Algorithmes génériques en temps constant pour la résolution de problèmes combinatoires dans la classe des rotagraphes et fasciagraphes. Application aux codes identifiants, dominants-localisateurs et dominants-total-localisateurs
Auteur / Autrice : | Marwane Bouznif |
Direction : | Myriam Preissmann, Julien Moncel |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques |
Date : | Soutenance le 04/07/2012 |
Etablissement(s) : | Grenoble |
Ecole(s) doctorale(s) : | École doctorale Mathématiques, sciences et technologies de l'information, informatique (Grenoble ; 1995-....) |
Jury : | Président / Présidente : Sylvain Gravier |
Examinateurs / Examinatrices : Myriam Preissmann, Julien Moncel, Paul Dorbec, Sandi Klavzar, Nicolas Trotignon | |
Rapporteur / Rapporteuse : Ralf Klasing, Antoine Lobstein |
Mots clés
Résumé
Un fasciagraphe de taille n et de fibre F est constitué de n copies consécutives du graphe F, chaque copie étant reliée à la suivante selon le même schéma. Les rotagraphes sont définis similairement, mais selon une structure circulaire. Dans cette thèse nous caractérisons un ensemble de problèmes combinatoires qui peuvent être résolus de façon efficace dans la classe des fasciagraphes et rotagraphes. Dans ce contexte, nous définissons les (d,q,w)-propriétés closes et stables, et présentons pour de telles propriétés un algorithme pour calculer une solution optimale en temps constant pour l'ensemble des fasciagraphes ou rotagraphes de fibre fixée. Nous montrons que plusieurs problèmes communément étudiés dans la théorie des graphes et NP-complets dans le cas général sont caractérisés par des (d,q,w)-propriétés closes ou stables. Dans une seconde partie de la thèse, nous adaptons cet algorithme générique à trois problèmes spécifiques caractérisés par des (d,q,w)-propriétés stables : le problème du code identifiant minimum, et deux problèmes proches, celui de dominant-localisateur minimum et celui du dominant-total-localisateur minimum. Nous présentons alors une implémentation de l'algorithme qui nous a permis de répondre à des questions ouvertes dans certains rotagraphes particuliers : les bandes circulaires de hauteur bornée. Nous en déduisons d'autres résultats sur les bandes infinies de hauteur bornée. Enfin, nous explorons le problème du code identifiant dans une autre classe de graphes à structure répétitive : les graphes fractals de cycle.