Thèse soutenue

Modèles de charge pour la conduite et la planification dans le contexte du compteur intelligent dans le réseau de distribution

FR  |  
EN
Auteur / Autrice : Ni Ding
Direction : Yvon BésangerFrédéric Wurtz
Type : Thèse de doctorat
Discipline(s) : Génie électrique
Date : Soutenance le 30/11/2012
Etablissement(s) : Grenoble
Ecole(s) doctorale(s) : École doctorale électronique, électrotechnique, automatique, traitement du signal (Grenoble ; 199.-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire de génie électrique (Grenoble)
Jury : Examinateurs / Examinatrices : Nouredine Hadj-Said, Didier Mayer
Rapporteur / Rapporteuse : Corinne Alonso, Carlo Alberto Nucci

Résumé

FR  |  
EN

En 2010, ERDF (Electricité Réseau Distribution France) a entamé la mise en place du projet « Linky » dont l'objectif est d'installer 35 millions de compteurs intelligents en France. Ces compteurs permettront de collecter les données de consommation en « temps réel », avec lesquelles des modèles de charge plus précis pourront être envisagés. Dans ce contexte, cette thèse définit deux objectifs: la définition de modèles prédictifs de charge pour la conduite et la conception de modèles d'estimation de charge pour la planification. En ce qui concerne la conduite, nous avons développés deux modèles. Le premier exploite le formalisme mathématique des séries chronologiques ; le second est basé sur un réseau de neurones. Les deux modèles cherchent à prévoir la charge des jours « J+1 » et « J+2 » à partir des informations collectées jusqu'au jour « J ». Le modèle « série chronologique » repose sur les propriétés temporelles des courbes de charge. Ainsi on découpe la courbe de charge en trois parties : la tendance, la périodicité et le résidu. Les premiers deux sont déterministes et indépendamment développés en deux modèles : le modèle de tendance et le modèle de cyclicité. La somme de la prévision de ces deux modèles est la prévision finale. Le résidu quant à lui capture les phénomènes aléatoires que présente la courbe de charge. Le modèle de prédiction ainsi développé s'aide de nombreux outils statistiques (e.g., test de stationnarité, test ANOVA, analyse spectrale, entres autres) pour garantir son bon fonctionnement. Enfin, modèle « série chronologique » prend en compte plusieurs facteurs qui expliquent la variation dans la courbe de consommation tels que la température, les cyclicités, le temps, et le type du jour, etc. En ce qui concerne le modèle à base de réseaux de neurones, nous nous focalisons sur les stratégies de sélection de la structure pour un modèle optimal. Les choix des entrées et du nombre de neurones cachés sont effectués à travers les méthodes dites de «régression orthogonale » et de « leave-one-out-virtuel ». Les résultats montrent que la procédure proposée permet de choisir une structure de réseau de neurones qui garantisse une bonne précision de prédiction. En ce qui concerne la planification, un modèle non paramétrique est proposé et comparé avec le modèle actuel « BAGHEERA » d'EDF. Avec l'ouverture du marché d'électricité, la relation entre les fournisseurs, les clients et les distributeurs devient flexible. Les informations qualitatives d'un client particulier telles que sa puissance souscrite, son code d'activité, ses tarifs etc. sont de moins en moins disponibles. L'évolution du modèle BAGHEERA qui dépend ces informations pour classer les clients dans différentes catégories est devenue indispensable. Le modèle non paramétrique est un modèle individuel centré sur le relevé des compteurs. Trois variables de régression non paramétriques : Nadaraya Watson, Local Linear et Local Linear adapted ont été analysées et comparées. Les scénarios de validation montrent que le modèle non paramétrique est plus précis que le modèle « BAGHEERA ». Ces nouveaux modèles ont été conçus et validés sur de vraies données collectées sur le territoire français.