations whose number of dimensions is greater
than or equal to 3. For example, we can add spatial and temporal dimensions to
a relation Customers × Products such that it becomes a relation Customers ×
Products × Times × Places. In such a relation, we record that customers buy
products in a given place at a given time. Another typical example concerns dynamic
relational graph encoding for which we need to use at least three dimensions: two
dimensions are to encode the graph adjacency matrices and at least one to denote
time (see Section 5.1.1).
When the data has more than two dimensions, either premature projections are

needed to use the binary relation mining algorithms or new Boolean attributes have
to be designed that somehow combine information from the different dimensions.
What are patterns in n-ary relations? Once pattern languages can be identified,
what are the relevant primitive constraints that would support the discovery of
interesting patterns? How can we compute them?
In this chapter, we consider some studies which seek to address these challenging

questions. Particularly, we focus on two types of patterns that have been studied
earlier in an n-ary relation mining setting, namely closed n-sets and rules. It is
organized as follows. Section 2.1 defines n-ary relations and briefly considers rela-
tionships to multi-relational data mining. Section 2.2 discusses closed n-set mining.
Finally, previous work that deals with rule discovery in n-ary relations is surveyed
in Section 2.3.

49
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p1 p2 p3 p4 p1 p2 p3 p4 p1 p2 p3 p4 p1 p2 p3 p4
o1 1 1 1 1 1 1 1 1 1 1

o2 1 1 1 1 1 1

o3 1 1 1 1 1 1 1 1 1

o4 1 1 1 1 1

o5 1 1 1 1 1 1 1 1 1 1 1

s1 s2 s3 s4

Figure 10: The n-ary relation RE

2.1 N-ary relations

A binary relation describes the relationship between the elements of only two
domains, a n-ary relation enables to describe the relationship between the elements
of n domains. Given an arbitrary number n ∈ N, the set of n domains is denoted
D = {D1, D2, . . . , Dn} where each domain is a finite set of elements of a dimension.
Without loss of generality, we assume the domains to be pairwise disjoints.

Definition 24 (N -ary relation). A n-ary relation R over {D1, D2, . . . , Dn} is a
subset of the Cartesian product of these n domains, i. e., R ⊆ D1 ×D2 × · · · ×Dn.

Example 23. Figure 10 is an example of a 3-ary relation, namely RE. It relates
products in D1 = {p1, p2, p3, p4} bought along seasons in D2 = {s1, s2, s3, s4} by
customers in D3 = {o1, o2, o3, o4, o5}. A 3-tuple (pi, sj , ck) ∈ RE corresponds to
value ’1’ in Figure 10 at the intersection of three elements pi, sj and ok. This
means that the customer ok buys the product pi in the season sj. For instance, the
customer o1 bought the product p1 in the season s1, but the customer o4 did not
bought the product p2 in the season s1.

Such a n-ary relation can be also expressed as a relational database table that
includes n attributes. Each attribute corresponds to one of the dimensions of the
n-ary relation, its domain being the domain of its associated dimension. A record
(say a tuple) in the relational database table corresponds to a n-tuple of the n-
ary relation. However, when looking for database normalization, the table may be
divided into smaller (and less redundant) tables, leading to a true (multi-)relational
database.

Example 24. The ternary relation RE (see Figure 10) can be expressed as the
relational database table in Figure 11.

Pattern mining from relational databases has attracted some attentions in the
past. For instance, pattern discovery techniques that look for dependencies (func-
tional and inclusion dependencies) has been studied for a while. Also, some rule
discovery techniques have been designed by the researchers from the Inductive Logic
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product season customer

p1 s1 o1
p1 s1 o2
p1 s1 o3
p1 s1 o4
p2 s1 o1
p2 s1 o2
p2 s1 o2
p2 s1 o3
p2 s1 o5
· · · · · · · · ·

Figure 11: A relational table definition of RE

Programming community, i.e., researchers that focuse mainly on rich pattern lan-
guages that have to be discovered from multi-relational databases. This includes,
for instance, the proposal for 1st order association rules [36].
Rcently, pattern discovery from relational database has attracted a significant

attention. For example, Goethals et al. [46] address the issue of mining frequent
conjunctive queries and association rule mining on arbitrary relational databases.
In their work, each query is a relational algebra expression (including the projection
and selection operators) on the Cartesian product of all tables in the mined relational
database. In that setting, each association rule is a pair of queries, and the query in
the head of the rule has to be more specific than the query in its body. The support
of a query is the set of distinct tuples which are in the answer of the query. A query
is said to be frequent if the cardinality of its answer is above a given threshold. While
[46] concerns frequent conjunctive query mining without exploiting data dependen-
cies, Jen et al. [57] propose to mine frequent queries (projection-selection queries) in a
given relational table where functional and inclusion dependencies are known. They
introduce a pre-ordering for comparing queries, and then show that the frequency
(or support) measure is anti-monotonic w.r.t. this pre-ordering. They also define
equivalent queries and they compute all frequent queries by exploiting the fact that
equivalent queries have the same support. The authors then extend their study to
mine frequent conjunctive queries (projection-selection-join queries) in a relational
database [58]. In these queries, joins are performed along keys and foreign keys of
tables in the database. However, the computation of frequent conjunctive queries is
expensive for large fact tables (the number of scans of the database is quadratic).
So, Dieng et al. [37] propose an efficient and scalable algorithm that overcome these
limitations using appropriate auxiliary tables. To reduce the number of frequent
conjunctive queries, Goethals et al. [45] present non redundant conjunctive query
mining thanks to the use of functional dependencies.
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Another approach presented by Hilali-Jaghdam et al. [52] is dedicated to frequent
disjunctive query mining. They investigate the computation of frequent disjunctive
selection queries in a given relational table. Such a query is a selection query on a
relational table where the selection condition is a disjunction of equality comparison
operators. They also address the design of a condensed representation which includes
only the minimal frequent disjunctive selection queries.

The advantage of the mining frequent queries in a relational database is that each
frequent query shows the correlation of elements belonging to different attribute
domains. However, its limitation is that a frequent query can not show the corre-
lation between elements in the same attribute domain. This limitation is due to
the semantics of tuples in a table of a relational database. In a tuple, each at-
tribute can not have more than one value. In the case of a binary relation like
Transactions×Products, [46] proposes a solution for this problem where they rep-
resent a product (an item) by a single unary relation in which each tuple is the
transaction identifier of the transaction in which the product occurs. Then, the
FIM task in a binary relation is replaced by the Frequent Query Mining task in the
relational database that includes all such single unary relations. Notice however that
this approach cannot be applied for n-ary relations with n > 2 because the Galois
connection is lost in this setting (See Section 2.2.1).

Example 25. In RE, we can mine patterns like ({p1, p2}, {s1, s2}, {o1, o2}) or
{p1, p2} → {s1, s2}. The first pattern means that the customers o1 and o2 buy the
products p1 and p2 together in both seasons s1 and s2. The second pattern means that
the customer often buys p1 and p2 together in the season s1 and s2. Such patterns
can not be found with available data mining techbniques from relational databases.

Techniques that compute interesting patterns in datasets defined as n-ary relations
can overcome the above limitations.

2.2 Closed n-sets

We defined closed sets in binary relations and even the so-called closed 2-sets
(see Section 1.1). We now consider the straightforward generalization to arbitrary
relations. The goal is to look for maximal associations between elements of all the
domains for a n-ary relation R.

2.2.1 Definitions

A n-set is an association of n subsets of n domains of a relation R ⊆ D1×· · ·×Dn.

Definition 25 (N -set). A pattern X = (X1, X2, ..., Xn) such that ∀i = 1..n,Xi ⊆
Di is called a n-set. In other words, a n-set is a tuple of the Cartesian product
×i=1..n2

Di
.
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A n-set X = (X1, X2, ..., Xn), Xi ⊆ Di for all i = 1..n, is a closed n-set inR if and
only if (1) All elements of each set Xi are in relation with all the other elements of
the other sets Xj (j 6= i) in R (we say that the constraint Cconnected is satisfied), and
(2) Xi sets cannot be enlarged by an element from any dimension without violating
Cconnected (we say that the constraint Cmax is satisfied).

Definition 26 (Closed n-set [33]). ∀X = (X1, X2, ..., Xn) ∈ ×i=1..n2
Di
, X is a

closed n-set iff it satisfies the conjunction of the two following constraints:
– Cconnected(X) ≡ ×i=1..nX

i ⊆ R,
– Cmax(X) ≡ ∀i = 1..n, ∀e ∈ Di\Xi,¬Cconnected(X1, X2, ..., Xi−1, {e}, Xi+1, ..., Xn),

i. e., X1 ×X2 × ...×Xi−1 × {e} ×Xi+1 × ...×Xn 6⊆ R.
Example 26. In RE (see Figure 10), ({p1, p2}, {s1, s2}, {o1, o2}) is a closed 3-set.
({p1, p2}, {s1, s2}, {o1, o2, o3}) is not a closed 3-set because, among other things, we
have (p1, s2, o3) 6∈ RE. ({p2}, {s1, s2}, {o1, o2}) is not a closed 3-set because it can
be “extended” with p1 without violating Cconnected.
The Galois connection that exists in binary relations is a key property to enable the

efficient computation of closed patterns like (frequent) closed itemsets or formal con-
cepts (i.e., closed 2-sets). Indeed, it implies that the enumeration on one of the two
dimensions enables to prune on the other one. However, we loose such a mechanism
within n-ary relations with n > 2. Indeed, several closed n-sets can share a same
subset of elements from one domain. For instance, ({p2, p3, p4}, {s1, s3}, {o3, o5})
and ({p3}, {s1, s3, s4}, {o3, o5}) are closed 3-sets in RE . They both involve the sub-
set {o3, o5} of the third domain. In other terms, the subset {o3, o5} does not uniquely
determine n−1 set components which can connect with it to become a closed n-set.
Nevertheless, n − 1 set components of a closed n-set uniquely determines the last
one [31]. Thus, unless R is a binary relation (i. e., n = 2), the related functions on
closed n-sets are not injective and thus are not a part of Galois connections.
It makes sense to look for other constraints to express the a priori relevancy of

(closed) n-sets. For instance, we can look at the closed n-sets X = (X1, . . . , Xn)
that are frequent in the sense where their Xi (i = 1..n) components are large enough
thanks to set size constraints.

Definition 27 (Frequent closed n-set). Given (αi)i=1..n ∈ Nn, a closed n-set X =
(X1, . . . , Xn) is frequent in R iff it satisfies the (αi)i=1..n-min-sizes constraint:

C(αi)i=1..n-min-sizes(X) ≡
∧

i=1..n

(|Xi| ≥ αi)

Such user-defined constraints have been used in the previous work on closed pat-
tern discovery in n-ary relations [61, 56, 33]. More generally, the typical mining task
concerns the computation of the following theory:

T H(R,×i=1..n2
Di
, Cconnected ∧ Cmax ∧ Crelevancy)

= {X ∈ ×i=1..n2
Di | Cconnected(X) ∧ Cmax(X) ∧ Crelevancy(X) is true}.
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where Crelevancy specifies other aspects of objective and subjective interestingness
that are beyond closedness which is already captured by Cconnected ∧ Cmax.

2.2.2 Algorithms

Extracting frequent 3-sets from ternary relations

Ji et al. [61] propose two algorithms to extract closed 3-sets from ternary rela-
tions: representative slice mining and CubeMiner. The representative slice mining
exploits frequent closed 2-set mining algorithms to mine frequent closed 3-sets. The
basic idea is to transform a ternary relation into a set of binary relations, to mine
the binary relation using an existing frequent closed 2-set mining algorithm, and
then to prune away any frequent 3-set that is not closed.

While representative slice mining has the advantage that it can reuse existing fre-
quent closed 2-set mining algorithms, the number of binary relations generated from
the original ternary can be large. CubeMiner directly operates on the ternary rela-
tion. It generalizes the notion of cutter introduced in DMiner by Besson et al. [15]
for closed 2-set mining. Cutters are used to split 3-sets to search for frequent closed
3-sets. A 3-set (X,Y, Z) is called a cutter if ∀(x, y, z) ∈ X×Y ×Z, (x, y, z) is not in
the ternary relation. CubeMiner first considers a 3-set which consists of the three
whole domains of the ternary relation as a candidate. Then it splits this candidate
recursively using the cutters until all cutters are used. Along a depth-first enumera-
tion, the cutters are recursively applied to generate 3 candidate children containing
less tuples absent from the relation than the parent: a first one without the elements
of X, a second one without the elements of Y , and a third one without the elements
of Z. For each candidate, several checks are required to ensure its closeness and
unicity. For a child candidate to be unique, its newly removed elements must not be
included in a cutter previously applied on this branch. To verify this, every formerly
applied cutter is intersected with the current one. For a child candidate to be closed,
the elements of these formerly applied cutters should not extend it. The authors
indicate that the representative slice mining is efficient when the dimensions are
small while CubeMiner performs better otherwise.

The same year, Jaschke et al. [56] have proposed the Trias to solve the same
task, i.e., frequent closed 3-set mining in ternary relations. It relies on closed 2-set
extractions from two binary relations. Given a ternary relation on three domains:
D1, D2, D3, Trias first constructs a new binary relation as D2 × (D2 ×D3). Then
it extracts every closed 2-set (X,Y ) from this binary relation, X is a subset of D1

and Y is subset of D2 ×D3. In the second step, Trias extracts every closed 2-set
from the relation generated from Y and checks its closeness w.r.t. D1. This can be
performed easily by checking whether its closure is equal to X.
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Extracting frequent n-sets from n-ary relations

Cerf et al. [33] propose the Data-Peeler algorithm that can compute every
closed n-set in arbitrary n-ary relations (n ≥ 2). They indicate that despite the
Data-Peeler’s broader scope, it is orders of magnitude faster than both Trias

and CubeMiner on ternary relations. Furthermore, Data-Peeler can efficiently
handle the expressive class of piecewise (anti)-monotonicity constraints. To simplify
the brief introduction to Data-Peeler, given n-sets X = (X1, X2, ..., Xn) and
Y = (Y 1, Y 2, ..., Y n), and e ∈ ∪1..nDi, we write:

– X ⊑ Y instead of ∀i = 1, .., n,Xi ⊆ Y i,

– X ⊔ Y instead of (X1 ∪ Y 1, X2 ∪ Y 2, . . . , Xn ∪ Y n),

– X ⊔ e instead of















(X1 ∪ {e}, X2, ..., Xn) if e ∈ D1

(X1, X2 ∪ {e}, ..., Xn) if e ∈ D2

...
(X1, X2, ..., Xn ∪ {e}) if e ∈ Dn

,

– X \ e instead of















(X1 \ {e}, X2, ..., Xn) if e ∈ D1

(X1, X2 \ {e}, ..., Xn) if e ∈ D2

...
(X1, X2, ..., Xn \ {e}) if e ∈ Dn

.

Data-Peeler recursively partitions the search space into two complementary
parts following a popular “divide and conquer” strategy. In this way, a binary tree
can represent the search space traversal. At every node of this tree, two n-sets,
namely U and V , are updated that enable to bound the search space. From each
node, we can derive all the n-sets containing all the elements of ∪i=1..nU

i and a
subset of the elements of ∪i=1..nV

i. In other words, each node is the search space of
n-sets (X1, . . . , Xn) such that ∀i = 1, . . . , n, U i ⊆ Xi ⊆ (U i ∪ V i). U is the smallest
n-set that may be discovered from the node (according to ⊑), whereas U ⊔ V is the
largest. Data-Peeler is initially called with U = (∅, . . . , ∅) and V = (D1, . . . , Dn)
because, from this root node, all possible n-set are represented. In an enumeration
sub-tree rooted by a left child, an arbitrary element e ∈ ∪i=1,..,nV

i is absent from
every U n-set (e is “removed” from V ). In the enumeration sub-tree rooted by
its sibling node (right child), the same element e is present in every U n-set (e is
“moved” from V to U).

Checking Cconnected. Right after an element e is “moved” to U (right child), the
constraint Cconnected is enforced. It removes from V every element v ∈ ∪i=1,..,nV

i

that would violate Cconnected if added to (U ⊔e), i. e., ¬Cconnected(U ⊔e⊔v). Figure 12
sums up this enumeration process.

Checking Cmax. For a node (U, V ), if there exists an element e ∈ Di\(U i∪V i) such
that Cconnected(U1 ∪ V 1, ..., U i−1 ∪ V i−1, {e}, U i+1 ∪ V i+1, ..., Un ∪ V n) is true, then
every n-set discovered from the node (U, V ) can be extended with e to form a larger
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U

V

U

V \ e

U ⊔ e

(V \ e) \ {v ∈ ∪i=1..nV i | ¬Cconnected(U ⊔ e ⊔ v)}

Figure 12: Data-Peeler enumeration step for an element e.

n-set satisfying Cconnected. Thus, the n-set discovered from this node is not closed.
In that case, such a node can be safely pruned. Indeed, we do not have to check
every element of ∪i=1..nD

i \ ∪i=1..n(U
i ∪ V i). Elements v which are removed from

V when applying Cconnected does not need to be checked because such a element v
does not connect with any n-set discovered from the node (U, V ). Only the elements
e selected and removed during the enumeration, that is to say when a left child is
built, have to be checked. Such elements e are put in a stack S.

Checking piecewise (anti)-monotonic constraints. According to the definition, each
piecewise (anti)-monotonic constraint can be rewritten to form a new constraint
which is (anti)-monotone w.r.t. each of its arguments. At each node (U, V ), if an
argument of the rewritten constraint is monotone, we check it with n-set (U1 ∪
V 1, . . . , Un ∪ V n). If the constraint is not satisfied for (U1 ∪ V 1, . . . , Un ∪ V n) then
this will be the same for all the n-sets discovered from the node (U, V ) and this node
(U, V ) can be pruned. If an argument of the rewritten constraint is anti-monotone,
we check it with n-set U . If the constraint is not satisfied for U then the node (U, V )
is pruned as well.

The Data-Peeler pseudo-code for the computation of every closed n-set satis-
fying a conjunction of piecewise (anti)-monotonic constraints CP(A)M is presented in
Algorithm 4.

Input: A node (U, V ) and a stack S
Output: Closed n-sets satisfying CP(A)M

if Cmax(U, V, S) ∧ CP(A)M(U, V ) then

if V = ∅ then
output U

Choose e ∈ ∪i=1..nV
i

Data-Peeler(U ⊔ e, (V \ e) \ {v ∈ ∪i=1..nV
i | ¬Cconnected(U ⊔ e ⊔ v)}, S)

Data-Peeler(U , V \ e, S ∪ {e})
Algorithm 4: Data-Peeler.

The space complexity of Data-Peeler is O((|D1| + |D2|)2) if n = 2 and it is
O(×i=1..n|Di|) when n > 2 [33]. Notice that an extension of closed n-sets towards
fault-tolerance has been designed as well. An absolute fault-tolerance has been
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specified thanks to a straightforward generalization of the constraint Cconnected : some
errors (say false values in the hyper-rectangle specified by the n-set) are accepted.
From a computational perspective, this is much harder than computing closed n-
sets. The so-called algorithm Fenster exploits the same enumeration strategy
than Data-Peeler even though original counting mechansisms had to be designed
to achieve enough efficiency [CBNB12].

2.3 Mining rules in n-ary relations

Traditional association rules describe relationships between elements on only a
single dimension of a binary relation. To cope with higher arity relations, new
rule pattern domains have to be studied. According to the number of dimensions
appearing in a rule and the repetitions of dimensions in a rule, the rules mined
from n-ary relations can be classified into three types: intra-dimensional, inter-
dimensional and hybrid rules.

2.3.1 Intra-dimensional association rules

A rule whose elements belong to only one domain is called an intra-dimensional
association rule. The association rule on itemsets in binary relations (see Definition
15) is a particular case of intra-dimensional association rule. Schmitz et al. [92] pro-
posed the computation of intra-dimensional association rules in ternary relations.
They are looking for association rules on one domain of the relation and they con-
sider all tuples that belong to the Cartesian product of all other domains as a set
of transactions. Formally, in the context of n-ary relation, the intra-dimensional
association rules are defined as follows:

Definition 28 (Intra-dimensional association rule). ∀Di ∈ D, let X,Y ⊆ Di, a rule
X → Y is called an intra-dimensional association rule on Di.

Using the concatenation denoted as ’.’ (e. g., (p1) · (s3, o5) = (p1, s3, o5)), the
frequency and the confidence of an intra-dimensional association rule are defined as
follows.

Definition 29 (Intra-dimensional association rule frequency). ∀Di ∈ D, let X → Y
be an intra-dimensional association rule on Di. Its frequency in R is:

f(X → Y ) =
|{t ∈ ×Dj∈D\DiDj | ∀ei ∈ (X ∪ Y ), ei · t ∈ R}|

| ×Dj∈D\Di Dj | .

Definition 30 (Intra-dimensional association rule confidence). ∀Di ∈ D, let X → Y
be an intra-dimensional association rule on Di. Its confidence in R is:

c(X → Y ) =
|{t ∈ ×Dj∈D\DiDj | ∀ei ∈ (X ∪ Y ), ei · t ∈ R}|
|{t ∈ ×Dj∈D\DiDj |∀ei ∈ X, ei · t ∈ R}|

.
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Example 27. In RE, {p2, p3} → {p4} is an intra-dimensional association rule.

– Its frequency is |{(s1,o3),(s1,o5),(s3,o3),(s3,o5),(s4,o1)}|
|D2×D3| = 5

20 .

– Its confidence is |{(s1,o3),(s1,o5),(s3,o3),(s3,o5),(s4,o1)}|
|{(s1,o3),(s1,o5),(s3,o1),(s3,o3),(s3,o5),(s4,o1),(s4,o3)}|

= 5
7 .

Assume the collection of all possible intra-dimensional association rules on Di in
R is denoted Lintra-dimensional, i. e., Lintra-dimensional = {X → Y | X,Y ⊆ Di}. The
mining interesting intra-dimensional association rules on Di in R corresponds to the
finding of the following theory:

T H(R,Lintra-dimensional, Cfrequent ∧ Cvalid)
= {r ∈ Lintra-dimensional|Cfrequent(r,R) ∧ Cvalid(r,R) is true}.

To compute interesting intra-dimensional association rules on Di in R, first we
construct a new binary relation R′ from R by ”flattening” the dimensions in D\Di

into a unique support dimension Dsupp = ×Dj∈D\DiDj . Assuming that for all

k = 1..n, ek is an element of the kth domain, i. e., ek ∈ Dk, R′ is built as follows:

R′ = {(ei, (e1, · · · , ei−1, ei+1, · · · , en))|(e1, · · · , ei−1, ei, ei+1, · · · , en) ∈ R}.

Second, we use an algorithm which extracts association rules from a binary relation
(see Section 1.3.1) to discover intra-dimensional association rules on Di from R′.

2.3.2 Inter-dimensional association rules

While intra-dimensional association rules describe co-occurrences of elements in
only one domain, the inter-dimensional association rules are proposed to find asso-
ciations or co-occurrences between elements in several domains of a n-ary relation.
An inter-dimensional association rule is an implication between elements of a few
distinct domains and no dimension is repeated in the rule (i. e., in a rule, there are
no two elements that belong to the same domain) [62, 75].

Definition 31 (Inter-dimensional association rule). ∀ei ∈ Di with i = 1..n, ∀D′,D′′ ⊆
D and D′ ∩ D′′ = ∅, a rule of the form ∧Di∈D′ei → ∧Di∈D′′ei is called an inter-
dimensional association rule.

The extraction of inter-dimensional association rules is often guided by user-
defined meta-rules or templates. It means that we find inter-dimensional association
rules which match the defined meta-rules and satisfy the given frequency and confi-
dence constraints. Kamber et al. [62] introduced the concept of metarule-guide with
distinct predicates for mining inter-dimensional association rules from single levels
of dimensions. In this study, a metarule is a rule template of the following form

P1 ∧ P2 ∧ ... ∧ Pm → Q1 ∧Q2 ∧ ... ∧Ql
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where Pi (i = 1, ..,m) and Qj (j = 1, .., l) are either instantiated predicates or
predicate variables, p = m+ l is the number of predicates in the metarule (p < n).
All the predicates have distinct predicate names, i. e., no predicate is repeated in the
metarule. A rule complies with the metarule iff it can be unified with this metarule.

Example 28. ∀x ∈ person, P1(x, y) ∧ P2(x,w) → buys(x, “pentium′′) is a meta-
rule, where P1 and P2 are predicate variables, x is a variable representing a per-
son, y and w are object variables. The rule ∀x ∈ person, owns(x, “laptop′′) ∧
income(x, “high′′) → buys(x, “pentium′′) is an inter-dimensional association rule
complying with the meta-rule. This rule means that if a person owns a laptop and
if his/her income is high then he/she tends to buy a pentium computer.

Frequency and confidence are computed according to the COUNT measure. Given
X → Y is an inter-dimensional association rule, its frequency (or support) in R is
the probability that the tuples in R contain both X and Y , its confidence is the
probability that a tuple contains Y given that it contains X.
Messaoud et al [75] proposed a general framework for mining inter-dimensional

association rules at multiple levels of abstraction. They use the concept of inter-
dimensional meta-rule which allows users to guide the mining process and focus on
a specific context from which rules can be extracted. Given DC ⊂ D a subset of s
context dimensions, a sub-cube onR according to DC defines the mining context. DA

is a subset of analysis dimensions from which the predicates of an inter-dimensional
association rule are selected. According to these authors, an inter-dimensional meta-
rule is a template of the following form:

∣

∣

∣

∣

In the context(Θ1, ..,Θs)
(α1 ∧ ... ∧ αm)→ (β1 ∧ ... ∧ βl)

where (Θ1, ...,Θs) is a sub-cube on R according to DC . It defines the portion of R to
be mined. When DC = ∅ the mining process covers the whole R. For all k = 1, ...,m
(respectively for all k = 1, ..., l), αk (respectively βk) is a dimension predicate in a
distinct dimension from DA, and the number of predicates p = m+l in the meta-rule
is equal to the number of dimensions in DA.

Example 29. Assume that a Sales relation (cube) contains the following dimen-
sions: Shop (D1), Product (D2), Time (D3), Profile (D4), Profession (D5), Gen-
der (D6) and Promotion (D7). Dimension Shop has three levels: All, Continent,
and Country. Dimension Product has three levels: All, Family, Article. Dimen-
sion Time has two levels: All, Year. Let DC = {D5, D6} = {Profession,Gender}
and DA = {D1, D2, D3} = {Shop,Product,Time}. One possible inter-dimensional
meta-rule scheme is:

∣

∣

∣

∣

In the context (Student,Female)
< e1 ∈ Continent > ∧ < e3 ∈ Year >→< e2 ∈ Article >
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According to this inter-dimensional meta-rule, association rules are mined in the
sub-cube (Student,Female) which covers the sales concerning the female students.
The dimensions Profile and Promotion do not appear in the rules. For such a rule,
its body includes an element in the Continent level of D1 and an element in the Year
level of D3, its head includes an element in the Article level of D2. According to this
meta-rule, one discovered association rule example can be America∧2004→ Laptop.

Let M be a user defined measure (M is an aggregate function, e. g., SUM or
COUNT), r be a rule which complies with the defined inter-dimensional meta-rule.

r :

∣

∣

∣

∣

In the context(Θ1, ..,Θs)
(x1 ∧ ... ∧ xm)→ (y1 ∧ ... ∧ yl)

Its frequency (or support) and its confidence are defined as follows:

f(r) =
M(x1, · · · , xm, y1, · · · , yl,Θ1, · · · ,Θs, All, · · · , All)

M(All, · · · , All,Θ1, · · · ,Θs, All, · · · , All)
,

c(r) =
M(x1, · · · , xm, y1, · · · , yl,Θ1, · · · ,Θs, All, · · · , All)
M(x1, · · · , xs, All, · · · , All,Θ1, · · · ,Θs, All, · · · , All)

.

