Interroger et extraire des graphes hétérogènes à partir des données structurées et du contenu non structuré
Auteur / Autrice : | Rania Soussi |
Direction : | Marie-Aude Aufaure |
Type : | Thèse de doctorat |
Discipline(s) : | Informatique |
Date : | Soutenance le 22/06/2012 |
Etablissement(s) : | Châtenay-Malabry, Ecole centrale de Paris |
Ecole(s) doctorale(s) : | École doctorale Sciences pour l'Ingénieur (Châtenay-Malabry, Hauts de Seine) |
Partenaire(s) de recherche : | Laboratoire : Mathématiques et informatique pour la complexité et les systèmes (Gif-sur-Yvette, Essonne ; 2006-....) |
Jury : | Président / Présidente : Bernd Amann |
Examinateurs / Examinatrices : Marie-Aude Aufaure, Alexander Löser, Faiez Gargouri, Henda Hadjami Ben Ghezala, Bénédicte Le Grand | |
Rapporteur / Rapporteuse : Alexander Löser, Faiez Gargouri |
Mots clés
Mots clés contrôlés
Mots clés libres
Résumé
Ce travail introduit un ensemble de solutions pour extraire des graphes à partir des données de l'entreprise et pour aussi faciliter le processus de recherche d'information dans ces graphes. Premièrement, nous avons défini un nouveau modèle de données appelé SPIDER-Graph permettant de modéliser des objets complexes et de définir des graphes hétérogènes. Puis, nous avons développé un ensemble d'algorithmes pour extraire le contenu des bases de données de l'entreprise et les transformer suivant ce nouveau modèle de graphe. Cette représentation permet de mettre à jour des relations non explicites entre objets, relations existantes mais non visibles dans le modèle relationnel. Par ailleurs, pour unifier la représentation de toutes les données dans l'entreprise, nous avons développé, dans une deuxième approche, une méthode de constitution d’une ontologie d'entreprise contenant les concepts et les relations les plus importantes d'une entreprise, et ceci, à partir de l’extraction des données non structurés de cette même entreprise. Ensuite, après le processus d'extraction des différents graphes de données l'entreprise, nous avons proposé une approche qui permettent d'extraire des graphes d'interactions entre des objets hétérogènes modélisant l'entreprise. Cette approche permet d'extraire des graphes de réseaux sociaux ou des graphes d'interactions. Ensuite, nous avons proposé un nouveau langage d'interrogation visuel appelé GraphVQL ( Graph Visual Query Langauge) qui permet aux utilisateurs non experts de poser leurs requêtes visuellement sous forme de patron de graphe. Ce langage propose plusieurs types de requêtes de la simple sélection et agrégation jusqu'à l'analyse des réseaux sociaux. Il permet aussi d'interroger différent type de graphes SPIDER-Graph, RDF ou GraphML en se basant sur des algorithmes de pattern matching ou de translation des requêtes sous forme de SPARQL.