Thèse soutenue

Sur la géométrie et la combinatoire du groupe T de Thompson

FR  |  
EN
Auteur / Autrice : Ariadna Fossas
Direction : Louis FunarJosé Burillo
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance le 29/06/2012
Etablissement(s) : Grenoble en cotutelle avec Universitat politècnica de Catalunya - BarcelonaTech
Ecole(s) doctorale(s) : École doctorale mathématiques, sciences et technologies de l'information, informatique (Grenoble ; 199.-....)
Partenaire(s) de recherche : Laboratoire : Institut Fourier (Grenoble)
Jury : Président / Présidente : Jérôme Los
Examinateurs / Examinatrices : François Dahmani, Vlad Sergiescu, Jaume Amorós
Rapporteurs / Rapporteuses : Ross Geoghegan

Résumé

FR  |  
EN

Cette thèse concerne le groupe T de Thompson. Ce groupe simple infini et finiment présenté est généralement vu comme un sous-groupe du groupe des homéomorphismes dyadiques du cercle unité qui sont linéaires par morceaux et préservent l'orientation («T linéaire par morceaux»). Cependant, T peut aussi être vu comme: 1.- le groupe des classes d'équivalence des paires équilibrées d'arbres binaires finis («T combinatoire»), 2.- un sous-groupe du groupe des homéomorphismes de la droite projective réelle qui préservent l'orientation et sont «PSL(2,Z) par morceaux» («T projectif par morceaux»), et 3.- le groupe modulaire asymptotique de l'épaissi, dans le plan hyperbolique, de l'arbre régulier de valence 3 («T modulaire»).On montre d'abord que la copie canonique de PSL(2,Z) obtenue à partir de «T projectif par morceaux» est un sous-groupe non distordu de T. Pour cela, on transporte ce sous-groupe pour obtenir une caractérisation dans le «T combinatoire», ce qui permet d'estimer la longueur des mots de ses éléments. La non-distorsion est alors une conséquence des propriétés métriques de T établies par Burillo-Cleary-Stein-Taback. Comme corollaire, T a des sous-groupes non distordus isomorphes au groupe libre engendré par deux éléments. Qui plus est, PSL(2,Z) est aussi donné explicitement sous forme «linéaire par morceaux».Le deuxième résultat utilise «T modulaire» pour prouver qu'il y a exactement f(n) classes de conjugaison d'éléments d'ordre n dans T, où f est l'indicatrice d'Euler. Étant donné un élément de torsion t de T d'ordre n, on trouve une triangulation du disque de Poincaré qui est invariante sous l'action de T sauf dans un polygone convexe à n côtés. On construit ensuite un complexe cellulaire C contractile et simplement connexe sur lequel le groupe T agit par automorphismes, et qui est minimal pour ces propriétés. Le groupe d'automorphismes de C est essentiellement T lui même (c'est une extension de T par le groupe d'ordre 2). Ce complexe cellulaire peut être vu comme une généralisation des associaèdres deStasheff dans le cas d'un polygone convexe à une infinité de côtés. L'action de T sur C est transitive sur les arêtes et les sommets, et plus généralement, sur les cellules «de type associaèdre» de toute dimension.La partie finale décrit les premières étapes d'un programme de recherche. On utilise l'interprétation géométrique du 1-squelette de C en termes de triangulations dyadiques du disque de Poincaré pour définir un bord géométrique à l'infini. Bien qu'on ait prouvé auparavant que le 1-squelette de C n'est pas hyperbolique, la construction s'inspire de celle de Gromov et permet la description de certains points du bord.