In this approach, in addition to frequency and confidence, the authors add two
descriptive criteria to evaluate the interestingness of mined association rules: Lift
criterion and Loevinger criterion (Loev) under the independence hypothesis between
the body X = x1 ∧ ... ∧ xm and the head Y = y1 ∧ ... ∧ yr. PX (respectively PY )
denotes the relative measureM matching X (respectively Y ) in the defined sub-cube
(Θ1, ..,Θs). We denote by PX̄ = 1 − PX (respectively PȲ = 1 − PY ) the relative
measure M not matching X (respectively Y ).

PX =
M(x1, · · · , xm, All, · · · , All,Θ1, · · · ,Θs, All, · · · , All)

M(All, · · · , All,Θ1, · · · ,Θs, All, · · · , All)

PY =
M(All, · · · , All, y1, · · · , yl,Θ1, · · · ,Θs, All, · · · , All)

M(All, · · · , All,Θ1, · · · ,Θs, All, · · · , All)

The Lift and Loev measures of the rule r are defined as follows:

Lift(r) =
f(r)

PXPY

Loev(r) =
c(r)− PY

PȲ

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0094/these.pdf 
© [T.K.N. Nguyen], [2012], INSA de Lyon, tous droits réservés



2.3. MINING RULES IN N-ARY RELATIONS 61

Let Linter-dimensional be the set of all inter-dimensional association rules, the collec-
tion of interesting inter-dimensional association rules complying a given meta-rule
in R corresponds to the following theory:

T H(R,Linter-dimensional, Cmeta-rule ∧ Cfrequent ∧ Cvalid)
= {r ∈ Linter-dimensional|Cmeta-rule(r,R) ∧ Cfrequent(r,R) ∧ Cvalid(r,R) is true}.

The idea of the algorithms proposed by Kamber [62] and Messaoud [75] for discov-
ering inter-dimensional association rules which comply a given meta-rule and satisfy
the minimal frequency and confidence constraints contains two basic steps. First,
they use a level-wise search approach as Apriori for finding large predicate sets. It
means that they start searching the 1-predicate sets in each dimension and then use
the (k−1)-predicate sets to enlarge k-predicate sets until p-predicate sets are found.
If a k-predicate set is not frequent then all its super predicates are not frequent,
then it is pruned and thus it is not used to compute (k + 1)-predicate sets. Second,
they extract inter-dimensional association rules from frequent p-predicate sets with
respect to two conditions: (i) An inter-dimensional association rule r must comply
with the given meta-rule, and (ii) The rule r must have a confidence greater than
the confidence threshold.

2.3.3 Hybrid rules

The absence of repeats is a limitation on the expressiveness of inter-dimensional
association rules. Thus, other studies investigated the extracting hybrid rules in
which the repetition of few dimensions is enabled.
Missaoui et al. [76] studied the mining triadic association rules from ternary rela-

tions. Their approach uses two domains of the ternary relation for analyzing rules,
and the remain domain for computing the frequency and the confidence of the rules.
Rule computing is based on closed 3-sets and t-generators. Given a ternary relation
R ⊆ D1×D2×D3, where D1, D2 and D3 are respectively object, attribute and con-
dition domains, they propose three types of rules: attribute× condition association
rules, conditional attribute association rules and attributional condition association
rules.
– attribute×condition association rule: An attribute×condition association rule
is of the form X → Y (f , c), where X,Y ⊆ D2 × D1, and f (resp. c) is the
frequency (resp. the confidence) of the rule.

– conditional attribute association rule: A conditional attribute association rule
is of the form (X → Y )C (f , c, cov), where X,Y ⊆ D2, C ⊆ D3, f and c are

the frequency and the confidence of the rule, cov = |C|
|D3| . The rule means that

whenever X occurs under all conditions in C then Y also occurs under the same
conditions with a frequency s, a confidence c and a coverage cov.

– attributional condition association rule: An attributional condition association
rule is of the form (X → Y )A (f , c, cov), where X,Y ⊆ D3, A ⊆ D2, f and c
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are the frequency and the confidence of the rule respectively, cov = |A|
|D2| . The

rule means that whenever the conditions in X occur for all attributes in A then
the conditions in Y also occur for the same attributes with a frequency s, a
confidence c and a coverage cov.

In [53], Imieliński et al. propose to compute association rules from data cubes by
introducing the concept of Cubegrade. They focus on significant changes that affect
measures when a cube is modified through specialization, generalization or mutation.
Cubegrades are statements which can be interpreted as ”what if” formulate about
how selected aggregates are affected by various cube modifications. In this study,
a pair of the form dimension = value is called a descriptor. A cube depicts a
multidimensional view of the data, it is expressed by a set of descriptors, it is the
set of tuples in R satisfying this set of descriptors. A cubegrade is represented in
the form:

SourceCube→ TargetCube [Measures, Values, Delta-Values]

where SourceCube and TargetCube are cubes, Measures is the set of measures which
are evaluated in SourceCube and TargetCube, Value is a function which evaluates
measure m ∈ Measures in the SourceCube, and Delta-Value is a function which
computes the ratio of the value of m ∈ Measures in the TargetCube versus the
SourceCube. The considered measures are standard aggregate measures in data
warehouses as COUNT, MIN, MAX, SUM, AVG.

They investigate three types of cubegrades:
– Specializations : A cubegrade is a specialization if the set of descriptors of the
target cube is a superset of the set of descriptors of the set of descriptors of the
source cube.

– Generalizations : A cubegrade is a generalization if the set of descriptors of the
target cube is a subset of the set of descriptors of the set of descriptors of the
source cube.

– Mutations : A cubegrade is a mutation if the target cube and source cube have
the same set of dimensions but differ on the descriptor values.

Example 30. Consider basket data including the dimensions Customer(D1), Area(D2),
Age(D3), Income(D4) and Item(D5), Amount(D6). Here, Area: where the cus-
tomer lives (e. g., suburban, urban, rural), Age: the age of the customer, Income:
the income of the customer, Item: the product in the supermarket (e. g., milk, ce-
real, butter, etc), Amount: the amount spent monthly on individual items. In this
database, (Area = ”urban”, Age = 18-30) is a cube, it consists of the tuples whose
areas are urban and whose ages are between 18 to 30.

– (Area = “urban“)→ (Area = “urban“, Age = 18-30)
[AV G(salesMilk), AV G(salesMilk) = $12.40, DeltaAV G(salesMilk) = 80%]
is a specialization cubegrade. It means that the average amount spent on milk
by urban buyers drops by 20% for buyers whose ages are from 18 to 30.
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– (Area = “urban“, Income = [50k − 70k])→ (Area = “urban“)
[AV G(salesMilk), AV G(salesMilk) = $13.78, DeltaAV G(salesMilk) = 90%]
is a generalization cubegrade. It indicates that urban buyers with incomes be-
tween $50000 to $70000 spend 10% more on milk than general urban buyers.

– (Area = “suburban“)→ (Area = “urban“)
[AV G(salesMilk), AV G(salesMilk) = $12.40, DeltaAV G(salesMilk) = 70%]
is a mutation cubergrade. The rule means that the average amount spent on
milk drops by 30% when moving from suburban buyers to urban buyers.

Since for each analysis task, a user is often interested in examining only a small
subset of cubes in the given database, Dong et al. [38] propose to extract only
cubegrades which satisfy probe constraints. A probe constraint enables to select a
set of user-desired cubes. They aim at finding all interesting cubegrades (pairs of
the form (SourceCube,TargetCube)) which satisfy a significance constraint, a probe
constraint and a gradient constraint. The significance constraint is usually defined
as conditions on measure attributes, the gradient constraint defines as m(TargetCube)

m(SourceCube) .

Tjioe et al. [104] proposed a method for mining only hybrid association rules
which satisfy a given template. Based on the multidimensional data organization,
their method is able to extract associations from multiple dimensions at multiple
levels of abstraction by focusing on summarized data according to the COUNT
measure. Assume the user wants to extract rules on a subset of the domains D′ =
{D1, D2, ..., Dm} ⊆ D, and, for each domain Di ∈ D′, he/she is interested in an
interval value (or a classification value) di(V al). All extracted hybrid association
rules are in the form:

d1(V al), x2, ..., xm → y2, ..., ym

where ∀i = 2..m, xi, yi ∈ di(V al), the dimension D1 works as the grouping dimen-
sion.

Example 31. Consider a database having seven dimensions: Product(D1), Time(D2),
Customer(D3), Channel(D4), Promotion(D5), Quantiy(D6) and Dollar sold(D7).
Suppose we want to discover interesting hybrid association rules limited to the three
dimensions Time, Customer and Product while using the following selection crite-
ria: Time(1998−200), Customer(Australia) and Product(Cars). Then one hybrid
association rule example can be:

Time(1998..2000), Customer(Melb), P roduct(Car)(≥ 500)
→ Customer(Syd), P roduct(Car)(≥ 250)
(supp = 10%, conf = 20%)

.

This rule means that in the years between 1998 and 2000, customers in Melbourne
buy 500 car units then customers in Sydney also buy 250 car units with a support
of 10% of total sales across those dimensions. In those years those customers in
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Melbourne buying 500 car units, then customers in Sydney also buying 250 car units
have a confidence 20%.

The extracting process of interesting hybrid association rules includes two steps:
finding all frequent (or significant) cubes and generating hybrid association rules
from those frequent cubes. The second step is trivial. For the first step, the al-
gorithms proposed by Imieliński et al. [53] and by Tjioe et al. [104] are based on
the idea of a level wise search approach as Apriori and the algorithm proposed by
Dong [38] uses a depth-first search.

2.4 Conclusion

We see that the proposed solutions for association rule mining in n-ary rela-
tions have some limitations. The intra-dimensional association rule describes co-
occurrences of elements of only one dimension. The inter-dimensional association
rule allows us to find associations or co-occurrences between elements of several
domains of a n-ary relation. However, in an inter-dimension rule, no dimension is
repeated (i. e. there are no two elements that belong to the same domain). There-
fore, the inter-dimension rule can not discover the correlation between elements in
the same domain. The hybrid rule allows to repeat some dimensions. However, in
existing studies, the repetition of dimensions in hybrid rules is limited. The first
limitation is that, in a rule, the dimensions which appear in its head depend on
those in its body. The second limitation, except in [76], is that one dimension can
appear in both body and head of a rule, but no dimension can be repeated in each
part.

In addition, many of the mined rules are redundant because such a rule suggests
the information which is included in another more general rule. So, the user is not
interested in the redundant rules.

This dissertation seeks to address these drawbacks. Such a mined rule can contain
arbitrary subsets of some domains and the mined rule is non-redundant.
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Outline

Mining rules in n-ary relations has attracted some attention in the last few years.
However, we have discussed the limitations of the previous work in Section 2.4. As
a result, it is not yet possible to discover rules which include arbitrary subsets of
some domains. For example, in the ternary relation RE (see Figure 10), discovering
the following rules is not yet possible:

– {p1, p2} → {s1, s2},
– {p4} × {s1} → ({p1, p2}) ∨ ({p2, p3} × {s3}) ∨ ({p3}).
The first rule suggests that the products p1 and p2 are bought together in both

seasons s1 and s2. The second one suggests that, if a customer buys the product
p4 in the season s1 then he/she tends to buy the products p1, p2 or p3 in this
same season. If we manage to have a framework for mining such rules, then we
offer to practionners better tools to describe and to analyze the more or less hidden
relationships within n-ary relations.
Our goal is to generalize association rule mining within n-ary relations (n > 2),

yet getting the standard semantics of the standard association rules when n = 2.
We propose that our rules can include arbitrary subsets of some domains from the
targeted n-ary relations. Thanks to this generalization, to the best of our knowledge,
the previous rule models that have been studied earlier become special cases of our
current proposal.

This generalization is however surprisingly difficult. The two main subproblems
to address are (a) How to define the semantics of the rules thanks to primitive
constraints, and (b) Their efficient computation. Point (a) is about defining the
pattern language and objective interestingness measures for rules. When generalized
to n-ary relations, rules may involve arbitrary subsets of some domains. In this
context, what does it means for a rule to be frequent or to have enough confidence? Is
it possible to have measures that correspond to the special case of standard measures
when n = 2 and that are as intuitive as possible for analysts? How to generalize other
relevancy concepts such as, for example, non redundancy? Once these declarative
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issues are understood, Point (b) concerns the design of scalable methods to extract
the patterns that satisfy a given conjunction of primitive constraints. When possible,
correct and complete algorithms remain preferable: such methods list all solution
patterns and only them. Performance issues are important: a good algorithm must
scale in the number of dimensions, in the domain size (of each dimension), and in the
number of tuples in the relation. In Part 2, we investigate two types of rules that have
been called multidimensional association rules (Chapter 3) and multidimensional
disjunctive rules (Chapter 4).
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Chapter 3

Generalizing association rules in

n-ary relations

In this chapter, we generalize the association rule mining task [2] to arbitrary
n-ary relations. Our contribution is twofold. The first contribution is the design
of the pattern domain of multidimensional association rules. Such a rule is an
implication between two associations where each association can contain subsets of
some arbitrary domains. In this context, we provide three objective interestingness
measures for such rules: frequency, exclusive confidence and natural confidence.
We also revisit the concept of non-redundant rules having a minimal body and a
maximal head in our extended setting. The second contribution is the design of the
first complete algorithm, namely Pinard++ 1, which lists the collection of a priori
interesting rules.
The chapter is organized as follows. The next section provides the basic con-

cepts to build the new pattern domain of multidimensional association rules. In
Section 3.2, we define the language for such rules and we design interestingness
measures for them. Section 3.3 describes our algorithm that computes a priori in-
teresting rules on a n-ary relation. Section 3.4 reports experimental results on a
real-life ternary relation. Section 3.5 summarizes the chapter.

3.1 Basic concepts

We generalize the concept of itemsets in a binary relation to the concept of as-
sociations in a n-ary relation because we build the new pattern domain of multidi-
mensional association rules on the relationships between associations.
In a binary relation that describes the relationship between two domains only, an

itemset is a subset of one domain, and its frequency (say its “strength”) is computed
on the other domain (see Section 1.2). Let us propose a generalization when defining

1. Pinard Is N-ary Association Rule Discovery.
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associations within a n-ary relation. We consider that an association can involve
subsets of the different domains and that it strenght should be defined in terms of
the remaining ones, i.e., the domains that are not involved. For example, in a 3-ary
relation Products×Seasons×Customers, an association can be a set of products,
or a set of seasons, but it can also consist of both products and seasons, etc. In
the context of arbitrary n-ary relations, how do we express such associations?, How
do we specify the objectif interestingness of such associations?. We address these
questions and we provide the operators on associations that will be used from now.

Given an arbitrary number n ∈ N, we recall that the set of n domains is denoted by
D = {D1, . . . , Dn}, and that the n-ary relation in which patterns are to be discovered
is R ⊆ D1 × · · · × Dn. To emphasize the relevancy of the proposed patterns, the
definitions are illustrated on the toy ternary relation RE (see Figure 10 in Chapter
2) whose tabular representation is recalled here :

p1 p2 p3 p4 p1 p2 p3 p4 p1 p2 p3 p4 p1 p2 p3 p4
o1 1 1 1 1 1 1 1 1 1 1

o2 1 1 1 1 1 1

o3 1 1 1 1 1 1 1 1 1

o4 1 1 1 1 1

o5 1 1 1 1 1 1 1 1 1 1 1

s1 s2 s3 s4

It relates products in D1 = {p1, p2, p3, p4}, seasons in D2 = {s1, s2, s3, s4}, and
customers in D3 = {o1, o2, o3, o4, o5}.

In an n-ary relation, an association on D′ ⊆ D is the Cartesian product of subsets
of the domains in D′. Without loss of generality, the dimensions are assumed to be
ordered such that D′ = {D1, . . . , D|D′|}.
Definition 32 (Association). ∀D′ = {D1, . . . , D|D′|} ⊆ D, ×i=1..|D′|X

i is an associ-
ation on D′ iff ∀i = 1..|D′|, Xi 6= ∅ ∧Xi ⊆ Di. By convention, the only association
on D′ = ∅ is denoted by ∅.
Example 32. In RE, {p1, p2} × {s1} and {p1, p2} × {s1, s2} are associations on
{D1, D2}, {p1, p2} is an association on {D1}, and {s1, s3} is an association on
{D2}.

In binary relations (like for instance the relation BE in Chapter 1), the support
domain of any itemset (e.g., a set of products) is a set of objects (e.g., a set of cus-
tomers), i.e., the remaining dimension. We introduced the function ψ that associate
to each itemset its supporting set and that can be used, for instance, to evaluate the
itemset frequency. Let us generalize this to associations.

Definition 33 (Support domain of an association). Given an arbitrary association
×i=1..|D′|X

i on D′ = {D1, . . . , D|D′|} ⊆ D, its support domain in the n-ary relation
R is ×Di∈D\D′Di.
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Example 33. In RE,, the support domain of {p1, p2}×{s1} and {p1, p2}×{s1, s2}
is D3, that of {p1, p2} is D2 ×D3 and that of {s1, s3} is D1 ×D3.

The support of an association is a subset of its support domain. Its definition uses
concatenation denoted by ’·’. For instance, (p2, s1) · (o1) = (p2, s1, o1).

Definition 34 (Support of an association). ∀D′ ⊆ D, let X be an association on
D′. Its support is

s(X) = {u ∈ ×Di∈D\D′Di | ∀x ∈ X, x · u ∈ R}.

Let us mention some special cases. An association involving the n domains (D′ =
D) is either false (at least one n-tuple it contains is absent from R) or true (every
n-tuple it contains is in R). By using the convention ×Di∈∅D

i = {ǫ} (where ǫ is the
empty word), Definition 34 reflects that every possible association on D has either
zero or one element, ǫ, in its support. The opposite extreme case is the support of
the empty association, s(∅), which is R.
The support of an association generalizes that of an itemset (see the operator ψ in

Chapter 1). Indeed, when considering associations in a relation O×P, if we choose
D′ = {P}, the support domain is O and ψ gives the support of any association on
P.

Example 34. Let us give examples of supports for three associations in RE.
– s({p1, p2} × {s1}) = {o1, o2, o3},
– s({p1, p2} × {s1, s2}) = {o1, o2},
– s({p1, p2}) = {(s1, o1), (s1, o2), (s1, o3), (s2, o1), (s2, o2), (s3, o5)}.

Let us now introduce some operators to manipulate associations. Their definitions
are illustrated for Xe = {p2, p3} and Ye = {p1, p2} × {s1, s2}.

Definition 35 (Projection π). ∀D′ = {D1, . . . , D|D′|} ⊆ D, let X = X1×· · ·×X |D′|

be an association on D′. ∀Di ∈ D, πDi(X) = Xi if Di ∈ D′, ∅ otherwise.

Example 35. πD1(Xe) = {p2, p3}, πD2(Xe) = ∅, πD3(Xe) = ∅, πD1(Ye) = {p1, p2},
πD2(Ye) = {s1, s2}, and πD3(Ye) = ∅.

Definition 36 (Union ⊔). ∀DX ⊆ D and ∀DY ⊆ D, let X (resp. Y ) be an associa-
tion on DX (resp. on DY ). X⊔Y is an association on DX ∪DY for which ∀Di ∈ D,
πDi(X ⊔ Y ) = πDi(X) ∪ πDi(Y ).

Example 36. Xe⊔Ye is an association on {D1, D2} (= {D2}∪{D1, D2}), Xe⊔Ye =
(πD1(Xe)∪ πD1(Ye))× (πD2(Xe)∪ πD2(Ye)) = ({p2, p3} ∪ {p1, p2})× (∅ ∪ {s1, s2}) =
{p1, p2, p3} × {s1, s2}.
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Definition 37 (Complement \). ∀DX ⊆ D and ∀DY ⊆ D, let X (resp. Y ) be an
association on DX (resp. on DY ). Y \X is an association on {Di ∈ DY | πDi(Y ) 6⊆
πDi(X)} for which ∀Di ∈ D, πDi(Y \X) = πDi(Y ) \ πDi(X).

Example 37. Ye\Xe is an association on {D1, D2}, Ye\Xe = (πD1(Ye)\πD1(Xe))×
(πD2(Ye) \ πD2(Xe)) = ({p1, p2} \ {p2, p3}) × ({s1, s2} \ ∅) = {p1} × {s1, s2}. In
contrast, Xe \Ye is an association on {D1} only and Xe \Ye = πD1(Xe) \πD1(Ye) =
{p2, p3} \ {p1, p2} = {p3}.

Definition 38 (Inclusion ⊑). ∀DX ⊆ D and ∀DY ⊆ D, let X (resp. Y ) be an
association on DX (resp. on DY ). X is included in Y , denoted X ⊑ Y , iff ∀Di ∈ D,
πDi(X) ⊆ πDi(Y ).

Example 38. There are inclusions between three of the four associations illustrating
Definition 32: {p1, p2} ⊑ {p1, p2} × {s1} ⊑ {p1, p2} × {s1, s2}.

With this generalized inclusion, the anti-monotonicity of the support cardinal-
ity, which is well known in itemset mining, still holds. The proof is given in the
Appendix A at the end of the thesis.

Theorem 5 (Support anti-monotonicity). ∀DX ⊆ D and ∀DY ⊆ D, let X (resp.
Y ) be an association on DX (resp. on DY ), X ⊑ Y ⇒ |s(X)| ≥ |s(Y )|.

Example 39. Considering the double inclusion illustrating Definition 38, one can
verify that |s({d1, d2})| ≥ |s({d1, d2} × {a1})| ≥ |s({d1, d2} × {a1, a3})|, i. e., Theo-
rem 5 holds.

3.2 Multidimensional association rules

We now define the pattern domain of multidimensional association rules in n-ary
relations. Examples of such rules, therefore introducing the pattern language, have
been intuitively discussed. For instance, we may discover {p1, p2} → {s1, s2} or
{p3} × {s3, s4} → {p2} in the ternary relation RE . The first rule tells that the
products p1 and p2 are bought together both seasons s1 and s2. The second rule
would mean that the customers who buy the product p3 in the seasons s3 and s4
also tend to buy p2 in these seasons. To provide a semantics, we design measures
that evaluate how significant are the relations between the associations in both sides
of the implication sign. In fact, we have to look for the n-dimensional counterpart of
the fequency and confidence measures that are so popular in the context of binary
relation mining. Other aspects related to relevancy and/or computational feasability
are considered as well (e.g., non redundancy, scalability).
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3.2.1 Definitions

Given an n-ary relation R on D = {D1, . . . , Dn}, a multidimensional association
rule on D′ ⊆ D specifies a relationship between two associations whose union is an
association on D′. It is simply called a rule when it is clear from the context.

Definition 39 (Multidimensional association rule). ∀D′ ⊆ D, a multidimensional
association rule on D′ is a pattern of the form X → Y , where X and Y are asso-
ciations on subsets of D′ and X ⊔ Y is an association on D′. X is called the body
and Y is called the head.

Example 40. In RE, {p1, p2} → {s1, s2} and {p3} × {s3, s4} → {p2} are two rules
on {D1, D2}. {p1} → {p2} is not a rule on {D1, D2} because no element in D2

appears in its body nor in its head. It is however a rule on {D1}.

In the binary case, we know many measures that assess the strength and the type
of relationships between the itemset in the body and that in the head [101, 44].
Many measures are however based on frequency. In the context of n-ary relations,
it turns out that a natural definition of rule frequency exists.

3.2.2 A frequency measure

The frequency of a rule enable to tell how often a rule is applicable to a given data
set. For this, we consider the support domain of a rule, i.e., the Cartesian product
of the domains which do not appear in the rule. For a rule X → Y on D′ ⊆ D, its
support domain is ×Di∈D\D′Di. In other terms, the support domain of the rule is
that of the association (X ⊔ Y ) and we can define the (relative) frequency of the
rule as, in the support domain, the proportion of elements supporting the union of
its body and its head.

Definition 40 (Frequency). ∀D′ ⊆ D, let X → Y be a rule on D′. Its frequency is:

f(X → Y ) =
|s(X ⊔ Y )|
| ×Di∈D\D′ Di| .

Example 41. Let us consider the rules r1 : {p1, p2} → {s1, s2} and r2 : {p3} ×
{s3, s4} → {p2} in RE.
– f(r1) =

|s({p1,p2}⊔{s1,s2})|
|D3| = |s({p1,p2}×{s1,s2})|

|D3| = |{o1,o2}|
|{o1,o2,o3,o4,o5}|

= 2
5 ;

– f(r2) =
|s({p3}×{s3,s4}⊔{p2})|

|D3| = |s({p2,p3}×{s3,s4})|
|D3| = |{o1,o3}|

|{o1,o2,o3,o4,o5}|
= 2

5 .

The frequency of r1 is the proportion of customers who buy the products p1 and p2
together in the both seasons s1 and s2. Similarly, the frequency of r2 is the proportion
of customers who buy the products p2 and p3 together in both seasons s3 and s4.
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Frequency is an important measure because a rule that has very low frequency
may occur simply by chance. For example, suppose the frequency of r1 in RE is
low, then the rule may be uninteresting from a business perspective because it may
not be profitable to promote the products p1 and p2 in the seasons s1 and s1 when
customers seldom buy them together. For this reasons, frequency is often used to
eliminate uninteresting rules. However, to be honest, enforcing a minimal frequency
is also a key issue to achieve the scalability of correct and complete computation
of frequent patterns in real data. It was true for itemsets and association rules in
binary relations, it is true for our multidimensional rules as well.

We may now look for futher objective interestingness measures like a generaliza-
tion of the confidence measure. Looking for other measures based on frequencies is
clearly out of the scope of this thesis. Indeed, the fundamental counting problems
already arise with the confidence computation and have to be understood before-
hand.

3.2.3 Confidence measures

The Problem

Is it possible and useful to directly generalize the confidence measure of association
rules in binary relations to n-ary relations? In other terms, can we say that the
confidence of a rule X → Y is defined as:

|s(X ⊔ Y )|
|s(X)| .

If X and X⊔Y are associations on the same domains (so they have the same support
domain), this definition is intuitive: the confidence is a proportion of elements in a
same support domain. For instance, in RE , the confidence of {p3}×{s3, s4} → {p2}
would be:

|s({p3} × {s3, s4} ⊔ {p2})|
|s({p3} × {s3, s4})|

=
|s({p2, p3} × {s3, s4})|
|s({p3} × {s3, s4})|

=
|{o1, o3}|
|{o1, o3, o5}|

=
2

3
.

It is a proportion of customers and it means that the customers who buy p3 during
both s3 and s4 also tend to buy p2 during these seasons.

Nevertheless, this semantics is not satisfactory for any rule whose head involves
some dimension that is not in its body. Indeed, in this case, s(X ⊔ Y ) and s(X)
are disjoint sets and the ratio of their cardinalities does not make any sense. For
instance, in RE , consider the rule {p1, p2} → {s1, s2}, s({p1, p2} × {s1, s2}) is a set
of customers (it is {o1, o2}) whereas s({p1, p2}) is not (it contains couples such as
(s1, o1), or (s2, o1)). As a result, there is a need for a new confidence measure that
would make sense for any multidimensional association rule X → Y . When X and
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X ⊔ Y are defined on the same domain(s), we would like to measure its confidence
by means of |s(X ⊔ Y )|/|s(X)|.
We propose two solutions to this problem. The first solution is to compute the

confidence of X → Y on the support domain of X. The proposed confidence mea-
sure is called an exclusive confidence. The idea is to introduce a new factor that is
multiplied with |s(X ⊔ Y )| such that this multiplication and |s(X)| become compa-
rable. The second solution is to compute the confidence of X → Y on the support
domain of (X ⊔Y ). In this case, the confidence measure is called natural confidence.
The idea here is introduce a new definition of the support of X when considering
the support domain of (X ⊔ Y ).

Exclusive confidence

Computing the confidence of a rule X → Y on D′ is problematic if X is defined
on a set DX strictly included in D′. The idea to solve this problem is to multiply
|s(X ⊔ Y )| by the cardinality of the projection of Y on the domains that are absent
from DX , i. e., | ×Di∈D′\DX

πDi(Y )|.
Let us observe that s(X) and s(X⊔Y )×(×Di∈D′\DX

πDi(Y )) are the same domains.
Therefore, |s(X)| and |s(X ⊔ Y )| × | ×Di∈D′\DX

πDi(Y )| are comparable and the
exclusive confidence of X → Y is the proportion of these two values.
When the exclusive confidence of X → Y is high, it means that X “prefers” to

be “connected” with Y than being “connected” with other elements.

