Développement de la microdiffraction Kossel pour l'analyse des déformations et contraintes à l'échelle du micromètrecristallins : applications à des matériaux cristallins
Auteur / Autrice : | Denis Bouscaud |
Direction : | Etienne Patoor, Sophie Berveiller, Raphaël Pesci |
Type : | Thèse de doctorat |
Discipline(s) : | Mécanique, Matériaux, Procédés |
Date : | Soutenance en 2012 |
Etablissement(s) : | Paris, ENSAM |
Ecole(s) doctorale(s) : | École doctorale Sciences des métiers de l'ingénieur (Paris) |
Mots clés
Résumé
La diffraction des rayons X est une technique non destructive fréquemment utilisée en sciences des matériaux pour déterminer les contraintes résiduelles à une échelle macroscopique. Du fait de la complexité croissante des nouveaux matériaux et de leurs applications, il devient nécessaire de connaître l'état de déformation / contrainte à une échelle plus petite. Dans ce sens, un outil expérimental appelé microdiffraction Kossel a été développé au sein d'un microscope électronique à balayage. Il permet de déterminer l'orientation cristallographique et les déformations / contraintes avec une résolution spatiale de plusieurs micromètres. Des analyses ont aussi été réalisées avec un rayonnement synchrotron. Une méthodologie expérimentale a été développée de manière à optimiser l'acquisition des clichés et leur post-traitement. La procédure de détermination des contraintes a été validée en comparant les états de contrainte de monocristaux sous chargement mécanique in situ, obtenus en microdiffraction Kossel et avec des techniques de diffraction classiques. La microdiffraction Kossel a ensuite été appliquée à des matériaux polycristallins en diminuant progressivement la taille des grains analysés. Des hétérogénéités intergranulaires assez marquées ont par exemple été mesurées sur un acier IF. Des mesures ont enfin été réalisées sur des couches minces représentatives des composants de la microélectronique.