Mots de retours et pavages dans les plans sturmiens

par Matthieu Simonet

Thèse de doctorat en Mathématiques

Sous la direction de Laurent Vuillon.

Le président du jury était Valérie Berthé.

Le jury était composé de Fabien Durand, Thomas Fernique.

Les rapporteurs étaient Pierre Arnoux, Luca Zamboni.


  • Résumé

    Les mots sturmiens sont une façon de coder les droites discrètes apériodiques. Ils ont été étudiés depuis la fin du 19ème siècle et disposent de nombreuses caractérisations. L'une d'elles, obtenue par Vuillon, est centrée sur la notion de mot de retour.Cette thèse a pour objet l'étude des mots sturmiens en dimension 2 vus comme codages des plans discrets apériodiques. L'objectif est d'aller vers une caractérisation des mots sturmiens bi-dimensionnels analogue à celle obtenue par Vuillon en dimension 1.Mais des problèmes propres à la dimension 2 rendent cette étude délicate, tels l'absence de concaténation de mots ou la difficulté à localiser un facteur au sein d'un mot. Afin d'y faire face, nous introduisons en dimension 2 les notions de motifs, motifs pointés, mots de localisation et mots de retour. Nous obtenons ainsi un prolongement à la dimension 2 d'un théorème de Morse et Hedlund concernant certains mots de retour dans un mot sturmien.Ce résultat nous permet d'établir un nouvel algorithme de fractions continues et nous permet de proposer, dans un cadre restreint, une notion de suite dérivée.

  • Titre traduit

    Return words in discrete planes


  • Résumé

    Sturmian words are a way to encode aperiodic discrete lines. They have been studied since the end of the 19th century and can be characterized in many ways. One of these characterizations, obtained by Vuillon, centers around the notion of return words.This thesis aims to study 2-dimensional Sturmian words as encodings of aperiodic discrete planes. It is a first step towards a characterization of 2-dimensional Sturmian words analogous to that of Vuillon in dimension 1.However, concerns specific to dimension 2, such as the impossibility to concatenate words or the difficulty to locate a factor inside a word make the study much trickier. To tackle this, we introduce in dimension 2 notions of patterns, pointed patterns, localization words and return words.We obtain a 2-dimensional version of a theorem of Morse and Hedlund concerning certain return words in a Sturmian word. This result enables us to establish a new continued-fractions algorithm and to introduce, in a restricted setting, a notion of derived sequence.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Grenoble Alpes. Bibliothèque et Appui à la Science Ouverte. Bibliothèque électronique.
  • Bibliothèque : Université Savoie Mont Blanc (Chambéry-Annecy). Bibliothèques universitaires. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.