Definition 41 (Exclusive confidence). ∀D′ ⊆ D, let X → Y be a rule on D′ and
DX be the domains on which X is defined. The exclusive confidence of this rule is:

cexclusive(X → Y ) =
|s(X ⊔ Y )| × | ×Di∈D′\DX

πDi(Y )|
|s(X)| .

Roughly speaking, the remedial factor | ×Di∈D′\DX
πDi(Y )|, applied to |s(X ⊔

Y )|, allows to count the elements at the numerator of the fraction “in the same
way” as those at the denominator. As desired above, if X is an association on
D′, the exclusive confidence of X → Y is |s(X ⊔ Y )|/|s(X)| under the convention
×Di∈∅πDi(Y ) = {ǫ}.

Example 42. Consider the rule {p1, p2} → {s1, s2} in RE and let us name a
transaction the purchase of a customer during a specific season. There are two
customers, o1 and o2, who buy both products p1 and p2 during both seasons s1 and
s2, i. e., we have |{o1, o2}| × |{s1, s2}| = 4 transactions. Consider now the body of
the rule, i. e., {p1, p2}. Six transactions, (s1, o1), (s1, o2), (s1, o3), (s2, o1), (s2, o2)
and (s3, o5), involve both p1 and p2. Thus,

cexclusive({p1, p2} → {s1, s2}) =
|s({p1, p2} × {s1, s2})| × |{s1, s2}|

|s({p1, p2})|
=

4

6
.
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Customer o3 buys both products p1 and p2 during season s1, whereas he/she does not
buy them together during season s2. This actually lowers the confidence in the fact
that customers like buying both products during both seasons s1 and s2. Notice also
that customer o5 buying these two products during season s3 lowers the confidence
as well. In fact, the exclusive confidence cexclusive({p1, p2} → {s1, s2}) indicates to
what extent products p1 and p2 are bought together during both seasons s1 and s2
only. This exclusivity explains the chosen name. If cexclusive({p1, p2} → {s1, s2})
was 1, every customer who buys p1 and p2 together would always do so during both
seasons s1 and s2 (and never during another season).

The exclusive confidence measure actually penalizes a rule whose elements in its
support domain individually allow to conclude on other elements than those at its
head. In this way, a minimal exclusive confidence threshold favors the discovery
of multidimensional association rules with “maximal” heads. Unfortunately, this
exclusivity also makes the function X 7→ cexclusive(X → Y \X) (with X ⊑ Y ) does
not increase w.r.t. ⊑.
Example 43. Consider the rules {s1, s3} → {p2, p3, p4} and {p2} × {s1, s3} →
{p3, p4} in RE, cexclusive({s1, s3} → {p2, p3, p4}) = 6

7 and cexclusive({p2}×{s1, s3} →
{p3, p4}) = 2

3 . We observe that {s1, s3} ⊑ {p2} × {s1, s3} ⊑ {p2, p3, p4} × {s1, s3}.
However cexclusive({s1, s3} → {p2, p3, p4}) is greater than cexclusive({p2} × {s1, s3} →
{p3, p4}).

This prevents to efficiently list every rule whose exclusive confidence is greater
than a user-defined threshold. Let us now consider an alternative definition for the
confidence measure.

Natural confidence

To define the confidence of X → Y , a straightforward generalization of the binary
case is not possible when the support domains of X and X ⊔ Y are different. En-
forcing the support of X to be a subset of the support domain ×Di∈D\D′Di of X⊔Y
allows to define a confidence measure that is a natural proportion, i. e., a proportion
of elements in a same support domain. The natural confidence of X → Y is the
probability to observe Y when X holds on the support domain of X ⊔ Y . The cost
of such a natural confidence is the need for a new definition of the support when
applied to rule bodies.

Definition 42 (Natural support of bodies). ∀D′ ⊆ D, let X → Y be a rule on D′.
The natural support of X is

sD\D′(X) = {u ∈ ×Di∈D\D′Di | ∃w ∈ ×Di∈D′\DX
Di s.t. ∀x ∈ X, x ·w ·u ∈ R} ,

where DX is the set of domains on which X is defined. For x · w · u to possibly be
in R, the domains in DX must appear first, i. e., the domain index may have to be
changed.
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Definition 43 (Natural confidence). ∀D′ ⊆ D, let X → Y be a rule on D′. Its
natural confidence is

cnatural(X → Y ) =
|s(X ⊔ Y )|
|sD\D′(X)| .

Notice that if X is an association on D′, the natural confidence of X → Y is
|s(X ⊔ Y )|/|s(X)| under the convention ×Di∈∅D

i = {ǫ}.

Example 44. Once again, consider the rule {p1, p2} → {s1, s2} in RE. The cus-
tomers who buy the products p1 and p2 together (during at least one season) are o1,
o2, o3, and o5. Among them, only o1 and o2 buy p1 and p2 during both seasons s1
and s2. Thus,

cnatural({p1, p2} → {s1, s2}) =
|s({p1, p2} × {s1, s2})|
|s{D3}({p1, p2})|

=
|{o1, o2}|

|{o1, o2, o3, o5}|
=

2

4
.

It means that a half of the customers buying both p1 and p2 during a same season
do so during both seasons s1 and s2. Now, the customers who support the rule can
buy both p1 and p2 during another season and that does not “lower” the natural
confidence, whereas it does lower the exclusive one.

The natural confidence has a monotonicity property which the exclusive confidence
misses. It can give rise to the efficient discovery of multidimensional association rules
in large datasets.

Theorem 6 (Pruning criterion). Let X → Y \X and X ′ → Y \X ′ be two rules on
D′. We have X ′ ⊑ X ⊑ Y ⇒ cnatural(X

′ → Y \X ′) ≤ cnatural(X → Y \X).

The proof is given in the Appendix A.

Example 45. In RE, {p1, p2} → {s1, s2} and {p1, p2} × {s1} → {s2} are two rules
on {D1, D2}. The natural confidence of the first rule is 2

4 (see above). The natural
confidence of the second one is:

|s({p1, p2} × {s1, s2})|
|sD3({p1, p2} × {s1})|

=
|{o1, o2}|
|{o1, o2, o3}|

=
2

3
.

It illustrates Theorem 6. Indeed, {p1, p2} ⊑ {p1, p2}× {s1} ⊑ {p1, p2}× {s1, s2} and
cnatural({p1, p2} → {s1, s2}) ≤ cnatural({p1, p2} × {s1} → {s2}).

In Section 3.3, this is used to prune the search space where no rule can satisfy a
minimal natural confidence constraint.
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3.2.4 Non-redundancy

Definition 44 (Syntactic equivalence of rules). ∀D′ ⊆ D, the rules X → Y and
X → Z on D′ are syntactically equivalent iff X ⊔ Y = X ⊔ Z.

Proving the following lemma is straightforward.

Lemma 2. Syntactically equivalent rules have the same frequency, the same exclu-
sive confidence and the same natural confidence.

Definition 45 (Canonical rule). ∀D′ ⊆ D, a rule X → Y on D′ is canonical iff
∀Di ∈ D, πDi(X) ∩ πDi(Y ) = ∅.

Any complete collection of rules satisfying constraints on frequency and/or con-
fidences can be condensed, without any loss of information, into its canonical rules
only. Indeed, given a canonical rule X → Y in the collection, Lemma 2 entails that
all syntactically equivalent rules necessary are in the collection as well. Moreover
constructing them is easy: they are the rules X → Y ⊔ Z with Z ⊑ X.

Not all rules satisfying the minimum thresholds of frequency and confidences are
interesting. We do not investigate here the use of other objective interestingness
measures but the crucial issue of rule redundancy.

Example 46. In RE, let us consider the following rules:
– r3: {s1, s3} → {p2, p3, p4} (f : 0.4, cnatural : 0.67, cexclusive : 0.86),
– r4: {p2} × {s1, s3} → {p3} (f : 0.4, cnatural : 0.67, cexclusive : 0.67),
– r5: {p1} × {s2} → {p2} × {s1} (f : 0.4, cnatural : 1, cexclusive : 1),
– r6: {p1} × {s1, s2} → {p2} (f : 0.4, cnatural : 1, cexclusive : 1),

They all are canonical and their frequencies, their exclusive confidences and their
natural confidences respectively exceed 0.4, 0.6, and 0.6. In this regard, they indi-
vidually satisfy this aspect of interestingness. Nevertheless, altogether, they provide
redundant information. For instance, r4 is more specific than r3 because it requires
more condition to apply (the purchases must involve p2) and its conclusion is less
informative (it does not tell anything on p4). However this specialization does not
grant r4 a greater frequency or greater confidences than r3. Therefore r4 is said to
be redundant. Similarly, by the existence of r5, r6 is redundant. Since the analyst
would not find any added-value in the rules r4 and r6, they should not be returned.

We generalize the concept of non-redundant rule having minimal body and max-
imal head [82] within our multidimensional setting.

Definition 46 (Non-redundant rule). ∀D′ ⊆ D, a rule X → Y on D′ is non-
redundant iff it is canonical and no other canonical rule X ′ → Y ′ is such that:























((X ′ ⊔ Y ′ = X ⊔ Y ) ∧ (X ′
⊏ X)) ∨ ((X ′ ⊔ Y ′

⊐ X ⊔ Y ) ∧ (X ′ ⊑ X))

f(X ′ → Y ′) ≥ f(X → Y )

cexclusive(X
′ → Y ′) ≥ cexclusive(X → Y )

cnatural(X
′ → Y ′) ≥ cnatural(X → Y )

.
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The first condition defines the form of the rules that may be redundant. Obviously,
there exists other more general rules (with less elements) that are not matched.
Nevertheless, this definition allows to remove many redundant rules that are worse
that the selected ones in term of frequency (second condition), exclusive confidence
(third condition) and natural confidence (fourth condition). For instance, the rules
r4 and r6 are not presented to the analyst. The choice of the first condition was partly
based on procedural considerations: the non-redundant rules, as defined above, can
be efficiently derived from closed sets.

Let us introduce the relation in which these patterns are extracted. It is obtained
from R by “flattening” the dimensions which are absent from D′ into a unique
support dimension Dsupp = ×Di∈D\D′Di. Denoted RA, this relation is defined on
the domains DA = D′ ∪ {Dsupp}. Assuming that for all i = 1..n, ei is an element of
the ith domain, i. e., ei ∈ Di, we have to build:

RA = {(e1, e2, . . . , e|D′|, (e|D′|+1, . . . , en))|(e1, e2, . . . , e|D′|, e|D′|+1, . . . , en) ∈ R}.

To adapt notations of association, we rewrite the definition of closed sets (Defini-
tion 26). Indeed, it does not affect the properties of closed sets if we write a closed
set (X1 ×X2 × ...×Xn) instead of (X1, X2, ..., Xn). Therefore, the definition of a
closed set (Definition 26) is equivalent to the following one.

Definition 47 (Closed set). Given a relation RA on DA, X is a closed set in RA

iff

{

X ⊆ RA
∀Di ∈ DA, ∀e ∈ Di \ πDi(X), X ⊔ {e} 6⊆ RA

.

Example 47. Considering RE, if D′ contains two domains, then RA = RE and
{p1, p2} × {s1, s2} × {o1, o2} is a closed set. {p1, p2} × {s1, s2} × {o1, o2, o3} is not
a closed set because it covers (p1, s2, o3) /∈ RA. {p1, p2} × {s2} × {o1, o2} is not a
closed set either because it can be extended with s1.

The following theorem, its proof is in the Appendix A, states that the non-
redundant rules on D′ are exactly those derivable from the closed sets in RA (their
elements in ∪Di∈D′Di being split between bodies and heads) and satisfying a second
condition pertaining to the confidences of the more general rules sharing the same
elements.

Theorem 7 (Closed sets and non-redundant rules). ∀D′ ⊆ D, let X → Y be a
canonical rule on D′. X → Y is a non-redundant rule iff (X ⊔ Y ⊔ s(X ⊔ Y )) is a
closed set in RA and ∀X ′

⊏ X, cexclusive(X
′ → (Y ⊔X) \X ′) < cexclusive(X → Y )

or cnatural(X
′ → (Y ⊔X) \X ′) < cnatural(X → Y ).

In this section, we have presented what are multidimensional association rules in
n-ary relations, and have proposed measures to evaluate the significances of rules.
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We have also discussed the redundancy of rules. Indeed, in many contexts, rules of
interest only involve some of the attribute domains D′ ⊆ D. For example, in RE , the
analyst want to focus on rules including products and seasons, i. e.., D′ = {D1, D2}.
For this reason, in the next section, we will propose an algorithm which finds non-
redundant and interesting rules on the user-defined domains of interest (D′ ( D).

3.3 Discovering multidimensional association rules

Given an n-ary relation R ⊆ ×Di∈DD
i and the user-defined domains of interest

D′ ( D, the objective of the Pinard++ algorithm is to enumerate very interesting
and non-redundant association rule on D′. Such rules have the frequency beyond µ ∈
[0; 1], the exclusive confidence beyond βexclusive ∈ [0; 1], and the natural confidence
beyond βnatural ∈ [0; 1]. In other terms, our algorithm Pinard++ computes:

{X → Y on D′ |



















X → Y is non-redundant

f(X → Y ) ≥ µ
cexclusive(X → Y ) ≥ βexclusive
cnatural(X → Y ) ≥ βnatural

} .

Pinard++ proceeds in three successive steps: (1) It constructs the relation RA
defined at the end of the previous section; (2) It extracts the frequent closed sets
in RA; (3) It derives from these patterns the non-redundant rules whose exclusive
and natural confidences exceed the user-defined thresholds. The first step is trivial.
The second step relies on the state-of-the art algorithm Data-Peeler for extracting
closed sets from which frequent enough rules are obtained. The derivation of the
non-redundant rules from the closed sets is presented in Sec. 3.3.2.

3.3.1 Computing closed n-sets

Theorem 7 states the link between the non-redundant association rules and the
closed sets in RA but, to be a priori interesting, the rules must satisfy constraints.
Some approaches have been proposed to exhaustively list the closed sets in ternary
relations, for example, CubeMiner [61] and Trias [56]. An other algorithm, Data-

Peeler [33], can compute every closed set in arbitrary n-ary relations (n ≥ 2).
Despite its broader scope, it is orders of magnitude faster than both Trias and
CubeMiner on ternary relations. Furthermore, Data-Peeler can efficiently han-
dle an expressive class of constraints. This is particularly appealing in our context (in
Chapter 5). To guarantee that all rules exceed the user-defined frequency threshold,
in RA, we only discover the frequent closed sets which gather at least a proportion
µ of the elements in Dsupp. It means that every extracted closed set C must satisfy
the constraint Cfreq(C) ≡ |πDsupp (C)|

|Dsupp| ≥ µ. Data-Peeler can handle it directly on
the closed sets.
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From a closed set C, Pinard++ derives interesting and non-redundant multidi-
mensional association rules on D′ that involve all the elements in ∪Di∈D′πDi(C).

3.3.2 Deriving non-redundant rules

Data: (B,H), i. e., a body and a head
forall e ≻ max≺(H) do

if cnatural(B \ {e} → H ⊔ {e}) ≥ βnatural then
ce ← cexclusive(B \ {e} → H ⊔ {e})
if ce ≥ βexclusive ∧ ¬Redundant(B \ {e}, H ⊔ {e}, ǫ, ce) then /* ǫ
is smaller (w.r.t. ≺) than any element */

output B \ {e} → H ⊔ {e}
Rules(B \ {e}, H ⊔ {e})

Algorithm 5: Rules.

Data: (B′, H ′, e′, ce), i. e., a body, a head, the last enumerated element and
the exclusive confidence of the tested rule

forall f ′ ∈ {f ′ ∈ ∪Di∈D′πDi(B′) | f ′ ≻ e′} do
if

cnatural(B
′ \{f ′} → H ′⊔{f ′}) = cnatural(B

′ → H ′)∧
(

cexclusive(B
′ \{f ′} →

H ′ ⊔ {f ′}) ≥ ce ∨Redundant(B′ \ {f ′}, H ′ ⊔ {f ′}, f ′, ce)
)

then

return true

return false
Algorithm 6: Redundant.

Rules (Algorithm 5) derives a priori interesting and non-redundant rules, of
the form B → H, from every frequent closed association A (= C \ πDsupp(C)).
It splits all elements in ∪Di∈D′πDi(A) between the body B and the head H, i. e.,
B ⊔ H = A. The candidate rules are structured in a tree. By only looking at
the heads, H, of the rules (A and H being given, the body B is A \ H), this
tree actually is that of APriori [3]. Nevertheless, Rules traverses the tree by a
depth-first search. The root of the tree is A → ∅. At every level, H grows by
one element which is removed from B. An arbitrary total order ≺ is chosen for
the elements in ∪Di∈D′πDi(A). At every node, the singletons that are allowed to
augment (via ⊔) the head are greater than any element in the current head (i. e.,
greater than max≺(H) and under the convention that max≺(∅) is smaller than any
other element). The pruning criterion is the minimal natural confidence constraint.
According to Theorem 6, this pruning is safe, i. e., no rule, with a natural confidence
higher than βnatural, is missed. On the opposite, the minimal exclusive confidence
and the non-redundancy constraints cannot give rise to search space pruning. That
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is why they are checked after the constraint on the minimal natural confidence. If
both are satisfied then the rule is output. Checking whether the exclusive confidence
exceeds βexclusive is straightforward. To enforce the non-redundancy, Theorem 7
indicates that, beside the necessity of processing a closed set, Rules must check the
confidences of the more general rules sharing the same elements. If such a rule has the
same natural confidence and a greater or equal exclusive confidence, then the current
rule is redundant. That is why the Redundant function (Algorithm 6) browses
these more general rules and compare their confidences with that of the current
rule. Like Rules, Redundant exploits Theorem 6 such that it does not traverse
rules with strictly smaller natural confidence. Finally, Pinard++ is described in
Algorithm 7).

Input: A relation R on D, D′ ( D, and (µ, βnatural, βexclusive) ∈ [0, 1]3

Output: Every non-redundant and a priori interesting rule on D′

Dsupp ← ×Di∈D\D′Di

(DA,RA)← (D′ ∪Dsupp, ∅)
forall (e1, e2, . . . , e|D′|, e|D′|+1, . . . , en) ∈ R do

RA ← RA ∪ (e1, e2, . . . , e|D′|, (e|D′|+1, . . . , en))

C ← Data-Peeler(∅,×Di∈DA
Di)

forall C ∈ C do
Rules(C \ πDsupp(C), ∅)

Algorithm 7: Pinard++.

3.4 Empirical study

We empirically study multidimensional association rule mining and the efficiency
of Pinard++. We begin by describing the real data used for our experiments.
Then, we analyze the results w.r.t. the following questions: (a) Do the discover
relevant rules? (b) What do the different confidence definitions capture?, and (c)
How does the algorithm Pinard++ behave w.r.t. parameter settings?

All our experiments have been performed on a GNU/LinuxTM system equipped
with two Intel(R) Core(TM)2 Duo CPU E7300 at 2.66 GHz and 2.9 GB of RAM.
The prototypes are implemented in C++ and compiled with GCC 4.2.4.

3.4.1 Dataset: DistroWatch

DistroWatch 2 is a website gathering information about GNU/Linux, BSD and
Solaris operating systems. Every distribution is described on a separate page. When
a visitor loads a page, his/her country is known from his/her IP address. The logs of

2. http://www.distrowatch.com
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the Web server are easily converted into a three dimensional tensor that gives for any
time period (13 semesters from early 2004 to early 2010) the number of visits from
any country on any distribution (655 distributions). We decided to keep countries
that are associated with at least 2,000 consultations of a distribution at a semester
(i.e., the 96 “most active” countries). These numerical data are normalized so that
every couple (semester, country) has the same weight. Then, a procedure, inspired
by the computation of a p value, locally chooses the relevant 3-tuples: for every
distribution (hence, “locally”), the 3-tuples associated with the greatest normalized
values are kept until their sum reaches 20% of the sum of all normalized values
involving the distribution. If a 3-tuple (d, s, c) belongs to the relation, it means that
a significant amount of users from country c have been visiting the description of
software distribution d during semester s. The resulting ternary relation, namely
RDistroWatch, contains 21,033 3-tuples, hence a 21,033

13×655×96 = 2.6% density. This
relation is used to discover associations between distributions and countries.

3.4.2 Experimental results

Let us first discuss a qualitative study where we look for rules in RDistroWatch

that involve countries and distributions. These two dimensions form the set D′ and
we used the thresholds µ = 0.75, βexclusive = 0.6, and βnatural = 0.8. Pinard++

computes 39 canonical and non-redundant rules. Here as some of them:

– {Taiwan} × {fedora} → {b2d}
(f : 0.846, cnatural : 0.917, cexclusive : 0.917);

– {Japan} × {centOS} → {Ecuador}
(f : 0.769, cnatural : 0.909, cexclusive : 0.909);

– {berry,plamo} → {Japan}
(f : 0.923, cnatural : 1, cexclusive : 0.75);

– {berry,momonga,plamo} → {Japan}
(f : 0.769, cnatural : 1, cexclusive : 1);

– {caixamagica} → {Portugal}
(f : 0.846, cnatural : 1, cexclusive : 1).

The first rule listed above indicates that if the Taiwaneses show interest in fedora
then they also show interest in b2d at the same semester, its confidence is larger than
0.9 (cnatural = cexclusive = 0.917). The probability that Ecuadorian people consult
centOS during the semesters Japanese do so, is greater than 90% (the second rule
having 0.909 for confidences). Japan is the origin country of the distributions berry,
plamo, momonga, i. e., these distributions are developed by Japanese. That is why
the visits on these related Web pages almost exclusively come from this country.
The natural confidence of the third rule is 1, it means that Japanese visits berry
et plamo at all semester when these distributions are visited together. This rule
also indicates that people from other countries rarely consult these distributions at
the same semester (1 − cexclusive = 0.25). Since the fourth rule involves the three
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distributions berry, plamo, momonga at the same semester, the exclusive confidence
is higher. It is 1, i. e., outside Japan, no other country frequently loads the three
related Web pages of these distributions at the same semester. The same interpre-
tation holds for the last rule. The distribution caixamagica is developed by and for
people in Portugal. It is visited exclusively by them (cnatural = cexclusive = 1).

In fact, in most of the discovered rules of the form distributions→ countries, we
observe that their heads often involve only the countries where at least one of the
distributions has been developed. This proportion is

q =

|{X → Y |
{

X ⊆ Ddistributions ∧ Y ⊆ Dcountries

∀y ∈ Y, ∃x ∈ X | origin(x) = y
}|

|{X → Y |X ⊆ Ddistributions ∧ Y ⊆ Dcountries}|

where origin(x) is the origin country of the distribution x. Indeed, distributions
that are specifically developed by and for a country mainly attract users from this
country. Therefore, we expect that higher minimal thresholds on the designed mea-
sures (frequency and confidences) actually capture higher q value. Figure 13 plots q
in function of these thresholds. We see that q actually increases w.r.t. every minimal
threshold. This empirically corroborates the relevance of our semantic measures that
higher values of the measures actually capture more relevant patterns. The mea-
sure q increases more quickly with βexclusive than with βnatural. This makes sense: a
conjunction of distributions that exclusively interests visitors from a given country
usually means that at least one of these distributions is developed by people in this
country and for this country (with, often, language specifics taken into account).
Finally, it is interesting to understand that, under a given minimal frequency con-
straint µ, the collections of rules computed with βnatural ≤ µ (βexclusive remaining
constant) are the same, this explains the horizontal segments in Figure 13b. Indeed,
the natural confidence is a proportion of elements in the support domain of the rule
and the frequency constraint forces the rule to match at least a proportion µ of
elements in this domain. As a consequence, no rule can have a natural confidence
beneath µ.

When mining rules that only satisfy the minimum frequency and minimum confi-
dence constraints, many redundant rules are returned although they do not provide
new insights. Figure 14 illustrates the proportion of rules that are avoided thanks
to our non-redundancy approach (see Sec. 3.2.4). Obviously, with low minimum
frequency constraints, this significantly limits pattern flooding.

We now report a performance study in RDistroWatch with rules involving countries
and distributions (i. e.D′ = {Countries, Distributions}). Indeed, Pinard++ prunes
large areas of the search space where every closed set violates the minimal frequency
constraint. As a consequence, when the minimal frequency threshold increases, the
number of frequent closed sets decreases, so the number of frequent rules decreases
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Figure 14: Impact of non-redudancy.
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Figure 15: Effectiveness of Pinard++

and the running time decreases (Figure 15a obtained with βnatural = βexclusive = 0).
By exploiting Theorem 6, the Rules algorithm does not traverse the enumera-
tion sub-trees which do not include any confident rule (w.r.t. natural confidence).
Thereby, the number of rules and the running time of the extraction decrease when
the minimum natural confidence threshold increases (Figure 15b). This experiment
was performed with βexclusive = 0 and µ = 0.3.

Pinard++’s scalability was tested w.r.t. the size and the density of the data.
Starting with the size, rules on D′ = {Countries, Distributions} are mined with
µ = 0.75 and βnatural = βexclusive = 0. RDistroWatch was replicated up to 10 times
with the timestamps. It turns out that the algorithm scales linearly. More precisely,
a linear regression of R 7→ TR

T1
(where R is the replication factor, TR is the running

time on this replicated dataset) gives y = 2.57x− 2.66 with 0.97 as a determination
coefficient.

To test the Pinard++’s scalability w.r.t. the density of the dataset, synthetic
3-ary relations have been generated. The sizes of the domains are constant: 10 ×
50× 100. Here, the only variable is the density, i. e., the ratio between the number
of 3-tuples present in the relation and 10 × 50 × 100 = 50, 000. In our test, it
increases, 0.02 by 0.02, from 0.1 (for the first dataset) to 0.5 (for the last dataset).
The experiment was performend with µ = 0.1, βexclusive = 0.4 and βnatrual = 0.7.
The Pinard++’s running times are in Figure 16. As predicted, when the density
is high, the extraction is much harder. However, let us note that 40% density is
already extremely high to be met in practice.
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3.5 Conclusion

We have presented a generalization of association rules in n-ary relation. A multi-
dimensional association rule is an implication between two associations where each
association can contain subsets of some arbitrary domains. Three proposed objec-
tive measures for evaluating the interestingness of such rules are frequency, exclusive
confidence and natural confidence. We also considered the redundancy of multidi-
mensional association rules. A rule is redundant if its information is included in
that of another general rule. We propose the concept of non-redundant multidimen-
sional rules having minimal body and maximal head. Theorem 7 shows that a rule
is non-redundant if it is derived from a closed set. To compute non-redundant in-
teresting rules, we proposed the Pinard++ algorithm which is a post-processing of
the patterns extracted with the state-of-the art algorithm Data-Peeler. The per-
formance of Pinard++ was tested on real and synthetic datasets. The experiments
show that the performance of Pinard scales linearly with the dataset size, but it
does not scale linearly with the dataset density. We also presented a multidimen-
sional association rule mining for the analysis of the DistroWatch data. The output
rules may be used to understand communities (generally related to countries and
spoken languages) that prefer to look at some groups of distributions. The relevancy
of the patterns has been quantified thanks to some simple domain knowledge.

Multidimensional association rules enable to describe and evaluate co-occurrence
of associations. However, another natural goal could be to look for associations
that can be the consequent of a frequent association even though all of them do not
co-occur. We address this question in the next chapter.
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Chapter 4

Generalizing disjunctive rules in

n-ary relations

Given an n-ary relation, a multidimensional association rule (see Chapter 3) con-
veys information about the co-occurrence between elements of some domains. The
designed measures aim to evaluate the probability of the co-occurrence between the
head and the body of a rule and to evaluate whether the association in the rule
body “prefers” to co-occur with the association in the head than with other asso-
ciations. We now look for distinct relationships among associations. Our goal is to
answer the following question: “Which cases can occur when we observe a frequent
association?”
Our contribution is twofold. First, we design the pattern domain of multidimen-

sional disjunctive rules. Such a rule is an implication between associations: its
body is an association and its head is a disjunction of associations. We provide
two types of objective interestingness measures: association measures and disjunc-
tive measures. We also look further at the concept of non-redundant rule. Second
we propose the Cidre 1 algorithm which lists the complete collection of interesting
multidimensional disjunctive rules.
The next section introduces the motivation and objective interestingness for mul-

tidimensional disjunctive rules. Section 4.2 defines the pattern domain of multi-
dimensional disjunctive rules. Section 4.3 presents our algorithm which extracts
interesting multidimensional disjunctive rules within a n-ary relation. Experiments
on real-life data are reported in Section 4.4. Section 4.5 summarizes the chapter.

4.1 Motivation and objective interestingness

An association can frequently co-occurs with some other associations, but all
these associations do not necessarily co-occur together. For example, observe the

1. Cidre Is a Disjunctive Rule Extractor.
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relation RE (see Figure 10), the products p1, p2 and p4 are frequently bought in
season s2. However, customers rarely buy all these products together in the same
transaction. Thus, the multidimensional association rule mining cannot provide a
rule like {s2} → ({p1, p2} × {s1}) ∨ ({p4} × {s4}). Such a rule means that when
a customer goes shopping in the season s2, he/she tends to buy p1, p2 or p4. If
he/she prefers the products p1 and p2 then he/she also buys them in the season s1.
If he/she prefers p4 then he/she tends to also buy it in the season s4. Indeed, such
rules are more informative than conjunctive rules.

In addition, it is ineffective to find multidimensional association rules on datasets
having a very few frequent associations and a very large number of infrequent asso-
ciations because those rules are based on the co-occurrence relation of associations
with a large enough frequency and confidences.

We address the above problems via the study of multidimensional disjunctive
rule mining in n-ary relations. Our goals are to answer the question “Which cases
can occur when we observe a frequent association?” and to mine rules in which an
association with large frequency implies associations with small frequency.

4.2 Multidimensional disjunctive rules

4.2.1 Definitions

Given a relation R ⊆ D1 × · · · × Dn and the user-defined domains of interest
D′ ⊆ D = {D1× · · · ×Dn}, a multidimensional disjunctive rule on D′ is of the form
X → ∨Y such that the union of its body and each association in the disjunctions of
its head is an association on D′. It is simply called a rule when it is clear from the
context. Without loss of generality, the dimensions are assumed ordered such that
D′ = {D1, . . . , D|D′|}.

Definition 48 (Multidimensional disjunctive rule). ∀D′ ⊆ D, X → ∨Y is a multi-
dimensional disjunctive rule on D′ iff X is an association on a subset of D′ and Y
is a set of associations on subsets of D′ such that ∀Y ∈ Y, X ⊔ Y is an association
on D′.

The support domain of a multidimensional disjunctive rule on D′ is the Cartesian
product of all domains that are not in D′, i. e.., ×D∈D\D′D.

Example 48. In RE, {s2} → ({p1, p2} × {s1})∨ ({p4} × {s4}), {p3, p4} → ({p2} ×
{s1, s3}) ∨ {s4} and {p4} × {s1} → ({p1, p2}) ∨ ({p2}) ∨ ({p2, p3} × {s3}) are three
multidimensional disjunctive rules on {D1, D2}. Their support domain is D3.

In the binary case (i. e., n = 2), the semantics of association rules, even when gen-
eralized to disjunctive or negative association rules [77, 6], is based on the frequency
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and the confidence measures. In the context of n-ary relations, we introduced gener-
alizations of these measures for multidimensional association rules (see Section 3.2).
We now adapt such measures to our disjunctive rule mining setting.

Given a multidimensional disjunctive rule, we want first to evaluate the strength
of the co-occurrences between its body and each association in its head. We want
also to measure how often we observe a occurrence of at least one association in
its head when its body holds. Therefore, two types of interestingness measures are
proposed, namely the association measures and the disjunctive measures.
We use some of the definitions presented in Chapter 3: it concerns the support

of an association s(X) (Definition 34) and the natural support of an association
sD\D′(X) (Definition 42).

4.2.2 Association measures

The objective of the association measures of a rule is to evaluate the probability
of the conjunction between the body and each association in the head. The associa-
tion measures are association frequency and association confidence. The association
frequency is defined as the ratio of elements (in the support domain, ×Di∈D\D′Di)
that support both the body and the considered association to the total number of
elements in the support domain. The association confidence is defined as the ration
of the number of elements (in the support domain) supporting both the body and
the considered association to the total number of elements (in the support domain)
supporting the body.

Definition 49 (Association frequency). ∀D′ ⊆ D, let X → ∨Y be a multidimen-
sional disjunctive rule on D′. ∀Y ∈ Y, the association frequency of X → Y is

fa(X → Y ) =
|s(X ⊔ Y )|
| ×Di∈D\D′ Di| .

Example 49. Considering r1 : {s2} → ({p1, p2} × {s1}) ∨ ({p4} × {s4}) in RE, we
have:

– fa({s2} → {p1, p2} × {s1}) = |s({s2}⊔{p1,p2}×{s1})|
|D3| = |{o1,o2}|

|{o1,o2,o3,o4,o5}|
= 2

5 ,

– fa({s2} → {p4} × {s4}) = |s({s2}⊔{p4}×{s4})|
|D3| = |{o1,o4}|

{o1,o2,o3,o4,o5}|
= 2

5 .

Definition 50 (Association confidence). ∀D′ ⊆ D, let X → ∨Y be a multidimen-
sional disjunctive rule on D′. ∀Y ∈ Y, the association confidence of X → Y is

ca(X → Y ) =
|s(X ⊔ Y )|
|sD\D′(X)| .

Example 50. Considering again r1 in RE, we have:
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– ca({s2} → {p1, p2} × {s1}) = |s({s2}⊔{p1,p2}×{s1})|
|s

D3 ({s2})|
= |{o1,o2}|

|{o1,o2,o4,o5}|
= 2

4 ,

– ca({s2} → {p4} × {s4}) = |s({s2}⊔{p4}×{s4})|
|s

D3 ({s2})|
= |{o1,o4}|

|{o1,o2,o4,o5}|
= 2

4 .

It means that, in the rule r1, the confidence of the conjunction between the body
and any association in the head is 0.5.

4.2.3 Disjunctive measures

The objective of the disjunctive measures of a rule is to evaluate the probability
to observe at least one association in the head when the body holds. The disjunc-
tive measures are disjunctive frequency and disjunctive confidence. The disjunctive
frequency is defined as the ratio of elements (in the support domain, ×Di∈D\D′Di)
which simultaneously support the body and at least one association in the head to
the total number of elements in the support domain. The disjunctive confidence
is defined as the ratio of the number of elements (in the support domain) which
simultaneously support the body and at least one association in the head to the
total number of elements (in the support domain) which support the body.

Definition 51 (Disjunctive frequency). ∀D′ ⊆ D, let X → ∨Y be a multidimen-
sional disjunctive rule on D′. The disjunctive frequency of X → ∨Y is

fd(X → ∨Y) =
| ∪Y ∈Y s(X ⊔ Y )|
| ×Di∈D\D′ Di| .

Example 51. Consider r1 : {s2} → ({p1, p2} × {s1}) ∨ ({p4} × {s4}) and r2 :
{p3, p4} → ({p2} × {s1, s3}) ∨ {s4} in RE, we have:

– fd(r1) =
|s({s2}⊔{p1,p2}×{s1})∪s({s2}⊔{p4}×{s4})|

|D3| = |{o1,o2,o4}|
|{o1,o2,o3,o4,o5}|

= 3
5 ,

– fd(r2) =
|s({p3,p4}⊔{p2}×{s1,s3})∪s({p3,p4}⊔{s4})|

|D3| = |{o1,o3,o4,o5}|
|{o1,o2,o3,o4,o5}|

= 4
5 .

Definition 52 (Disjunctive confidence). ∀D′ ⊆ D, let X → ∨Y be a multidimen-
sional disjunctive rule on D′. The disjunctive confidence of X → ∨Y is

cd(X → ∨Y) =
| ∪Y ∈Y s(X ⊔ Y )|
|sD\D′(X)| .

Example 52. Consider again r1 and r2 in RE, we have:

– cd(r1) =
|s({s2}⊔{p1,p2}×{s1})∪s({s2}⊔{p4}×{s4})|

|s
D3 ({s2})|

= |{o1,o2,o4}|
|{o1,o2,o4,o5}|

= 3
4 ,

– cd(r2) =
|s({p3,p4}⊔{p2}×{s1,s3})∪s({p3,p4}⊔{s4})|

|s
D3 ({p3,p4})|

= |{o1,o3,o4,o5}|
|{o1,o3,o4,o5}|

= 4
4 .

Rule r1 indicates that when a customer goes shopping in the season s2, he tends
to buy p1, p2 or p4 (fd = 0.6, cd = 0.75). If he/she prefers the products p1 and p2
then he/she also buys them in the season s1 (fa = 0.4, ca = 0.5). If he/she prefers
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p4 then he/she tends to also buy it in the season s4 (fa = 0.4, ca = 0.5). Rule r2
means that if a customer likes the products p3 and p4 then he/she tends to buy them
in the seasons s1, s3 or s4 (fd = 0.8, cd = 1). The confidence that the products
p3 and p4 are bought together in the season s4 is 0.75 (ca = 0.75). The confidence
that these products are taken in the seasons s1 and s3 is 0.5 (ca = 0.5), in this case,
the customer may also buy p2. Enabling disjunctions within the heads of the rules
provides rules that convey more information than conjunctive rules.

4.2.4 Non-redundancy

Given a minimal association frequency, a minimal association confidence and a
frequent association (rule body), there may be a large number of associations that
co-occurs with it. Suppose the number of associations that co-occur with the given
frequent association is k, the number of disjunctions which can be generated from the
subsets of these associations is 2k. So, given a frequent association, there are a huge
number of generated multidimensional disjunctive rules that satisfy the minimality
constraints on the interestingness measures. It is computationally expensive to find
all such rules and, here again, we have to face with redundant rules. We consider the
concept of non-redundant multidimensional disjunctive rule: a rule is non redundant
if its information content is not included in another more general rule. It means a
non-redundant rule has a minimal body and maximal head.

Example 53. In RE, let us consider the following rules:

– r3: {p4} × {s1} → ({p1, p2}) ∨ ({p1}) ∨ ({p2, p3} × {s3}) (fd : 0.6, cd : 1),
– r4: {p2, p4} × {s1} → {p1} (fd : 0.4, cd : 0.67),
– r5: {p4}×{s1} → ({p1, p2})∨({p1})∨({p2, p3}×{s3})∨({p3}) (fd : 0.6, cd : 1).
They have their association frequencies, their association confidences, their dis-

junctive frequencies, their disjunctive confidences respectively exceeding 0.4, 0.5,
0.4 and 0.65 that are the user-defined thresholds. Therefore, they may “individu-
ally“ satisfy this aspect of interestingness. Nevertheless, “all together“, they pro-
vide redundant information. For instance, the premise of r4 is more informative
than that of r3 (to match the body of r4, a customer must additionally take p2),
but the conclusion of r4 is less informative (it does not tell anything about p3
and s3). In addition, this does not provide r4 a greater frequency or a greater
confidence than r3. Rule r4 is therefore said redundant. The conclusion of r5
has more elements than that in the conclusion of r3. However, in r5, {p3} ⊏

{p2, p3} × {s3}, fa({p4} × {s1} → {p3}) = fa({p4} × {s1} → {p2, p3} × {s3}) = 0.4
and ca({p4} × {s1} → {p3}) = ca({p4} × {s1} → {p2, p3} × {s3}) = 0.67. There-
fore, the appearance of {p3} in the conclusion of r5 does not provide new insight.
{p3} is thus redundant in r5. In r3, although {p2} ⊑ {p1, p2}, {p2} is not redun-
dant since fa({p4} × {s1} → {p2}) = 0.6 > fa({p4} × {s1} → {p1, p2}) = 0.4 and
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fa({p4}×{s1} → {p2}) = 1 > fa({p4}×{s1} → {p1, p2}) = 0.67. Since the end-user
would not find any added-value in rules r4 and r5, these rules must not be returned.

By the meaning of minimal body and maximal head, a rule is non-redundant
if its body is a minimal association and its head includes the maximal number of
associations which can conjoin with its body such that the union of the body and
each association in the head is a closed set.

Definition 53 (Non-redundant multidimensional disjunctive rule). ∀D′ ⊆ D, a
multidimensional disjunctive rule X → ∨Y on D′ is non-redundant iff it satisfies
the following constraints:
(1) ∀Y ∈ Y, X → Y is a key association rule on D′. It means that, it is canonical
and there is no other canonical association rule X ′ → Y ′, where X ′ ⊔ Y ′ is an
association on D′ such that











(X ′ ⊔ Y ′ = X ⊔ Y ∧X ′
⊏ X) ∨ (X ′ ⊔ Y ′

⊐ X ⊔ Y ∧X ′ ⊑ X)

fa(X
′ → Y ′) ≥ fa(X → Y )

ca(X
′ → Y ′) ≥ ca(X → Y )

.

(2) There is no rule which is more general than X → ∨Y. It means that it does not
exist any multidimensional disjunctive rule X → ∨Z, where Y ⊂ Z, such that











X → ∨Z satisfies the constraint (1)

fd(X → ∨Z) ≥ fd(X → ∨Y)
cd(X → ∨Z) ≥ cd(X → ∨Y)

.

The first condition defines the form of the key association rule having minimal
body and maximal head. So, if a disjunctive association satisfies the first condition
then its body is always minimal. If it also satisfies the second condition then its head
has the most associations. As a consequence, when both conditions are satisfied,
the disjunctive association rule has a minimal body and a maximal head without
the redundancy.

The two following theorems indicate that the non-redundant rules onD′, as defined
above, can be efficiently derived from the closed sets extracted from a relation RA.
It is obtained from R by “flattening” the dimensions absent from D′ into a unique
support dimension Dsupp = ×Di∈D\D′Di . It is defined on the domains DA =
D′ ∪ {Dsupp}. RA was introduced in Chapter 3: assuming that for all i = 1..n, ei is
an element of the ith domain, i. e., ei ∈ Di, we build

RA = {(e1, e2, . . . , e|D′|, (e|D′|+1, . . . , en))|(e1, e2, . . . , e|D′|, e|D′|+1, . . . , en) ∈ R}.

Theorem 8 (Closed set and key association rule). ∀D′ ⊆ D, let X → Y be a
canonical association rule such that X ⊔Y is an association on D′. X → Y is a key
association rule on D′ iff (X ⊔ Y ⊔ s(X ⊔ Y )) is a closed set in RA and ∀X ′

⊏ X,
ca(X

′ → (Y ⊔X) \X ′) < ca(X → Y ).
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Theorem 9 (Key association rule and non-redundant multidimensional disjunctive
rule). ∀D′ ⊆ D, let P be the set of all key association rules on D′, a multidimensional
disjunctive rule X → ∨Y on D′ is a non redundant iff ∀Y ∈ Y, X → Y is a key
association rule and Y = ∪X→Y ∈PY .

4.3 Discovering multidimensional disjunctive rules

Given a n-ary relation R ⊆ ×Di∈DD
i, D′ ⊂ D, we look for every a priori inter-

esting and non-redundant multidimensional disjunctive rule. Such a rule satisfies
user-defined constraints based on measure thresholds: the minimal association fre-
quency µa, the minimal association confidence βa, the minimal disjunctive frequency
µd and the minimal disjunctive confidence βd. In other terms, the algorithm Cidre

computes:

{X → ∨Y on D′ |































X → ∨Y is non-redundant

∀Y ∈ Y, fa(X → Y ) ≥ µa
∀Y ∈ Y, ca(X → Y ) ≥ βa
fd(X → ∨Y) ≥ µd
cd(X → ∨Y) ≥ βd

.

Cidre is divided into four successive steps: (1) It constructs the relation RA (2)
It extracts the frequent closed sets in RA; (3) It derives the key association rules
satisfying the minimal association measures from these closed sets; (4) It computes
the non-redundant disjunctive rules whose disjunctive frequency and disjunctive
confidence hold for the user-defined thresholds µd and βd.

4.3.1 Computing closed n-sets

Theorem 8 indicates that the key association rules are efficiently derived from
closed sets. However, to guarantee all key association rules on D′ exceed the user-
defined association frequency threshold, in RA, we only discover the frequent closed
sets which gather at least a proportion µa of the elements in Dsupp = ×Di∈D\D′Di.
It means that every extracted closed set C must satisfy the constraint Cfreq(C) ≡
|πDsupp (C)|

|Dsupp| ≥ µa. We use Data-Peeler to extract such closed sets.

4.3.2 Deriving key association rules

From a closed set C, Key Association Rules (Algorithm 8) derives key asso-
ciation rules on D′ that involve all the elements in ∪Di∈D′πDi(C).
Key Association Rules derives a priori interesting key association rules, of

the form B → H, from every frequent closed association A (= C \ πDsupp(C)). Its
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idea is similar the deriving association rules in Section 3.3.2. Particularly, to split
all elements in ∪Di∈D′πDi(A) between the body B and the head H, i. e., B⊔H = A,
it generates a tree of candidate rules and traverses this tree as the same way of the
Rules algorithm in Section 3.3.2. Thanks to Theorem 6, Key Association Rules

prunes the enumeration sub-trees where every rule violates the minimal association
confidence constraint. According to Theorem 8, Key Association Rules must
check the association confidences of the more general association rules sharing the
same elements. If such a rule has the same association confidence then the current
rule is not key. This check cannot give rise to search space pruning. Therefore, it
is done after checking the minimal association confidence constraint. If the rule is a
key association rule then it is output.

Data: (B,H), i. e., a body and a head
forall e ≻ max≺(H) do

if ca(B \ {e} → H ⊔ {e}) ≥ βa then

forall f ∈ ∪Di∈D\DS
πDi(B \ {e}) do

if ca((B \ {e}) \ {f} → H ⊔ {e} ⊔ {f}) = ca(B \ {e} → H ⊔ {e})
then

goto skip

output B \ {e} → H ⊔ {e}
skip: Key Association Rules(B \ {e}, H ⊔ {e})

Algorithm 8: Key Association Rules.

4.3.3 Computing non-redundant rules

Let P denote the set of all key association rules on D′ which are extracted thanks
to Key Association Rules (see Section 4.3.2). According to Theorem 9, we con-
struct non-redundant multidimensional disjunctive rules of the form X → ∨Y where
Y = ∪X→Y ∈PY . Algorithm 9 only outputs the non-redundant multidimensional dis-
junctive rules whose disjunctive frequencies and disjunctive confidences exceed the
user-defined thresholds. The whole process is presented in Algorithm 9).

4.4 Empirical study

We now evaluate our multidimensional disjunctive rule mining method thanks to
experiments on the Distrowatch data. First, we interpret some rules. Second, we
want to evaluate the performance of the Cidre algorithm.

To emphasize an interesting relationship between distributions and countries, we
look for multidimensional disjunctives rules on the domains Distribution and Coun-
try with the thresholds µa = 0.45, µd = 0.6, βa = 0.6, βd = 0.8. Cidre extracts 81
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Input: A relation R on D, D′ ( D, and (µa, βa, µd, βd) ∈ [0, 1]4

Output: Every interesting and non-redundant disjunctive rule on D′

Dsupp ← ×Di∈D\D′Di

(DA,RA)← (D′ ∪Dsupp, ∅)
forall (e1, . . . , e|D′|, e|D′|+1, . . . , en) ∈ R do

RA ← RA ∪ (e1, . . . , e|D′|, (e|D′|+1, . . . , en))

C ← Data-Peeler(∅,×Di∈DA
Di)

P ← ∅
forall C ∈ C do
P ← P ∪Key Association Rules(C \ πDsupp(C), ∅)

forall X → Y ∈ P do
Y ← Y
forall X → Y ′ ∈ P such that Y ′ 6= Y do

Y ← Y ∪ Y ′

delete X → Y ′ from P
if (fd(X → ∨Y) ≥ µd) ∧ (cd(X → ∨Y) ≥ βd) then

output X → ∨Y
delete X → Y from P

Algorithm 9: Cidre.

non-redundant rules. Here are some of them:

– {Biglinux} → ({Brazil})fa:77,ca:1
∨({Brazil} × {Goblinx})fa:62,ca:0.8
∨({Brazil} × {Goblinx, Litrix})fa:0.54,ca:0.7
∨({Brazil} × {Litrix})fa:0.69,ca:0.9
(fd : 0.77, cd : 1),

– {Centos, Fedora} → ({Taiwan} × {B2D})fa:0.54,ca:0.78
∨({Taiwan, Japan})fa:0.46,ca:0.67
∨({Japan} × {Berry})fa:0.62,ca:0.89
∨({Japan} × {Berry,Momonga})fa:0.54,ca:0.78
∨({Japan} × {Berry,Momonga, P lamo})fa:0.46,ca:0.67
∨({Japan} × {Berry, P lamo})fa:0.54,ca:0.78
(fd : 0.69, cd : 1),

– {Poland} × {Kate} → ({Linuxeducd})fa:0.46,ca:0.75
∨({PLD})fa:0.54,ca:0.88
(fd : 0.62, cd : 1).

The first rule implies that Biglinux is especially interesting for Brazilians, and
when a Brazilian consults it, then he/she usually shows interest in Goblinx or Litrix
too. The second rule indicates that the people who consult Centos and Fedora
at the same semester are Taiwanese and Japanese. When Taiwanese visitors look
at them, they also visit B2D. In the case, the visitors are Japanese, they are also
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Figure 17: Effectiveness of Cidre.

interested in the distributions Berry, Momonga or Plamo. The third rule tells us
that when Polish visitors look at Kate then it is sure that, at this time, they consult
Linuxeducd or PLD as well.

We see that these rules suggest us more information than multidimensional associ-
ation rules. We can now observe the relationship between countries and distributions
even if visitors from these countries do not visit these distributions at the same time.

Let us finally provide a performance study when mining multidimensional disjunc-
tive rules in RDistroWatch with D′ = {Distribution, Country}. When the minimal
association frequency threshold increases, Cidre prunes large areas of the search
space where no closed set is frequent. Consequently, both the number of frequent
rules and the running time decrease. The experiments in Figure 17a were performed
with the minimal association frequency (µa) varying from 0.3 to 0.9, µd = µa,
βa = 0 and βd = 0. This figure indicates that when µa is small the number of multi-
dimensional disjunctive rules compared with that of key association rules decreases
significantly.

Theorem 6 also enables to deeply prune the search space. Indeed, Algorithm
Key Association Rules does not traverse the enumeration sub-trees empty of
valid rules (w.r.t the minimal association confidence threshold). That is why both
the number of rules and the time it takes to extract them decrease when the minimum
association confidence threshold increases. The experiments in Figure 17b are per-
formed with the minimal association confidence varying from 0 to 1, µa = µd = 0.3
and βd = βa. Here, we also see that the number of multidimensional disjunctive
rules is much less than that of key association rules.

On the contrary, the search space cannot be pruned thanks to the thresholds
on disjunctive frequency and disjunctive confidence. Indeed, Cidre must consider
every association rule when computing disjunctive ones.
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Cidre’s scalability was tested w.r.t. the size and the density of the data. Starting
with the size, rules on D′ = {Countries, Distributions} are mined with µa = µd = 0.3
and βa = βd = 0. RDistroWatch was replicated up to 10 times with the timestamps.
It turns out that the algorithm scales linearly. More precisely, a linear regression of
R 7→ TR

T1
(where R is the replication factor, TR is the running time on this replicated

dataset) gives y = 3.23x− 3.78 with 0.96 as a determination coefficient.
To test the Cidre’s scalability w.r.t. the density of the dataset, synthetic 3-ary

relations have been generated. The sizes of the domains were kept constant and
equal to 10× 50× 100. Here, the only variable is the density, i. e., the ratio between
the number of 3-tuples of the relation and 10 × 50 × 100 = 50, 000. In our test, it
increases 0.02 by 0.02, from 0.1 (for the first dataset) to 0.5 (for the last dataset).
The experiments were performed with µa = µd = 0.1, βa = βd = 0.5. The Cidre’s
running times are in Figure 18. As predicted, when the density is high, the extraction
is much harder. However, let us note that 40% density is already extremely high in
practice.

4.5 Conclusion

We considered the problem of mining multidimensional disjunctive rules in n-ary
relations. Such a rule is an implication between associations: its body is an asso-
ciation and its head is a disjunction of associations. Enabling disjunctions within
the heads of the rules provides rules that convey more information than conjunctive
rules. We proposed two types of interestingness measures for evaluating the conjunc-
tion between its body and each association in its head (association measures), and
the occurrence of at least one association in its head when its body holds (disjunctive
measures). We considered the concept of a non-redundant multidimensional disjunc-
tive rule having a minimal body and a maximal head. Theorem 8 and Theorem 9
show how such non-redundant rules are related to closed sets. The Cidre algorithm
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which discovers non-redundant and interesting multidimensional disjunctive rules in
a n-ary relation is a post-processing of the state-of-the art algorithm Data-Peeler.
Cidre prunes the search space by taking the minimal thresholds of association mea-
sures. On the contrary, the search space cannot be pruned thanks to the minimal
thresholds of disjunctive measures because it must consider every key association
rule when computing multidimensional disjunctive rule ones. Its performance was
tested on real and synthetic datasets w.r.t the varieties of the dataset size and the
dataset density. The experiment results show that Cidre scales linearly with the
dataset size, but it does not scale linearly with the the dataset density. The analysis
of some multidimensional disjunctive rules extracted on the DistroWatch dataset
has given a qualitative feedback on rule relevancy.
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Outline

Graphs are an universal data structure to model and to analyse the relationships
between a set of entities. e.g., interactions between individuals in a social network.
Applications of graphs arise in not only computer science, but also in physics, biol-
ogy, economics, history, and finally in almost all fields of science. Therefore, graph
mining has recently received a lot of attention in the data mining community.

We are here interested on specific graphs that are called relational and we want
to investigate dynamic graphs. More and more researchers focus on dynamic graphs
that describe the evolution of a graph over time. However, there are only a few
works concerning descriptive rule mining from dynamic graphs. Their goals are to
describe local evolution trends of the graph over time (e. g.,[111, 12]). For instance,
such a rule means that if the sub-graph in the body appears at time t then the sub-
graph in the head may appear in time t + k. Although this is valuable to describe
the evolution of the graph, it does not explicit the simultaneousness of patterns in
this evolution process.

In fact, “what are the patterns that can co-occur in the evolution of graph?” is
also an important question. For example, in a dynamic graph whose time periods
are cyclical, at what time does a bottleneck (i.e., many incoming edges) occur at a
vertex? What vertices do outer edges tend to converge to?
We address this question based on multidimensional (association/disjunctive) rule

mining proposed in the chapters 3 and 4. The experiments on a real-world dynamic
graph illustrates the significance of our proposal.
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Chapter 5

Rule discovery in dynamic

relational graphs

This chapter presents an approach for detecting patterns that can co-occur in
dynamic graphs via multidimensional association/disjunctive rule mining. We report
the experiments on the Vélov’v network that is a bicycle rental service run by the
urban community of Lyon in France. Our goal is to report on the renting logs and
to discover patterns that may help to improve the service.
This chapter begins by introducing rule mining in dynamic graphs. Next we

discuss related work. We then report experimental results on the Vélov’v network
(Section 5.3). Finally, we briefly conclude on this use case.

5.1 Mining multidimensional rules in dynamic graphs

5.1.1 Dynamic relational graphs

We investigate rule discovery from dynamic directed relational graphs, i. e., such a
dynamic graph is a collection of static graphs that all share the same set of uniquely
identified vertices. In our setting, given a set of vertices, directed edges can change
(i. e., appear or disappear) through time. Thus, the considered dynamic graph can
be modelled by a sequence of adjacency matrices. For example, Figure 19 depicts
a dynamic directed graph involving four nodes through five time-stamps. The se-
quence of its adjacency matrices corresponds to a ternary relation RG that describes
the relationship between the departure vertices in D1 = {d1, d2, d3, d4} and the ar-
rival vertices in D2 = {a1, a2, a3, a4} at the time-stamps in D3 = {t1, t2, t3, t4, t5}.
Every ’1’ in RG, the intersection of three elements (di, aj , tk) ∈ D1 × D2 × D3,
indicates a directed edge from di to aj at time tk. Therefore, we need at least three
dimensions to encode a dynamic relational graph as a n-ary relation. Two dimen-
sions are used to encode the graph adjacency matrices and at least one other denotes

105

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0094/these.pdf 
© [T.K.N. Nguyen], [2012], INSA de Lyon, tous droits réservés



106 5. RULE DISCOVERY IN DYNAMIC RELATIONAL GRAPHS

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

a1 a2 a3 a4 a1 a2 a3 a4 a1 a2 a3 a4 a1 a2 a3 a4 a1 a2 a3 a4
d1 1 1 1 1 1 1 1 1 1 1 1 1 1

d2 1 1 1 1 1 1 1 1 1 1

d3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

d4 1 1 1 1 1 1 1 1 1 1 1 1 1

t1 t2 t3 t4 t5

Figure 19: RG ⊆ {d1, d2, d3, d4} × {a1, a2, a3, a4} × {t1, t2, t3, t4, t5}.

time. However, more dimensions may be used to encode additional information on
edges and/or time aspects.

5.1.2 Multidimensional rules in dynamic graphs

Given a dynamic graph, patterns can be sub-graphs, or can include subsets of
arbitrary domains. In our approach where a dynamic graph is represented as a n-
ary relation, a pattern can be expressed as an association in the n-ary relation (see
Definition 32). A multidimensional rule in the dynamic graph is a multidimensional
association rule (Definition 39) or a multidimensional disjunctive rule (Definition 48)
in the n-ary relation. Such a multidimensional rule describes the simultaneousness
of patterns in its body and its head. In particular, the temporal dimensions can
either explicitly appear in the rules or be used to measure their relevancy (i. e.,
these dimensions “support” the rules).

Some examples of rules are given in Figure 20 and Figure 21. The rules in Figure 20
show the relationship between departure vertices and time-stamps. For instance, the
rule in Figure 20a indicates that the event in which the outer edges from Vertex 1
and Vertex 2 go to the same nodes usually happens at times t1 and t2. The rule in
Figure 20b says that most of the arrival vertices of the edges from Vertex 3 at Time
t2 are also the arrival vertices of edges leaving this vertex at the times t3, t4 and t5.
In Figure 21, we provide examples of the rules related to both departure vertices and
arrival vertices. Figure 21a describes the dependency between sub-networks. More
precisely, it tells that the sub-network at its body can be enlarged to a clique with a
high enough confidence. The rule in Figure 21b shows that if the edges from Vertex
2 and Vertex 4 converge, they tend to converge to Vertex 1, Vertex 3 or Vertex 4.

5.1.3 Discovering multidimensional rules in dynamic graphs

To discover multidimensional rules in dynamic graphs, we first represent the dy-
namic graph that we want to analyse as a n-ary relation. We then use the algorithms
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1
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t1, t2

(a) {d1, d2} → {t1, t2}.

3
t2

t3, t4, t5

(b) {d3}×{t2} → {t3, t4, t5}.

Figure 20: Example of rules on {D1, D3} in RG.
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(a) {d1}×{a4} → {d3, d4}×{a1, a3}.
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1
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4

∨
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(b) {d2, d4} → ({d3} × {a1}) ∨ ({d1} × {a3}) ∨ ({a4}).

Figure 21: Example of rules on {D1, D2} in RG.

Pinard++ and Cidre to extract rules from this n-ary relation. The set D′ that we
choose depends on the analysis goal. For example, in RG, for discovering preferring
departure time at vertices, the dimensions that we consider are departure vertices
and time-stamps (D′ = {D1, D3}). Some of the rules are in Figure 20. For mining
rules that conclude on graphs, we extract rules consisting of departure vertices and
arrival vertices (D′ = {D1, D2}). Some of them are in Figure 21.
Some constraints can be added to the process to focuse on specific properties of

the graph. For instance, one can define minimal numbers of elements in the domains
that appear in the rules (i. e., the domains in D′). For example, from the dynamic
graph in Figure 19, let us look for rules that conclude on cross-graph cliques and
such that these cliques involves at least two nodes. Therefore, the closed sets from
which the rules are derived must contain at least two departure vertices and at least
two arrival vertices.

Definition 54 ((αi)i=1..|D′|-min-sizes). ∀D′ ⊆ D, given (αi)i=1..|D′| ∈ N|D′|, a closed
set C satisfies the minimal size constraint on D′, C(αi)i=1..|D′|-min-sizes(C), iff

∧

i=1..|D′|

(|πDi(C)| ≥ αi).

Another constraint that we should consider is to enforce a cross-graph closed
clique property to find rules that conclude on cliques. For this, an extracted closed
set must satisfy the symmetry constraint between the set of departure vertices and
the set of arrival vertices. In Figure 22, {d1, d3, d4} × {a1, a3, a4} × {t4, t5} is such
a closed set on D. It is not only a closed 3-set but also a cross-graph closed clique
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Figure 22: Maximal clique {1, 3, 4} preserved along two timestamps.

(between the vertices 1, 3 and 4; at the times t4 and t5). Notice that the closedness
ensures the maximality of the clique, i. e., it cannot be enlarged into another one
that would still hold at both t4 and t5. It also ensures its “maximality on time”,
i. e., the clique does not appear in any other snapshot of the graph.

Definition 55 (Cross-graph closed clique). A closed set C is a cross-graph closed
clique iff it satisfies the cross-graph clique constraint Ccross-graph(C) ≡ πDdep(C) =
πDarr(C), where Ddep (resp. Darr) is the set of departure (resp. arrival) vertices.

It is easy to see that the first constraint is monotone and that the second constraint
is piecewise (anti)-monotone constraint. Both classes of constraints can be enforced
to provide faster extractions of closed sets with Data-Peeler [33]. Let us recall
that Pinard++ and Cidre post-process the output of Data-Peeler. Therefore,
these constraints also improve the efficiency of rule mining as well. This will be
illustrated in our experiments on a real-life network (Section 5.3).

5.2 Related work

The study of graphs has attracted much attention in the last few years. Many
papers study the evolution of graphs over time with a large variety of techniques. In
these studies, we observe two complementary directions of research. First, several
papers have focused on the evolution of macroscopic graph properties [100, 35, 106,
64, 5] where some have concerned the dynamical properties of real graphs such as
densification laws, shrinking diameters [67], and the evolution of known communities
over time [7, 64]. Second, some works have studied graph evolution at a local level
thanks to local patterns. This section focuses on such methods.

In [19], Borgwardt et al. extract local patterns in labeled dynamic graphs. The
approach aims at finding subgraphs that are topologically frequent and show an
identical dynamic behavior over time, i. e., insertions and deletions of edges occur
in the same order. Because this task is computationally hard, the algorithm is
not complete. Indeed, computing the overlap-based support measure means solv-
ing a maximal independent set problem for which they propose a greedy algorithm.
Inokuchi and Washio introduce a fast algorithm to mine frequent transformation
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subsequences from a set of dynamic labeled graphs (the labels on vertices and edges
can change over time). Assuming that the changes in a dynamic graph are grad-
ual, they propose to succinctly represent the dynamics with a graph grammar: each
change between two observed successive graph states is interpolated by axiomatic
transformation rules. A significant improvement is proposed in [54]. Motivated by
the intractability of their approach on long sequences of large graphs, the same au-
thors define, in [55], induced subgraph subsequence. This novel class of subgraph
subsequence enables to efficiently mine frequent patterns from graph sequences con-
taining long sequences and large graphs. In [65], Lahiri et al. introduce the periodic
subgraph mining problem, i. e., identifying every frequent closed periodic subgraph.
They empirically study the efficiency and the interest of their proposal on several
real-world dynamic social networks. By encoding dynamic graphs as ternary rela-
tions, [34] describes a constraint-based mining approach to discover maximal cliques
that are preserved over almost-contiguous time-stamps. The constraints are pushed
into the closed pattern mining algorithm Data-Peeler. In [88], Robardet proposes
a constraint-based approach too. It studies the evolution of dense and isolated sub-
graphs defined by two user-parameterized constraints. Associating a temporal event
type with each pattern captures the temporal evolution of the identified subgraph,
i. e., the formation, dissolution, growth, diminution and stability of subgraphs be-
tween two consecutive time-stamps. The algorithm incrementally processes the time
series of graphs.
In [111], You et al. study how a graph is structurally transformed through time.

They compute graph rewriting rules that describe the evolution of two consecutive
graphs. These rules are then abstracted into patterns representing the dynamics of a
sequence of graphs. The main step concerns the computation of maximum common
subgraphs between two consecutive graphs. This problem is NP-complete. In the
case of relational graphs (graphs with unique vertex labels such as the ones tackled
by us), it remains tractable [26, 29]. Indeed, the complexity is then quadratic and
graph rewriting rules are efficiently discovered. In [13], the authors focus on detect-
ing clusters of temporal snapshots of an evolving network. These clusters can be
interpreted as evolution eras of the dynamic graph. This approach enables to detect
periods in which sudden change of “behaviour” appears. Such high-level trends are
expressed by sudden increases or decreases of the similarity between the structures
of the consecutive graphs. In [12], the authors introduce the problem of extracting
graph evolution rules satisfying minimal support and confidence constraints. It finds
isomorphic subgraphs that match the time-stamps associated with each edge, and,
if present, the properties of the vertices and edges of the dynamic graph. Graph evo-
lution rules are then derived with two different confidence measures. Nevertheless,
this work focuses on the dynamic changes in the graph whereas we provide a generic
framework to discover multidimensional rules that implicate the simultaneousness
of patterns, in which the time is either in the rule or in its support.
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5.3 A case study

5.3.1 Dataset: Vélov’v

Vélov’v is a bicycle rental service run by the urban community of Lyon, France.
Vélov’v stations are spread over Lyon and its nearby. One of them is depicted
in Figure 23 1. At any of these stations, the users can take a bicycle and return
it to any other station. Whenever a bicycle is rented or returned, this event is
logged. Our research group obtained parts of these logs (e. g., no user identification
to preserve privacy) recorded between May 27th 2005 (when the system was opened
to the public) and December 17th 2007. They represent more than 13.1 million
rides. Encoding this graph data consists of the two following steps that have been
set up by Cerf in [31].

Figure 23: A Vélov’v station.

The first, we remove “abnormal“ records from the dataset. The earliest records
relate to the users discovering Vélov’v and how useful it may be in their daily mo-
bility. To study the network usage in “normal” conditions, these earliest records
were ignored. The chosen date, after which the considered dataset starts, is Decem-
ber 17th 2005. In this way, two full years are kept and aggregations do not favor
any part of the year (along which the network usage evolves). Many records stand
for rides from a station to itself. These rides usually last a few seconds. They can
be mainly explained by users who are not satisfied by the quality of the bicycle
they have just rent (e. g., a flat tire) or who have changed their mind (e. g., a bus
arrives). Because, from a given station, the most frequent rides are to itself, keeping
these records influence a lot any normalization procedure. That is why these records
are removed but, after the post-processing steps, the related routes are all claimed
frequent, i. e., appended to the relation. A few more records were removed. They
relate to abnormal rides (incoherent dates) or rides implying stations that are not

1. c© 2005 Frédéric Bonifas (from Wikimedia Commons)
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opened to the public (e. g., where bicycles are repaired). About 10.2 million records
remain after these first steps.
The second, we represent Vélo’v data as a dynamic directed graph evolving into

two temporal dimensions: the 7 days of the week and the 24 one-hour periods in
a day. The vertices correspond to the Vélov’v stations. The edges are labelled
with the total number of rides from the head vertex (departure station) to the tail
vertex (arrival station) during the considered period of hour and day of the week.
To normalize the data, we use a local test inspired by the computation of a p-value.
At each time period (a day, a hour period), it considers the vertices one by one,
computes the sum S of the labels of both its incoming and outgoing edges, and
claims frequent the routes related to the edges with the greatest values and whose
sum is just beyond 0.1 × S. By definition, this procedure keeps at least one edge
involving each station. In average, 191 edges per station are kept (still excluding the
reflexive routes). In this way, each retained edge corresponds to a significant amount
of rides from the (departure) station ds to the (arrival) station as on day d (e. g.,
Monday) at hour h (e. g., between 1pm and 2pm). When the data are binarized,
the Boolean predicate decides whether routes are frequent w.r.t. time period (a
day, a hour period). In other terms, (ds, as, d, h) belongs to the relation RVélov’v ⊆
Departure × Arrival × Day × Hour. This relation contains 117, 411 4-tuples, hence
a 117,411

7×24×327×327 = 0.7% density.

In the following, from RVélov’v, our goals are to detect:
– Preferred time periods (days and hours) of departures and arrivals at stations.
– Time periods of the exchange of bicycles between stations. It means that we
want to answer the following questions: If the people take a bicycle at one
station then what station do they tend to return it? And when do this occur?

– When can stations be blocked? A stations is blocked when it is empty (no
bicycle can be rented from it) or when it is full (no bicycle can be returned to
it).

5.3.2 Mining multidimensional association rules in Vélov’v graphs

We report on our experimental results when running our algorithm Pinard++

on dataset Vélo’v. We show that Pinard++ can mine several useful types of
multidimensional association rules on the dataset when we use different values of
input parameters that depend on our mining objectives. The experiments of this
section aim at discovering preferred time periods (days and hours) of departures and
arrivals at stations; preferred hours for the exchange of bicycles between stations, and
frequent usage sub-networks that can confidently be enlarged into cliques. Finally,
we also evaluate Pinard++’s efficiency w.r.t constraints.

We first describe our results on detecting preferred time periods of departures and
arrivals at stations.
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xxxx

6002

12a
m

− 1pm

Sun

{6002} × {12am − 1pm} → {Sun}
(f = 0.13, cnatural = 1, cexclusive = 0.73)

(a)

xxxx

3001

8am
− 9am

Fri
Mon, Tue

Wed, Thu

{3001} × {Fri} × {8am − 9am}
→ {Mon, Tue,Wed, Thu}

(f = 0.13, cnatural = 0.88, cexclusive = 0.88)

(b)

Figure 24: Example of rules on {Departure,Day,Hour}.

To detect preferred time periods of departures at stations, we mine rules that
include departure stations, days and hours (D′ = {Departure,Day,Hour}), and
their support domain is Arrival (327 arrival stations). To investigate preferred time
periods of arrivals at stations, we mine rules that contain arrival stations, days and
hours (D′ = {Arrival,Day,Hour}), and their support domain is Departure(327 de-
parture stations). The experiments are done with the minimal frequency threshold
µ varying from 0.06 to 0.2, the minimal exclusive confidence threshold βexclusive and
the minimal natural confidence βnatural varying from 0.6 to 1. When observing the
computed rules, we see that their meaning is consistent with the available back-
ground knowledge. For instance, the frequency of using bicycles at stations being
near railway stations, shopping centers, entertainment centers and universities ap-
pear to be higher than that of the other stations. Concerning preferred time periods
when the people take (or return) bicycles at a station, the rules tell us that the
departure/arrival time periods of stations next to railway stations are often close
to the arrival/departure hours of trains. Also, the preferred time for using bicycles
from stations being near entertainment centers is usually the weekend.

Some of the extracted rules are reported below.

With D′ = {Departure,Day,Hour}, µ = 0.12, βnatural = 0.8 and βexclusive = 0.6,
Pinard++ extracts 632 rules. Figure 24a and Figure 24b report two of them. The
rule in Figure 24a shows that the departures from Station 6002 between 12am and
1pm almost exclusively occur on Sundays (cexclusive = 0.73). The natural confidence
is 1, i. e., whatever the arrival station, the frequent rides from Station 6002 between
midday and 1pm all occur on Sundays. This is consistent with our knowledge of the
city because Station 6002 is at the main entrance of the most popular park, where
people like to take bicycles for coming back home, hence the high frequency in terms
of number of arrival stations. The rule in Figure 24b indicates that the rides from
Station 3001 between 8am and 9am usually occur during the working days. This
is again consistent with our knowledge that many people living outside Lyon come
to work by train and Station 3001 is the closest to the train station in the main
working area of the city. It turns out that they then finish their daily trips to work
by bicycle.

With D′ = {Arrival,Day,Hour}, µ = 0.06, βnatural = 0.8 and βexclusive = 0.6,
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xxxx

1002

0am
− 2am

Sun

{1002} × {0am − 1am, 1am − 2am} → {Sun}
(f = 0.09, cnatural = 1, cexclusive = 0.63)

(a)

xxxx

10002

7am
− 8am

Thu,
Fri Mon, Tue

Wed

{10002} × {Fri, Thu} × {7am − 8am}
→ {Mon, Tue,Wed}

(f = 0.06, cnatural = 0.87, cexclusive = 0.87)

(b)

Figure 25: Example of rules on {Arrival,Day,Hour}.

Pinard++ extracts 2494 rules. Figure 25 presents two of the rules. The rule in
Figure 25a shows that we rarely observe arrivals to Station 1002 between 0am and
2am except on Sundays (cexclusive = 0.63). In fact, this station is located in a district
with many pubs and the favoured time to go to pubs is after parties on Saturday
evenings. At this time, the public transportation services stop, thus Vélo’v is a
good alternative to go to pubs. Observe the Station 10002 appearing in the rule
of Figure 25b, we see that it is in located on a campus called La Doua-LyonTech.
This is a large campus which encompasses many other science-oriented schools and
universities. Here, the school day begins at 7am, and students like taking bicycles to
go to school. That explains why the frequency of arrivals to Station 10002 between
7am and 8am on weekdays is higher than the other time. This rule also indicates
that most of departure stations of routes arriving Station 10002 between 7am and
8am on Thursdays and Fridays are also that of routes arriving Station 10002 between
7am and 8am on Mondays, Tuesdays and Wednesdays (cnatural = cexclusive = 0.87).

Second, we present our results on rules related to preferred hours of the ex-
changes of bicycles between stations in every day. We extract rules on D′ =
{Departure,Arrival,Hour}. To focus on rules that hold every day, the minimal
frequency threshold is set to 1. Consequently, the natural confidence of the rules
is always 1. The experiments are made with βexclusive varies from 0.5 to 0.9. The
discovered rules show that these preferred hours are only from 1pm to 9pm, never
at the other hour. For example, with βexclusive = 0.6, Pinard++ returns 384 rules
involving at least one hour, two departure stations and two arrival stations. Fig-
ure 26 depicts two of them. The rule in Figure 26a means that there is always the
exchange of bicycles between Station 3001 and Station 3043 from 3pm to 8pm in
every day (f = 1 and cnatural = 1). This rule also indicates that the arrival stations
of departures from Station 3043 in 3pm-4pm are almost only Station 3001 and Sta-
tion 3043 (cexclusive = 0.74). The rule in Figure 26b shows that there is always the
exchanges bicycles between stations 2022, 2023 and stations 5004, 2016 from 6pm
to 7pm in every day (f = 1 and cnatural = 1). And these exchanges rarely occur in
another hour (cexclusive = 0.78).
We now consider patterns on graph evolution: we want to look at frequent usage

sub-networks (i. e., sub-networks that are often observed) that can confidently be
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xxxx

3043

3pm-4pm

3001

3043

3pm-8pm

{3pm − 4pm} × {3043} → {4pm − 8pm} × {3001} × {3043, 3001}
(f = 1, cnatural = 1, cexclusive = 0.74)

(a)

2022

2023

2016

5004

6pm-7pm

{2022, 2023} × {5004, 2016} → {6pm − 7pm}
(f = 1, cnatural = 1, cexclusive = 0.78)

(b)

Figure 26: Example of rules on {Departure,Arrival,Hour}.

7056

2001

5004 7056

2001

5004

{7056} × {5004, 2001} → {5004, 2001} × {7056}
(f = 0.05, cnatural = 0.9, cexclusive = 0.9)

(a)

1002 6036 1002

6002

6036

{1002} × {6036} → {6036, 6002} × {1002, 6002}
(f = 0.04, cnatural = 1, cexclusive = 1)

(b)

Figure 27: Example of rules of the form “sub-network” → “maximal clique”.

enlarged into cliques? To study such patterns, a rule has to involve Departure and
Arrival stations, i. e., D′ = {Departure,Arrival}. As a result, the support domain
is the Cartesian product of the 7 days and the 24 hours. Additional constraints,
defined in Sect. 5.1.3, are enforced so that Pinard++ processes (3, 3)-min-sizes
cross-graph closed cliques into rules. Moreover we force the body of every rule to be
a graph with at least one edge, i. e., it must involve at least one departure station
and one arrival station. The non-redundancy of the extracted rules favours the
discovery of minimal sub-networks (at the bodies of the rules) that can be confidently
(i. e., with a high enough confidence) enlarged into maximal cliques (unions of the
bodies and the heads). With µ = 0.02 and βnatural = βexclusive = 0.7, 165 rules are
discovered. Some of them are reported in Figure 27. The enlarged sub-networks can
contain only more edges (see Figure 27a) or more vertices (see Figure 27b). The
extracted rules display the influence of the bicycle exchanges between stations to
that between other stations.

We finally report the effectiveness of pruning search spaces of Pinard++ thanks
to the min-sizes and cross-graph closed clique constrains. First, to test the perfor-
mance of Pinard++ with the min-sizes constraint, we extract rules which describe
the exchange of bicycles between stations at favour hours in every day, and such a
rule has to include at least two departure stations and two arrival stations. Thus,
D′ = {Depart, Arrival,Hour}, Dsupp = Day, µ is set to 1 (consequently, cnatural
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Figure 28: Efficiency of Pinard++ with constraints

is always 1). The experiments are done with βexclusive = 0, and the minimum
number of hours when stations have exchanging bicycles in all days varies from 1
to 5. Figure 28a shows that, when the minimum number of hours increases, the
number of rules and the running time decrease. Next, to test the Pinard++’s
performance with the cross-graph closed clique constraint, we mine rules of the form
“sub-network→ maximal clique” and of the form “sub-network→ larger network”.
The experiments are done with the min-sizes constraint C(3,3)−min−sizes, βnatural =
βexclusive = 0 and µ varying from 0.022 to 0.046. As we see in Figure28b, the num-
ber of rules and the running time with the cross-graph closed clique constraint are
always lower than that without this constraint.

5.3.3 Mining multidimensional disjunctive rules in Vélov’v graphs

We now present our experimental results by running our algorithm Cidre on
dataset Vélo’v. We illustrate the computation of several useful types of multidi-
mensional association rules on this dataset, by using different values of input pa-
rameters that depend on our mining objectives. The experiments of this section aim
at discovering preferred days of the exchange of bicycles between stations; time pe-
riods when stations can be blocked; convergence points of departures from different
stations. Finally, it is used to further report on Cidre’s efficiency w.r.t constraints.

We first describe our results on discovering days when stations have exchanges
of bicycles in many hours. For discovering days when stations have exchanges of
bicycles in many hours, we mine rules on D′ = {Departure,Arrival,Day}, the
supports of the rules are sets of hours. To focus on rules that hold many hours, the
minimal association frequency threshold (µa) varies from 0.375 (respective 9 hours)
to 0.5 (respective 12 hours). The experiments are done with µd = µa and βa = βd
varies from 0 to 1. For example, with µa = µd = 0.45 and βa = βd = 0.8, Cidre
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7004

7009

(Mon, Tue, Thu) ∨ (Mon, Tue)

∨ (Mon, Tue, Wed)

(a) {7004, 7009} × {7004, 7009} →
({Mon, Tue, Thu})fa=0.458,ca=0.92 ∨
({Mon, Tue})fa=0.5,ca=1 ∨
({Mon, Tue,Wed})fa=0.458,ca=0.92 (fd = 0.092,
cd = 0.91).

1002

2026

Thu

(b) {1002, 2026} × {1002, 2026} → {Thu}
(fa = fd = 0.458, ca = cd = 1).

Figure 29: Example of rules on {Departure,Arrival,Day}.

outputs 29 rules. Figure 29 presents two of them. The rule in Figure 29a shows that
the days that Station 7004 and Station 7009 have exchanges of bicycles in many
hours are from Monday to Thursday. The rule in Figure 29b indicates that the day
that Station 1002 and Station 2026 have exchanges of bicycles in many hours is only
Thursday.

Second, we present our results on rules which detect time periods when can sta-
tions be blocked. When a station is blocked, i. e.., it is empty (or full), the user can
not rent (or return) a bicycle at this station. Therefore, detect when stations are
blocked is important to improve the fulfilled service. Because the number of bike
posts of each station is finite (< 40). So, a station can be empty when its depar-
tures are very more than its arrivals. On the contrary, a station can be full when
its arrivals are a lot more than its departures. To know the number of departures
of stations, we mine disjunctive association rules on D′ = {Departure,Day,Hour},
their support domain consists of 327 arrival stations. To know the number of arrivals
of stations, we extract disjunctive association rules on D′ = {Arrival,Day,Hour},
their support domain containing 327 departure stations. These experiments are done
with µa (= µd) varying from 0.02 to 0.2 and βa (= βd) varying from 0 to 1. Two
examples of blocked stations are given in Figure 30 and Figure 31. Station 1002 has
22 bike posts. As we see the rule in Figure30a, there is 38 departures from Station
1002 (fa = fd = 0.116, ⌈0.116 × 327⌉ = 38) during from 2am to 3am on Sunday,
with the confidence 0.90. But, the rule in Figure 30b indicates that Station 1002
only has 17 arrivals at this time (fa = fd = 0.049, ⌈0.049 × 327⌉ = 17) with the
confidence 0.84. Consequently, during from 2am to 3am on Sunday, Station 1002
has a lot of departures, but it has a few arrivals. Therefore, Station 1002 can be
empty between 2am and 3am on Sunday.

Station 6002 has 29 bike posts. Figure31a shows that, during from 2pm to 3pm
on Sunday, the number of departures from Station 6002 is 31 (fd = 0.092, ⌈0.092×
327⌉ = 31) with the confidence 0.91. However, the rule in Figure 31b means that the
number of arrivals of Station 6002 at this time is 53 (fd = 0.162, ⌈0.162×327⌉ = 53)
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xxxx

1002

2am
− 3am

Sun

(a) {1002} × {2am − 3am} → {Sun}
(fa = fd = 0.116, ca = cd = 0.90).

xxxx

1002

2am
− 3am

Sun

(b) {1002} × {2am − 3am} → {Sun}
(fa = fd = 0.049, ca = cd = 0.84).

Figure 30: Example of empty stations.

xxxx

6002

2pm
− 3pm

(Sun) ∨ (Sun 5pm-6pm)

∨ (Sun 6pm-7pm)

(a) {6002} × {2pm − 3pm} → ({Sun})fa=0.092,ca=0.91 ∨
({Sun} × {5pm − 6pm})fa=0.083,ca=0.82∨
({Sun} × {6pm − 7pm})fa=0.089,ca=0.88
(fd = 0.092, cd = 0.91).

xxxx

6002

2pm
− 3pm

(Sun) ∨ (Sun 3pm-4pm)

(b) {6002} × {2pm − 3pm} → ({Sun})fa=0.168,ca=0.93 ∨
({Sun} × {3pm − 4pm})fa=0.147,ca=0.81
(fd = 0.168, cd = 0.93).

Figure 31: Example of full stations.

with the confidence 0.93. Because, during from 2pm to 3pm on Sunday, the number
of arrivals of Station 6002 is very higher than the number of departures. So, Station
6002 can be full between 2pm and 3pm on Sunday.

We now consider the graph evolution, to know convergence points of departures
from different station, we extract rules on D′ = {Departure,Arrival} whose bod-
ies are only departure stations (with at least 2 departure stations), whose heads
conclude on arrival stations. Consequently, the support domain is the Cartesian
product of the 7 days and the 24 hours. With µa = µd = 0.25 and βa = βd = 0.8,
249 rules are discovered. Figure 32 are two of these rules. The rule in Figure 32a
shows that when the outer edges (departures) from Station 2008 and Station 7033
go to the same station then they tend to converge to Station 7033 or Station 2008.
At time when they converge to Station 2008, the outer edge from Station 7035 also
converges to Station 2008. With the constraint that the confidence of convergence
is at least 0.8 (βa ≥ 0.8), the rule in Figure 32b indicates that the outer edges from
the stations 6007, 6011 and 6031 only converge to Station 3003. And at every time
when they converge the outer edge from Station 3032 tends to go to this convergent
point.

We finally report the effectiveness of pruning search spaces of Cidre thanks to the
min-sizes and cross-graph closed clique constrains. First, to test the performance of
Cidre with the min-sizes constraint, we extract rules which describe convergences
of outer edges (departures) from stations, i. e., rules on D′ = {Departure,Arrival},
their bodies are only departure stations and their heads conclude on arrival stations.
The support domain of the rules is the Cartesian product of the 7 days and the 24
hours. The experiments are done with µa = µd = 0.25, βa = βd = 0 and the
minimum number of departure stations in the body of each rule varies from 2 to 6.
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xxxx

2008

7033

2008

7033

∨
2008

7033

∨
2008

7033 7035

(a) {2008, 7033} → ({7033})fa=0.315ca=0.80 ∨
({2008})fa=0.345,ca=0.88 ∨ ({7035} × {2008})fa=0.315,ca=0.80
(fd = 0.39, cd = 1)

6011

6007

6031

xxxx 6011

6007

6031

2030

3032

3003 ∨ 6011

6007

6031

6005

3032

3003 ∨ 6011

6007

6031

3032

3003

(b) {6007, 6011, 6031} → ({2030, 3003, 3032} × {3003})fa=0.262,ca=0.83
∨({3003, 3032, 6005} × {3003})fa=0.256,ca=0.81 ∨ ({3003, 3032} × {3003})fa=0.286,ca:0.91
(fd = 0.286, cd = 0.91)

Figure 32: Example of rules that denote convergences.

Figure 33a shows that when the minimum number of departure stations increases
the number of rules and the running time decrease. Second, to test the Cidre’s
performance with the cross-graph closed clique constraint, we mine rules of the form
“sub-network → maximal clique” and of form “sub-network → larger network”.
The experiments are done with the min-sizes constraint is C(3,3)−min−sizes, βnatural =
βexclusive = 0 and µ varies from 0.022 to 0.046. As we see in Figure33b, the number
of rules and the running time of mining rules with the cross-graph closed clique
constraint are always lower than that of mining rules without this constraint. We
conclude that the perform of Cidre is more effective when we add more piecewise
(anti)-monotone constraints on input information because the algorithm prunes more
branches on the search space thanks to these constraints.

5.4 Conclusion

We presented a solution to the problem of detecting the simultaneousness of pat-
terns in dynamic relational graphs via rule mining. The approach represents a
dynamic graph as a n-ary relation, and a pattern in the dynamic graph is expressed
as an association in the relation that encodes this graph. Thus, the simultaneousness
of patterns in the dynamic graph corresponds to that of associations in the body
and the head of a multidimensional association (or disjunctive) rule that holds in
the n-ary relation. We can apply the algorithms proposed in the chapters 3 and 4
to extract relevant rules. We presented some constraints that not only allow us to
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Figure 33: Effectiveness of Cidre with constraints

extract specific rules (w.r.t. subjective interestingness), but also improve the overall
efficiency of the extraction phase. The added-value of our rule mining techniques
has been demonstrated on the Vélo’v dataset. Interpreting the discovered rules
helps to better understand “How Vélo’v is used”.
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Conclusion

Mining descriptive rules which aims at discovering interesting associations among
elements in databases is one of the most popular data mining task. For instance, as-
sociation rule mining in large binary relations (2-ary relations) has been extensively
studied. However, many datasets of interest correspond to relations whose number
of dimensions is greater or equal to 3. Therefore, we have studied the generalization
of association rule mining in n-ary relations when n > 2. We now summarize our
key results and we discuss directions for future research.

Summary of contributions

Our main objective has been to study two descriptive rule types within n-ary
relations, namely multidimensional association rules and the multidimensional dis-
junctive rules. The contribution includes the design of the declarative specification
of their a priori interestingness in the context of arbitrary n-ary relations. Fur-
thermore, we had to implement effective methods to extract relevant collections of
rules. Like every research in data mining, empirical studies are useful to assess the
performances of the algorithms but also the added-value of the computed paterns in
real-life settings. Among others, we have presented a use case about dynamic graph
analysis based on our types of rules.

We first generalized the concept of association rules introduced by Agrawal et
al. [2] to the context of n-ary relations by formalizing multidimensional association
rules. Such a multidimensional association rule is an implication between two asso-
ciations where each association can include subsets of some arbitrary domains. It
turns out that a natural generalization of rule frequency exists. On the contrary, it
is fairly hard to define a confidence measure for multidimensional rules because, for
a given rule, the support domain of its body and the support domain of the rule
cannot be the same. We proposed two solutions for the above problem. The first
solution is to compute the confidence of the rule on the support domain of the body,
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the confidence measure is named “exclusive confidence“. When the exclusive confi-
dence is high, it means that the association in the body prefers connecting with the
association in the head to connecting with other elements. The second solution is to
compute the confidence of the rule on its support domain, the confidence measure
is named “natural confidence“. The natural confidence of the rule is the probability
of observing its head when its body holds on the support domain of the rule. We
revisited the concept of non redundancy for multidimensional association rules. A
rule is non redundant if its information is not included in that of another general
rule. Such a non-redundant rule has a minimal body and a maximal head w.r.t rule
frequency and rule confidences. Therefore, we consider that a rule is non-redundant
if it is derived from a closed set and if the confidences of every more general rule
which is derived from the same closed set exceed its own measures.

Second, we have tackled the problem of mining multidimensional disjunctive rules
in n-ary relations. Such a rule is an implication between associations: its body is
an association and its head is a disjunction of associations. Enabling disjunctions
within the heads of the rules provides rules that convey more information than con-
junctive rules. The measures for evaluating the interestingness of such a rule are
computed on the support domain of its body. We proposed two types of interest-
ingness measures. First, the association measures are to evaluate the conjunction
between its body and each association in its head. Second, the disjunctive measures
are to evaluate the occurrence of at least one association in its head when its body
holds. Because the number of associations that can frequently co-occur with the
given frequent association may be large, the number of multidimensional disjunctive
rules satisfying the minimal objective measure constraints can be huge. It is com-
putationally expensive to find all such rules. We propose to extract only the rules
that give us the most complete information: such a rule has a minimal body and
a maximal head. Again, we provide to the analyst non redundant rules that are
related to closed sets.

The algorithms for mining multidimensional association rules and multidimen-
sional disjunctive rules in n-ary relations perform a post-processing over patterns
computed with the state-of-the art algorithm Data-Peeler. Therefore, our algo-
rithms take advantage of the pruning techniques of Data-Peeler. In addition,
they can reduce the search space by using several minimal confidence constraints.
The experiments on both synthetic and real datasets show that our algorithms scale
linearly with the dataset size but not with the dataset density.

Finaly, we proposed an application for mining interesting rules in relational dy-
namic graphs that can be encoded into n-ary relations (n ≥ 3) Our goal was to
discover patterns which can co-occur in the evolution of a such dynamic graph. Pat-
terns in the dynamic graph can be expressed as associations in the n-ary relation.
Detecting the simultaneousness of patterns in the dynamic graph corresponds to
mining descriptive rules in the n-ary relation. In particular, the temporal dimen-
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sions can either explicitly appear in the rules or be used to measure their relevancy
(i. e., these dimensions “support” the rules). The interest of discovering such rules
is demonstrated on the Vélo’v network and a real use case.

Future Research Directions

We have made a significant contribution to the generalization of descriptive rule
mining when considering arbitrary n-ary relations. We still have to face many in-
teresting problems when considering the quality of the computed rules and their
potential use in various application domains.
Future research can proceed along the following directions: (1) Mining multilevel

rules and improving objective interestingness measures; (2) Mining rules in noisy
datasets; (3) Extending the rule pattern domains towards different languages and
semantics. Furthermore, we are convinced that dynamic graph analysis will be a
major application domain for data mining in the near future. Therefore, we consider
that a promising perspective of this thesis concerns the assesment of our rule mining
methods for solving important problems in large graphs (e.g., online social networks)
and probably the design of new pattern domain dedicated to dynamic graph analysis.

Mining multilevel rules and improving objective interestingness measures

In this thesis, we only mention the mining of multidimensional association rules
and multidimensional disjunctive rules at a single level. Also, we designed only
frequency and confidence measures. Therefore one first perspective would be to mine
rules that may span levels of taxonomies on the different domains. The problem is
to design a new mining method. Indeed, if we start from the approach of Srikant
et al. in [97], then the size of the extended n-ary relation will explode as soon as
many dimensions are associated to taxonomies. If we start from the approach of
Chen et al. in [49], mined rule may include only elements belonging to a same level.
A second important extension can be to design other measures of interestingness
which allow us to remove non interesting rules and rank patterns for the needed
interpretation phase.

Mining rules in noisy datasets

Real n-ary relations suffer from noise that can have several causes (i. e., intrinsic
noise in the studied system, erroneous measures, mis-parameterized pre-processing
steps, etc). For instance, the computation of error-tolerant closed sets in noisy n-
ary relations has been recently studied [CBNB12]. In a noisy dataset, a rule can
have a high confidence while it may cover only a very small subset of cases (i. e., its
frequency is low). Instead of finding some kind of exact rules in the dataset, one
may look for noise-tolerant rules. For example, we may want to find a rule like “In
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3 2 13

4

Figure 34: An interesting rule in the dynamic graph from Figure 19.

summer, a customer who buys at least two out of three products: cherry, apple,
pear tends to buy melon”. Such a noise-tolerant rule would cover more cases and
its overall quality seems to much more interesting.

Improving the rule pattern domains

In a relation like Customers × Products × Seasons, we can be interested in a
rule like “A customer who buys melon in summer and buys grape in autumn tends
to buy chestnut in winter“. Considering the semantics of such a rule, we would
expect that a customer is not enforced to buy all three products (melon, grape and
chestnut) together in all 3 seasons (summer, autumn and winter). The support of
this rule could be the intersection of three sets: the set of customers buying melon
in summer, the set of customers buying grape in autumn, and the set of customers
buying chestnut in winter. This is different from the support of a multidimensional
association/disjunctive rule which is based on the support of the union of its body
and each association in its head. Therefore, the above rule cannot be found by means
of available multidimensional association/disjunctive rule mining tools. Notice that
such a rule is not an implication between associations that co-occur: it cannot be
derived from a n-set.

Discovering patterns in dynamic graphs

Considering our case study about multidimensional association/disjunctive rule
mining in dynamic graphs, we can discuss some of its limitations. For instance,
frequent subgraphs whose structures are arbitrary cannot be mined. Indeed, in a
subgraph of such a rule, each departure vertex must be connected to all arrival
vertices, and each arrival vertex must be connected to all departure vertices. For
example, it is not yet possible to discover the rule in Figure 34 because, in its head,
Vertex 1 is a departure vertex and Vertex 4 is an arrival vertex but there is no
edge from Vertex 1 towards Vertex 4. In addition, as mentioned in Chapter 5, our
approach handles only dynamic graphs which can be encoded naturally by means
of n-ary relations. So far, our encoded graphs can include properties on their edges
but not on their vertices.

Therefore, our approach could be extended to mine arbitrary patterns about the
graph evolution and to exploit properties on both edges and vertices.
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[14] Jérémy Besson. Découvertes de motifs pertinents pour l’analyse du transcrip-
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Appendix A

Proofs

A.1 Proof of Theorem 5

Proof. According to the definitions 38 and 34:

– X ⊑ Y ⇒
{

DX ⊆ DY
∀Di ∈ D, πDi(X) ⊆ πDi(Y )

;

– s(Y ) = {u ∈ ×Di∈D\DY
Di | ∀y ∈ Y , y · u ∈ R};

– s(X) = {w ∈ ×Di∈D\DX
Di | ∀x ∈ X, x · w ∈ R}

= {v · u | v ∈ ×Di∈DY \DX
Di, u ∈ ×Di∈D\DY

Di

and ∀x ∈ X, x · v · u ∈ R}.
Let πD\DY

s(X) = {u ∈ ×Di∈D\DY
Di | ∃v ∈ ×Di∈DY \DX

Di such that ∀x ∈ X,
x · v · u ∈ R}.

Then,

{

s(Y ) ⊆ πD\DY
s(X)

|πD\DY
s(X)| ≤ |s(X)|

and |s(Y )| ≤ |πD\DY
s(X)| ≤ |s(X)|.

A.2 Proof of Theorem 6

Proof. Using Def. 42, we have X ′ ⊑ X ⇒ sD\D′(X) ⊆ sD\D′(X ′).
Because X ⊑ X ′ ⊑ Y and according to Def. 43:






cnatural(X → Y \X) = |s(Y )|
|sD\D′ (X)|

cnatural(X
′ → Y \X ′) = |s(Y )|

|sD\D′ (X′)|

⇒ cnatural(X
′ → Y \X ′) ≤ cnatural(X → Y \X) .

A.3 Proof of Theorem 7

Proof. The first, we proof that if X → Y is a non-redundant rule then (X ⊔ Y ⊔
s(X ⊔ Y )) is a closed n-set and for all X ′

⊏ X, (cexclusive(X
′ → (Y ⊔ X) \ X ′) <
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cexclusive(X → Y )) ∨ (cexclusive(X
′ → (Y ⊔X) \X ′) < cexclusive(X → Y )).

– Assume that (X⊔Y ⊔s(X⊔Y )) is not closed, by s(X⊔Y ) is closed with (X⊔Y ),
so it exists an element e ∈ ∪Di∈D′(Di \πDi(X ⊔Y )) such that s(X ⊔Y ⊔{e}) =
s(X ⊔ Y ). Therefore, it exists a rule X → Y ⊔ {e} such that:











f(X → Y ⊔ {e}) = f(X → Y )

cexclusive(X → Y ⊔ {e}) ≥ cexclusive(X → Y )

cnatural(X → Y ⊔ {e}) = cnatural(X → Y )

.

This is contrary to the assumption that X → Y is a non-redundant rule. There-
fore (X ⊔ Y ⊔ s(X ⊔ Y )) is a closed n-set.

– By X → Y is a non-redundant rule, according to Definition 46, so it does not
exist X ′

⊏ X such that










f(X ′ → (Y ⊔X) \X ′) ≥ f(X → Y )

cexclusive(X
′ → (Y ⊔X) \X ′) ≥ cexclusive(X → Y )

cnatural(X
′ → (Y ⊔X) \X ′) ≥ cnatural(X → Y )

.

This corresponds to for all X ′
⊏ X, one of three assertions above must be

broken. According to Definition 40, f(X ′ → (Y ⊔X) \X ′) = f(X → Y ), i. e.,
the first assertion is never broken. As a consequence, the second assertion or
third assertion is broken. It means that for allX ′

⊏ X, (cexclusive(X
′ → (Y ⊔X)\

X ′) < cexclusive(X → Y )) ∨ (cexclusive(X ′ → (Y ⊔X) \X ′) < cexclusive(X → Y )).
Now, we proof that if (X⊔Y ⊔s(X⊔Y )) is a closed n-set onRA and for allX ′

⊏ X,
(cexclusive(X

′ → (Y ⊔X) \X ′) < cexclusive(X → Y ))∨ (cnatural(X ′ → (Y ⊔X) \X ′) <
cnatural(X → Y )) then X → Y is a non-redundant rule. Assume that X → Y is a
redundant rule, one of the two following cases will occur.

– Or it exists a rule X ′ → Y ′ such that:






















(X ′ ⊔ Y ′ = X ⊔ Y ∧X ′
⊏ X)

f(X ′ → Y ′) ≥ f(X → Y )

cnatural(X
′ → Y ′) ≥ cnatural(X → Y )

cexclusive(X
′ → Y ′) ≥ cexclusive(X → Y )

.

This is contrary to the assumption that for all X ′
⊏ X, (cexclusive(X

′ → (Y ⊔
X)\X ′) < cexclusive(X → Y ))∨(cnatural(X ′ → (Y ⊔X)\X ′) < cnatural(X → Y )).

– Or it exists a rule X ′ → Y ′ such that:






















(X ′ ⊔ Y ′
⊐ X ⊔ Y ∧X ′ ⊑ X)

f(X ′ → Y ′) ≥ f(X → Y )

cnatural(X
′ → Y ′) ≥ cnatural(X → Y )

cexclusive(X
′ → Y ′) ≥ cexclusive(X → Y )

.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0094/these.pdf 
© [T.K.N. Nguyen], [2012], INSA de Lyon, tous droits réservés



A. PROOFS 137

In this case, because X ′⊔Y ′
⊐ X ⊔Y and f(X ′ → Y ′) ≥ f(X → Y ), according

to Theorem 5 and Definition 40, we have s(X ′⊔Y ′) = s(X ⊔Y ). This indicates
that (X ⊔Y ⊔ s(X ⊔Y )) ⊂ (X ′⊔Y ′⊔ s(X ′⊔Y ′)) ⊂ RA. So (X ⊔Y ⊔ s(X ⊔Y ))
is not closed.

Consequently, X → Y is a non-redundant rule.

A.4 Proof of Theorem 8

Proof. The first, we proof that X → Y is a key association rule on D′ then (X ⊔Y ⊔
s(X ⊔Y )) is a closed set in RA and ∀X ′

⊏ X, ca(X
′ → (Y ⊔X)\X ′) < ca(X → Y ).

– Assume that (X ⊔ Y ⊔ s(X ⊔ Y )) is not a closed set,
by s(X ⊔ Y ) is closed with (X ⊔ Y ), so it exists an element e ∈ ∪Di∈D′(Di \
πDi(X ⊔ Y )) such that s(X ⊔ Y ⊔ {e}) = s(X ⊔ Y ). Therefore, it exists a rule
X → Y ⊔ {e} such that:

{

fa(X → Y ⊔ {e}) = fa(X → Y )

cd(X → Y ⊔ {e}) = ca(X → Y )
.

This is contrary to the assumption that X → Y is a key association rule.
Therefore (X ⊔ Y ⊔ s(X ⊔ Y )) is a closed n-set.

– Assume that it exists an association X ′ such that X ′
⊏ X and ca(X

′ → (Y ⊔
X) \ X ′) ≥ ca(X → Y ), according to Definition 49, we have fa(X → Y ) =
fa(X

′ → (Y ⊔X) \X ′). So, it exits a rule X ′ → (Y ⊔X) \X ′ such that:











X ′
⊏ X ∧ (X ′ ⊔ ((Y ⊔X) \X ′)) = (Y ⊔X)

fa(X
′ → (Y ⊔X) \X ′) = fa(X → Y )

cd(X
′ → (Y ⊔X) \X ′) ≥ ca(X → Y )

.

This is contrary to the assumption that X → Y is a key association rule.
Therefore ∀X ′

⊏ X, ca(X
′ → (Y ⊔X) \X ′) < ca(X → Y ).

Now, we proof that if (X ⊔ Y ⊔ s(X ⊔ Y )) is a closed set in RA and ∀X ′
⊏ X,

ca(X
′ → (Y ⊔X)\X ′) < ca(X → Y ) then X → Y is a key association rule. Assume

that X → Y is a key association rule, one of the two following cases will occur.
– Or it exists a rule X ′ → Y ′ such that:











(X ′ ⊔ Y ′ = X ⊔ Y ∧X ′
⊏ X)

fa(X
′ → Y ′) ≥ fa(X → Y )

ca(X
′ → Y ′) ≥ ca(X → Y )

.

This is contrary to the assumption that for all X ′
⊏ X, ca(X

′ → (Y ⊔X)\X ′) <
ca(X → Y ).
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– Or it exists a rule X ′ → Y ′ such that:










(X ′ ⊔ Y ′
⊐ X ⊔ Y ∧X ′ ⊑ X)

fa(X
′ → Y ′) ≥ fa(X → Y )

ca(X
′ → Y ′) ≥ ca(X → Y )

.

In this case, becauseX ′⊔Y ′
⊐ X⊔Y and fa(X

′ → Y ′) ≥ fa(X → Y ), according
to Theorem 5 and Definition 49, we have s(X ′⊔Y ′) = s(X ⊔Y ). This indicates
that (X ⊔Y ⊔ s(X ⊔Y )) ⊂ (X ′⊔Y ′⊔ s(X ′⊔Y ′)) ⊂ RA. So (X ⊔Y ⊔ s(X ⊔Y ))
is not closed.

Consequently, X → Y is a key association rule.

A.5 Proof of Theorem 9

Proof. we first proof that, ∀D′ ⊆ D, let P the set of all key association rules on D′, if
X → ∨Y is a non-redundant multidimensional disjunctive rule on D′ then ∀Y ∈ Y ,
X → Y is a key association rule on D′ and Y = ∪X→Y ∈PY .

– According to Definition 53, if X → ∨Y is a non-redundant multidimensional
disjunctive rule then ∀Y ∈ Y, X → Y is a key association rule on D′.

– Assume Y 6= ∪X→Y ∈PY . It occurs the one of two following cases:
– Or Y ⊂ ∪X→Y ∈PY . Therefore, set Z = ∪X→Y ∈PY , according to Defini-
tion 51 and Definition 52, it exits another rule X → ∨Z such that























Z ⊃ Y
∀Z ∈ Z, X → Z is a key association rule

fd(X → ∨Z) ≥ fd(X → ∨Y)
cd(X

′ → ∨Z) ≥ cd(X → ∨Y)

.

This is contrary to the assumption that X → ∨Y is a non-redundant multi-
dimensional disjunctive rule.

– Or

{

Y ⊃ ∪X→Y ∈PY

∀Y ∈ Y, X → Y is a key association rule
.

It means that it exits an association Y such that X → Y 6∈ P and X → Y is
a key association rule. This is contrary to the assumption that P is the set
of all key association rules on D′.

Consequently, Y = ∪X→Y ∈PY .
Now, we proof that, ∀D′ ⊆ D, let P the set of all key association rules on D′, if

∀Y ∈ Y, X → Y is a key association rule on D′ and Y = ∪X→Y ∈PY then X → ∨Y
is a non-redundant multidimensional disjunctive rule on D′. Assume X → ∨Y is not
a non-redundant multidimensional disjunctive rule, one of the two following cases
will occur:
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– Or it exits an association Y ∈ Y such that X → Y is not a key association rule.
This is contrary to the first condition of the assumption.

– Or it exits a set of association Z ⊃ Y such that:











∀Z ∈ Z, X → Z is a key association rule

fd(X → ∨Z) ≥ fd(X → ∨Y)
cd(X → ∨Z) ≥ cd(X → ∨Y)

.

It means that it exits an association Z 6∈ Y such thatX → Z is a key association
rule. This is contrary to the second condition of the assumption that Y =
∪X→Y ∈PY .

Consequently, X → ∨Y is a non-redundant multidimensional disjunctive rule.
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Appendix B

Résumé en Français

B.1 Introduction

La fouille de grandes relations binaires a mobilisé énormément de chercheurs et
de ressources. Il s’agit, par exemple, d’analyser des relations Transactions × Pro-
duits (on parle aussi de données transactionnelles) ou plus généralement des relations
Objets × Propriétés où les deux dimensions peuvent être de grande taille. De nom-
breuses propositions permettent aujourd’hui d’alimenter des processus de découverte
de connaissances à partir de telles données. Nous nous intéressons aux méthodes
descriptives basées sur des calculs de régularités ou de motifs locaux. Il peut s’agir
d’ensembles fréquents (voir, e.g., [2, 72]), d’ensembles fermés ou de concepts formels
(voir, e.g., [41, 99]), de règles d’association (voir, e.g., [2, 3]) ou encore de leurs
généralisations avec, par exemple, l’introduction de négations [72] ou la découverte
de règles dans un contexte multi-relationnel [36, 58]. Il existe aujourd’hui un savoir-
faire algorithmique pour calculer efficacement de nombreux types de motifs dans des
grandes relations binaires. Ceci étant, de nombreux jeux de données se présentent
naturellement comme des relations n-aires avec, par exemple, l’ajout de dimensions
spatiales et/ou temporelles sur des relations Transactions × Produits qui peuvent
devenir des relations Transactions × Produits × Date × Lieu de vente × Temps.
Étendre les méthodes de fouille de relations binaires au contexte des relation

d’arité arbitraire parâıt donc être une direction de recherche importante et encore
peu étudiée. Le problème est que l’extension aux relations n-aires est plus ou moins
difficile et que nous devons considérer trois problèmes majeurs dans la fouille de
données non supervisée au moyen de motifs (ou des règles descriptives qui peuvent
en être dérivées).

1. Quelle est la sémantique du domaine de motif ? Autrement dit, quelles sont
les formes qui peuvent prendre les motifs dans des relations n-aires et quels
sont les mesures qui vont permettre d’en déterminer l’intérêt a priori ? Si l’on
veut spécifier ce qu’est une règle d’association [2] dans ce contexte des relations
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n-aires, que deviennent les classiques mesures de fréquence et de confiance ?

2. Quels sont les mécanismes qui vont permettre de spécifier les attentes de
l’analyste et donc l’intérêt subjectif ? Depuis quelques années, de nombreux
chercheurs développent le cadre de la fouille de données sous contraintes pour
lequel des combinaisons Booléennes de contraintes primitives peuvent spécifier
déclarativement des propriétés souhaitées sur les motifs solutions (voir, e.g.,
[20]). Il faudrait donc idéalement identifier les ”bonnes” contraintes primitives.

3. Quels sont les moyens de calculs qui vont permettre de calculer les motifs so-
lutions c’est-à-dire satisfaisant les contraintes posées ? Si possible, on souhaite
réaliser des calculs corrects et complets qui délivrent tous les motifs solutions
et seulement ceux-là. Il faut pouvoir passer à l’échelle au regard du nombre
de dimensions et de la taille (nombre de valeurs) de chacune d’entre elles.

Ainsi, étendre la sémantique des motifs ensemblistes comme des concepts formels
(couples d’ensembles fermés sur chacune des deux dimensions) au contexte des re-
lations n-aires est trivial d’un point de vue déclaratif (spécification a priori des
critères d’intérêts objectifs et subjectifs) mais difficile sur un plan calculatoire [61,
56, 32]. Par contre, et c’est l’objet de cette thèse , définir la sémantique des règles
d’association dans des relations n-aires s’est révélé délicat. En fait, depuis la propo-
sition initiale de cette tâche prototypique en fouille de données [2], la sémantique
des règles d’association a été assez peu étudiée et formalisée. Bien qu’il s’agisse d’un
type de motif simple, on note que des notions importantes pour la sémantique des
règles (e.g., les concepts de fréquence ou de contre-exemples) peuvent connâıtre des
définitions différentes selon les auteurs.

Lorsque l’on travaille sur des relations n-aires, il va falloir redéfinir et le langage
des motifs et ce que peuvent être de telles mesures lorsque les prémisses et les con-
clusions des règles peuvent porter sur des sous-ensembles de n’importe lesquelles des
dimensions. Ainsi, notre première contribution consiste à concevoir la sémantique
des règles via des mesures d’intérêt comme les notions de fréquence et de confiance.

Notre seconde contribution est algorithmique et concerne la conception d’un pre-
mier algorithme d’extraction efficace pour calculer les règles a priori intéressantes. Il
s’appuie sur les principes qui viennent d’être proposés pour le calcul de motifs mul-
tidimensionnels fermés [32, 33]. Nous décrivons ici l’algorithme et nous établissons
quelques unes de ses propriétés. Son comportement expérimental est également
étudié.
Le résumé de la thèse est organisé comme suit. Dans la section B.2, nous présentons

la construction du domaine de motif des règles d’association dans une relation n-
aire. Sur cette tâche, nos résultats préliminaires et les premières propositions ont été
publiés dans [NCB10, NCPB10] avant la présentation dans l’article de conférence
[NCPB11] (Algorithme Pinard 1) et son amélioration dans l’article de journal (Al-
gorithme Pinard + +) [NCPB11]. Nous proposons ensuite d’introduire des disjonc-

1. Pinard Is N-ary Association Rule Discovery.
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p1 p2 p3 p4 p1 p2 p3 p4 p1 p2 p3 p4 p1 p2 p3 p4
o1 1 1 1 1 1 1 1 1 1 1

o2 1 1 1 1 1 1

o3 1 1 1 1 1 1 1 1 1

o4 1 1 1 1 1

o5 1 1 1 1 1 1 1 1 1 1 1

s1 s2 s3 s4

Figure B.1: La relation n-aire RE

tions dans les conclusions des règles dans la section B.3. Cette étudie et l’algorithme
Cidre 2 ont été introduits dans [NPB12]. Enfin, la section B.4 est dédiée à une ap-
plication de nos méthodes pour l’analyse des graphes relationnels dynamiques. Les
articles de conférence [NCPB10] et [NCPB11] ont déjà abordé l’analyse des graphes,
mais cela est détaillée dans l’article de journal [NCPB11] et généralisée avec des
disjonctions dans [NPB12].

B.2 Généralisation des règles d’association au cas n-aire

B.2.1 Relation n-aire

Soit n ensembles finis supposés disjoints (sans perte de généralité) {D1, . . . , Dn} =
D. Nous notons R ⊆ D1×· · ·×Dn la relation n-aire à partir de laquelle on souhaite
découvrir des associations. Considérons un exemple jouet de relation ternaire,
RE , représentée dans Figure B.1. RE relie des produits de D1 = {p1, p2, p3, p4}
achetés au cours des saisons de D2 = {s1, s2, s3, s4} par des clients de D3 =
{o1, o2, o3, o4, o5}. Chaque ’1’ dans Figure B.1 se trouve à l’intersection de trois
éléments (pi, sj , ck) ∈ D1 ×D2 ×D3 formant un triplet présent dans RE . Ainsi le
produit p1 est acheté à la saison s1 par le client o1, mais le client o4 n’achète pas le
produit p2 en saison s1.

B.2.2 Définitions préliminaires

Nous généralisons d’abord la notion d’itemsets dans une relation binaire à la
notion d’associations dans une relation n-aire, car le nouveau domaine de motifs
des règles d’association multidimensionnelles est conduit sur des associations. Nous
introduisons ensuite certains opérateurs pour manipuler des associations.
Dans une relation binaire qui décrit la relation entre deux domaines seulement,

un itemset est un sous-ensemble d’un domaine, et sa fréquence est calculé sur l’autre

2. Cidre Is a Disjunctive Rule Extractor.
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domaine. Laissez-nous proposer une généralisation au moment de définir les associa-
tions dans une relation n-aire. Nous considérons qu’une association peut comporter
de quelques sous-ensembles de certains domaines différents et que sa fréquence doit
être définie en terme des autre domains, i. e., les domaines que elle ne comporte pas.
Par exemple, dans une relation 3-aire Produits×Saisons×Clients, une association
peut être un ensemble de produits, ou un ensemble de saisons, mais elle peut aussi
concerner à la fois des produits et des saisons, etc. Dans le contexte de la rela-
tion n-aires, “Comment pouvons-nous exprimer de telles associations?”, “Comment
pouvons-nous préciser l’intérêt subjectif de telles associations?”.

Dans une relation n-aire, une association sur D′ ⊆ D est le produit Cartésien de
des sous-ensembles non vides des domaines dans D′. Sans perte de généralité, nous
supposons que D′ = {D1, . . . , D|D′|}.

Définition B.1 (Association). ∀D′ = {D1, . . . , D|D′|} ⊆ D, X1×· · ·×X |D′| est une
association sur D′ si et seulement si ∀i = 1..|D′|, Xi ⊆ Di∧Xi 6= ∅. Par convention,
si D′ est vide, la seule association sur D′ est l’ensemble vide noté ∅.

Exemple B.1. Dans RE, représentée Figure B.1, {p1, p2} × {s1} et {p1, p2} ×
{s1, s2} sont deux associations sur {D1, D2}. Par contre, {p1, p2} est une association
sur {D1}.

Le domaine support d’une association sur D′ ⊆ D est ×Di∈D\D′Di. Par exemple,

dans RE , le domaine support d’une association sur {D1, D2} est D3. Le support
d’une association est un sous-ensemble of le domaine support. La définition suivante
utilise l’opérateur de concaténation noté ·. On a, par exemple, (p2, s1) · (o1) =
(p2, s1, o1).

Définition B.2 (Support d’une association). ∀D′ ⊆ D, soit X une association sur
D′, son support noté s(X) est :

s(X) = {u ∈ ×Di∈D\D′Di | ∀x ∈ X, x · u ∈ R}.

On peut noter qu’une association impliquant tous les n domaines (D′ = D) est
soit vraie (tous les n-uplets qu’elle contient appartiennent à R), soit fausse (au
moins un des n-uplets qu’elle contient n’appartient pas à R). Nous n’avons donc
pas de graduation possible de sa qualité. Dans ce cas particulier, en utilisant la
convention ×Di∈∅D

i = {ǫ} (où ǫ est le mot vide), les associations possibles ont bien,
respectivement, soit un support d’un élément soit un support vide. Un second cas
extrême, et peu intéressant, correspond à s(∅) = R. Le support d’une association
généralise celui d’un itemset dans une relation binaire (cas où n = 2 et D′ = {D1}).

Exemple B.2. Considons des exemples de supports des trois associations dans RE.
– s({p1, p2} × {s1}) = {o1, o2, o3},
– s({p1, p2} × {s1, s2}) = {o1, o2},
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– s({p1, p2}) = {(s1, o1), (s1, o2), (s1, o3), (s2, o1), (s2, o2), (s3, o5)}.

Dans la suite, la notion de support d’une association est très utilisée. Don-
nons quelques définitions complémentaires pour exprimer la sémantique d’une règle
d’association dans une relation n-aire.

Définition B.3 (Composante). ∀D′ = {D1, . . . , D|D′|} ⊆ D, soit X = X1 × · · · ×
X |D′| une association sur D′. ∀Di ∈ D, la composante de X sur Di, notée πDi(X),
est Xi si Di ∈ D′, ∅ sinon.

Définition B.4 (Union d’associations). ∀DX ⊆ D et ∀DY ⊆ D, soit X une asso-
ciation sur DX et Y une association sur DY , l’union de X et Y notée X ⊔ Y est
l’association sur DX ∪ DY pour laquelle ∀Di ∈ D, πDi(X ⊔ Y ) = πDi(X) ∪ πDi(Y ).

Définition B.5 (Complément d’associations). ∀DX ⊆ D et ∀DY ⊆ D, soit X
une association sur DX et Y une association sur DY , le complément de X dans Y
noté Y \ X est l’association sur {Di ∈ DY | πDi(Y ) 6⊆ πDi(X)} telle que ∀Di ∈
D, πDi(Y \X) = πDi(Y ) \ πDi(X).

Définition B.6 (Inclusion d’associations). ∀DX ⊆ D et ∀DY ⊆ D, soit X une
association sur DX et Y une association sur DY , l’inclusion des associations est
notée X ⊑ Y . On a X ⊑ Y ⇔ ∀Di ∈ D, πDi(X) ⊆ πDi(Y ).

L’anti-monotonie du support est préservée dans le cadre plus général des associ-
ations et en utilisant la notion d’inclusion que nous venons de définir.

Théorème B.1 (Anti-monotonie du support). ∀DX ⊆ D et ∀DY ⊆ D, soit X une
association sur DX et Y une association sur DY , on a X ⊑ Y ⇒ |s(X)| ≥ |s(Y )| .

Preuve dans l’Annexe A.1.

Exemple B.3. Comme {p1, p2} ⊑ {p1, p2} × {s1} ⊑ {p1, p2} × {s1, s2}, on observe
bien |s({p1, p2})| ≥ |s({p1, p2} × {s1})| ≥ |s({p1, p2} × {s1, s2})|.

B.2.3 Règle d’association multidimensionnelle

Définition

Étant donné une relation n-aire R sur l’ensemble de domaines D = {D1, ..., Dn},
une règle d’association sur D′ ⊆ D est un couple d’associations sur des ensembles
de domaines qui peuvent être différents mais dont l’union doit être D′. Le domaine
support de la règle est ×Di∈D\D′Di.

Définition B.7 (Règle d’association multi-dimensionnelle). ∀D′ ⊆ D, une règle
d’association multi-dimensionnelle sur D′ est un motifs de la forme X → Y , où X
et Y sont associations sur des sous-ensembles de D′ et X ⊔ Y est une association
sur D′. X est appelée la prémisse et Y est appelée la conclusion.
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Exemple B.4. Dans RE, {p1, p2} → {s1, s2} et {p3} × {s3, s4} → {p2} sont deux
règles sur {D1, D2}. {p1} → {p2} n’est pas une règle sur {D1, D2} car aucun
élément de D2 n’apparâıt dans la prémisse ou la conclusion de la règle. Par contre,
{p1} → {p2} est bien une règle d’association sur {D1}.

Dans le cas binaire, la sémantique classique d’une règle d’association repose sur
les mesures de fréquence et de confiance et l’intérêt a priori d’une règle est spécifié
au moyen de seuils : une règle a priori intéressante satisfait une conjonction de
contraintes spécifiant que sa fréquence et sa confiance doivent être supérieures à
des seuils fournis par les analystes [2]. Une règle est fréquente si elle se vérifie sur
un grand nombre d’éléments du domaine support. Plus précisément, l’union de la
prémisse et de la conclusion de la règle a pour support un ensemble contenant un
nombre suffisant d’éléments. Une règle est valide au sens d’une confiance suffisante si
la probabilité conditionnelle d’observer la conclusion lorsque l’on observe la prémisse
est suffisamment grande. En fait, dans le contexte des règles multi-dimensionnelles,
une définition de la fréquence d’une règle va s’imposer naturellement. Par contre,
il va être difficile de définir la confiance d’une règle dans le cas où l’association en
conclusion est définie sur un ensemble de domaines qui n’est pas inclus dans celui
de la prémisse.

Définition de la fréquence

La fréquence (relative) d’une règle d’association est, dans le domaine support, la
proportion d’éléments dans le support de l’union de la prémisse et de la conclusion.

Définition B.8 (Fréquence d’une règle). ∀D′ ⊆ D, soit X → Y une règle
d’association sur D′. Sa fréquence, notée f(X → Y ), est :

f(X → Y ) =
|s(X ⊔ Y )|
| ×Di∈D\D′ Di| .

Exemple B.5. Considérons deux règles r1 : {p1, p2} → {s1, s2} and r2 : {p3} ×
{s3, s4} → {p2} dans RE.

– f(r1) =
|s({p1,p2}⊔{s1,s2})|

|D3| = |s({p1,p2}×{s1,s2})|
|D3| = |{o1,o2}|

|{o1,o2,o3,o4,o5}|
= 2

5 ;

– f(r2) =
|s({p3}×{s3,s4}⊔{p2})|

|D3| = |s({p2,p3}×{s3,s4})|
|D3| = |{o1,o3}|

|{o1,o2,o3,o4,o5}|
= 2

5 .

La fréquence de r1 est la proportion de clients qui achètent les produits p1 et p2 à
la fois aux saisons s1 et s2. De même, la fréquence de r2 est la proportion de clients
qui achètent les produits p2 et p3 à la fois aux saisons s3 et s4.

Définition de la confiance

Difficulté à définir la confiance Est-il possible de généraliser facilement le concept
de confiance d’une règle d’association dans une relation binaire à notre nouveau
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contexte, et ainsi de vouloir attribuer à une règle X → Y la mesure de confiance
|s(X⊔Y )|
|s(X)| ?
Lorsque X et X ⊔ Y sont des associations sur le même ensemble de domaines

(leurs domaines support sont donc les mêmes), cette définition est souhaitable. Elle
est une proportion d’éléments d’un même domaine support.

Exemple B.6. Dans RE, la confiance de la règle {p3} × {s3, s4} → {p2} serait

|s({p3} × {s3, s4} ⊔ {p2})|
|s({p3} × {s3, s4})|

=
|s({p2, p3} × {s3, s4})|
|s({p3} × {s3, s4})|

=
|{o1, o3}|
|{o1, o3, o5}|

=
2

3
,

ce qui correspond à une proportion de clients. Cela signifie que, parmi ceux qui
achètent le produit p3 à la fois aux saisons s3 et s4, la plupart achète aussi le produit
p2 durant ces saisons.

Cependant, cette sémantique n’est pas satisfaisante pour une règle où l’association
en conclusion est définie sur un ensemble de domaines qui n’est pas inclus dans celui
de l’association en prémisse. En effet, s(X ⊔ Y ) et s(X) sont alors des ensembles
disjoints et mettre leurs cardinaux en rapport n’a aucun sens.

Exemple B.7. Considérons la règle {p1, p2} → {s1, s2} dans RE. On a s({p1, p2}×
{s1, s2}) = {o1, o2}, qui est un ensemble de clients, et s({p1, p2}) = {(s1, o1), (s1, o2),
(s1, o3), (s2, o1), (s2, o2), (s3, o5)}, qui est un ensemble de couples (saison, client).

En conséquence, il est nécessaire pour definir une nouvelle mesure de confiance qui
formerait le sens pour toute règle multidimensionnelle X → Y . Lorsque X et X ⊔Y
sont définies sur le (s) même (s) domaine (s), nous aimerions mesurer la confiance

de la règle X → Y au moyen de |s(X⊔Y )|
|s(X)| . En particulier, les mesures proposées sont

des généralisations de la mesure de confiance introduite dans [2].

Notre première solution est de calculer la confiance de X → Y sur le domaine
support de X. La mesure de confiance proposé est appelé une confiance exclusive.
L’idée est d’introduire un nouveau facteur qui est multiplié avec |s(X ⊔Y )| telle que
cette multiplication et |s(X)| deviennent comparables. La seconde solution est de
calculer la confiance de X → Y sur le domaine support de (X ⊔ Y ). Dans ce cas, la
mesure de confiance est appelée une confiance naturelle. L’idée ici est d’introduire
une nouvelle définition de support de X sur le domaine support de (X ⊔ Y ).

Confiance exclusive Calculer la confiance de X → Y pose donc un problème
lorsque X est définie sur un ensemble DX inclus strictement dans celui D′ de X ⊔Y .
L’idée pour résoudre ce problème consiste à multiplier |s(X ⊔Y )| avec la cardinalité
de la projection de Y sur les domaines qui sont absents de DX .

Notons que s(X) et s(X ⊔ Y ) × (×Di∈D′\DX
πDi(Y )) sont les mêmes domaines.

Par conséquent, |s(X)| et |s(X ⊔ Y ) × (×Di∈D′\DX
πDi(Y ))| sont comparables et la

confiance exclusive de la règle X → Y est la proportion de ces deux valeurs.
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Lorsque la confiance exclusive de X → Y est élevé, cela signifie que X préfère être
“co-apparu” avec Y plutôt que d’être “co-apparu” avec les autres éléments.

Définition B.9 (Confiance exclusive). ∀D′ ⊆ D, soit X → Y une règle d’association
sur D′ et notons DX l’ensemble de domaines sur lequel X est défini, sa confiance
exclusive notée cexclusive(X → Y ) est :

cexclusive(X → Y ) =
|s(X ⊔ Y )| × | ×Di∈D′\DX

πDi(Y )|
|s(X)| .

Lorsque X est une association sur D′, la confiance exclusive de X → Y vaut
|s(X⊔Y )|
|s(X)| sous la convention ×Di∈∅πDi(Y ) = {ǫ}. Le facteur correctif, | ×Di∈D′\DX

πDi(Y )|, appliqué à |s(X ⊔ Y )| permet de comptabiliser les éléments de s(X ⊔ Y )
“de la même façon au numérateur et au dénominateur de la fraction”.

Exemple B.8. Considérons la règle {p1, p2} → {s1, s2} dans RE et supposons
que l’achat d’un client en une saison s’appelle une transaction. On trouve qu’il
n’y a que deux clients {o1, o2} qui achètent les deux produits p1 et p2 à la fois aux
saisons s1 et s2. Dans ce cas, la somme des transactions pour lesquelles les produits
p1 et p2 sont achetés par les clients o1 et o2 au moment des saisons s1 et s2 est
|{o1, o2}| × |{s1, s2}| = 4. Il y a 6 transactions pour lesquelles les produits p1 et p2
sont achetés ensemble en n’importe quelle saison: (s1, o1), (s1, o2), (s1, o3), (s2, o1),
(s2, o2), (s3, o5). La confiance exclusive de la règle vaut donc :

cexclusive({p1, p2} → {s1, s2}) =
|s({p1, p2} × {s1, s2})| × |{s1, s2}|

|s({p1, p2})|
=

4

6
.

Le fait que le client o3 achète les deux produits p1 et p2 à la saison s1 mais qu’il
ne les achète pas ensemble à la saison s2 fait aussi “baisser” la confiance en ce que
les clients aiment bien acheter ces produits à la fois aux saisons s1 et s2. Le fait que
le client o5 achète ces produits en saison s3 fait “baisser” la confiance sur le fait que
l’on n’aime les acheter qu’aux saisons s1 et s2. Si cette confiance valait 1 et donc la
valeur maximale, cela voudrait dire que les clients appréciant les deux produits p1
et p2 achètent ces produits aux saisons s1 et s2 mais aussi qu’ils ne les achètent pas
pendant les autres saisons. C’est pourquoi nous parlons de confiance exclusive.

La confiance exclusive favorise la découverte d’une règle d’association conclu-
ant sur un maximum d’éléments. Toutefois, cette exclusivité présente un défaut
dommageable à une extraction efficace des règles d’association valides, c’est-à-dire
présentant une confiance supérieure à un seuil fixé par l’analyste : X 7→ cexclusive(X →
Y \X) avec X ⊑ Y n’est pas une fonction croissante ordonné par ⊑.
Exemple B.9. Considérons les règles {s1, s3} → {p2, p3, p4} et {p2} × {s1, s3} →
{p3, p4} dans RE, cexclusive({s1, s3} → {p2, p3, p4}) = 6

7 et cexclusive({p2}×{s1, s3} →
{p3, p4}) = 2

3 . Nous observons que {s1, s3} ⊑ {p2}×{s1, s3} ⊑ {p2, p3, p4}×{s1, s3}.
Cependant cexclusive({s1, s3} → {p2, p3, p4}) est plus grande que cexclusive({p2} ×
{s1, s3} → {p3, p4}).
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Cela empêche un calcul efficace de toutes les règles dont la exclusive confiance est
supérieure à un seuil défini par l’utilisateur. Nous considérons maintenant une autre
définition de la mesure de confiance.

Confiance naturelle Rappelons que la définition de la confiance de X → Y est
problématique lorsque le domaine support de X, ×Di∈D\DX

Di, est différent du do-

maine support de (X⊔Y ) qui est ×Di∈D\D′Di. La confiance dite naturelle repose sur
l’idée de ramener le support deX à un sous-ensemble du domaine support de (X⊔Y ).
La confiance de X → Y est alors une proportion d’éléments de ×Di∈D\D′Di et se voit
qualifiée de naturelle. Le prix à payer est la nécessité d’une nouvelle définition du
support spécifique aux prémisses des règles et dépendant aussi de leurs conclusions.

Définition B.10 (Support naturel d’une prémisse). ∀D′ ⊆ D, soit X → Y une
règle d’association sur D′, le support naturel de X noté sD\D′(X) est :

sD\D′(X) = {u ∈ ×Di∈D\D′Di | ∃w ∈ ×Di∈D′\DX
Di tel que ∀x ∈ X, x·w·u ∈ R} ,

où DX est l’ensemble de domaines de définition de X et x ·w ·u est la concaténation
de x, w et u (quitte à changer l’indexation des domaines de sorte que ceux dans DX
soient les premiers).

Définition B.11 (Confiance naturelle). ∀D′ ⊆ D, soit X → Y une règle d’association
sur D′, sa confiance naturelle notée cnaturelle(X → Y ) est :

cnaturelle(X → Y ) =
|s(X ⊔ Y )|
|sD\D′(X)| .

Lorsque X est une association sur D′, comme pour la confiance exclusive, la
confiance naturelle de X → Y vaut |s(X⊔Y )|

|s(X)| sous la convention ×Di∈∅D
i = {ǫ} que

nous avons déjà utilisée.

Exemple B.10. Dans RE, considérons à nouveau la règle {p1, p2} → {s1, s2}. Les
clients qui achètent les produits p1 et p2 ensemble (lors d’au moins une saison) sont
o1, o2, o3 et o5. Ceux qui les achètent ensemble à la fois en s1 et en s2 sont o1 et
o2. La confiance naturelle la règle vaut donc :

cnatural({p1, p2} → {s1, s2}) =
|s({p1, p2} × {s1, s2})|
|s{D3}({p1, p2})|

=
|{o1, o2}|

|{o1, o2, o3, o5}|
=

2

4
.

La confiance naturelle mesure ainsi, parmi les clients ayant au moins une fois acheté
p1 et p2 ensemble, la proportion des clients qui les achètent ensemble à la fois aux
deux saisons s1 et s2. À la différence de la confiance exclusive, les clients vérifiant
la règle pourraient, par ailleurs, acheter p1 et p2 au cours d’autres saisons sans que
cela ne fasse “baisser” la confiance naturelle.
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La confiance naturelle a une bonne propriété lui permettant, contrairement à la
confiance exclusive, un élagage de l’espace de recherche lors du calcul complet des
règles à forte confiance.

Théorème B.2 (Condition à élaguer l’espace de recherche). Soit X → Y \ X et
X ′ → Y \X ′ deux règles d’association sur D′ ⊆ D, on a :

X ′ ⊑ X ⊑ Y ⇒ cnaturelle(X
′ → Y \X ′) ≤ cnaturelle(X → Y \X) .

Preuve dans l’Annexe A.2.

Exemple B.11. Dans RE, {p1, p2} → {s1, s2} et {p1, p2}× {s1} → {s2} sont deux
règle sur {D1, D2}. La confiance naturelle de la première règle est 2

4 (voir ci-dessus).
La confiance naturelle de la seconde est:

|s({p1, p2} × {s1, s2})|
|sD3({p1, p2} × {s1})|

=
|{o1, o2}|
|{o1, o2, o3}|

=
2

3
.

Ces deux règles illustrent le Théorème B.2. En effet, on a {p1, p2} ⊑ {p1, p2} ×
{s1} ⊑ {p1, p2} × {s1, s2} et cnaturelle({p1, p2} → {s1, s2}) ≤ cnaturelle({p1, p2} ×
{s1} → {s2}).

Dans la découverte des règles, nous utilisons ce théorème pour élaguer des sous-
espaces de recherche où nous sommes certain qu’aucune règle ne pourra satisfaire
une contrainte de confiance naturelle minimale.

Règle d’association canonique

Nous définissons maintenant un principe d’équivalence entre règles d’association
et le concept de canonicité.

Définition B.12 (Équivalence syntaxique). ∀D′ ⊆ D, les règles d’association X →
Y et X → Z sur D′ sont syntaxiquement équivalentes si et seulement si X ⊔ Y =
X ⊔ Z.

À partir des Définitions B.8, B.9 et B.11, on démontre directement le lemme
suivant.

Lemme B.1. Deux règles d’association syntaxiquement équivalentes ont même
fréquence, même confiance exclusive et même confiance naturelle.

Chaque règle d’association canonique représente sa classe d’équivalence syntax-
ique.

Définition B.13 (Règle d’association canonique). ∀D′ ⊆ D, une règle d’association
X → Y sur D′ est canonique si et seulement si ∀Di ∈ D, πDi(X) ∩ πDi(Y ) = ∅.
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Toute collection complète de règles d’association satisfaisant des contraintes sur
leurs fréquences et/ou confiances peut être résumée, sans perte d’information, à
celles qui, parmi elles, sont canoniques. En effet, étant donné une règle d’association
canonique X → Y dans la collection, le Lemme 2 permet d’affirmer la présence, dans
la collection, de toutes les règles qui lui sont syntaxiquement équivalentes. De plus,
les construire est facile : ce sont les règles de la forme X → Y ⊔ Z avec Z ⊑ X.

B.2.4 Calcul de règles a priori intéressantes

Face à une relation n-aire R ⊆ ×Di∈DD
i, nous voulons calculer des collections de

règles a priori intéressantes, ce qui se traduit ici par le calcul de toutes les règles
d’association canoniques :
– définies sur un sous-ensemble D′ ( D;
– ayant une fréquence supérieure à un seuil µ ∈ [0; 1];
– ayant une confiance exclusive supérieure à un seuil βexclusive ∈ [0; 1];
– ayant une confiance naturelle supérieure à un seuil βnaturelle ∈ [0; 1].
Plus formellement, une fois qu’un analyste a spécifié D′ ( D et les différents seuils

(µ, βexclusive et βnaturelle), l’algorithme Pinard 3 doit calculer :

{X → Y canonique sur D′ |











f(X → Y ) ≥ µ
cexclusive(X → Y ) ≥ βexclusive
cnaturelle(X → Y ) ≥ βnaturelle

}.

Cette tâche sera effectuée en trois étapes : la construction du domaine support,
l’extraction de l’ensemble des associations qui satisfont la contrainte de fréquence
minimale, puis l’extraction des règles dont les confiances exclusive et naturelle
dépassent les seuils choisis par l’analyste.

Construction du domaine support

Le domaine support des règles d’association sur D′ est Dsupport = ×Di∈D\D′Di.
Soit DA = D′ ∪Dsupport. La relation RA sur DA est construite de la façon suivante:

RA = {(e1, e2, . . . , e|D′|, (e|D′|+1, . . . , en)) | (e1, e2, . . . , e|D′|, e|D′|+1, . . . , en) ∈ R} .

Extraction des associations fréquentes

La fréquence d’une règle d’association sur D′ est supérieure ou égale à µ si et
seulement si l’union de sa prémisse et de sa conclusion est une association dont le
support contient au moins α = ⌈µ× |Dsupport|⌉ éléments. L’extraction complète de
telles associations ressemble au problème de l’extraction des itemsets fréquents dans
une relation binaire. Cependant, il est doit être généralisé au contexte des relations

3. Pinard Is N-ary Association Rule Discovery.
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n-aires. Un algorithme comme Data-Peeler [33] résout un problème assez proche :
il impose la fermeture des associations alors que nous souhaitons ici lister toutes les
associations fréquentes, qu’elles soient fermées ou non. Nous avons donc modifié
Data-Peeler et ne présentons ici qu’une vision très abstraite de cette phase (voir
[33] pour des détails).

Extraire toutes les associations A sur D′ avec au moins α éléments dans son
support peut s’exprimer comme le calcul de chaque association A⊔Asupport sur DA
satisfaisant les quatre contraintes suivantes :

– Csur-D′(A ⊔Asupport) ≡ ∀Di ∈ D′, πDi(A) 6= ∅;
– Cconnecté(A ⊔Asupport) ≡ A ⊔Asupport ⊆ RA;
– Csupport-entier(A ⊔Asupport) ≡ Asupport = s(A);
– Cα-fréquent(A ⊔Asupport) ≡ |Asupport| ≥ α.
La dernière contrainte traduit l’obligation, pour les règles utilisant tous les éléments

de ∪Di∈D′πDi(A), d’excéder la fréquence minimale µ. En effet |s(A)|
|Dsupport| ≥ µ équivaut

à |s(A)| ≥ α et, comme l’avant-dernière contrainte (Asupport = s(A)) doit également
être vérifiée, on trouve bien |Asupport| ≥ α. L’avant-dernière contrainte, Csupport-entier,
force un support “fermé”. En effet, par définition du support d’une association,
ajouter un élément à Asupport (= s(A)) viole forcément Cconnecté. Csupport-entier(A ⊔
Asupport) équivaut ainsi à ∀t ∈ Dsupport \ Asupport, A ⊔ {t} 6⊆ RA. C’est sous cette
forme que nous l’utiliserons.

L’extracteur, que nous appelons Associations, parcourt l’espace de recherche en
le partitionnant en deux à chaque appel récursif. L’énumération suit donc un arbre
binaire. À chaque nœud de l’arbre, deux associations, appelées U et V , sont telles
que U est la plus petite association (au sens de ⊑) qui pourra être extraite depuis ce
nœud, U ⊔ V la plus grande (au sens de ⊑). Ainsi, l’appel initial de Associations

se fait avec U = ∅ et V = ×Di∈DA
Di et toutes les associations dans RA vérifiant

les quatre contraintes listées précédemment sont extraites. Les nœuds qui ne sont
pas des feuilles ont deux fils. Un premier fils où un élément e ∈ ∪Di∈DA

πDi(V ) est
choisi pour être présent dans les associations qui seront extraites dans le sous-arbre
d’énumération dont il est racine (e est “déplacé” de V vers U). Un second fils où ce
même élément est déclaré absent des associations dans le sous-arbre d’énumération
dont il est racine (e est “supprimé” de V ).

Deux raisons peuvent faire qu’un nœud est une feuille de l’arbre d’énumération.
La première raison est l’assurance qu’au moins une des quatre contraintes n’est
vérifiée par aucune association U dans le sous-arbre d’énumération qui dériverait du
nœud. C’est le cas lorsque :

– ∃Di ∈ D′ | πDi(U ⊔ V ) = ∅ (Csur-D′ est violée);
– ×Di∈DA

πDi(U) 6⊆ RA (Cconnecté est violée);

– ∃t ∈ Dsupport \ πDsupport(U ⊔ V ) |
(

×Di∈D′ πDi(U ⊔ V )
)

× {t} ⊆ RA
(Csupport-entier est violée);

– |πDsupport(U ⊔ V )| < α (Cα-fréquent est violée).
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U

V

U

V \ e

U ⊔ e

(V \ e) \ {v ∈ ∪i=1..nV i | ¬Cconnecté(U ⊔ e ⊔ v)}

Figure B.2: Enumération de l’élément e ∈ ∪Di∈DA
πDi(V ).

Les preuves de ces propriétés d’élagage reposent sur une généralisation des notions
de monotonie et d’anti-monotonie qui sont vérifiées par les quatre contraintes. La
contrainte Cconnecté, dont la variable a été remplacée par U , est monotone : lorsque
U viole la contrainte, toutes les associations plus grandes (au sens de ⊑) la violent
également. De façon duale, les autres contraintes, dont la variable a été remplacée
par U ⊔ V , sont anti-monotones : lorsque U ⊔ V viole la contrainte, toutes les
associations plus petites (au sens de ⊑) la violent également. L’autre raison qui
peut faire qu’un nœud est une feuille de l’arbre d’énumération est que V = ∅. Il
n’y a alors plus d’élément à énumérer. Si les quatre contraintes sont vérifiées, U est
alors une association à partir de laquelle des règles d’association seront construites.
Une stratégie d’énumération améliorée évite de générer des nœuds violant Cconnecté

puis d’élaguer l’espace de recherche. À la place, à chaque appel récursif, on sup-
prime de ∪Di∈DA

πDi(V ) les éléments qui, si ils étaient “déplacés” vers U , violeraient
Cconnecté. Ainsi, après avoir choisi un élément e à énumérer, les nœuds fils sont tels
que décrits par Figure B.2. L’algorithme d’extraction des associations fréquentes est
donné sous forme de pseudo-code (Algorithme B.1).

Entrée : (U, V )
Sortie : Toutes les associations fréquentes qui sont plus grandes que U et
plus petites que U ⊔ V (au sens de ⊑)
si Csur-D′(U ⊔ V ) ∧ Csupport-entier(U ⊔ V ) ∧ Cα-fréquent(U ⊔ V ) alors
si V = ∅ alors
Sortir U \ πDsupport(U)

sinon

Choisir e ∈ ∪Di∈DA
πDi(V )

Associations(U ⊔ {e}, (V \ e) \ {v ∈ ∪i=1..nV
i | ¬Cconnecté(U ⊔ e ⊔ v)})

Associations(U , V \ {e})
fin si

fin si
Algorithme B.1: Associations.
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P = {p1,p2} × {s1, s2}
C = ∅

P = {p2} × {s1, s2}
C = {p1}

P = {s1, s2}
C = {p1, p2}

¬cnaturelle

P = {p2} × {s2}
C = {p1} × {s1}

P = {p2}
C = {p1} × {s1, s2}

¬cnaturelle

P = {p2} × {s1}
C = {p1} × {s2}

¬cnaturelle

P = {p1} × {s1, s2}
C = {p2}

. . . . . .

P = {p1, p2} × {s2}
C = {s1}

. . .

P = {p1, p2} × {s1}
C = {s2}

Figure B.3: Calcul des règles à partir d’une association.

Extraction des règles avec les confiances minimales

À partir d’une association fréquente A extraite par Associations, il s’agit main-
tenant de construire des règles d’association canoniques utilisant tous les éléments de
∪Di∈D′πDi(A). Chacune de ces règles, P → C, répartit ces éléments entre prémisse,
P , et conclusion, C. En d’autres termes P ⊔ C = A. Pour énumérer ces règles, la
stratégie d’énumération choisie construit un arbre. À chaque nœud de l’arbre est as-
sociée une règle d’association candidate. En d’autres termes, P et C sont instanciés
et, si P → C vérifie les contraintes de confiances naturelle et exclusive minimales,
alors elle est retenue.

En ne regardant que les conclusions (C) et étant donné A, la prémisse(P ) est
unique, P = A \ C. En particulier, sa racine est A → ∅ et C grandit d’un élément
(via ⊔) à chaque niveau de l’arbre (en parallèle, P se voit retirer ce même élément).
Néanmoins cet arbre est, dans notre cas, parcouru en profondeur et ce n’est pas une
fréquence minimale qui l’élague mais la confiance naturelle minimale. Le théorème
à l’œuvre est donc le Théorème B.2.

Par exemple, dans RE , considérons l’extraction de règles d’association canoniques
ayant une confiance naturelle d’au moins 0, 6. Figure B.3 illustre le processus de
production de ces règles à partir de l’association A = {p1, p2}×{s1, s2}, extraite par
Associations. Les éléments de ∪Di∈D′πDi(A) sont ordonnés de façon arbitraire.
Dans cet exemple, l’ordre ≺ choisi est p1 ≺ p2 ≺ s1 ≺ s2. À chaque nœud, les
éléments qui peuvent augmenter (via ⊔) la conclusion sont ceux qui sont plus grands
(selon ≺) que tous les éléments déjà en conclusion (autrement dit, plus grand que
max≺(C), (pour l’appel initial à Associations, l’élément max≺(∅) est défini comme
plus petit que tous les autres dans l’ordre ≺). Sur la figure, ces éléments sont en
gras. Un nœud sans élément en gras n’a aucun fils. Un nœud qui ne satisfait pas la
contrainte de confiance naturelle minimale (il est, sur la figure, encadré de pointillés),
n’en a pas non plus. D’après le Théorème B.2, cet élagage est sûr : aucune règle
avec une confiance suffisante n’est manquée.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0094/these.pdf 
© [T.K.N. Nguyen], [2012], INSA de Lyon, tous droits réservés
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Comme nous l’avons vu, et contrairement à la confiance naturelle, la confiance
exclusive n’est pas anti-monotone. Vérifier la contrainte de confiance exclusive min-
imale est donc l’ultime condition à vérifier pour produire la règle mais elle ne donne
jamais lieu à élagage. L’Algorithme B.2 résume l’extraction des règles canoniques
de confiance suffisante depuis une association fréquente A. Pour obtenir de bonnes
performances, précisons que les confiances (exclusive et naturelle) sont, autant que
possible, calculées sans retour à RA. Déjà |s(P ⊔C)| = |s(A)|, qui intervient dans les
deux définitions, est constante et connue dès l’extraction de A par Associations.
Ensuite |s(P )| est connue si aucune de ses composantes n’est vide : en effet, puisque
P ⊑ (P ⊔ C), le Théorème B.2 nous assure que P est une association fréquente sur
D′ et a donc été extraite par Associations. Enfin, à chaque calcul de |s(P )| (P
a alors une composante vide) ou de |sD′(P )| depuis RA, la valeur est stockée pour
éviter de la calculer à nouveau si cette même prémisse est considérée pour une autre
règle.

Entrée : (P,C)
Sortie : Toutes les règles d’association canoniques qui utilisent tous les élé-
ments de ∪Di∈D′πDi(P ⊔ C), avec une prémisse plus petite que P (selon ⊑),
une conclusion plus grande que C (selon ⊑) et satisfaisent les contraintes de
confiance minimale
pour tout e ≻ max≺(C) faire
(P ′, C ′)← (P \ {e}, C ⊔ {e})
si cnaturelle(P

′ → C ′) ≥ βnaturelle alors

si cexclusive(P
′ → C ′) ≥ βexclusive alors

Sortir P ′ → C ′

fin si

Règles(P ′, C ′)
fin si

fin pour

Algorithme B.2: Règles.

Nous pouvons maintenant donner l’Algorithme B.3 qui répond au problème du
calcul des règles a priori intéressantes sur D′ ( D.

B.2.5 Validation empirique

Ensemble de données: DistroWatch

DistroWatch est un site Web qui rassemble une information complète sur les dis-
tributions GNU/Linux, BSD et Solaris. Chaque distribution est décrite sur une page
séparée. Lorsque qu’un visiteur charge une page, on considère que la distribution
qu’elle décrit l’intéresse. L’adresse IP du visiteur nous permet de connâıtre son pays.
Les données produites pendant sont agrégées par semestre (13 semestres à partir de
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Entrée : Relation R sur D = {D1, . . . , Dn}, D′ ( D,
(µ, βexclusive, βnaturelle) ∈ [0; 1]3

Sortie : Toutes les règles d’association canoniques sur D′ satisfaisant les
contraintes de fréquence et de confiances minimales
Dsupport ← ×Di∈D\D′Di

(DA,RA)← (D′ ∪Dsupport, ∅)
pour tout (e1, e2, . . . , e|D′|, e|D′|+1, . . . , en) ∈ R faire

RA ← RA ∪ (e1, e2, . . . , e|D′|, (e|D′|+1, . . . , en))
fin pour

α← ⌈µ× |Dsupport|⌉
A ← Associations(∅,×Di∈DA

Di)
pour tout A ∈ A faire

Règles(A, ∅)
fin pour

Algorithme B.3: Pinard.

début 2004 à début 2010), par pays et par distribution (655 distributions). Seuls les
pays associés à au moins 2000 consultations d’une distribution lors d’un semestre
ont été gardés (96 pays gardés). Les données numériques sont ensuite normalisées de
sorte que tous les pays (resp. tous les semestres) aient la même importance. Enfin,
elles sont transformées en une relation ternaire listant les triplets les plus significat-
ifs. Ces derniers sont choisis à l’aide d’une procédure locale (i.e., par distribution)
inspirée du calcul d’une valeur p : pour chaque distribution, on garde ses triplets as-
sociés aux plus grandes valeurs numériques jusqu’à ce que leur somme atteigne 20%
de la somme de toutes les valeurs impliquant la distribution. Si un 3-uplet (p, d, s)
appartient à la relation, cela signifie qu’une quantité importante d’utilisateurs de
pays p ont visité la description de la distribution d pendant le semestre s. Nous ap-
pelons la relation ainsi obtenue RDistroWatch. Elle contient 21,033 triplets, sa densité
est 21,033

13×655×96 = 2.6%.

Étude qualitative

Nous souhaitons découvrir des règles associant pays et distributions (ces deux di-
mensions forment l’ensemble que nous avons appelé D′ jusqu’à maintenant). Pinard
est utilisé avec pour seuils de fréquence et de confiances µ = 0, 75, βexclusive = 0, 6
et βnaturelle = 0, 8. On extrait alors 58 règles d’association canoniques. Parmi elles :

– {Taiwan} × {fedora} → {b2d}
(f : 0.846, cnatural : 0.917, cexclusive : 0.917);

– {Japan} × {centos} → {Ecuador}
(f : 0.769, cnatural : 0.909, cexclusive : 0.909);

– {berry,plamo} → {Japan}
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(f : 0.923, cnatural : 1, cexclusive : 0.75);
– {berry,momonga,plamo} → {Japan}
(f : 0.769, cnatural : 1, cexclusive : 1);

– {caixamagica} → {Portugal}
(f : 0.846, cnatural : 1, cexclusive : 1).

La première règle ci-dessus indique que si les Taiwaneses s’intéressent à fedora
puis ils s’intéressent aussi à b2d au même semestre, la confiance est plus grande que
0,9 (cnaturel = cexclusive = 0, 917). La probabilité pour centor est consulté par les
Equatoriens, en même temps où les Japonais le consultent, est supérieur à 90% (à
la seconde règle, cnaturel = cexclusive = 0, 909). Japon est le pays d’origine des dis-
tributions berry, plamo et momonga, c’est à dire, ces distributions sont développées
par les Japonais. C’est pourquoi presque des visiteurs de ces distributions sont des
Japonais. La confiance naturelle de la troisième règle est de 1, cela signifie que les
Japonais visitent Berry et Plamo à tout le semestre, lorsque ces distributions sont
visitées ensemble. Cette règle indique aussi que les gens d’autres pays consultent
rarement ces distributions au même semestre (1 − cexclusive = 0, 25). Parce que la
quatrième règle indique que les trois distributions berry, plamo et momonga sont
visitées au même semestre, la confiance exclusive est plus élevé. Il est 1, autrement
dit, en dehors du Japon, aucun autre pays charge souvent ces trois distributions au
même semestre. La même interprétation vaut pour la dernière règle. La distribu-
tion caixamagica est développée par et pour les personnes aux Philippines. Elle est
visitée exclusivement par eux (cnaturel = cexclusive = 1).
Les règles que nous venons de détailler font sens puisque les distributions qui

sont développées spécifiquement par et pour un pays intéressent particulièrement
les internautes de ce pays. Il se trouve que les règles que nous n’avons pas dis-
cutées mais qui ont des distributions en prémisse et des pays en conclusion, sont
majoritairement interprétables de cette façon. Pour en rendre compte et valider
les mesures de confiances que nous avons définies, la Figure B.4 représente, pour
différents paramétrages, la valeur suivante :

q =

|{X → Y |
{

X ⊆ Ddistributions ∧ Y ⊆ Dcountries

∀y ∈ Y, ∃x ∈ X | origin(x) = y
}|

|{X → Y |X ⊆ Ddistributions ∧ Y ⊆ Dcountries}|

où origine(x) est le pays d’où provient la distribution x. Lorsque les seuils de
confiances minimales augmentent, q augmente. Globalement, lorsque le seuil de
fréquence minimale augmente, q augmente aussi. Cela corrobore donc empirique-
ment les choix des sémantiques associées à ces mesures. q augmente plus vite avec
cexclusive qu’avec cnaturelle. Les paliers observés sur la Figure B.4b pour βnaturelle ≤ µ
sont des conséquences directes des Définitions B.8 et B.11 : les règles extraites sont
les mêmes.
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Figure B.4: Validation qualitative des mesures

Élagage dans la génération des règles

Si le seuil de fréquence augmente, le nombre d’associations fréquentes ne peut
que diminuer. Dans l’algorithme Associations, la vérification de la contrainte
Cα-fréquent va donc élaguer de plus grandes régions de l’espace de recherche où la
contrainte est violée. Alors le nombere de règles et le temps d’extraction va décrôıtre
avec le seuil de fréquence minimale. Figure B.5a illustre l’efficacité de l’élagage de
l’algorithme Associations sur l’extraction des règles associant pays et distributions
dans RDistroWatch avec βexclusive = βnaturelle = 0 et le seuil de fréquence minimale
varie de 0, 3 à 0, 9.

En exploitant le Théorème B.2, l’algorithme Règles élague les arbres dérivant
des associations fréquentes. Ainsi, quand le seuil de confiance naturelle augmente, le
nombre de règles et le temps de calcul de ces règles diminuent (Figure B.5b). Cette
expérience est réalisée sur RDistroWatch avec βexclusive = 0, βnaturelle = 0, 3 et le seuil
de confiance naturelle minimale varie de 0 à 1.

L’évolutivité de Pinard a été testé sur l’extraction des règles d’assciation sur les
deux domaines Pays et Distributions avec µ = 0, 75 et βnaturelle = βexclusive = 0.
RDistroWatch a été reproduite jusqu’à 10 fois sur le domaine Semestres. Il montre que
l’algorithme est linéaire. Plus précisément, une régression linéaire de R 7→ TR

T1
(où

R est le facteur de réplication; TR est le temps d’exécution sur cet jeu de données
répliquée) donne y = 2.27x− 2.91 avec 0, 96 comme un coefficient de détermination.
Ainsi, Pinard se comporte linéairement selon le facteur de réplication.

B.2.6 Règle d’association multidimensionnelle non redondante

Si une règle implique l’information qui est incluse dans une autre règle plus
générale, alors la règle n’est pas intéressante et elle n’est pas nécessaire de tourner.
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Figure B.5: Efficacité de Pinard

Exemple B.12. Dans RE, considérons les règles suivantes:
– r3: {s1, s3} → {p2, p3, p4} (f : 0.4, cnatural : 0.67, cexclusive : 0.86),
– r4: {p2} × {s1, s3} → {p3} (f : 0.4, cnatural : 0.67, cexclusive : 0.67),
– r5: {p1} × {s2} → {p2} × {s1} (f : 0.4, cnatural : 1, cexclusive : 1),
– r6: {p1} × {s1, s2} → {p2} (f : 0.4, cnatural : 1, cexclusive : 1),

Elles sont toutes canoniques et leurs frequences, leurs confiances exclusive et leurs
confiances naturelles dépassent respectivement 0.4, 0.6, et 0.6. À cet égard, elles sat-
isfont individuellement à cet aspect d’ntérêt. Néanmoins, tous ensemble, elles four-
nissent des redondances. Par exemple, r4 est plus spécifique que r3, car elle nécessite
plus de condition pour appliquer (les achats doivent impliquer p2) et sa conclusion
est moins informative (elle ne dit rien sur p4). Cependant, cette spécialisation
n’attribue pas la fréquence et les confiances de r4 plus grandes que ceux de r3. Par
conséquent, r4 est dite d’être redondante. De même, par l’existence de r5, r6 est
redondante. Puisque l’analyste ne trouverait aucune valeur ajoutée dans les règles
r4 et r6, elles ne devraient pas être retournées.

Nous généralisons la notion de règle non-redondante ayant la prémisse minimale
et la conclusion maximale [82] pour notre établissement de la règle d’association
multidimensionnelle.

Définition B.14 (Règle d’association multidimensionnelle non-redondante). ∀D′ ⊆
D, une règle X → Y sur D′ est non-redondante si et seulement si elle est canonique
et aucune autre règle canonique X ′ → Y ′ est tel que:























((X ′ ⊔ Y ′ = X ⊔ Y ) ∧ (X ′
⊏ X)) ∨ ((X ′ ⊔ Y ′

⊐ X ⊔ Y ) ∧ (X ′ ⊑ X))

f(X ′ → Y ′) ≥ f(X → Y )

cexclusive(X
′ → Y ′) ≥ cexclusive(X → Y )

cnatural(X
′ → Y ′) ≥ cnatural(X → Y )

.
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L’extraction des règles d’association non-redondantes est présentée dans la sec-
tion 3.3 (l’algorithme Pinard++). Les expériences pour évaluer l’avantage de
l’élimination des règles redondantes et pour évaluer l’efficacité de Pinard++ sont
présentées dans la section 3.4.

B.3 Règles disjonctives dans une relation n-aire

Une association peut fréquemment co-appâıtre avec certains autres associations,
alors que ces associations ne vont pas nécessairement co-appâıtre ensemble. Par
exemple, observons la relation RE (voir la Figure B.1), les produits p1, p2 et p4 sont
fréquentement achetés en saison s2. Toutefois, un client achète rarement tous ces
produits ensemble dans la même transaction. Ainsi, la fouille de règles d’association
multidimensionnelles ne peut pas fournir une règle comme {s2} → ({p1, p2}×{s1})∨
({p4} × {s4}). Une telle règle signifie que quand un client fait des courses en saison
s2, il/elle a tendance à acheter p1, p2 ou p4. Si il/elle préfère les produits p1, p2,
alors il/elle les achète aussi en saison s1. Si il/elle préfère p4, alors il/elle a tendance
à également l’acheter en saison s4. En effet, des telles règles ont plus information
que des règles conjonctives.

En outre, il est inefficace de trouver des règles d’association multidimensionnelles
sur un jeu de données ayant un très petit nombre d’associations fréquentes et un
très grand nombre d’associations infréquentes, parce que les règles d’association
sont basées sur la relation de co-occurrence des associations avec la fréquence et les
confidences assez grandes.

Nous abordons les problèmes ci-dessus en introduisant des disjonctions dans les
conclusions des règles qui s’appelent règles disjonctives multidimensionnelles. Nos
objectifs sont de répondre à la question ”Quelles associations peuvent appâıtre lorsque
l’on observe une association fréquente?” et de fouiller des règles dans lesquelles une
association avec une grandes fréquence implique des associations avec une fréquence
faible.

Soit n ensembles finis supposés disjoints {D1, . . . , Dn} = D, R ⊆ D1 × · · · ×
Dn la relation n-aire à partir de laquelle on souhaite découvrir des règles, D′ =
{D1, . . . , D|D′|} l’ensemble de domaines d’intérêt défini par l’utilisateur, une règle
disjonctive multidimensionnelle sur D′ est de la forme X → ∨Y telle que l’union
de sa prémisse et chaque association dans les disjonctions de sa conclusion est une
association sur D′. Il s’appelle simplement une règle quand elle est claire dans le
contexte.

Définition B.15 (Règle disjonctive multidimensionnelle). ∀D′ ⊆ D, X → ∨Y
est une règle disjonctive multidimensionnelle sur D′ si et seulement si X est une
association sur un sous-ensemble de D′ et Y est un ensemble d’ associations sur des
sous-ensembles de D′ tels que ∀Y ∈ Y, X ⊔ Y est une association sur D′.
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Le domaine support d’une règle disjonctive multidimensionnelle sur D′ est le pro-
duit Cartésien de tous domaines qui ne sont pas dans D′, i. e.., ×D∈D\D′D.

Exemple B.13. Dans RE, {s2} → ({p1, p2} × {s1}) ∨ ({p4} × {s4}), {p3, p4} →
({p2}×{s1, s3})∨ ({s4}) et {p4}×{s1} → ({p1, p2})∨ ({p2})∨ ({p2, p3}×{s3}) sont
trois règles disjonctives multidimensionnelles sur {D1, D2}. Leur domaine support
est D3.

Étant donné une règle disjonctive multidimensionnelle, nous voulons d’abord
d’évaluer la probabilité de la conjonction entre la prémisse et chaque association
dans la conclusion, les measures s’appellent fréquence d’association (Definition 49)
et confiance d’association (Definition 50). Nous voulons aussi mesurer la probabilité
d’observer au moins une association dans sa conclusion où sa prémisse apparâıt, et
ces measures s’appellent fréquence disjonctive (Definition 51) et confiance disjonctive
(Definition 52).
Il peut y avoir un grand nombre d’associations co-apparaissant fréquemment

avec une association fréquente donnée. Supposons que le nombre d’associations
co-apparaissant fréquemment avec l’association fréquente donnée est k, le nombre
de disjonctions qui peuvent être générées à partir des sous-ensembles de ces associ-
ations est 2k. Donc, étant donné une association fréquente, il y a un grand nombre
de règles disjonctives multidimensionnelles générées qui satisfont aux contraintes
sur les mesures d’intérêt minimales. Le calcul de la fouille de toutes ces règles est
cher, ici encore, nous devons faire face à des règles redondantes. Nous considérons
qu’une règle est non-redondante si son contenu d’information n’est pas impliqué
dans une autre règle plus générale. Cela signifie qu’une règle non-redondante a une
prémisse minimale et une conclusion maximale. Plus spécifiquement, une règle est
non-redondante si sa prémisse est une association minimale et sa conclusion com-
prend le nombre maximal d’associations qui peuvent conjoindre avec sa prémisse
telle que l’union la prémisse et chaque association dans la conclusion est un ensem-
ble fermé.
L’extraction de règles disjonctives multidimensionnelles non-redondantes est pré-

sentée dans la section 4.3 (l’algorithme Cidre 4). Les expériences pour vérifier la
signification de la fouille de règles disjonctives multidimensionnelles et pour évaluer
l’efficacité de Cidre sont présentées dans la section 4.4.

B.4 Application à l’analyse des graphes relationnels

dynamiques

Nous présentons une approche pour la détection de motifs qui peuvent co-apparâıtre
dans l’évolution d’un graphe dynamique grâce à la fouille de règles d’association (or
disjonctives) multidimensionnelles.

4. Cidre Is a Disjunctive Rule Extractor.
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a1 a2 a3 a4 a1 a2 a3 a4 a1 a2 a3 a4 a1 a2 a3 a4 a1 a2 a3 a4
d1 1 1 1 1 1 1 1 1 1 1 1 1 1

d2 1 1 1 1 1 1 1 1 1 1

d3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

d4 1 1 1 1 1 1 1 1 1 1 1 1 1

t1 t2 t3 t4 t5

Figure B.6: Exemple d’un graphe relationnel dynamique

En effet, nous nous concentrons sur des graphes relationnels dynamiques dont
les sommets sont fixés, des arcs orientés peuvent changer (i. e.., apparâıtre ou dis-
parâıtre) dans le temps. Nous codons un tel graphe relationnel dynamique en une
relation n-aire qui est au moins ternaire (deux dimensions sont utilisées pour coder
les matrices d’adjacence, une telle matrice décrit le graphe à un temps, et au moins
une autre dimension indique les temps).

Exemple B.14. Figure B.6 représente un tel graphe relationnel dynamique: il décrit
la relation entre les sommets de départ dans D1 = {d1, d2, d3, d4} et les sommets
d’arrivée dans D2 = {a1, a2, a3, a4} aux temps dans D3 = {t1, t2, t3, t4, t5}. Chaque
’1’ dans la relation RG ⊆ D1 × D2 × D3 est à l’intersection de trois éléments
(di, aj , tk), ce qui indique un arc orienté de aj à di au temps tk.

Pour détecter les co-occurrences de des motifs dans un graphe dynamique, nous
d’abord codons le graphe dynamique en une relation n-aire, nous ensuite considérons
chaque motif comme une association dans la relation n-aire, la co-occurrence de des
motifs dans le graphe dynamique est considérée comme la co-occurrence de des
associations dans une règle d’association (or disjonctive) multidimensionnelle dans
la relation n-aire. Nous introduisons aussi certaines contraintes qui nous permettent
non seulement d’extraire des règles spécifiques (par rapport le sujet d’intérêt), mais
aussi d’améliorer l’efficacité de la phase d’extraction.

Exemple B.15. Quelques exemples de règles pouvant être fouillées à partir du
graphe dynamique dans Figure B.6 sont donnés dans Figure B.7 et dans Figure B.8.

Les règles de la Figure B.7 montrent des relations entre des sommets de départ
et des temps. Par exemple, la règle de la Figure B.7a indique que l’événement pour
lequel des arcs de départ des sommets 1 et 2 vont à un même sommet se produit
dans les temps t1 et t2. La règle de la Figure B.7b dit que la plupart des sommets
d’arrivée des arcs partant au sommet 3 au temps t2 sont aussi les sommets d’arrivée
des arcs partant à ce sommet aux temps t3, t4 et t5.
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(a) {d1, d2} → {t1, t2}.

3
t2

t3, t4, t5

(b) {d3}×{t2} → {t3, t4, t5}.

Figure B.7: Des règles sur {D1, D3} dans RG.
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(a) {d1}×{a4} → {d3, d4}×{a1, a3}.
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(b) {d2, d4} → ({d3} × {a1}) ∨ ({d1} × {a3}) ∨ ({a4}).

Figure B.8: Des règles sur {D1, D2} dans RG.

Dans la Figure B.8, nous donnons des exemples de règles comprenant à la fois des
sommets de départ et des sommets d’arrivée. La Figure B.8a décrit la dépendance
entre des sous-graphes. Plus précisément, elle indique que le sous-graphe en prémisse
de la règle peut être élargi à la clique en conclusion avec une confiance assez élevée.
La règle de la Figure B.8b montre que si les arcs de départ des sommets 2 et 4
convergent, ils convergeront vers les sommets 1, 3 ou 4.

Dans le cadre d’une application à l’analyse des usages de vélos dans le système
Vélo’v (système de Vélos en libre-service dans Grand Lyon), les expériences sont
présentées dans Section 5.3. Nous montrons que les règles obtenues aident à mieux
comprendre “ Comment le système Vélov’v est utilisé”. Cette compréhension est
bienfaisante pour améliorer le service accompli et développer le système Vélov’v.
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